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Modelling geophysical processes as low-dimensional
dynamical systems and regressing their vector field
from data is a promising approach for learning
emulators of such systems. We show that when the
kernel of these emulators is also learned from data
(using kernel flows, a variant of cross-validation),
then the resulting data-driven models are not only
faster than equation-based models but are easier to
train than neural networks such as the long short-
term memory neural network. In addition, they are
also more accurate and predictive than the latter.
When trained on geophysical observational data,
for example the weekly averaged global sea-surface
temperature, considerable gains are also observed by
the proposed technique in comparison with classical
partial differential equation-based models in terms
of forecast computational cost and accuracy. When
trained on publicly available re-analysis data for the
daily temperature of the North American continent,
we see significant improvements over classical
baselines such as climatology and persistence-based
forecast techniques. Although our experiments
concern specific examples, the proposed approach is
general, and our results support the viability of kernel
methods (with learned kernels) for interpretable and
computationally efficient geophysical forecasting for
a large diversity of processes.

2021 The Author(s) Published by the Royal Society. All rights reserved.
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1. Introduction
The numerical simulation of geophysical processes for forecasting is limited by high
computational costs, complex parametrization requirements and the spatio-temporal resolution
of fast processes. Data-driven methods are becoming increasingly popular for surrogate
modelling (emulation) or data analyses of all or a portion of the processes involved in numerical
weather prediction [1–4]. These include deep learning and neural network methods [5–8], which
have shown exceptional performance at the cost of a drop in interpretability. As an alternative,
we combine interpretable kernel methods with kernel selection methods (kernel flows (KF)
[9], as presented in [10] for learning dynamical systems) for the forecasting of geophysical
processes using data and show competitive results at exceptionally low computational costs for
sub-seasonal temperature forecasting when the underlying kernels are also learned from data.
In particular, we demonstrate that these methods provide interpretable and computationally
efficient alternatives1 to deep learning architectures, which are infrastructure hungry and require
off-nominal post hoc analyses for model interpretability such as Shapley additive explanations
[14] or layerwise relevance propagation [15]. The framework proposed here is amenable to
complex dynamics emulation, a posteriori error estimation and input and model-form uncertainty
quantification while being computationally inexpensive from a learning perspective. However,
we emphasize that the goal of this study is not to claim superiority over other geophysical
emulators but to advocate the use of simple data-driven methods as effective baselines before
migrating to compute hungry and poorly interpretable deep learning methods.

The rest of this document is organized as follows: §2 contains a literature review summarizing
recent work in data-driven geophysical forecasting. Section 3 introduces the specific datasets that
have been used for forecasting. The proposed algorithms for forecasting are introduced in §4.
Section 5 outlines results from experiments and a discussion with concluding remarks is provided
in §6.

2. Related work
Temperature forecasting is a crucial capability for several applications relevant to agriculture,
energy, industry, tourism and the environment. Improved accuracy in short- and long-term
forecasting of air and sea-surface temperature has significant implications for cost-effective
energy policy, infrastructure development and downstream economic consequences [16]. The
current state of the art in temperature forecasting is obtained with partial differential equation
(PDE)-based methods [17,18]. Since these methods generally require solving large systems
of equations with high-performance computing resources, they are limited by access and
considerations of energy efficiency.

Therefore, the task of temperature (and, more broadly, geophysical process) forecasting has
recently become a popular application of machine learning (ML) methods because of the promise
of comparable (if not greater) forecast accuracy at a fraction of the computational cost. This
also enables uncertainty quantification through ensemble forecasts [19], which are impossible
for PDE-based methods owing to their excessive computational complexity. For these reasons,
there has been a great degree of interest in building ML ‘emulators’ or ‘surrogate models’
from various geophysical datasets. There have been several studies on the use of ML for
accelerating geophysical forecasts in recent times. Several rely on using ML methods to devise
parametrizations for processes that contribute a high cost to the numerical simulation of the
weather and climate [20–25]. In such cases, PDEs are not eschewed entirely. Other studies have
looked at complete system emulators (i.e. forecasting from data alone) with a view to forecasting
without any use of (and consequent limitations of) equation-based methods [6,26–31]. Other
studies have looked at utilizing historical information for data-driven forecasting of specific

1Trained neural networks themselves can also be viewed as kernel machines [11,12] or warping kernel regressors [13].
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processes [32–35] by focusing on specific influential variables or through the use of time-
delay embeddings to offset inaccuracies due to unresolved variables. Further opportunities and
perspectives for the use of data-driven methods for geosciences may be found in the reviews
of [32,36]. Before proceeding, we note that a vast majority of the data-driven developments for
geophysical forecasting have involved the use of variants of deep learning methods, for example
ResNets [37], CapsuleNets [22], U-Nets [31], long short-term memory networks (LSTMs) [33],
convolutional-LSTMs [34], neural ordinary differential equations (ODEs) [38,39] and local or
global fully connected deep neural networks [32]. These methods, while exceptionally powerful
in learning complex functions, hamper interpretability and require large computational resources
for optimization. Furthermore, extensions to model form and data uncertainty quantification
aggravate computational requirements significantly. Therefore, the goal of this research is to put
forth viable alternatives to deep learning-based geophysical forecasting via the use of grey-box
KF for learning dynamical systems.

In this article, we introduce an entirely data-driven method for forecasting the weekly
averaged sea-surface temperature for the entire planet and the daily maximum air temperature
over the North American continent. Furthermore, our method is developed to provide forecasts
without the requirement for large-scale computational resources and with a greater degree of
transparency. We achieve this by obtaining a low-dimensional affine subspace approximation
of the temperature field on which a reduced system is evolved. Both dimensionality reduction
and system evolution are performed using data-driven techniques alone, with the former
employing a proper orthogonal decomposition (POD) and the latter combining kernel methods
with a cross-validation technique known as KF. We remark that, in contrast to the growing
popularity of deep learning methods for forecasting, we propose using classical dimensionality
reduction and time-series forecasting with suitable inductive biases. Here, inductive biases
are modifications to ML frameworks that ‘assist’ learning given prior knowledge of the
physics they are employed to learn. Our competitive results motivate the creation of simple
data-driven baselines that compare favourably with PDE-based methods without specialized
neural architectures. At this point, we would like to emphasize to the reader that, while
the experiments in this article devote themselves to forecasts on temperature, the proposed
framework is general and can be applied to other geophysical flow-field forecasting, provided
linear or nonlinear low-dimensional embeddings may be extracted, on which the dynamics
evolve.

3. Dataset(s)

(a) Weekly averaged sea-surface temperature
For our first experiment, we use the open-source National Oceanic and Atmospheric
Administration (NOAA) Optimum Interpolation sea-surface temperature V2 dataset (henceforth
NOAA-SST).2 This dataset has a strong periodic structure owing to seasonal fluctuations in
addition to rich fine-scaled phenomena due to complex ocean dynamics. Weekly averaged
NOAA-SST snapshots are available on a 0.25° grid which is sub-sampled to a 1° grid for the
purpose of demonstrating our proposed methodology in a computationally efficient manner.
This dataset, at the 1◦ resolution, has previously been used in several data-driven analysis tasks
(for instance, see [40,41] for specific examples), particularly from the point of view of extracting
seasonal and long-term trends as well as for flow-field recovery [42]. Each ‘snapshot’ of data
originally corresponds to an array of size 360× 180 (i.e. arranged according to the longitudes and
latitudes of a 1° resolution). However, for effective utilization in forecasting, a mask is used to
remove missing locations in the array that corresponds to the land area. Furthermore, it should
be noted that forecasts are performed for those coordinates which correspond to oceanic regions

2Available at https://www.esrl.noaa.gov/psd/.
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alone, and inland bodies of water are ignored. The non-zero data points then are subsequently
flattened to obtain a column vector for each snapshot of our training and test data.

These data are available from 22 October 1981 to 30 June 2018 (i.e. 1914 snapshots for the
weekly averaged temperature). We use the period of 22 October 1981 to 31 December 1989. The
rest (i.e. 1990–2018) is used for testing. Our final number of snapshots for training amounts to 427,
and for testing amounts to 1487. This train–test split of the dataset is a common configuration
for data-driven studies [40] and the 8 year training period captures several short- and long-
term trends in the global sea-surface temperature. Individual training samples are constructed
by selecting a window of inputs (from the past) and a corresponding window of outputs (for
the forecast task in the future) from the set of 427 training snapshots. From the perspective of
notation, if θ t is a snapshot of training data, t= 1, 2, . . . , 427, a forecasting technique may be
devised by learning to predict θ t+1, . . . , θ t+τ given θ t, θ t−1, . . . , θ t−τ . We note that this forecast
is performed non-autoregressively—that is, the data-driven method is not utilized for predictions
beyond the desired window size τ . Therefore, it is always assumed that the true θ t, θ t−1, . . . , θ t−τ

is available prior to making predictions. This means that, given a window of true inputs (for
example obtained via an observation of the state of the system given re-analysis data), a forecast
is made for a series of outputs (corresponding to the window length) before a metric of accuracy is
computed for optimization. This is in contrast to a situation where simply one step of a prediction
is used for computing a fitness metric which adversely affects the ability of the predictive method
for longer forecasts into the future (owing to amplifying errors with each forecast step). The
window size for the set of experiments on this dataset is fixed at eight weeks. The window-in
and window-out construction of the training data leads to a final training dataset of size 411
samples. Since this dataset is produced by combining local and satellite temperature observations,
it represents an attractive forecasting task for non-intrusive data-driven methods without requiring
the physical modelling of underlying processes.

(b) North American daily midnight surface temperature
The National Centers for Environmental Prediction’s (NCEP) North American Mesoscale Forecast
System (NAM) [18] is one of the main mesoscale models used for guiding public and private
sector meteorologists. NAM runs four times daily at three different spatial scales: (i) full North
American 12 km resolution. (ii) Four kilometre continental US (CONUS) nest, 6 km Alaska nest
and 3 km Hawaii and Puerto Rico nests. These domains are one-way nested inside the 12 km
domain. (iii) High-resolution nested domain, which has a different location each cycle based upon
the NCEP service centres and National Weather Service offices. For this work, analysis data from
NAM were used, using the 12 km resolution grid for the surface temperature. The NAM data are
collected in a time period between 28 October 2008 and 20 September 2018 on a daily cadence.
In particular, we measure the temperature at midnight on each day in this temporal domain.
This corresponds to 3569 snapshots of sea- and land-surface temperature data. In contrast to the
previous problem, our goal is to forecast one week in advance with the temperature resolved
daily. The first 2555 snapshots are reserved for the purpose of training the proposed forecasting
technique, while the rest are used for testing. In a manner similar to the previous test case, a time
delay of 7 days is used to specify the inputs to obtain the 7 day forecast of temperature in the
future.

4. Methods
In this section, we shall introduce our proposed algorithm for forecasting. First, we seek to reduce
the degrees of freedom of our forecast problem by performing a dimensionality reduction using
the POD. This reduced representation of our dataset is then used to train an efficient dynamical
systems emulator using kernel methods. Forecasts from this emulator may then be reconstructed
in the original space through the use of previously computed POD basis functions. The overall
schematic of this procedure is shown in figure 1.
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Figure 1. Theoverall schematic of theproposedworkflow. Learned kernels are used to forecast the state of a geophysical process
on a low-dimensional embedding obtained by the POD. Forecasted trajectories in the reduced subspace are reconstructed to
obtain the final predicted state. (Online version in colour.)

(a) Dimensionality reduction: proper orthogonal decomposition
POD provides a systematic method to project dynamics of a high-dimensional system onto a
lower-dimensional subspace. We suppose that a single snapshot of the full system is a vector
in R

N , where N could be the number of grid points at which the field is resolved. Observing the
system across a number of time points gives us the snapshots θ1, . . . , θT, with the mean subtracted
by convention. The aim of POD is to find a small set of orthonormal basis vectors v1, . . . , vM, with
M�N, which approximates the spatial snapshots,

θ t ≈
M∑

j=1

aj(t)vj, t= 1, . . . , T, (4.1)

and so allows us to approximate the evolution of the full N-dimensional system by considering
only the evolution of the M coefficients aj(t). POD chooses the basis, vj, to minimize the residual
with respect to the L2 norm,

R=
T∑

t=1

∥∥∥∥∥∥θ t −
M∑

j=1

aj(t)vj

∥∥∥∥∥∥
2

. (4.2)

Defining the snapshot matrix, S= [θ1|, . . . , |θT], the optimal basis is given by the M eigenvectors
of SST, with largest eigenvalues, after which the coefficients are found by orthogonal projection,
a(t)= 〈θ t, v〉 [43]. The coefficients a(t) correspond to a time series with an M-dimensional state
vector, which is the focus of our temporal forecasting.

For both of our datasets, we take only the training data snapshots, say D1, . . . , DT, from
which we calculate the mean D̄= (1/T)

∑
t Dt, hence defining the mean subtracted snapshots

θ t =Dt − D̄. We then create the snapshot matrix, S, and find numerically the M eigenvectors of
SST with largest eigenvalues. From this, we train models, f † (to be defined in the next section), to
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forecast the coefficients

(a(t+ 1), a(t+ 2), . . . , a(t+ τ ))≈ (â(t+ 1), â(t+ 2), . . . , â(t+ τ ))

= f †(a(t), a(t− 1), . . . , a(t− τ )), (4.3)

making predictions of future coefficients given previous ones. Here, τ corresponds to the time
delay that is embedded into the input feature space for the purpose of forecasting. In this article,
τ also stands for the forecast length obtained from the fit model, although, in the general case,
these quantities can be chosen to be different. We can now test for predictions on unseen data,
E1, . . . , EQ, where Et is an unseen snapshot of data at time t and Q is the total number of test
snapshots. Note that these test snapshots are obtained for a time interval that has not been used
for constructing the POD basis vectors. We proceed by taking the mean D̄ and vectors vj calculated
from the training data to get test coefficients at an instant in time

aj(t)= 〈Et − D̄, vj〉, j= 1, . . . , M, (4.4)

which will be used with the model f † to make future predictions in the unseen testing interval.
The prediction for the coefficients â can be converted into predictions in the physical space by
taking D̄+∑j âjvj. This procedure only makes use of testing data to pass into the model, not to
train the model in any way. Crucially, to make a forecast of Et+1, Et+2, . . . , Et+τ , only previous
measurements Et, Et−1, . . . , Et−τ are needed.

(b) Cross-validation for temporal forecasting
The method employed for temporal forecasting was introduced in [10] for learning dynamical
systems from data. It is a kernel regression with a kernel learned from data from a variant of
cross-validation known as KF [9].

To describe this method consider the problem of forecasting a(n+ 1) given the observation of
a(1), . . . , a(n), where a(1), . . . , a(k), . . . is a time series in R

M (in our application, M is the number of
modes, used for prediction). Evidently making a forecast requires some assumptions on the time
series and the assumption that we work under is that it can be approximated by a solution of a
dynamical system of the form

zn+1 = f †(zn, . . . , zn−τ †+1), (4.5)

where the time delay τ † ∈N
+ (the positive natural numbers) and f † is the vector field, which may

be unknown. Here, in our application, each zn is a time window of POD coefficients, i.e. of the
form zn = (a(n− τ ), . . . , a(n)), where τ is the length of the input and forecast windows (τ = 8, 7 in
our respective datasets). A simple solution to our extrapolation problem is then, given τ ∈N

+, to
learn/approximate f † from data (the past values of the time series), and then use the approximate
vector field f to define a surrogate model

zn+1 = f (zn, . . . , zn−τ+1),

for predicting the future states of the dynamical system. Therefore, the approximation of
the dynamical system can be recast as that of regressing/interpolating f † from pointwise
measurements

f †(Xn)=Yn for n= 1, . . . , N − τ , (4.6)

with Xn := (a(n+ τ − 1), . . . , a(n)) and Yk := a(n+ τ ). For the experiments in this study, forecasts
of length τ are concatenated during testing to obtain predictions in the entire testing time scales.
Given a kernel K, this interpolant (in the absence of measurement noise) is

f (x)=K(x, X)(K(X, X))−1Y, (4.7)

where X= (X1, . . . , XN−τ ), Y= (Y1, . . . , YN−τ ), K(X, X) stands for the N − τ ×N − τ matrix with
entries K(Xi, Xi) and K(x, X) is the N − τ vector with entries K(x, Xi). Writing ξ for the centred
Gaussian process with covariance function K and H for the reproducing kernel Hilbert spaces
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(RKHS) defined by K (see appendix A for a reminder), recall that (4.7) is (i) the conditional
expectation of ξ given the measurements ξ (Xi)=Yi and (ii) a minimax optimal approximation
[44] of f † in H (using the relative error in the RKHS norm || · ||H as a loss).

Evidently, the implementation of the proposed approach requires the prior selection of a kernel
K and here we propose (as in [10]) to also learn that kernel K from data using a variant of
cross-validation known as KF [9]. Given a family of kernels Kθ (x, x′) parametrized by θ , the KF
algorithm seeks to select a θ such that subsampling the data does not influence the interpolant
much. Writing || · ||Kθ

for the RKHS norm defined by the kernel Kθ (x, x′), and two interpolants
ub and uc obtained with the kernel Kθ and by subsampling the data (uc uses a smaller subset
of the data than ub), the KF algorithm seeks to learn θ by successively moving θ in the gradient
descent direction of the loss ρ = ||ub − uc||2Kθ

/||ub||2Kθ
(4.8). Note that (i) ρ is a cross-validation term

(randomized through the subsampling procedure) acting as a surrogate for the generalization
error (in relative RKHS norm) and (ii) ub acts as a surrogate for the target function. To summarize,
given a family of kernels Kθ (x, x′) parametrized by θ , the KF algorithm is as follows [9,45]:

(i) Randomly select subvectors Xb and Yb of X and Y (through uniform sampling without
replacement in the index set {1, . . . , N − τ }).

(ii) Randomly select subvectors Xc and Yc of Xb and Yb (by selecting, at random, uniformly
and without replacement, half of the indices defining Xb).

(iii) Let3

ρ(θ , Xb, Yb, Xc, Yc) := 1− Yc,TKθ (Xc, Xc)−1Yc

Yf ,TKθ (Xb, Xb)−1Yb
(4.8)

be the squared relative error (in the RKHS norm || · ||Kθ
defined by Kθ ) between the

interpolants ub and uc obtained from the two nested subsets of the dataset and the
kernel Kθ .

(iv) Evolve θ in the gradient descent direction of ρ, i.e. θ← θ − δ∇θ ρ.
(v) Repeat until desired accuracy is achieved or computational budget is exhausted.

A schematic of the kernel learning process is shown in figure 2. In this study, we use the following
expression for our kernel:

Kθ (x, x′)= θ2
1 exp

(
−||x− x′||2

2θ2
2

)
+ θ2

3
(
1+ θ2

4 xTx′
)2 + θ2

5
(
1+ θ2

6 ||x− x′||2)−(1/2)

+ θ2
7
(
1+ θ2

8 ||x− x′||2)θ9 + θ2
10
(
1+ θ2

11||x− x′||2)−1

+ θ2
12 max

(
0, 1− θ13 ∗ ||x− x′||2). (4.9)

The main motivation for this kernel is the numerical experiments in [10], where the authors
used KF to learn prototypical chaotic dynamical systems that exhibit a rich dynamic behaviour.
The motivation of the triangular kernel is that the Bernoulli map that exhibits a rich dynamic
behaviour is toplogically conjugate to the unit-height tent map. The quadratic kernel captures
the long-term correlation and the Gaussian kernel captures the short-term correlation. Our
experiments suggest that the particular parametrized family of kernels is not important as long
as it is rich enough (to reproduce the patterns contained in the dataset). The additive form of
the kernel is equivalent to regressing the data with a sum of independent Gaussian processes,
each one being adapted to a particular feature/pattern of the data. As presented in [46], additive
kernels can be employed to program sophisticated kernels for pattern recognition tasks.

In the following, we denote the use of cross-validation to forecast POD coefficients as the POD-
RKHS emulation framework.

3ρ := ||ub − uc||2Kθ
/||ub||2Kθ

, with ub(x)=Kθ (x, Xb)Kθ (Xb, Xb)−1Yb and uc(x)=Kθ (x, Xc)Kθ (Xc, Xc)−1Yc, and ρ admits the
representation (4.8), enabling its computation.
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select Nf points out of the N data points (at random uniformly)

select Nc = Nf /2 points out of the Nf data points (at random uniformly)

v: kriging with Nf  points w: kriging with Nc points

r = 

a Æ a – ε—qr(q)

||v–w||2

||v||2

Figure 2. Learning kernel hyperparameters, θ , by cross-validation from data. Aworkflow schematic. (Online version in colour.)
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Figure 3. POD coefficient predictions (a–c) and L1 errors with corresponding true values (d–f ) for the NOAA-SST dataset
using POD-RKHS. We use 427 snapshots between 22 October 1981 and 31 December 1989 for training. The remaining 1487
snapshots of the dataset (i.e. 1990–2018) are used for testing and are shown here for model assessment. (a) Coefficient 1,
(b) coefficient 2, (c) coefficient 3, (d) coefficient 1 error, (e) coefficient 2 error, (f ) coefficient 3 error. (Online version in colour.)

5. Experiments
In this section, we outline results from the use of the POD-RKHS framework for forecasting on
the aforementioned datasets. We also provide metrics that evaluate the accuracy of the forecasts
and compare them with baseline techniques. Our first set of results are shown for the NOAA-
SST dataset. The ability to forecast weekly averaged coefficients eight weeks at a time is shown
in figure 3 (for the testing period), where it can be observed that the lower order structures
are predicted with high fidelity. The framework shows deviations in the finer scale content
(mode 3) as one approaches the end of the testing period, indicating potential extrapolation.
Similar behaviour was observed in [33,35] as well, where a multi-cell LSTM was used to forecast
in this reduced space (henceforth POD-LSTM). Time-series assessments for various point probes
in the Eastern Pacific are shown for a testing sub-window where data from all prediction
sources were available (between 5 April 2015 and 17 June 2018) in figure 4. The plot indicates
a competitive testing performance when compared with state-of-the-art equation-based methods
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Figure 4. Probe time-series comparisons for NOAA-SST from CESM, HYCOM and POD-RKHS within the testing regime at two
different locations. The data are plotted for the weeks between 5 April 2015 and 17 June 2018. (a) 50◦ latitude, 230◦ longitude
and (b) 85◦ latitude, 210◦ longitude. (Online version in colour.)
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Figure 5. Contour plots for various forecasts ((a) POD-RKHS, (b) HYCOM, (c) CESM, (d) truth), indicating how low-dimensional
manifold-based emulation reduces the ability to capture fine-scaled features in the flow-field. HYCOM, with the finest
resolution, is seen to capture small-scale informationmost accurately. Note, however, that the POD-based emulation framework
is competitive in an averaged sense, as seen through RMSE metrics. (Online version in colour.)

such as the Community Earth System Model (CESM) [47] and the US Navy Hybrid Coordinate
Ocean Model (HYCOM) [48]. The former is a climate simulator and the latter is an operational
forecast system giving short-term predictions. Both these techniques require vast computational
resources, whereas our forecast is performed on a single-node machine without any accelerator.

Some qualitative comparisons of the predictions are shown in figure 5, where an acceptable
agreement between different methods and the remote-sensing dataset is observed (table 1).
We also note that the metrics obtained using the optimized LSTM architecture in this table
outperformed the accuracy obtained from classical linear or decision-tree-based forecasting
techniques (see table 2 in [33]). A closer examination of the mean squared error during the
entire testing period is shown in figure 6, where POD-RKHS is seen to give sufficiently accurate
predictions in the entire domain, including the vital Eastern Pacific region. With the testing period
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Figure 6. Contour plots for RMSE over the entire testing period (1990–2018) for the NOAA-SST dataset for POD-RKHS (a)
and CESM (b). The results indicate that the proposed low-dimensional emulator captures the long-term behaviour of the SST
fluctuations more accurately than CESM. (Online version in colour.)

Table 1. RMSEs (in Celsius) for different forecast techniques compared against the POD-RKHS forecasts between 5 April 2015
and 24 June 2018, in the Eastern Pacific region (within –10° to+10◦ latitude and 200–250◦ longitude). POD-RKHSmatches the
accuracy of the process-basedmodels for this particularmetric and assessment and that of an optimized LSTM [33] using neural
architecture search.

RMSE (◦)
week 1 week 2 week 3 week 4 week 5 week 6 week 7 week 8

POD-LSTM 0.62 0.63 0.64 0.66 0.63 0.66 0.69 0.65
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CESM 1.88 1.87 1.83 1.85 1.86 1.87 1.86 1.83
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

HYCOM 0.99 0.99 1.03 1.04 1.02 1.05 1.03 1.05
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

POD-RKHS 0.76 0.67 0.66 0.69 0.69 0.72 0.77 0.76
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

being around 18 years, the El Niño–Southern Oscillation (ENSO), occurring at a frequency of
2–7 years [4], is captured more accurately in comparison with CESM.

In terms of times to solution, data-driven models provided instantaneous forecasts for
the given time period (1981–2018). By contrast, equation-based models would require larger
computing resources and times to solution by several orders of magnitude. For example, CESM
(for the forecast period of 1920–2100) required 17 million core-hours on Yellowstone, the National
Center for Atmospheric Research (NCAR) high-performance computing resource, for obtaining
forecasts for each member of a 30-member ensemble. While finer details about computational
costs were not readily available for HYCOM, this short-term ocean prediction system runs daily at
the Navy Department of Defense Supercomputing Resource Center, with data typically accessible
within 48 h of the simulation initialization.4 Benchmarking results for the 1/25◦ HYCOM forecasts
(much finer than the reference data used here) indicate the requirement of 800 core-hours per
day of forecast on a Cray XC40 system.5 For a more appropriate comparison, we also take into
account the computational cost of the search for an optimal LSTM architecture and its training.
While the POD-RKHS method requires approximately 40 s to train on a single-node machine
without acceleration, the LSTM being compared with was discovered using 3 h of wall time on
128 compute nodes of the Theta supercomputer with the Intel Knights Landing architecture. Note
that POD-RKHS was trained only once on one Intel CoreI7 X86_64 CPU without any hardware
acceleration. Subsequent assessments on a different dataset (in the next set of experiments)
indicate that the RKHS continues to be competitive in training costs. All experiments involving

4https://www.hycom.org/dataserver.

5https://www.hycom.org/attachments/066_talk_COAPS_17a.pdf.
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Figure 7. POD coefficient predictions for forecasting in the testing regime for the NOAA-NCEP NAM dataset. The plots indicate
the stochastic nature of the daily temperature at midnight and also highlight the ability of the POD-RKHS framework to extract
a signal from them. (a) Coefficient 1, (b) coefficient 2, (c) coefficient 3. (Online version in colour.)

POD-RKHS were performed using Python with the NumPy and AutoGrad libraries being used
for numerical linear algebra and optimization, respectively.

Our second set of assessments are performed for the NOAA-NCEP NAM dataset for sea- and
land-surface air temperatures over the North American continent. This dataset is obtained by
a re-analysis of numerical simulation data obtained through data assimilation of observations.
We follow the same strategy of time-delayed inputs to outputs for forecasting the midnight
temperature. Figure 7 shows the ability of the time-series emulator to extract an underlying trend
from a highly noisy signal.

Note that the difficulty of extracting the extremely high-frequency features contributes to
the poor capture of extreme events during emulation. The reconstruction accuracy from the
forecast is compared in a series of assessments beginning with root-mean-squared error (RMSE)
assessments as shown in figure 8 for the testing time period. POD-RKHS is seen to provide
competitive results in comparison with persistence and climatology at the lower latitudes. Here,
climatology refers to the temperature on a particular day averaged over multiple years, and
persistence is the last known (i.e. last observed) temperature on the day the forecast is made.
By contrast, exceptional gains are seen at the higher latitudes with far reduced RMSE values
from the proposed framework. Note that errors across all frameworks were maximum in the
northern section of the continent, proving the increasing difficulty of predicting in that region
using data-driven techniques. Figure 9 plots the contours for improvements in the correlation
coefficient and cosine similarities6 of the predictions when compared with climatology. While
correlation coefficients indicate regions where the predictions improve over the baselines in an
averaged sense, cosine similarities indicate the ability to detect extreme fluctuations in a forecast.
The contours indicate that the proposed framework improves on extreme fluctuation detection
over climatology in the northern region of the spatial domain as well. Similar trends are observed
for comparisons with persistence with large gains in cosine similarities in the northern part of the
spatial domain.

For the purpose of comparison, we also outline the performance of a standard LSTM
framework (manually selected in comparison with [33]) for forecasting on the NAM dataset.
The problem formulation is identical, with the LSTM using a window of inputs of 7 days length
and forecasting the POD coefficient trajectories for the next 7 days. We train 55 instances of this
LSTM, consisting of three stacked LSTMs and 50 neurons for each of the linear operations in
each cell, and select the one with the best training and validation performance. The 55 LSTM
architectures were trained using an Nvidia V100 GPU and required 5 h of wall time. For each
training, an early stopping criterion is used to terminate training if validation losses do not
improve for 10 successive training epochs. Figure 10 shows predictions from the testing data
using the trained LSTM with clear indications of poor capture of dynamics. These are confirmed
by contour plots for the RMSE, shown in figure 8, where the POD-LSTM framework is the weakest

6The cosine similarity between two vectors a and b is (a · b)/||a||||b||.
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(a) POD-RKHS and (b) POD-LSTM frameworks. This result indicates the use of one potential LSTMwithmanual tuning—further
improvements may be obtained through neural architecture and a hyperparameter search as seen in [33]. (Online version in
colour.)

of all the data-driven methodologies presented here. Figure 11 examines potential improvements
in the correlations and cosine similarities within the spatial domain of the dataset for this
experiment. Climatology and persistence are seen to comprehensively outperform a standard
LSTM architecture. Note that, as suggested by figures 3 and 7, most of the forecast error is due
to bias for the NOAA-SST dataset (low-noise dataset) and variance for the NOAA-NCEP NAM
dataset (high-noise dataset). It must be noted that this result is not meant to justify mistrust of
all deep learning architectures but to propose the use of classical kernel-based methods for the
construction of baselines.

We now compare the training and testing times of the proposed framework with those of
LSTM methods with standard architectures. The POD-RKHS method required a total of 136 s to
train, whereas the POD-LSTM methods took an average of 330 s to train per LSTM architecture.
Although the choice of user-defined hyperparameters in both these methods may change these
values, their training times are comparable. We note that, in a manner similar to [33], discovering
the optimal hyperparameters and architectures for a deep learning framework adds significant
costs associated with sampling a high-dimensional search space of neural networks that may fit
the given training data. In that regard, kernel methods may provide significant computational
gains.

6. Discussion
In this article, we have employed a simple kernel regression method for the forecasting of
geophysical time series. We have shown that when the kernel is also learned from data (via KF),
then the proposed framework provides competitive and computationally efficient baselines for

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

09
 D

ec
em

be
r 

20
21

 



13

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210326

..........................................................

60

50

40

30

20

la
tit

ud
e

60

50

40

30

20

la
tit

ud
e

60

50

40

30

20

la
tit

ud
e

60

50

40

30

20
la

tit
ud

e

(a) (b)

(c) (d)

–140 –120 –100 –80 –60

longitude
–140 –120 –100 –80 –60

longitude

–140 –120 –100 –80 –60

longitude
–140 –120 –100 –80 –60

longitude

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0

0.30

0.25

0.20

0.15

0.10

0.05

0

0.25

0.20

0.15

0.10

0.05

0

Figure 9. Metric improvements in climatology (a,b) and persistence (c,d) using the POD-RKHS time-series emulator. Lighter
regions depict areas where the POD-LSTM forecast model outperformed the climatology and persistence baselines. The north
domain of the dataset shows improved performance by the proposed framework, particularly for extreme fluctuation detection
(indicated by cosine similarity improvement). Overall correlation with the truth is seen to be improved throughout the domain.
(a,c) Correlation coefficients and (b,d) cosine similarities. (Online version in colour.)
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Figure 10. Predictions for the NOAA-NCEP NAM POD coefficients using a POD-LSTM framework. This prediction was obtained
with three stacked LSTM cells, each with 50 neurons for all the internal operations. An LSTM that provided the best training
and validation performance among 55 restarts was chosen. The total time to train these LSTMs was 5 h on an Nvidia V100 GPU.
It is observed that the LSTM architecture is sensitive to the stochastic nature of the data. (a) Coefficient 1, (b) coefficient 2,
(c) coefficient 3. (Online version in colour.)

the geophysical emulation of two temperature-based datasets given by the weekly averaged sea-
surface temperature (NOAA-SST) and the daily resolved midnight temperature (NCEP-NAM).
In both cases, the proposed method recovers a stable temporal behaviour on a low-dimensional
manifold. Importantly, for the second dataset, strong stochasticity is handled robustly by the
proposed framework to obtain superior metrics when compared with classical baselines such
as climatology or persistence. Comparisons with the POD-LSTM framework, commonly used
for non-intrusive reduced-order modelling, are also favourable. While the POD-LSTM obtained
through an expensive parallelized neural architecture search slightly outperforms the proposed
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Figure 11. Metric improvements on climatology (a,b) and persistence (c,d) using the LSTM time-series emulator. Lighter regions
depict areas where the POD-LSTM forecast model outperformed the climatology and persistence baselines. Vast stretches (i.e.
the white regions) of the domain show poorer performance for POD-LSTM against climatology and persistence baselines. (a,c)
Correlation coefficients and (b,d) cosine similarities. (Online version in colour.)

framework for the relatively smooth NOAA-SST time-series data, the proposed framework
is much more successful in the case of the stochastic NCEP-NAM temperature data. The
computational cost of learning kernels in the proposed method is considerably lower than PDE-
based forecasting alternatives and does not require any specialized hardware (such as artificial
intelligence accelerators). When considering the fact that deep learning frameworks often require
significant architecture tuning to obtain a viable function approximation, our framework provides
greater computational gains than those data-driven surrogates over the lifetime of a forecast
campaign.

Extensions to this work include the addition of more predictive variables to the training data
to emulate larger fractions of the Earth system model. This may be obtained by concatenating
reduced representations of a greater number of flow-field variables (in truncated POD space) to
obtain a larger, more informative state vector. We note that, despite the successes of the framework
in this article, several forecast tasks may be challenging using the POD-RKHS methodology. These
would generally be due to the absence of a low-dimensional manifold on which a large portion
of the flow-field dynamics is restricted. An example forecast task would be something akin to
the prediction of precipitation. Therefore, future extensions must account for situations where a
linear compression, given by the POD, is inefficient because of the presence of very fine scales
in the data—in such cases, nonlinear compression techniques such as diffusion maps or neural
network parametrized autoencoders may be necessary for effective dimensionality reduction.
Here, an interesting avenue for exploration is to use KF for obtaining reduced representations
themselves in a unified pipeline for geophysical emulation. These directions may be instrumental
for pushing data-driven forecast horizons to regimes where classical methods are untrustworthy.
Finally, a major advantage of using KF is that posterior distributions may be learned
under the Gaussian assumption, which would allow for aleatoric uncertainty quantification.
A further assumption of hyperparameters being random variables that are sampled from a joint
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distribution would enable epistemic uncertainty estimates as well. These ideas are our current
research focus.
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Appendix A. Gaussian process regression
The interpolant (4.7) can also be identified as the conditional mean of the centred GP ξ ∼N (0, K)
with K as the covariance function conditioned on ξ (Xi)=Yi, Furthermore, we have the pointwise
error estimate (see [49] and [50, theorem 5.1])

|f †(x)− f (x)| ≤ σ (x)||f †||K, (A 1)

bounding interpolation error between f † and f , where ||f †||K is the RKHS norm defined by the
kernel K and

σ 2(x)=K(x, x)− K(x, X)(K(X, X))−1K(x, X)T (A 2)

is the conditional variance of the GP ξ . From a practical point of view ||f †||K could be replaced by
the RKHS norm of its interpolant

√
YT(K(X, X))−1Y to offer a rough error estimate.7

Appendix B. Error estimates
For the sake of completeness, we include convergence results from [51,52] that characterize
the error estimates of the difference between a dynamical system defined by an ODE and its
approximation from data.

We consider ODEs of the form
ẋ= f ∗(x), (B 1)

where f ∗ : R
d→R

d is a smooth vector field and dot denotes differentiation with respect to time.
We assume that the function f ∗ is unknown, but we have sampled data of the form (xi, yi) in

X× R
d, i= 1, . . . , m, with

yi = f ∗(xi)+ ηxi . (B 2)

We assume that the one-dimensional random variables ηk
xi
∈R

d, where i= 1, . . . , m and k=
1, . . . , d, are independent random variables drawn from a probability distribution with zero mean
and variance (σ k

xi
)2 bounded by σ 2.

The function spaces that we use to search for our approximations to both f ∗ will be RKHS. For
a survey of the main properties of RKHS spaces mentioned in this section, we refer to [53].

Let K be a continuous, symmetric, positive-definite function (a ‘kernel’) K : X× X→R and
set Kx :=K(·, x). Define the Hilbert space HK by first considering all finite linear combinations of

7Since
√

YT(K(X, X))−1Y is only a lower bound on ||f †||K , this modified estimate is no longer a rigorous bound. We also note

that the effect of KF is to decrease both
√

YT(K(X, X))−1Y and ||f †||K .
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functions Kx, that is,
∑

xi∈X aiKxi with finitely many ai ∈R non-zero. An inner product 〈·, ·〉K on
this space is defined by 〈Kxi , Kxj 〉H :=K(xi, xj) and extends linearly. One takes the completion to
obtain HK.

Alternatively, an equivalent definition of an RKHS is as a Hilbert space of real-valued functions
on X for which the evaluation functional δx(f ) := f (x) is continuous for all x ∈X.

Finite-dimensional subspaces of HK can also be naturally defined by taking a finite number
of points x := {x1, . . . , xm} ⊂X and considering the linear span HK,x := span{Kx : x ∈ x}. In practice,
we will seek functions in these finite-dimensional subspaces as approximations for f ∗.

RKHSs are characterized by the reproducing property

〈Kx, f 〉K = f (x), ∀ f ∈HK. (B 3)

If we denote κ :=√supx∈X K(x, x), then HK ⊂C(X) and it follows that

||f ||L∞(X) ≤ κ||f ||K, ∀ f ∈HK. (B 4)

The RKHS HK can also be defined by means of an integral operator. Let ρ be any (finite)
strictly positive Borel measure on X (e.g. Lebesgue measure) and L2

ρ (X) be the Hilbert space of
square integrable functions on X. Then define the linear operator LK : L2

ρ (X)→C(X) by (LKf )(x)=∫
X K(x, y)f (y)dρ(y). The RKHS will then correspond to the closure of the span of the eigenfunctions

of LK.

Theorem B.1. Let K be a Mercer kernel such that K ∈C2s+ε(X× X) for 0 < ε < 2 and suppose that
L−r

K f ∗ ∈L2
ρ (X) for some 0 < r≤ 1. Let λ > 0, then for every 0 < δ < 1, with probability 1− δ, we have

||fz,λ − f ∗||∞ ≤ ||w||R
mσκ2

λ
√

δ
+ κChxρ(X)

λ
+ κλr−(1/2)||L−r

K f ∗||∞,

where σ 2 := supx∈X σ 2
xi

, κ :=√supx∈X K(x, x) and C is a Lipschitz constant for (f ∗ − fλ), where the
constant C depends on f ∗, d, σ and the choice of RKHS HK1 .

The three terms in theorem B.1 correspond, respectively, to errors incurred by the noise
(sample error, E1), the finite set of data sites (integration error, E2) and the regularization parameter
λ (regularization error, E3).
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