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ABSTRACT

It is now well known that natural Brownian Motions on various disordered or complex structures are
anomalously slow, and that convection in a turbulent flow can create anomalously fast diffusion. In
this work we try to understand the basic mechanisms of anomalous diffusion using and developing
the tools of homogenisation. These mechanisms of the slow diffusion for instance are well understood
for very regular strictly self-similar fractals. The archetypical specific example of a deep problem
being the one solved by Barlow and Bass on the Sierpinski Carpet (which is infinitely ramified, a
codeword for hard to understand rigorously). It appears that the main feature is the existence of an
infinite number of scales of obstacle (with proper size) for the diffusion. We can show that one can
implement the common idea that this last feature (infinitely many scales) is the key for the possibility
of anomalous diffusion, fast and slow, in a general context, using the tools of homogenisation.

Résumé

Il est maintenant bien connu que des mouvements Browniens naturels sur diverses structures com-
plexes et désordonnées sont anormalement lentes, et qu’une convection dans un écoulement tur-
bulent peut créer une diffusion anormalement rapide. Dans ce travail, nous essayons de compren-
dre les mécanismes fondamentaux des diffusions anormales en utilisant et développant les outils de
l’homogénéisation. Ces mécanismes, pour les diffusions lentes par exemple, sont bien comprises pour
des Fractals très régulier et self-similaires. L’exemple spécifique archétype d’un profond problème
étant celui résolu par Barlow et Bass sur le Tapis de Sierpinski (qui est infiniment ramifié, un nom de
code signifiant difficile à comprendre rigoureusement). Il apparâit que la caractéristique essentielle
est l’existence d’un nombre infini d’échelles d’obstacles (avec des tailles convenables) pour la diffu-
sion. On peut montrer que l’on peut implémenter l’idée commune que cette dernière caractéristique
(un nombre infini d’échelles) est la clé pour la possibilité d’une diffusion anormale, rapide et lente,
dans un contexte général, en utilisant les outils de l’homogénéisation.
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0. INTRODUCTION

One might think that homogenization has as much to do with rigorous proofs of anomalous diffusion
as with the price of cheese. Indeed to expect that a sequence of central limit theorems would cause
the anomaly of a diffusion might not be a natural idea and in fact this work did not started with the
purpose of using homogenization theory to prove the anomaly of a diffusion evolving in an infinite
number of scales.

0.1 Origin of this work

In a series of six articles M.T. Barlow and R. Bass [BB89], [BB90a], [BB90b], [BB92], [BB93a],
[BB97] have constructed a reflecting Brownian motion on the Sierpinski carpet and extended their
work to the Sierpinski sponge; this work was a breakthrough since it was the first rigorous and com-
plete analysis of Brownian motion constructed on an infinitely ramified fractal (codeword for hard
to analyze). One of the interesting behavior of the Brownian motion on the Sierpinski sponge was
its sub-diffusive behavior.
This work started on the basis of the following idea: the Brownian motion on the Sierpinski carpet
is sub-diffusive, not because of the particular geometry of that object, but because it encounters
obstacles at every scales (each scale manifesting its influence at a specific moment).
Thus the scientific objective was to analyze and understand the behavior of a diffusion evolving in
a medium characterized by an infinite number of scales that are not self symmetric and have no
symmetries. Of course, the initial quest was to find such a model (or a medium) presenting no sym-
metries and no self similarity and characterized by an infinite number of scales of reflecting obstacles;
construct on it a Brownian motion, and prove its sub-diffusive behavior, this would lead to the proof
of the following universal result ”if a diffusion encounters obstacles at every scales then it becomes
sub-diffusive”.

Now a close look at the problem showed that only homogenization theory could handle obstacles
without symmetries and it was a well known fact that homogenization on a periodic potential drift
has the property to decrease the diffusivity. This was an interesting path to explore and reflecting ob-
stacles were replaced by a smooth drift that allowed to use Ito calculus without wondering about the
irregularities of the boundaries of some hard obstacles (it was also a way to avoid some pathologies
appearing with hard obstacles without symmetries). Then the next natural idea was what happens
with a potential drift characterized by a two periods of fluctuations? a short analysis showed that the
diffusivity of the Brownian motion would decrease the product of the effective diffusivities associated
to each period if the ratios between them were big enough. This was quite interesting because it
meant that if homogenization on a periodic potential U generates a Brownian process with effective
diffusivity aId (a < 1), homogenization ever n scales of U (with a large ratio separating them) would
give a Brownian process with effective diffusivity anId, then what would happen with an infinite
number of scales?
A short heuristic analysis pointed out that it would generate the anomaly of the diffusion, the key
was the geometric decrease of the effective diffusivities with the number of scales and the fact that
with an infinite number of scales homogenization is never finite. Moreover for a given time t one
could easily separate the medium into effective scales (smaller ones) and drift scales (larger ones) and
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the number of effective scales were growing with the time leading to the sub-diffusivity of the process.
The model to explore were found, nevertheless a closer look showed that to obtain interesting results
one had to improve some tools used in homogenization theory.
Homogenization theory gives only an asymptotic image in the sense that it gives an exact result only
when the ratio between scales grows towards infinity. Here there were an infinite number of scales
and the ratios between them were bounded. Thus it was necessary to find a way to do computations
over an infinite number of scales with bounded ratios and to obtain sharp estimates of the rate of
convergence towards the asymptotic process in homogenization theory.
An other difficulty appeared, and this one was inherent to the generality of the model, without a
priori knowledge on the shapes of the fluctuations some intermediate scales can not be considered as
drift scales or effective scales, one had to control their influence. This control is in a sense equivalent
to compare the Green functions associated to two different elliptic operators (non isotropic and non
homogeneous in the space) and it goes beyond conventional knowledge on the subject that concerns
mainly comparison with the Laplace operator.

0.2 Realizations

Sub-diffusivity is proven in all dimensions d ≥ 1 starting from the invariant measure with full gen-
erality and starting from any points for d = 1. The proof of the sub-diffusivity starting from any
points for d ≥ 2 depends on a stability condition of the multi-scale process.
To obtain those results, one is lead to develop the tools of homogenization theory. Indeed in re-
iterated homogenization, or DEM theories, in order to obtain estimates on the effective diffusivity
associated to the multi-scale medium one has to assume that the ratios between those scales goes to
infinity with their numbers. Here those estimates will be obtained, with an arbitrarily large number
of scales and with bounded ratios between them.
Moreover, one has to obtain sharp estimates on the behavior of the heat kernel associated to a pe-
riodic operator. This question is directly liked to Davies conjecture (see section 5.3) on the rate of
convergence of diffusion in a periodic medium towards its limit process. An answer will be given to
this conjecture by showing that the homogenized behavior of the heat kernel p(t, x, y) associated to
a elliptic periodic operator starts for t >> |x− y|.

To replace the universal sentence ”a diffusion becomes anomalous because it encounters obstacles
at every scales” by ”a diffusion becomes anomalous because homogenization operates on an infi-
nite number of scales” is not a tautology. Indeed the word obstacles suggests a symmetric diffusion
(with an associated Dirichlet form) whose generator is characterized by Neumann conditions on the
boundaries of some reflecting obstacles whereas homogenization can operate on a very large variety
of generators which can be non symmetric.
Moreover it was a well known fact that homogenization on a divergence-free drift has the property
to enhance the diffusion, thus the natural idea that follows the study of a Brownian motion evolving
in a potential drift characterized by an infinite numbers of fluctuations is to study the Brownian
motion evolving in a divergence-free drift characterized by an infinite numbers of fluctuations and it
is natural to expect that a super-diffusive behavior will arise. The precise super-diffusive behavior at
this stage is rigorously proven in the shear flow model (with the techniques developed with potential
diffusions).

0.3 Perspectives

The proof of the sub-diffusive behavior in the medium characterized by an infinite number of scales of
potential drifts and starting from any point in dimension one is based on a new analytical inequality:
let Ω be a smooth open bounded subset of R

1 and A ∈ C∞(Ω̄), A > 0 on Ω̄ then
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Theorem 0.3.1. (d=1) For all ψ and φ sub harmonic with respect to the operator −∇(A∇) and
null on the boundary of Ω one has∫

Ω
|∇ψA∇φ|dx ≤ 3

∫
Ω
∇ψA∇φdx (0.1)

We believe that this theorem might also be also true in higher dimensions and it appears as an
interesting path to explore. Indeed its proof would give the anomaly of a diffusion starting from
any point, moreover it has also strong consequences on the Green functions associated to elliptic
operators and an interesting signification in terms of electrostatic theory (see the chapter 13).

An other path that we would like to explore is the extension of those results to the case where
at each scale, the medium is not periodic but ergodic.

Next the study of super-diffusivity in the divergence-free case with full generality in dimension d ≥ 2
appears as an interesting work to undertake.

0.4 History

Actually the more this work was progressing the more it was becoming clear that the idea to associate
homogenization (or renormalization) on large number of scales with the anomaly of a physical system
had already been applied on an heuristic point of view to several physical models.
May be one of the oldest one is Differential Effective Medium theories which was first proposed
by Bruggeman to calculate the conductivity of a two-component composite structure formed by
successive substitutions ([Bru35] and [AIP77]) and generalized by Norris ([Nor85]) to materials with
more than two phases. For instance this theory has been applied to compute the anomalous electrical
and acoustic properties of fluid-saturated sedimentary rocks [SSC81]. More recently this problem has
been analyzed from a rigorous point of view by Avellaneda [Ave87] and Kozlov [Koz95]; by Allaire,
Briane [AB96] and Jikov, Kozlov [JK99].
The heuristic application of this idea to prove the anomalous behavior of a diffusion seems to have
been done only for the super-diffusive case that is to say for a diffusion evolving among a large number
of divergence-free drifts. May be this is explained by the strong motivation to explore convective
transports in turbulent flows which are known to be characterized by a large number of scales of
eddies. The first observation was empirical: in 1926 when Richardson ([Ric26]) analyzed available
experimental data on diffusion in air. Those data varied about 12 orders of magnitude. On that
basis, Richardson phenomenologically conjectured that the diffusion coefficient Dλ in turbulent air
depend on the scale length λ of the measurement. The Richardson law,

Dλ ∝ λ
4
3 (0.2)

was related to Kolmogorov-Obukhov turbulence spectrum, v ∝ λ
1
3 , by Batchelor [Bat52]. The super-

diffusive law of the root-mean-square relative displacement λ(t) of advected particles

λ(t) ∝ (Dλ(t)t)
1
2 ∝ t

3
2 (0.3)

was derived by Obukhov [Obu41] from a dimensional analysis similar to the one that led Kolmogorov
[Kol41b] to the λ

1
3 velocity spectrum.

More recently physicists and mathematicians have started to investigate on the super-diffusive
phenomenon (from both heuristic and rigorous point of view) by using the tools of homogeniza-
tion or renormalization (the first cousin of multi-scale homogenization): M. Avellaneda and A.
Majda [AM90]; J. Glimm and Al. [FGLP90], [FGL+91], [GLPP92], J. Glimm and Q. Zhang
[GZ92], Q. Zhang [Zha92], M.B. Isichenko and J. Kalda [IK91], A. Fannjiang and G.C. Papani-
colaou [FP94],[FP96]; M. Avellaneda [Ave96]; A. Fannjiang [Fan99]; Rabi Bhattacharya [Bha99] (see
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also [BDG99] by Bhattacharya - Denker and Goswami).
Certainly this panorama is not complete, it reflects only the limited knowledge of the author who
apologize if someone feels left over.

0.5 Map of the work

This work is divided into four parts,

• The first one gives our models and the main results. The chapter 1 presents the sub-diffusive
model and the chapter 2 the super-diffusive one. For the clarity of the presentation, all the
results are not present; they are not given with full generality and without any comments (this
will be done in the part three). It is also important to note that the sub-diffusive model has
been more deeply analyzed that the super-diffusive one. The complete investigation of the
super-diffusive one is postponed to a sequel work.

• The second one is bibliographical. The chapter 3 presents the state of the art in the study of
normal diffusions, it is also an introduction to the techniques of comparison between operators
( the reference operator being Laplace operator or a Gaussian diffusion), this point is important
because to be able prove something for a diffusion evolving in a medium characterized by an
infinite number of scales, one must be able to compare elliptic operators (and the reference point
is no more the Laplace operator, but actually those territories seems virgin for exploration).
The chapter 4 presents a landscape on anomalous diffusion and focus mainly on diffusions in
fractals. A short presentation of super-diffusion in Turbulence is given. The chapter 5 is an
introduction to the tools of homogenization and multi-scale homogenization (both rigorous and
heuristic such as DEM theories).
This second part is certainly not a complete survey giving all the contributions in those fields;
it has been conceived only to help the reader non familiar with them to enter quickly into the
subject.

• The third one has been conceived to explain our models, give the though process (the strategy)
an insight on the proofs and the significance of the results. It also contains some results that
will not be given in the first part because the clarity of the presentation has been privileged.
The chapter 6 present the sub-diffusive model and the chapter 7 the super-diffusive one. It is
advised to read this part before reading the proofs.

• The fourth one contains the proofs and the new tools. The chapter 8 gives the proofs of sub-
diffusivity in dimension one. The chapter 9 presents the proofs of the control of the effective
diffusivities associated to a multi-scale medium with an arbitrary large number of scales (with
bounded ratios). The chapter 10 presents the proofs of the sub-diffusive behavior in all di-
mensions. The chapter 11 gives the proofs of super-diffusivity in the shear-flow model. The
chapter 12 gives the proofs of a new exponential martingale inequality, and concerning Davies
conjecture on the behavior of the heat kernel p(t, x, y) in a periodic medium, shows that its
homogenized behavior starts for t >> |x − y|. The chapter 13 presents a new analytical in-
equality and shows how it is linked with the deformation of elliptic operators and the notion of
localization of energy in electrostatics. In the appendix, one will find the chapter B (theorems
on elliptic operators in divergence form with discontinuous coefficients, controls of the infinite
norms and gradients of solutions associated to elliptic operators) which presents the analytical
tools used in this work and in the chapter C one will find the probabilistic tools (level three
large deviations, thermodynamic formalism, deformation of harmonic functions).
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0.6 Applications

The first application of this work is clearly the problem of diffusion and transport in disordered media
which is of an enormous physical interest by its diversity and the number of its applications. Indeed,
equations of the following type (in R2 or R3):

∂u(x, t)
∂t

= κΔu+ ξ(t, x)u+ s(t, x) + 
h(t, x).∇u

may be considered as universal (the term κΔu is a model of diffusive transport, ξ(t, x)u is an inter-
action with the media, s(t, x) is a source term and 
h(t, x).∇u represents a transport by convection).
The examples are numerous and important [Bal92] :

• The propagation of heat in a solid or a fluid of non uniform temperature.

• The diffusion of neutrons in a nuclear reactor.

• The migration of impurities in a heated up solid (doping).

• The electrical current as a transfer of charged particles under the action of a spatial variation
of the chemical potential (ions in a electrolyte, electrons in a metal, electrons of conduction
and holes in a semi-conductor)

• Fluid mechanics with the Navier Stokes equations

• Magneto-hydrodynamics which concerns a large range of physical objects from liquid metals
to cosmic plasma, such as the evolution of a magnetic field in a conducting media submitted
to a random motion (this is also that kind of equation which governs the evolution of the
temperature field in the coupled system: atmosphere + ocean)

• Burger’s equation which is fundamental in hydrodynamics and in astrophysics since it describes
self-gravitating matter where the attraction between the liquid particles replace the repulsion.

• The heat equation in a turbulent media (turbulent diffusion)

More precisely the techniques developed in this work can be applied and adapted to answer to
the following question what happens when the medium is characterized by a large number of scales?
For instance a physicist can see the sub-diffusive model, as a system whose potential energy landscape
is characterized by a large (infinite) number of scales of potential pit (overlapping with each other)
evolving with the thermal noise and under the propensity to minimize the energy (see figure 0.1).
The supper diffusive model can be seen as a model of turbulent flow.
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Fig. 0.1: Multi-scale energy landscape
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1. SUB-DIFFUSIVE MODEL

In this chapter the sub-diffusive model will be introduced and some of the main results will be given
without any comments. For the clarity of the presentation all the results on the sub-diffusive model
are not present here and they are not given in their full general form; this will be done in the chapter
6 (which also contains the meaning of those results).

1.1 Infinitely homogenized potential diffusion

1.1.1 The Model

The purpose of this model is to study in R
d the behavior of solutions the stochastic differential

equation: {
dyt = dωt −∇V (yt)dt
y0 = 0

(1.1)

(where ω is a standard Brownian motion in R
d) when V ∈ C∞(Rd) is not bounded and has fluctua-

tions over an infinite number of scales which are periodic but non symmetric and non self-similar.
More precisely

V =
∞∑
n=0

Un(
x

Rn
) (1.2)

Each potential Un is smooth and periodic of period T d1 (is in C∞(T d1 ), T d1 is the torus of dimension
d and side 1) and reflects the particular shape of the fluctuations (of the heat capacity) of U at the
scale Rn.
Each integer Rn ∈ N

∗ reflects the length of the scale n and grows with n. More precisely

Rn =
n∏
k=0

rk (1.3)

Where rn are integers element of N
∗ for n ≥ 1. It is assumed that the small scale has length r0 = 1.

Moreover it is assumed that all the gradient of the potentials Un are uniformly bounded. Thus there
exist K0,K1 > 0 such that (Osc(U) stands for supU − inf U)

sup
n∈N

‖Osc(Un)‖∞ ≤ K0, sup
n∈N

‖∇Un‖∞ ≤ K1 (1.4)

It is also assumed that there exist ρmin ∈ R
∗
+ and ρmax ≥ ρmin, ρmin ∈ R

∗
+ ∪ {∞} such that

∀n ≥ 1 2 ≤ ρmin ≤ rn ≤ ρmax ≤ ∞ (1.5)

Each potential Un is chosen so that

∀n ∈ N, Un(0) = 0 (1.6)
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Thus V is a well defined Lipschitz potential such that

‖∇V ‖∞ ≤
∞∑
n=0

K1

ρnmin

≤ K1ρmin

ρmin − 1
(1.7)

|V (x)| ≤ K1ρmin

ρmin − 1
|x| (1.8)

Thus it is well known that the solution of the stochastic differential equation 1.1 exists; is unique up
to sets of measure 0 with respect to the Wiener measure and is a strong Markov continuous Feller
process.

Effective diffusivities To each potential Un is associated an invariant measure mUn by the equation
5.1 and an effective diffusivity D(Un) by the variational formulation 5.21. It is assumed that there
exist 0 < λmin ≤ λmax < 1 such that for all n ∈ N

0 < λmin ≤ D(Un) ≤ λmax < 1 (1.9)

Note that the effective diffusivity is a scale-invariant matrix that is to say an homogenization on the
periodic potential U(.) produce the same effective diffusivity as U( .

Rn
) (this is an easy exercise).

Aggregation of scales In the sequel V m
k will designate an aggregation of the scales k, k + 1, . . . ,m

that is to say

V m
k (x) =

m∑
n=k

Un(
x

Rn
) (1.10)

where k ∈ N and m ∈ N ∪ {∞}
Note that since all the ratio rn between scales are integers, the aggregation V m

k is periodic (for
m <∞) of period Rm × T d1 . It is thus natural to relate this aggregation with an effective diffusivity
written D(V m

k ) associated to an homogenization on the medium V m
k . It is important to note that

since the effective diffusivity is scale invariant, all that is needed is to know that V m
k is periodic and

a rescaling of its period doesn’t influence the effective diffusivity. That is to say

D(V m
k (x)) = D(V m

k (x.Rn)) (1.11)

and since V m
k (x.Rn) is of period T d1 the variational formulation 5.21 will naturally be used to define

its effective diffusivity.

Infinitely Homogenized Potential Diffusion A solution of the stochastic differential equation 1.1
such that conditions 1.2, 1.5, 1.6, 1.7, 1.9 are satisfied will be called an Infinitely Homogenized
Potential Diffusion with parameters: ρmin, ρmax, λmin, λmax, K0, K1 and written

IHPD(ρmin, ρmax, λmin, λmax,K0,K1) (1.12)

The IHPD will be said self-similar if for all k, Uk = U ∈ C∞(T d1 ) and ρmin = ρmax = ρ = R.

1.1.2 Some remarks

Note also that by the Voigt Reiss inequality and since homogenization on a periodic potential decrease
the diffusivity, one has always 0 < D(Un) ≤ 1. Note also that by the equivalent cell problem definition
of the effective diffusivity, the condition D(Un) < 1 is equivalent to the fact that l.∇Un is not the null
function for all non null direction l ∈ (Rd)∗. Thus if all the scales are associated to a finite number
of pattern: ∀n,Un ∈ {W1, . . . ,Wd} with non identically null gradient in all the directions, then the
conditions 1.9 and 1.4 are trivially satisfied.



1. Sub-diffusive model 5

1.2 Anomalous behavior in dimension one

1.2.1 Exit times

1.2.1.i Self-similar case

The following corollary is the corollary 8.3.2 of chapter 8.

Corollary 1.2.1. Let yt be a self-similar infinitely homogenized potential diffusion in dimension one.
Then

E0[τ(0, r)] = r2+ν(r) (1.13)

with

ν(r) =
Pρ(2U) + Pρ(−2U)

ln ρ
+ ε(r) (1.14)

with ε(r) → 0 as r →∞.

Here Pρ is the topological pressure associated to the shift sρ (see section C.1). The following
theorem corresponds to the theorem 6.2.1.

Theorem 1.2.1. For a self-similar IHPD in dimension one, if U is not a constant function, there
exists a constant ρ0(K1,D(U)) such that for ρ > ρ0,

E0[τ(0, r)] = r2+ν+ε(r) (1.15)

with ν > 0 given by the topological pressure

ν =
Pρ(2U) + Pρ(−2U)

ln ρ
(1.16)

and ε(r) → 0 as r → ∞. Moreover there are examples of U such that there exists ratios ρ1, ρ2

(ρ1 + 10 < ρ2) in the interval (1, ρ0] such that if ρ = ρ1 or ρ2 then C1r
2 ≤ E[τ(0, r)] ≤ C2r

2 and if
ρ ∈ (ρ1, ρ2) ∩ N, E[τ(0, r)] follows the anomalous behavior given in the equation 1.15 with ν > 0 as
above.

1.2.1.ii Non self-similar case with bounded ratios between the scales

The following theorem corresponds to the corollary 8.3.3 of chapter 8.

Theorem 1.2.2. Let yt be an infinitely homogenized potential diffusion such that, ρmin > C3,K0,K1,
ρmax <∞ and λmax < 1. Then

C1r
2+ν(r) ≤ E0[τ(0, r)] ≤ C2r

2+ν(r) (1.17)

where C1, C2 depends only on K0,K1 and ρmin and

0 < − lnλmax

ln ρmax
− C3,K0,K1

ρmin ln ρmax
≤ ν(r) ≤ − lnλmin

ln ρmin
+

C3,K0,K1

ρmin ln ρmin
(1.18)
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1.2.1.iii Non self-similar case with fast separation between the scales

The following theorem is the corollary 8.3.4 of chapter 8.3.4

Theorem 1.2.3. Assume that for all k, Uk = U and

Rk = Rk−1[
ρk

α

Rk−1
]

with ρ, α > 1 then

C1r
2eg(r) ≤ E0[τ(0, r)] ≤ C2r

2eg(r) (1.19)

where C1, C2 depends only on K0,K1, ρ, α and

g(r) = (ln r)
1
α

ln
( ∫

T 1
1
e2U(x)dx

∫
T 1
1
e−2U(x)dx

)
(ln ρ)

1
α

(1.20)

1.2.2 Mean squared displacement

1.2.2.i Bounded ratios between the scales

The following theorem corresponds to the theorem 8.5.3.

Theorem 1.2.4. Assume λmax < 1, ρmin > C1,K1,K0,λmax, t > R9 and ρmax <∞ then

E[y2
t ] = t1−ν(t) (1.21)

ν(t) ≤ − lnλmin

2 ln ρmin
+

C2,K1,K0

(ln ρmin)2
+ ε(t) (1.22)

ν(t) ≥ − lnλmax

2 ln ρmax
− C2,K1,K0

ln ρmin ln ρmax
− ε(t) (1.23)

where ε(t) → 0 as t→∞ and

− lnλmax

2 ln ρmax
− C2,K1,K0

ln ρmin ln ρmax
> 0 (1.24)

1.2.2.ii Fast separation between the scales

The following theorem corresponds to the theorem 8.5.4

Theorem 1.2.5. Assume that for all k, Uk = U and

Rk = Rk−1[
ρk

α

Rk−1
]

with ρ, α > 1 then

C1te
−g(t) ≤ E0[y2

t ] ≤ C2te
−g(t) (1.25)

where C1, C2 depends only on K0,K1, ρ, α and

g(t) = (ln t)
1
α

ln
( ∫

T 1
1
e2U(x)dx

∫
T 1
1
e−2U(x)dx

)
(2 ln ρ)

1
α

(1 + ε(t)) (1.26)

with ε(t) → 0 as t→∞.
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1.2.3 Heat kernel tail

1.2.3.i Bounded ratios between the scales

The following theorem corresponds to the theorem 8.6.2

Theorem 1.2.6. Assume ρmax <∞, λmax < 1,
ρmin > C16

h2

t
≥ C11(

t

h
)

ln λmax
2 ln ρmax

+
C12

(ln ρmin)2 (1.27)

and (h > 0)

t

h
≥ C13 (1.28)

then for l ∈ S
d

P[l.yt ≥ h] ≤ C14e
−C15

h2

t
( t

h
)ν

(1.29)

with

ν = − lnλmax

ln ρmax
− C6

ln ρmin ln ρmax
> 0 (1.30)

Where C16, C15 depend on K0,K1, ρmin, ρmax, λmax; C11 depends on K0,K1,
ρmax, ρmin; C13 on K0,K1, R2 and C6, C12 on K0,K1

1.2.3.ii Fast separation between the scales

The following theorem corresponds to the theorem 8.6.3

Theorem 1.2.7. Assume that for all k, Uk = U (U non constant) and

Rk = Rk−1[
ρk

α

Rk−1
]

with ρ, α > 1 then for

C1 <
t

h
< C2h (1.31)

one has

P[l.yt ≥ h] ≤ C3e
−C4

h2

t
g( t

h
) (1.32)

with

g(x) = (
1
λ

)(
x

ln ρ
)

1
α (1+ε(x)) (1.33)

and ε(x) → 0 as x→∞
Where the constants C1, C2 depend on ρ, α,K0,K1 and C4 on ρ,K0,K1, λ.
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1.3 Anomalous behavior in all dimensions

1.3.1 Exit times starting from the invariant measure

1.3.1.i Bounded ratios between scales

For a smooth bounded open subset Ω of R
d, let’s write τ(Ω) the exit time from Ω and mΩ

U the
following probability measure on Ω:

mΩ
U(dx) =

e−2U(x) dx∫
Ω e

−2U(x) dx
(1.34)

The following theorem corresponds to the theorem 10.1.1.

Theorem 1.3.1. One has for r > C16,∫
B(0,r)

Ex

[
τ(B(0, r))

]
m
B(0,r)
V (dx) = r2+ν(r) (1.35)

with for ρmin > C13

ν(r) ≤ ln 1
λmin

ln ρmin

(
1 +

C7

ln ρmin

)
+

1
ln r

C6 (1.36)

and

ν(r) ≥ ln 1
λmax

ln ρmax

(
1− C12

ln ρmin

)− 1
ln r

C11 > C15 > 0 (1.37)

Where the constants C11, C12, C7, C6 depends on d,K0,K1; C13 on d,K0,K1,
λmax and C15, C16 on d,K0,K1, λmax, ρmax

1.3.1.ii Unbounded ratios between scales

the following theorem corresponds to the theorem 10.1.2.

Theorem 1.3.2. Assume that Rn = Rn−1[ ρ
nα

Rn−1
] (ρ, α > 1) and

λmax = λmin = λ < 1 then ∫
B(0,r)

Ex

[
τ(B(0, r))

]
m
B(0,r)
V (dx) =

r2

λβ(r)
(1.38)

with for r > C16(d,K0,K1)

β(r) =
( ln r
ln ρ

) 1
α (1 + ε(r)) (1.39)

with ε(r) → 0 as r →∞

1.4 Multi-scale homogenization with bounded ratios between scales

1.4.1 All dimensions

The following theorem corresponds to the theorem 9.2.2.



1. Sub-diffusive model 9

Theorem 1.4.1. If ρmin ≥ C1,d,K0,K1 then for all n ≥ 1

λmax(D(V n−1
0 )) ≤ (1 +

C2,d,K0,K1

ρ
1
2
min

)n
n−1∏
k=0

λmax(D(Uk)) (1.40)

and

λmin

(
D(V n)

) ≥ (1 +
C2,d,K0,K1

ρ
1
2
min

)−n
n−1∏
k=0

λmin

(
D(Uk)

)
(1.41)

C1,d,K0,K1 = Cde
(6d+16)K0(1 +K1)3 (1.42)

and

C2,d,K0,K1 = Cde
(3d+8)K0(1 +K1)

1
2 (1.43)

This theorem is a corollary of more general results which allow to control the whole matrix
D(V n−1

0 ) (see propositions 9.3.5 and 9.4.1).

1.4.2 Self-similar case in dimension one

Assume that the IHPD is self-similar with ratio between scales ρ ∈ N/{0, 1} and periodic potential
U ∈ C∞(T 1

1 ).
The following theorem is the theorem 8.2.1

Theorem 1.4.2.

lim
n→∞− 1

n
ln
(
D(V n−1)

)
= Pρ(2U) + Pρ(−2U) (1.44)

1.4.3 Dimension two

the following theorem corresponds to the theorem 9.3.1.

Theorem 1.4.3. For d = 2 one has

λmax

(
D(U)

)
λmin

(
D(−U)

)
= λmin

(
D(U)

)
λmax

(
D(−U)

)
=

1∫
T d
1

exp(2U)dx
∫
T d
1

exp(−2U)dx
(1.45)

from which one deduces that if D(U) = D(−U) then

λmax

(
D(U)

)
= λmin

(
D(U)

)
=

1√∫
T d
1

exp(2U)dx
∫
T d
1

exp(−2U)dx
(1.46)

Moreover

Theorem 1.4.4. In the self-similar case, if d = 2 and for all n, D(V n
0 ) = D(−V n

0 ) then

lim
n→∞− 1

n
ln
(
λ(D(V n−1

0 ))
)

=
PR(2U) + PR(−2U)

2
(1.47)

where PR is the topological pressure associated to the shift sR.
As an example of medium satisfying the condition of the previous theorem one can give the following
corollary

Corollary 1.4.1. In the self-similar case, if d = 2 and for all n, Un(−x) = −Un(x) then

lim
n→∞− 1

n
ln
(
λ(D(V n−1

0 ))
)

=
PR(2U) + PR(−2U)

2
(1.48)



1. Sub-diffusive model 10

1.5 Davies conjecture, exponential martingales, homogenization and fast rate of
convergence towards the limit process

1.5.1 A martingale inequality

Consider Mt a continuous square integrable Ft adapted martingale such that M0 = 0 and for λ, t > 0,
E[eλMt ] <∞.
Assume that there exists a function f : R

+ → R
+ such that for all t2 > t1 ≥ 0 one has a.s.

E[

t2∫
t1

d < M,M >s |Ft1 ] ≤
t2−t1∫
0

f(s)ds

With f(s) = f1 for s < t0 and f(s) = f2 for s ≥ t0 with t0 > 0 and 0 < f2 < f1.

Theorem 1.5.1. For the martingale given above one has

1. for all

0 < |λ| < 1(
2e(f1 − f2)t0

) 1
2

(1.49)

one has

E[exp(λMt)] ≤ e3(1−1/g(λ)) exp(
g(λ)

2
λ2f2t) (1.50)

with g(λ) = 1
1−λ2(f1−f2)t0e

which verify 1 ≤ g ≤ 2

2. for all

0 < ν <
1

2e(f1 − f2)t0
(1.51)

one has

E[exp(ν < M,M >t)] ≤ exp(νf2t)
exp

(
νt0(f1 − f2)

)
((f1 − f2)νt0)2

(1.52)

1.5.2 Davies conjecture

As an example, the theorem 1.5.1 will be applied here to obtain estimates on heat kernel p(t, x, y)
associated to the following periodic operator showing that its homogenized behavior starts for |x −
y| << t which gives an answer to Davies conjecture concerning the rate of convergence towards the
limit process in a multidimensional periodic medium.

dyt = dωt −∇U(yt)dt (1.53)

where U ∈ C1(T d1 ) (U(0) = 0).
It will be important to remember that this is only an example selected for the clarity of the presen-
tation and in the chapter 6 it will be shown that one can consider a wide range of operators as soon
as a cell problem is well defined and Aronson estimates available.

The following corollary corresponds to the corollary 12.1.2.
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Corollary 1.5.1. Consider p(t, x, y) the transition density probabilities of the diffusion 1.53 with
respect to the measure
mU (dx) = e−2U(x)dx/(

∫
T d
1
e−2U(x)dx). then for

20k1|x− y| < t, k2 <
|x− y|√

t
, |x− y| > 4Cχ (1.54)

one has

p(t, x, y) ≤ E1

t
d
2

exp
(− (1− E)

|y − x− 2Cχ|2
2D(ey−x)t

)
(1.55)

where k1, k2, Cχ, E1 are constants depending only on d and Osc(U). Moreover

E = 8(
k1|x− y|

t
)2 + 2

√
t

|x− y| ≤
1
10

(1.56)

Actually, it will be shown in the chapter 6 that one needs only U ∈ L∞(T d1 ) for the above corollary
and the below theorem.

The following theorem corresponds to the theorem 12.2.1.

Theorem 1.5.2. For l ∈ S
d, λ > C6(d,Osc(U)) and

C7(d,Osc(U))λ < t (1.57)

one has

P[yt.l ≥ λ] ≥ 1
4
√

2π

∫ ∞

X
e−z

2/2dz (1.58)

with

X =
λ√

tlD(U)lt
(1 + E) (1.59)

and

E =
C8(d,Osc(U))

λ
+ C5(d,Osc(U))

√
λ

t
≤ 1

10
(1.60)

1.6 Anomalous behavior in all dimensions starting from any point

1.6.1 Stability condition

Let U,P ∈ C∞(B(z, r)). Write E
U , E

U+P the expectations associated to the diffusions generated by
LU = 1

2Δ − ∇U∇ and LU+P and τ(B(z, r)) the exit time from the d dimensional ball B(z, r) An
IHPD is said to satisfy the stability condition 1.6.1 if and only if (OscB(z,r)(U) stands for supB(z,r) U−
infB(z,r)U):

Condition 1.6.1. There exists μ > 0 such that for all n ∈ N , all z ∈ R
d, and all r > 0,

EVz
[
τ(B(z, r))

] ≤ μeμOscB(z,r)(V
∞
n+1) sup

x∈B(z,r)
E
V n
0
x

[
τ(B(z, r))

]
(1.61)

and

EVz
[
τ(B(z, r))

] ≥ 1
μ
e−μOscB(z,r)(V

∞
n+1) inf

x∈B(z, r
2
)
E
V n
0
x

[
τ(B(z, r))

]
(1.62)
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1.6.2 Anomalous exit times starting from any point

1.6.2.i Bounded ratios

Then the following theorem corresponds to the theorem 10.2.1.

Theorem 1.6.1. If the IHPD satisfy the stability condition 1.6.1 and λmax < 1, then for ρmin >
C1,d,K0,K1,λmax,μ, r > C2,d,K0,K1,ρmax,μ one has

Ex

[
τ(B(x, r))

] ≤ C32,d,K0,K1,μr
2+σ(r)(1+γ)

≥ C33,d,K0,K1,μr
2+σ(r)(1−γ) (1.63)

γ = C2,d
K0

ln ρmin
< 0.5 (1.64)

ln 1
λmax

ln ρmax
(1 +

C34,d,K0,K1,μ

ln ρmin
)−1 ≤ σ(r) (1.65)

and

σ(r) ≤ ln 1
λmin

ln ρmin
(1 +

C35,d,K0,K1,μ

ln ρmin
) (1.66)

see the theorem 10.2.1 for a more general form of this theorem and the meaning of σ(r).

1.6.2.ii Unbounded ratios

Theorem 1.6.2. If the IHPD satisfies the stability condition 1.6.1, Rn = Rn−1[ ρ
nα

Rn−1
] (ρ, α > 1) and

λmax = λmin = λ < 1 then

E0

[
τ(B(0, r)

]
=

r2

λβ(r)
(1.67)

with for r > C16(d,K0,K1)

β(r) =
( ln r
ln ρ

) 1
α (1 + ε(r)) (1.68)

with ε(r) → 0 as r →∞

1.6.3 Anomalous heat kernel tail starting from any point

1.6.3.i Bounded ratios

The following theorem corresponds to the corollary 10.3.2

Theorem 1.6.3. If the IHPD satisfy the stability condition 1.6.1, ρmax < ∞ and λmax < 1. Then
for ρmin > C(d,K0,K1) and (r > 0)

C40r ≤ t ≤ C41r
2+σ(r)(1−3γ)

one has

ln Px[|yt| ≥ r] ≤ ln Px[τ(x, r) ≤ t] ≤ −C7
r2

t

( t
r

)ν′
with

0 < c <
ln 1

λmax

ln ρmax
(1− C50,d,K0

ln ρmin
) ≤ ν ′(r) ≤ ln 1

λmin

ln ρmin
(1− C50,d,K0

ln ρmin
) (1.69)

C50,d,K0 < 0.5 ln ρmin and the constants C40, C41, C42 depend on
d,K0,K1, ρmax, ρmin. All the constants depending on K0 also depend on μ.

σ(r) and γ are those given in the theorem 1.6.1
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1.6.3.ii Unbounded ratios

Theorem 1.6.4. If the IHPD satisfy the stability condition 1.6.1, Rn = Rn−1[ ρ
nα

Rn−1
] (ρ, α > 1) and

λmax = λmin = λ < 1 then for

C60r ≤ t ≤ C61r
2

one has

ln Px[|yt| ≥ r] ≤ ln Px[τ(x, r) ≤ t] ≤ −C63
r2

t
g(
t

r
)

with

g(x) = (
1
λ

)(
x

ln ρ
)

1
α (1+ε(x)) (1.70)

where ε(x) → 0 as x→∞ and the constant C60 to C63 depends on ρ, α,K0,K1, d. All the constants
depending on K0 also depend on μ.

1.6.4 Conjecture

Strong stability conjecture II Under the notations of the condition 1.6.1.

Conjecture 1.6.1. The exists Cd > 0 a constant depending only on the dimension such that for all
U,P ∈ C∞( ¯B(0, 1))

EU+P
0

[
τ(B(0, 1))

] ≤ Cde
Cd Osc(P ) sup

x∈B(0,1)
EUx

[
τ(B(0, 1))

]
(1.71)

and

EU+P
0

[
τ(B(0, 1))

] ≥ Cde
−Cd Osc(P ) inf

x∈B(0, 1
2
)
EUx

[
τ(B(0, 1))

]
(1.72)

In fact with this conjecture 6.4.2 says that all the IHPD do satisfy the stability condition 1.6.1.

1.6.5 A new analytical inequality; deformation of elliptic operators

The following theorem corresponds to the corollary 13.5.1.

Theorem 1.6.5. For Ω ⊂ R
1 an open subset of R (d = 1), there exist a constant Cd,Ω depending

only on the dimension of the space and the open set such that for λ ∈ C∞(Ω̄) such that λ > 0 on Ω̄
and φ,ψ ∈ C2(Ω̄) null on ∂Ω and both sub harmonic with respect to the operator −∇(λ∇), one has∫

Ω
λ(x)|∇φ(x).∇ψ(x)| dx ≤ 3

∫
Ω
λ(x)∇φ(x).∇ψ(x) dx (1.73)

The following corollary corresponds to the corollary 13.5.4.

Corollary 1.6.1. Let Ω be a smooth bounded open subset of R
d. Assume that φ,ψ are both convex

or both concave and null on ∂Ω, then∫
Ω
|∇xφ(x).∇xψ(x)| dx ≤ 3

∫
Ω
∇xφ(x).∇xψ(x) dx (1.74)

Conjecture 1.6.2. For Ω ⊂ R
dan open subset with smooth boundary, there exist a constant Cd,Ω

depending only on the dimension of the space and the open set such that for λ ∈ C∞(Ω̄) such that
λ > 0 on Ω̄ and φ,ψ ∈ C2(Ω̄) null on ∂Ω and both sub harmonic with respect to the operator −∇(λ∇),
one has ∫

Ω
λ(x)|∇φ(x).∇ψ(x)| dx ≤ Cd,Ω

∫
Ω
λ(x)∇φ(x).∇ψ(x) dx (1.75)

This conjecture is true in dimension one with Cd,Ω = 3 (this constant is an homotopy invariant,
this is proven by the corollary 13.5.1). In dimension d it does imply the conjecture 1.6.1.





2. SUPER-DIFFUSIVE MODEL

In this chapter the super-diffusive model will be introduced. Nevertheless, it has not been analyzed
as deeply as the sub-diffusive model; this investigation is postponed to a sequel work. The results
given here are obtained for the shear flow model characterized by an infinite number of scales.
As for the sub-diffusive models, the results will be given without any comments, the insight on the
results and the physical meaning of this model will be given in the chapter 7.

2.1 Infinitely homogenized eddy diffusion

2.1.1 The model

The purpose of this model is to analyze a convective transport in an incompressible fluid characterized
by an infinite number of periodic but non-symmetric and non-self-similar scale of eddies; that is to
say, in R

d, the behavior of solutions the stochastic differential equation:{
dyt = dωt −∇Γ(yt)dt
y0 = 0

(2.1)

(where ω is a standard Brownian motion in R
d) where Γ ∈ (C∞(Rd))d(d−1)/2 is a skew-symmetric

d×d matrix. The notation ∇Γ designate the (left) divergence of Γ which is an horizontal vector such
that for all i ∈ {0, . . . , d}

(∇Γ)i =
d∑
j=1

∂jΓji (2.2)

This stream matrix Γ can be un-bounded and has fluctuations over an infinite number of scales which
are periodic but non symmetric and non self-similar.
More precisely

Γ =
∞∑
n=0

γnΓn(
x

Rn
) (2.3)

Each stream matrix Γn is a smooth, periodic (of period T d1 ) skew-symmetric d × d matrix (in
C∞(T d1 )d(d−1)/2) and reflects the particular shape of the eddies (of the incompressible flow) of Γ
at the scale Rn.
Each strictly positive real number γn ∈ R

∗
+ is called the diffusivity power of the scale n.

As in the sub-diffusive model, each integer Rn ∈ N
∗ reflects the length of the scale n and grows with

n. More precisely

Rn =
n∏
n=0

rn (2.4)

Where rn are integers element of N
∗ for n ≥ 1. It is assumed that the small scale has length r0 = 1.

Moreover it is assumed that all the gradient of the elements of the stream matrices Γn are uniformly
bounded. Thus there exist K0,K1 > 0 such that for all i, j ∈ {1, . . . , d}

sup
n∈N

‖Osc(Γnij)‖∞ ≤ K0, sup
n∈N

‖∇Γnij‖∞ ≤ K1 (2.5)
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It is also assumed that there exist ρmin ∈ R
∗
+ and ρmax ≥ ρmin, ρmin ∈ R

∗
+ ∪ {∞} such that

∀n ≥ 1 2 ≤ ρmin ≤ rn ≤ ρmax ≤ ∞ (2.6)

Each potential stream matrix Γn is chosen so that

∀n ∈ N, Γn(0) = 0 (2.7)

Thus Γ is a well defined Lipschitz stream matrix such that

‖∇Γ‖∞ ≤
∞∑
n=0

d
K1

ρnmin

≤ d
K1ρmin

ρmin − 1
(2.8)

|Γ(x)ij | ≤ K1ρmin

ρmin − 1
|x| (2.9)

Thus it is well known that the solution of the stochastic differential equation 2.1 exists; is unique up
to sets of measure 0 with respect to the Wiener measure and is a strong Markov continuous Feller
process.

Effective diffusivities Each stream matrix Γn is associated with an effective diffusivity D(Γn) by
the equation 5.30.
It is assumed that there exist 1 < λmin ≤ λmax <∞ such that for all n ∈ N

1 < λmin ≤ D(Γn) ≤ λmax <∞ (2.10)

Note that the effective diffusivity is a scale-invariant matrix that is to say an homogenization on the
periodic stream Γ(.) produce the same effective diffusivity as Γ( .

Rn
) (this is an easy exercise). This

explains the name diffusivity power given to the numbers γn. Moreover γ0 is be chosen equal to 1
and it is assumed that there exist 0 ≤ γmin ≤ γmax ≤ ∞ such that for all n ∈ N

γmin ≤ γn+1

γn
≤ γmax (2.11)

Aggregation of scales In the sequel Γkm will designate an aggregation of the scales k, k+ 1, . . . ,m
that is to say

Γkm(x) =
m∑
n=k

γnΓ(
x

Rn
) (2.12)

where k ∈ N and m ∈ N ∪ {∞}
Note that since all the ratio rn between scales are integers, the aggregation Γkm is periodic (for
m <∞) of period Rm × T d1 . It is thus natural to relate this aggregation with an effective diffusivity
written D(Γkm) associated to an homogenization on the medium Γkm. It is important to note that
since the effective diffusivity is scale invariant, all that is needed is to know that Γkm is periodic and
a rescaling of its period doesn’t influence the effective diffusivity. That is to say

D(Γkm(x)) = D(Γkm(x.Rm)) (2.13)

and since Γkm(x.Rm) is of period T d1 the variational formulation 5.30 will naturally be used to define
its effective diffusivity.

Infinitely Homogenized Eddy Diffusion A solution of the stochastic differential equation 2.1 such
that conditions 2.3, 2.6, 2.7, 2.8, 2.10 and 2.11 are satisfied will be called an Infinitely Homogenized
Eddy Diffusion with parameters: ρmin, ρmax, λmin, λmax, γmin, γmax, K0, K1 and written

IHED(ρmin, ρmax, λmin, λmax, γmin, γmax,K0,K1) (2.14)
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Some remarks Note also that since homogenization on a periodic potential increase the diffusivity,
one has always 1 ≤ D(Γn) ≤ ∞. Note also that by the equation 5.29, the condition D(Γ0,n) > 1 is
equivalent to the fact that l.∇Γn is not the null function for all non null direction l ∈ (Rd)∗. Thus if
all the scales are associated to a finite number of pattern of eddies: ∀n,Γn ∈ {H1, . . . ,Hd} with non
identically null gradient in all the directions, then the conditions 2.10 and 2.5 are trivially satisfied.

2.2 The shear flow model

The shear flow model is a particular case of IHED in dimension two.

2.2.1 The model

Consider the solution in R
2 of {

dyt = dωt −∇Γ(yt)dt
y0 = 0

(2.15)

(where ω is a standard Brownian motion in R
2) where Γ ∈ (C∞(R2)) is a skew-symmetric 2 × 2

matrix.
The purpose of this chapter is to prove the super-diffusive transport in the turbulent shear flow
model. More precisely, in all this chapter, yt will be an infinitely homogenized shear-flow diffusion,
that it is to say, it has all the characteristics of an infinitely homogenized eddy diffusion except
for its associated stream matrix Γ which has the following particular structure (Γ ∈ (C∞(R2)) is a
skew-symmetric 2× 2 matrix):

Γ(x1, x2) =
(

0 h(x1)
−h(x1) 0

)
(2.16)

This stream matrix Γ can be un-bounded and has fluctuations along the (0, x1)-axis over an infinite
number of scales which are periodic but non symmetric and non self-similar.
More precisely

h(x1) =
∞∑
n=0

γnh
n(
x1

Rn
) (2.17)

With for all n, hn ∈ C∞(T 1
1 ) and

hn(0) = 0 Var(hn) =
∫ 1

0
(h(x)−

∫ 1

0
h(y)dy)2dx = 1 (2.18)

(more generally for a continuous function j on R of period R, 1
R

∫ R
0 (j(x) − ∫ R

0 j(y)dy)2dx will be
written Var(j)) Each stream matrix

Γn(x1, x2) =
(

0 hn(x1)
−hn(x1) 0

)
(2.19)

is a smooth, periodic smooth skew-symmetric 2 × 2 matrix and reflects the particular shape of the
shear-flow (of the incompressible flow) of Γ at the scale Rn.
Each strictly positive real number γn ∈ R

∗
+ is called the diffusivity power of the scale n. This name

is explained by the fact that since Var(hn) = 1

D(γnΓn) =
(

1 0
0 1 + 4γ2

n

)
(2.20)
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Moreover γ0 is be chosen equal to 1 and it is assumed that there exist 0 ≤ γmin ≤ γmax ≤ ∞ such
that for all n ∈ N

γmin ≤ γn+1

γn
≤ γmax (2.21)

As in the IHED it is assumed that there exist K0,K1 > 0 such that

sup
n∈N

‖Osc(hn)‖∞ ≤ K0, sup
n∈N

‖h′n‖∞ ≤ K1 (2.22)

and each integer Rn ∈ N
∗ reflects the length of the scale n and grows with n. More precisely

Rn =
n∏
n=0

rn (2.23)

where rn are integers element of N
∗ for n ≥ 1 (it is assumed that the small scale has length r0 = 1)

and there exist ρmin ∈ R
∗
+ and ρmax ≥ ρmin, ρmin ∈ R

∗
+ ∪ {∞} such that

∀n ≥ 1 2 ≤ ρmin ≤ rn ≤ ρmax ≤ ∞ (2.24)

Observe that Γ is a well defined Lipschitz stream matrix the solution of the stochastic differential
equation 2.15 exists; is unique up to sets of measure 0 with respect to the Wiener measure and is a
strong Markov continuous Feller process.

Aggregation of scales write for x ∈ R, k ≤ p− 1

Hk,p−1(x) =
p−1∑
n=k

γnhn(
x

Rn
) (2.25)

with Hp−1 = H0,p−1 and

κp,p =
1
Rp

∫ Rp

0
Hp,p(y) dy κp−1 =

1
Rp−1

∫ Rp−1

0
Hp−1(y) dy (2.26)

Infinitely Homogenized Shear Flow Diffusion A solution of the stochastic differential equation
2.15 such that conditions 2.17, 2.24, 2.18, 2.22 and 2.21 are satisfied will be called an Infinitely
Homogenized Shear Flow Diffusion with parameters: ρmin, ρmax, γmin, γmax, K0, K1 and written

IHSFD(ρmin, ρmax, γmin, γmax,K0,K1) (2.27)

2.2.2 The results

Those results are proven in the chapter 11.

2.2.2.i Multi-scale effective diffusivity

Consider a IHSFD, the following theorem corresponds to the theorem 11.2.1.

Theorem 2.2.1. assume γmin > 1 and

ε =
2

3
2

ρmin

K1

γmin − 1
< 1 (2.28)

then for all p ∈ N
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D(Γ0,p) =
(

1 0
0 D(Γ0,p)22

)
(2.29)

with

1 + 4(1− ε)
p∑

k=0

γ2
k ≤ D(Γ0,p)22 ≤ 1 + 4(1 + ε)

p∑
k=0

γ2
k (2.30)

2.2.2.ii Mean squared displacement

Bounded ratios The following theorem corresponds to the theorem 11.3.1.

Theorem 2.2.2. assume γmin > 1, γmax, ρmax <∞,
ρmin > ρ0(γmin, γmax,K0,K1) and t > t0(γmin, γmax, R1,K0,K1), then

E0[|yt.e2|2] = t1+ν(t) (2.31)

with

ν(t) ≤ ln γmax

ln ρmin + ln γmin
γmax

+
C2

ln t
(2.32)

ν(t) ≥ ln γmin

ln ρmax + ln γmax

γmin

− C1

ln t
(2.33)

Where the constants C1 and C2 depends on ρmin, γmin, γmax, ρmax,K1,K2

Fast separating ratios The following theorem corresponds to the theorem 11.3.2.

Theorem 2.2.3. assume γp = γp and Rp = Rp−1[ ρ
pα

Rp−1
] with γ, ρ > 1 and α ≥ 1 Then for t >

t0(γ2, R2,K0,K1)

C1tγ
β(t) ≤ E0[|yt.e2|2] ≤ C2tγ

β(t) (2.34)

with

β(t) = 2(
1

2 ln ρ
)

1
α (ln t)

1
α (2.35)

Where the constants C1 and C2 depends on ρ, γ, α,K1,K2
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3. NORMAL DIFFUSION

Diffusions are more general objects than the sum of independent random vectors. In smooth cases
they can be seen as the solution of a Stochastic Differential Equation, and are analyzed mainly
through Ito calculus; they are even more general objects than solutions of a stochastic differential
equation. Indeed, the name of diffusion is for instance given to a Markov processes Xt such that for
almost everywhere x and Px almost surely the process has continuous paths.
Moreover,the family of symmetric diffusions on a locally compact separable metric space can be put
into one to one correspondence with at least four different objects: the semigroup, the resolvent, the
generator and the Dirichlet form. This correspondence allows to prove non trivial controls on the
diffusion by choosing the right object, for instance the spectrum of the generator, the geometry of
the semigroup or the resolvent or the local properties of the Dirichlet form.
It will be assumed in this chapter that the reader is familiar with these objects and the connections
between them (which are summarized in the appendix A)

3.1 Criteria of normality

By normal diffusion it is meant that the diffusion, behaves like a Gaussian diffusion and there are
several levels at which a diffusion can do so.

Criterion 3.1.1. The first one and more general one is when the mean square displacement grows
linearly with time, in other words:
∃C1, C2 > 0 such that for all t > 0 (or for t large enough) and all x

C1t ≤ Ex

[|Xt − x|2] ≤ C2t (3.1)

In most papers of applied sciences, this behavior is considered as sufficient to call a diffusion ”normal”
(this behavior often appears for t > t0 large enough). The Fick Law reflects a sharper control:

Ex

[|Xt − x|2] ∼ Dt (3.2)

where D is the diffusivity constant (in d = 1).

Criterion 3.1.2. The second one is less general and gives a control of the probabilities of ”going
far” by Gaussian bounds, that is to say:
there exists C > 0 such that for all z, t, x:

1
C
e−C

z2

t ≤ Px

[|Xt − x| ≥ z
] ≤ Ce−

1
C

z2

t (3.3)

Criterion 3.1.3. The Third and most restricting one gives Gaussian bounds on the transition den-
sities pt(x, y) of the diffusion, that is to say:
there exists C > 0 such that for all y, t, x:

1

Ct
t
2

e−C
(x−y)2

t ≤ pt(x, y) ≤ C

t
t
2

e−
1
C

(x−y)2

t (3.4)

Normality is defined with comparison to Gaussian Bounds and to the Fick law because those
behaviors appear as soon as the diffusion can be characterized as the sum of independent, uniformly
bounded increments, which is often encountered in nature. Indeed, for the Fick law this is a simple
consequence of the absence of correlations between increments, and the Gaussian Bounds then appear
thanks to the Central Limit theorem.
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3.2 Central Limit Theorem Revisited

Central limit theorems are an active field of research in the theory of homogenization that will be
discussed in a following chapter. Here some examples will be given to show that they can deal with
highly non trivial and non regular random media. The key point in those proof is the (explicit or
implicit) use of the Dirichlet form.
When the medium where the diffusion takes place is non periodic and ergodic, the usual trick used to
obtain a CLT is to replace the diffusion yt starting from 0 on a space ξ which is chosen in an ergodic
way and at random in a space of configuration C, by the process ξt which is the medium seen by
the particle yt as it moves, this process ξt starts from a measure μ on the configuration space which
remains invariant under the dynamic of the process (that’s why a CLT is expected). Then the CLT
is proven for a functional X of the process ξt.

3.2.1 C. Kipnis-S.R.S. Varadhan’s central limit theorem

One of the first major result in this field is the paper of C. Kipnis and S.R.S. Varadhan [KV86];
in which functional central limit theorems for additive functionals of stationary reversible Markov
processes are proven and applied to the study of the asymptotic normality of tagged particles of simple
exclusion processes. The key point in the proof is to assume the square integrability of the velocity
function of the process, as well as a the condition of integrability of the velocity autocorrelation
function (equivalent to a condition on the spectral measure of the velocity function.)
Indeed in this paper, the medium seen by a tagged particle at integer times n is a stationary, reversible,
ergodic Markov chain ξn and ξ0 is distributed according to the invariant measure μ. The mean velocity
V is a function on the space of configurations C such that Eμ[V (ξ0)] = 0, D = Eμ

[(
V (ξ0)

)2]
< ∞

and such that
∑+∞

n=0Eμ[V (ξ0)V (ξn)] converges. Then it is proven, under these weak conditions, that
1

n
1
2

∑[nt]
k=1 V (ξk) converges weakly to a Brownian motion with effective diffusivity D.

3.2.2 A. De Masi, P. A. Ferrari, S. Goldstein and W.D. Wick’s approach

A. De Masi, P.A. Ferrari, S. Goldstein and W.D. Wick, in [MFGW89], consider ξt (the configuration
state seen by the tagged particle) a stationary reversible Markov process (in continuous or discrete
time). The CLT is proven for functionals XI on the path space of ξ, indexed by intervals I, which
satisfy an additivity and an antisymmetry property.
Additivity says that XI∪J = XI + XJ when I ∩ J consists of a single point, and antisymmetry
requires XI(ξ) = −XI(Rc(ξ)), where Rc(ξ) is the reflected sample path with Rc(ξ)t = ξ2c−t for c the
midpoint of I.
Moreover, it is show that the condition on the square integrability of the velocity function of the
process was unnecessary and the second condition of integrability of the velocity autocorrelation
function is automatically satisfied by considering only antisymmetric functionals of the process.
Indeed, in this paper explicit assumptions on mixing or decay of correlations are replaced by an
assumption on the symmetry properties of the variables under time reversal. Then it is proven that
an antisymmetric function X[0,t] of a time-symmetric, stationary, ergodic Markov process converge
to a Brownian motion with effective diffusivity matrix D when appropriately rescaled, in other words
εX[0,ε−2t] converges weakly to a Brownian motion as ε ↓ 0. In typical applications, X[0,t] is an
increment of a component made in time t and is obviously antisymmetric.
A simple example of such XI in the discrete time case when I = [k, n] is X[k,n] =

∑n−1
i=k f(ξi, ξi+1)

for a function f satisfying f(u, v) = −f(v, u) (for instance f(u, v) = v−u if ξ is real-valued, in which
case XI is the displacement over the time interval I)
A formula for the effective diffusivity D of the Brownian motion is given but it does not show that
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the limit process is nonsingular (D has strictly positive eigenvalues). This is one of the difficulties
in the applications however since no mixing conditions and only very few integrability conditions
are imposed this makes it easy to apply the results to a wide class of random motions in random
environments.
For instance

• A walker moving on the infinite cluster of the two-dimensional bond percolation model.

• A d-dimensional walker moving in a symmetric random environment

• A tagged particle in a d-dimensional symmetric lattice gas which allows interchanges.

• A tagged particle in a d-dimensional system of interacting Brownian particles.

For instance in [Tan93]; spherical obstacles are distributed on Rd, where d ≥ 2, according to
some Gibbs state with sufficiently small ”activity”. The CLT is proved for a random walk in Rd

with reflection on these obstacles. A similar conclusion is reached for the motion of a tagged particle
moving in a system of particles with hard-core interaction (note that the application is not direct
and needs some work).
In [Tan94] these spherical obstacles are distributed on Rd at each point of a Poisson process. The
CLT is obtained for a reflecting Brownian motion on the cluster of spheres containing the origin of
the continuum percolation process under the measure obtained by conditioning on the event ”the
cluster containing the origin is unbounded”. The hard work is to show that the diffusion coefficient
of the limit process is strictly positive.

The first two main theorems of [MFGW89] will be given here in details.

3.2.2.i An invariance principle for reversible Markov processes

Let ξt be a (discrete or continuous time: t ∈ R or t ∈ Z) Markov process on a measurable state space
C (in applications the state ξ of the Markov process represents the environment seen from a ”tagged”
particle).
Let Ω be the space of trajectories of the process. Let FI (index by intervals, I ⊂ R or I ⊂ Z), be the
σ-algebra generated by ξt, t ∈ I with Ft = F(−∞,t]. Let μ be a measure on the configuration C and
Pμ the law of the process ξ on Ω with initial measure μ.
It is assumed that ξ : [o,∞) → C, ξ = ξ(t, ω) is jointly measurable.
It follows that the probability semigroup Pt : Lp(μ) → Lp(μ) given by

Eμ[f(ξt)|F0] = Ptf a.s. (3.5)

is strongly continuous (in t) in Lp(μ), for both p = 1 and p = 2 and thus can be associated a Dirichlet
form (E ,D[E ]) on L2(μ).
Let θτ and Rτ denote the time-translation operator and the time-reflection operator (in τ) acting on
that space and defined by:

(θτ ξ)(t) = ξ(t− τ), (Rτξ)(t) = ξ(2τ − t) (3.6)

It is assumed that ξt is reversible with respect to the invariant measure μ, that is to say that Pμ is
invariant under Rτ for all τ.
It is also assumed that the process is ergodic with respect to μ, that is to say that Pμ is ergodic
under the time-translation group.

Now let XI ∈ R
d be a family (indexed by intervals I = [a, b] ∈ R or Z) of functionals of the

Markov process ξt, thus the XI are assumed to be FI -measurable random variables.
Moreover it assumed that
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• XI ∈ L1(Pμ) for each bounded interval I.

• X[a,b] ◦ θτ = X[a+τ,b+τ ] a.s.

• XI +XI′ = XI∪I′ a.s. when intervals intersect in exactly one point.

• In the continuous time case it is assumed that t→ Xt = X[0,t] is an element of D([0,∞); Rd)

• The family XI is assumed to be antisymmetric, that is to say XI ◦ Rc = −XI a.s. if c is the
midpoint of I.

The CLT will be proven for this family.

Increment form CLT Let X(= X[0,1]) be an F[0,1]-measurable, square-integrable, antisymmetric
random variable. Define

Xn = X ◦ θn−1, n = 1, 2, . . . (3.7)

Xε
t = ε

[ε−2t]∑
n=1

Xn (3.8)

Then as ε → 0, Xε converges weakly in μ-measure to a Brownian motion ωD starting from 0 and
with effective diffusivity D: that is to say for all bounded continuous function F on D([0,∞),Rd)
(the space of ”cad lag” functions) equipped with the Skorohod topology as ε→ 0.

Eμ[F (Xε)|ξ0 = ξ] → E(F (ωD)) in μ probability (3.9)

Furthermore

lim
ε→0

Eμ[(Xε
t )

2] = Dt (3.10)

D is given by

D = Eμ[X2]− 2
(
ϕ, (1− P1)−1ϕ

)
(3.11)

where (., .) is the scalar product on the space L2(Ω, μ) and

ϕ = Eμ[X|F0] (3.12)

Both terms in 3.11 are finite; the second term is the dual Dirichlet form associated with the
self-adjoint, nonnegative operator 1− P1 and may be expressed in terms of a power series.

Integral form CLT Let Xδ = X[0,δ] have values in R
d. Assume that the mean forward velocity ϕ

exists; that is,

lim
δ→0

1
δ

Eμ[Xδ|F0] = ϕ(ξ0) (3.13)

exists as a strong L1 limit (ϕ ∈ L1(μ) and has values in R
d). In addition, assume that the martingale

Mt = Xt −
∫ t

0
ϕ(ξτ )dτ (3.14)

is square integrable. Then ϕi ∈ H−1, where H−1 is the dual space of D[E ] (the domain of Dirichlet
form associated to the Markov process ξ) in L2(μ); and the following hold:
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1. Let the matrix D be given by (1 ≤ i, j ≤ d)

Dij = Cij − 2
∫ ∞

0
(ϕi, Ptϕj)dt (3.15)

where C is the symmetric matrix determined by: for all l ∈ Rd
tl.C.l = Eμ[(l.M1)2] (3.16)

Let Xε
t = εXε−2t, and let ωD be a Brownian motion with effective diffusivity D starting from

0. Then as ε → 0 the finite-dimensional distribution of Xε converges in μ- measure towards
those of ωD. Furthermore

lim
ε→0

Eμ[(l.Xε
t )

2] = (tlDl)t (3.17)

2. If in addition, ϕ ∈ L2(μ) or, more generally, for some T > 0

sup
0≤t≤T

|Xt| ∈ L2(Pμ) (3.18)

then as ε→ 0, Xε converges weakly in μ-measure to the Brownian motion ωD.

3.2.3 Osada - Saitoh’s result

In [KV86] and [MFGW89] the Markov processes describing the media are symmetric and mean
forward velocities are functions. H. Osada and T. Saitoh, in [OS95], show that these conditions can
be weakened:

• the symmetry condition is relaxed to ”near-symmetry” as embodied in the sector condition:
Call (E ,D[E ]) the non-symmetric Dirichlet form (see [MR92]) associated to the ergodic Markov
process ξ with stationary distribution μ, then it is assumed that there exists a constant K ≥ 1
such that for all u, v ∈ D[E ]

|E(u, v)| ≤ KE(u, u)
1
2 E(v, v)

1
2 (3.19)

• The additive functional {Xt, t ≥ 0} of the Markov process is assumed to satisfy Eμ[|Xt|2] <∞
for all t and the following rather weak mean forward velocity condition:
For all p > 0, μ-a.e. in the initial configuration ξ the function

χp(ξ) = p2
Eξ

[ ∫ ∞

0
e−pt|Xt|dt

]
<∞ (3.20)

is well defined and an element of L2(μ).
And the linear functional D[E ] � f �→ ∫

fχp dμ converges weakly as p→∞ to an element ϕ of
the dual space D[E ]′

Under these assumptions, εX t
ε2

converges in finite dimensional distributions in μ-measure to the
distribution of a d-dimensional continuous martingale Z such that

< Zi, Zj >t= Dijt Z0 = 0 (3.21)

where D is a constant matrix.
This result is applied to study homogenization of reflecting diffusion and tagged particles of infinitely
many particle systems with hard core interaction, where the additive functionals contain local time
type drifts and mean forward velocities are not functions. It is interesting to notice that in these
applications, the condition on the mean velocity and the strict positivity of the matrix D are ensured
by the strict positivity of an isoperimetric constant associated to the medium (direct geometrical
properties of the medium can be used to control the diffusion).



3. Normal Diffusion 28

3.3 Global Gaussian Bounds for diffusions

Central Limit Theorems are not the unique reason explaining why Normal Diffusion should appear.
As it shall be shown with several examples linked to second order elliptic operators, the diffusion
can be constrained to have a Gaussian behavior by analytical inequalities describing the geometrical
properties of its generator. A simple example will be given below: the Brownian motion in a bounded
potential drift.
In fact for a medium where a CLT takes place, usually, those analytical inequalities give Gaussian
bounds for the behavior diffusion when the time t is small and the CLT gives the precise asymptotic
behavior of the Diffusion for large time by characterizing the convergence towards the limit process.
However if the medium is such that no CLT takes place, those Gaussian bounds remain valid and
allow to control the diffusion.

3.3.1 A simple example: Aronson’s estimates for elliptic operators in potential form

Let {Pt : t > 0} be the semigroup associated to the second order partial differential operator:

LU =
1
2
Δ−∇U.∇ =

1
2
e2U∇(e−2U∇) (3.22)

With U ∈ C∞(Rd) bounded, and with derivates bounded at all orders.
Under this assumption {Pt : t > 0} is the unique Feller continuous Markov semigroup on Cb(Rd)
with the property that

[Ptφ](x) − φ(x) =
∫ t

0
[PsLφ](x)ds, (t, x) ∈ [0,∞)× R

d (3.23)

for all φ ∈ C∞
0 (Rd). Moreover, under these assumptions, there is a function p ∈ ∪∞

n=1C
∞
b

(
[ 1
n , n] ×

R
d × R

d
)

with values in (0,∞) such that

[Ptφ](x) =
∫
Rd

φ(y)p(t, x, y)dmU (y) (3.24)

with

dmU (y) = e−2U(y)dy (3.25)

pt is the transition probability density with respect to the measure mU which is the invariant mea-
sure associated to the strong symmetric Markov process having for generator L and solution of the
Stochastic Differential Equation : {

dyt = dωt −∇U(yt)dt
y0 = x

(3.26)

where ω is a standard Brownian motion in R
d

Now it will be shown that the transition probability densities pt are constrained to have Gaussian
Bounds. The key point leading to those bounds is the fact that U is bounded.

pt(x, y)e−2U(y) ≤ Ce(4+d) Osc(U) 1

t
d
2

exp
(− |x− y|2

4t
)

(3.27)

and

pt(x, y)e−2U(y) ≥ e−Z
1

t
d
2

exp
(− Z

|x− y|2
t

)
(3.28)
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with

Z = Ce10(4+d) Osc(U) (3.29)

Initially those bounds called ”Aronson estimates” [Aro67] have been proved for operators in the
divergence form

L = ∇.(a∇) (3.30)

where a : R
d → R

d ⊗ R
d is a measurable, symmetric matrix valued function which satisfies the

ellipticity condition

λId ≤ a(.) ≤ 1
λ
Id (3.31)

for some λ ∈ (0, 1]. It constitutes a beautiful summary of the results contained in the sequence of
articles starting with those of E. De Giorgi [Gio57] and J. Nash [Nas58] and culminating in the article
by J. Moser. [Mos64].
Since then, several methods are available for the proof of those bounds. The basic ideas of the
adaptation of the method of E.B. Fabes and D. W. Stroock [FS86] to potential form operators
L = 1

2Δ − ∇U.∇ and the method of Davies [Dav87], [Dav89] (which can also be adapted) will be
given below. The adaptation of the method of Fabes-Stroock can be found in [Sei98] (there are
several mistakes in the preprint version cited here but they can easily be corrected)

3.3.1.i The upper bound

The main point is to consider the semigroup {Pψt , t > 0} defined by

Pψt φ(x) = eψ[Pt(e−ψ)] (3.32)

Where ψ is a function to be optimized (this trick is due to Davies [Dav87]). This semigroup has a
kernel

pψ(t, x, y) = eψ(x)p(t, x, y)e−ψ(y) (3.33)

If one expect p to have Gaussian bounds then it is natural to expect that (when ψ = l.x has a linear
behavior)

pψ(t, x, y) ≤ C

t
d
2

etN(ψ) (3.34)

for some number N(ψ) and some C independent of ψ. It follows immediately that

p(t, x, y) ≤ C

t
d
2

eψ(y)−ψ(x)+tN(ψ) (3.35)

And an optimization on ψ gives the upper bound (with ψ = l.x for some l ∈ Rd the optimization is
made on l). The hard point is to obtain the bound 3.34 and this is where the method of Faber-Stroock
differs with the one of Davies.

The Nash Inequality method The method of E.B. Fabes and D.W. Stroock is based on the following
Nash inequality: there is a constant C1 ∈ (0,∞) such that for all φ ∈ L1(Rd) ∩H1(Rd)

‖φ‖2+ 4
d

L2(dx)
≤ C1‖∇φ‖2

L2(dx)‖φ‖
4
d

L1(dx)
(3.36)

This inequality is used to give an upper bound for the L2q norm of Pψt φ for q ∈ [1,∞) and φ ∈
C∞

0 (Rd)+. And for ψ = l.x, this norm is big when ”the process has good chances of going far” thus
it is natural to find it in the strategy giving the upper bound for p(t, x, y).
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The Log-Sobolev Inequality The method of Davies is based on the following Log-Sobolev inequal-
ity:
For all ε > 0, for all φ ∈ H1 ∩ L1 ∩ L∞∫

Rd

φ2 lnφm(dx) ≤ ε

∫
Rd

|∇φ|2m(dx) +M(ε)‖φ‖2
L2(m(dx))

+ ‖φ‖2
L2(m(dx)) ln ‖φ‖L2(m(dx))

(3.37)

Where the measure m(dx) is the Lebesgue measure for divergence form operators and the invariant
measure mU (dx) for potential form operators.
The Log-Sobolev inequality for mU can be deduced by perturbing the Log-Sobolev inequality for m
and noticing that this inequality compares the entropy of a squared function (for which a variational
formula is available and can easily be perturbed) and its Dirichlet form.
This inequality is also a consequence of the ultracontractivity property of Pt that is to say

‖Pt‖∞,2 ≤ eM(t) (3.38)

for all t > 0 where M(t) is a monotonically decreasing function of t. The beauty of the proof of
Davies is to notice that the inequality 3.37 can be used and perturbed to obtain the Lp Log-Sobolev
inequality for the operator associated to Pψ.

∫
Rd

φp lnφm(dx) ≤ ε(p)
∫
Rd

(
(−eψLe−ψ)φ

)
φp−1m(dx) + Γ(p)‖φ‖pLp(m(dx))

+ ‖φ‖pLp(m(dx)) ln ‖φ‖Lp(m(dx))

(3.39)

for all 2 < p <∞. And the equation 3.39 gives an upper bound on the ‖.‖∞,2 norm of Pψt .

‖Pψt ‖∞,2 ≤ eM (3.40)

with

t =
∫ ∞

2
p−1ε(p)dp, M =

∫ ∞

2
p−1Γ(p)dp (3.41)

The strategy of Davies is interesting because it is quite robust, allows to obtain sharp estimates and
leaves some flexibility in choice of ε(p) and Γ(p).
Actually the equivalence between logarithmic Sobolev inequalities and hypercontractivity is due to
L. Gross [Gro75]. Hypercontractivity is a smoothing property introduced in quantum field theory
that roughly describes that Pt maps L2 in to L4 for some t > 0. It actually gives rise to bounds
on the operator norm ‖Pt‖p,q of Pt from Lq into Lp, 1 ≤ q ≤ p ≤ ∞. The equivalence between
logarithmic Sobolev inequality and hypercontractivity is an important issue when studying rates of
convergence to the equilibrium are characterizing the spectral gap of the generator (see [Gro93]).
In fact, Log-Sobolev inequalities have become a major tool in analysis (this is particularly true in
infinite dimension) and a good survey [ABC+99] is available on the subject.

3.3.1.ii The lower bound

To obtain the lower bound, it is sufficient to prove that there exists c1, c2 > 0 such that |x−y| ≤ c1t
1
2

implies:

p(t, x, y) ≥ c2t
− d

2 (3.42)

Then the chain rule says that

p(t, x, y) ≥
∫
B1

· · ·
∫
Bn

p(
t

n+ 1
, x, z1) · · · p( t

n+ 1
, zn, y)m(dz1) · · ·m(dzn) (3.43)
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where B1 . . . Bn are balls joining x to y and n an integer chosen in an optimal way to give the lower
Gaussian bound 3.28.
The hard and quite technical point is the proof of the inequality 3.42 and in the strategy of Fabes-
Stroock (and its adaptation to potential form operator in [Sei98]) is based on the following Poincaré
inequality: for all φ ∈ C1

b (R
d)∫

Rd

e−π|y|
2
(
φ(y)−

∫
Rd

e−π|z|
2
φ(z)dz

)2
dy ≤ 2π

∫
Rd

e−π|y|
2|∇φ(y)|2dy (3.44)

There are other ways to prove the Gaussian bounds for diffusions associated to second other
elliptic operators.

3.3.2 Resolvent method

P. Auscher, in [Aus96], gives an other proof of Aronson’s upper Gaussian bound on the heat kernel
for parabolic equations with time-independent real measurable coefficients. This approach also gives
Gaussian bounds in the case of a complex perturbation of real coefficients and in the case of uniformly
continuous and complex valued coefficients.
The idea is to proceed from elliptic regularity theory to parabolic theory. The three steps of the
proofs are:

1. An improvement of regularity by iteration of the resolvent, the idea is to proceed from elliptic
regularity theory to parabolic theory.

2. The use of Davies’ method to obtain decay for the kernels by exponential perturbation

3. A contour integral from functional calculus and a rescaling argument

In [AMT98] P. Auscher, A. McIntosh and P. Tchamitchian consider the heat kernels of second
order elliptic operators in divergence form with complex bounded measurable coefficients on R

d,
difficulties which arise in the complex situation include the failure of the heat semi-group to be
contractive on Lp spaces, the absence of symmetry or self-adjointness of the matrix a in 3.31. They
obtain Gaussian bounds (on the modulus of the heat kernel) without further assumption if d ≤ 2.
It is interesting to notice that if d ≥ 5, there exists ([AMT98]) operators with complex measurable
bounded coefficients whose heat kernels do not satisfy Gaussian bounds. However when the principal
part (the matrix a in 3.31) has Hölder continuous coefficients when d ≥ 3 Gaussian bounds are
proven.

3.3.3 Parabolic Harnack Inequality

An other way to prove Gaussian bounds on the diffusion associated to an uniformly elliptic operator
is through the Parabolic Harnack Inequality.
J. Moser, in [Mos64], proved a Harnack inequality for parabolic equations associated with second
order uniformly elliptic divergence form operators in Euclidean space in [Mos71] he simplifies his
proof. His approach has been used in many other situations because it rests only on two functional
inequalities (Sobolev and Poincaré inequalities).
Let Ω be an open domain in the Euclidean space R

d and set H = T ×Ω where T is an open interval
on the real line. For (t, x) ∈ H Moser considers weak positive solutions of the parabolic equation

∂φ

∂t
−∇(a(t, x)∇φ) = 0 (3.45)

where a is a bounded measurable symmetric real matrix satisfying 3.31. Choose a compact and
connected subdomain K of Ω. Assume that T is the interval (T1, T2). Choose t1, t2, t3, t4 such that

T1 < t1 < t2 < t3 < t4 ≤ T2 (3.46)
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Then Harnack Parabolic Inequality says that, there exists a constant c > 1 depending only on H, K
and t1, t2, t3, t4 such that

sup
(t1,t2)×K

φ ≤ c
1
λ inf

(t3,t4)×K
φ (3.47)

where the symbols sup and inf stand for the essential supremum and the essential infimum.
The Parabolic Harnack Inequality allows to prove Gaussian bounds in the heat kernel, in fact it
was the historical proof used by Aronson [Aro67]. This inequality is intuitively natural in the sense
that it says that if at time t the supremum value of the heat in a compact set is above v then if
one waits until time the time t + δt the heat would have diffused and lower bound the value of the
heat everywhere in all the compact set by c2v. The Gaussian bounds are hidden in the law of power
between the time δt = R2 one have to wait and the size of the compact set (R is its radius when it is
a closed ball) if one wants the ratio c2 to be independent of the size R (R2 is for a Brownian motion
the expectation of the time needed to exit a ball of radius R).
It is interesting to notice that reciprocally Gaussian bounds on the heat kernel are sufficient to
prove the Parabolic Harnack Inequality [FS86]. Since the work of Moser an impressive number of
articles on the Parabolic Harnack Inequality have appeared and it would be foolish to list them all
here (see [SC95] for a good survey on the subject). P. Li and S. T. Yau, in [LY86], proved a sharp
Parabolic Harnack Inequality the Laplacian on complete Riemannian manifold whose Ricci curvature
is bounded below. Their proof are primarily based on the Bochner Weitzenbock formula

−Δ|∇φ|2 + 2g(∇φ,∇Δφ) = 2
(|Hessφ|2 + Ric(∇φ,∇φ)

)
(3.48)

which partly explains the role played by the Ricci curvature.
In [Nag92] their method has been adapted to potential form operators 1

2Δ−∇U.∇.
Actually the parabolic Harnack principle for divergence form second order operators is characterized
by two simple geometric properties:

1. The Poincaré inequality

2. The doubling property

3.4 Connections between geometric properties of the generator and the control on
the diffusion

As it is starting to become clear, there exists deep and fruitful connections between the geometry of
the operator associated to the diffusion and controls on that diffusion (see [Led00], [SC95], [Bak94],
[Var91], [Dav93] for good surveys on the subject).
Consider the Dirichlet form (E ,D[E ]) associated to a strongly continuous Markov semigroup Pt and
assume that this semigroup possesses a nice kernel p(t, x, y) (see [CKS87] and [Var91] for instance
for the properties given here). Then the following uniform estimate on decay of the heat kernel

p(t, x, y) ≤ C

t
d
2

(3.49)

is equivalent to the Nash inequality

‖φ‖2+ 4
d

2 ≤ CE(φ, φ)‖φ‖
4
d
1 (3.50)

moreover for d > 2 a basic theorem of N. Varopoulos ([Var91]) shows that the Sobolev inequality

‖φ‖2
2 d

d−2

≤ C2E(φ, φ) +C3‖φ‖2
2 (3.51)
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is equivalent to the decay 3.49 of the heat kernel for all t > 0 if C3 = 0 and 0 < t < t0 elsewhere.
It is interesting to notice that Sobolev inequalities such as 3.51 are actually parts of more general
families of inequalities considered by E. Gagliardo and J. Nirenberg in the late fifties (see [Led00] for
this part):

‖φ‖r ≤
(
A‖φ‖2

2 +BE(φ, φ)
) θ

2 ‖φ‖1−θ
s (3.52)

where 0 < r, s ≤ ∞, θ ∈ (0, 1]. These families describe in an unified way several inequalities that
appeared in the literature (Nash inequality, logarithmic Sobolev inequality, . . . ). Various cases have
to be distinguished according to the value of the parameter p �= 0 defined by

1
r

=
θ

p
+

1− θ

s
(3.53)

which should be considered as a dimensional parameter (according to examples of R
d for which

1
p = 1

2 − 1
d). The choice of r = 2, s = 1, θ = d

d+2 yields the Nash inequality

‖φ‖2+ 4
d

2 ≤ (
A‖φ‖2

2 +BE(φ, φ)
)‖φ‖ 4

d
1 (3.54)

used by J. Nash [Nas58] to prove the Hölder regularity of solutions of divergence form uniformly
elliptic equations.
In the subsequent work on the subject [Mos64], J. Moser considers r = 2 + 4

d , s = 2 and θ = d
d+2 .

It is interesting that for r = 2 and θ → 0, 3.52 yields the logarithmic Sobolev inequality∫
(φ)2 lnφ2m(dx) ≤ d

2
ln(A‖φ‖2

2 +BE(φ, φ)
)

(3.55)

for all φ with ‖φ‖2
2 = 1 which is also implied by the Nash inequality 3.54.

3.5 The Dirichlet form revisited

Set for instance E ,D[E ] a symmetric strongly local Dirichlet form on a real Hilbert space L2(X,m)
(X is a locally compact separable Hausdorff space and m is a Radon measure with support X)(see
[Stu96] for this paragraph, see also [JKM+98], [Stu95]). That is to say (strongly local) E(u, v) = 0
whenever u ∈ D[E ] is constant on a neighborhood of the support of v ∈ D[E ]. Any such form can be
written

E(u, v) =
∫
X
dΓ(u, v) (3.56)

where Γ is a positive semidefinite, symmetric bilinear form on D[E ] with values in the signed Radon
measure on X (the so-called energy measure). It can be defined by the formulae∫

X
φdΓ(u, u) = E(u, φu)− 1

2
E(u2, φ) (3.57)

for every u ∈ D[E(u, u)] ∩ L∞(X,m) and every φ ∈ D[E ] ∩ C0(X) For instance for the operator
L = 1

2Δ−∇U∇ this energy measure is

dΓ(u, v) = ∇u(x).∇v(x) e−2U(x)dx (3.58)

Define Dloc[E ] = {u ∈ L2
loc(X,m) ; Γ(u, u) is a Radon measure}

The energy measure Γ defines in an intrinsic way a pseudo metric ρ on X by

ρ(x, y) = sup{u(x)− u(y) : u ∈ Dloc[E ] ∩ C(X), Γ(u, u) ≤ m on X} (3.59)

The condition Γ(u, u) ≤ m in 3.59 means that the energy measure Γ(u, u) is absolutely continuous
with respect to the reference measure m with Radon-Nikodym derivate d

dmΓ(u, u) ≤ 1.
Assume also that E is strongly regular that is to say: (E ,D[E ]) is regular and ρ is a metric on X
whose topology coincides with the original one.
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3.5.1 Local Properties

Fix arbitrary open subset Z ⊂ X. In the sequel it will be shown that local properties (on Z) of the
heat kernel (which is defined on the whole space X) associated to the Dirichlet form (E ,D[E ]) are
closely connected to local properties (on Z) of the Dirichlet.

Property 3.5.1. Z is said to verify the completeness property if for all balls B2r ⊂ Z the closed
balls Br(x) are complete (or, equivalently compact here because of the strong regularity)

Property 3.5.2. m is said to verify the doubling property if there exists a constant d = d(D[E ])
such that for all balls B2r(x) ⊂ Z

m(B2r(x)) ≤ 2dm(Br(x)) (3.60)

The number d (when it is optimized) plays the role of the dimension of the space Z and it can be a
fractional number.

Property 3.5.3. E is said to verify the (weak) Poincaré inequality if there exists a constant CP =
CP (Z) such that for all balls B2r(x) ⊂ Z∫

Br(x)
|u− ux,r|2dm ≤ CP .r

2

∫
B2r(x)

dΓ(u, u) (3.61)

for all u ∈ D[E ] where ux,r = 1
m(Br(x))

∫
Br(x) udm.

Write L the negative self-adjoint operator associated to (E ,D[E ])

Property 3.5.4. The operator L − ∂
∂t is said to verify the Parabolic Harnack inequality if there

exists a constant CH = CH(Z) such that for all balls B2r ⊂ Z and all t ∈ R

sup
(s,y)∈Q−

u(s, y) ≤ CH inf
(s,y)∈Q+

u(s, y) (3.62)

whenever u is a nonnegative local (weak) solution of the parabolic equation (L − ∂
∂t)u = 0 on Q =

(t− 4r2, t)×B2r(x). Here Q− = (t− 3r2, t− 2r2)×Br(x) and Q+ = (t− r2, t)×Br(x)

(to be precise one should replace the extremum by the essential extremum however the Harnack
Parabolic inequality imply the Hölder continuity of the local solutions in the equivalence sense).
Consider now {(Et,D[E ]}t∈R a family of regular, strongly local and symmetric Dirichlet form (with
same domain as E) uniformly parabolic with respect to in the initial Dirichlet form E in the following
sense: there exists a constant κ such that for all u ∈ D[E ] and all t ∈ R

1
κ
E(u, u) ≤ Et(u, u) ≤ κE(u, u) (3.63)

The negative semidefinite selfadjoint operator on L2(X,m) associated with the Dirichlet form Et is
denoted by Lt and their family defines a parabolic operator Lt − ∂

∂t .

Property 3.5.5. The parabolic operator Lt − ∂
∂t (defined above) is said to verify the Parabolic

Harnack inequality if for all κ ≥ 1 and all α, β, γ, δ, ε ∈ R with 0 < α < β < γ < δ and 0 < ε < 2s a
constant C∗

H = C∗
H(Z) such that for all balls B2r ⊂ Z and all t ∈ R

sup
(s,y)∈Q−

u(s, y) ≤ CH inf
(s,y)∈Q+

u(s, y) (3.64)

whenever u is a nonnegative local (weak) solution of the parabolic equation (Lt − ∂
∂t)u = 0 on Q =

(t− δr2, t)×B2r(x). Here Q− = (t− γr2, t− βr2)×Bεr(x) and Q+ = (t− αr2, t)×Bεr(x).
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3.5.2 Connections between these properties

In [Stu96] it is shown that

Theorem 3.5.1. Under the completeness assumption 3.5.1 the following are equivalent:

1. The doubling property 3.5.2 and the Poincaré inequality 3.5.3 hold true on Z.

2. The parabolic Harnack inequality 3.5.4 for the (time-independent) operator L − ∂
∂t on R × Z

holds true.

3. The parabolic Harnack inequality 3.5.5 holds true for the all (time-dependent) operator Lt− ∂
∂t

on R× Z which satisfy 3.63.

The parabolic Harnack constant CH in 2 can be chosen as CH(d,CP ), i.e., only to depend on
the doubling constant d and the Poincaré constant CP . The constant C∗

H in addition depends on
the parabolicity constant and the parameters α, β, γ, δ, ε. In the converse direction, both constants
d and CP in 1 can be chosen to depend only on the parabolic Harnack constant CH for L− ∂

∂t (e.g.
d = 4 lnCH

ln 2 and CP = C2
H .2

d)

It was a general knowledge quite a long time that it suffices to have a doubling property, a Sobolev
inequality and a Weighted Poincaré inequality in order to prove parabolic Harnack inequality (for
sub elliptic operators on R

d or for Laplace-Beltrami operators on Riemannian manifolds) using the
method of Moser. Only recently, independently Grigor’yan [Gri92] and Saloff-Coste [SC92] could
prove that (at least in Riemannian geometry), a doubling property and a Poincaré inequality already
imply a Sobolev inequality. Indeed here the following theorem is true ([Stu96])

Theorem 3.5.2. Assume that the completeness 3.5.1, the doubling 3.5.2 properties and the Poincaré
inequality hold true and put d∗ = max(d, 3). Then there exists a constant CS = CS(Z) such that for
all balls B2r(x) ⊂ Z∫

Br(x)
|u| 2d∗

d∗−1dm ≤ CS
r2

m(Br(x))
2

d∗

∫
Br(x)

(
dΓ(u, u) + r−2u2dm

)
(3.65)

for all u ∈ D[E ]∩C0(Br(x)). The constant CS can be chosen to be f(d).CP where f(d) depends only
on the doubling constant d.

Moreover under the completeness assumption 3.5.1 if doubling property 3.5.2 and the Poincaré
inequality 3.5.3 hold true on Z using the parabolic Harnack inequality 3.5.5 one easily derives point-
wise estimates on R × Z for the fundamental solution p(t, y, s, x) of the parabolic operator Lt − ∂

∂t
on R × X satisfying 3.63. [Stu96] For every ε > 0 there exists a constant C depending only on
d = d(Z), CP = CP (Z) and ε > 0 such that the following estimate holds true for all points (t1, y1)
and (t2, y2) ∈ R× Y with t1 < t2.

p(t2, y2, t1, y1) ≤ C.m−1
(
B√

ts(y1)
)
exp

(
− ρ2(y1, y2)

(4 + ε)κ(t2 − t1)

)
(3.66)

and

p(t2, y2, t1, y1) ≥ 1
C
.m−1

(
B√

ti(y1)
)

. exp
(
− Cκ

ρ2(y1, y2)
t2 − t1

)
exp

(− Cκ

R2
i

(t2 − t1)
) (3.67)

Here ts = inf{t2 − t1, R
2
s} and ti = inf{t2 − t1, R

2
i } with Rs = inf{ρ(y1,X \ Y ), ρ(y2,X \ Y )} (being

+∞ if X = Y ) and Ri = inf0≤s≤1 ρ(γ(s),X \Y ) (γ is the geodesic of length ρ(y1, y2) joining y1 to y2).
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If Y = X and Lt ≡ L then p(t2, y2, t1, y1) = p(t2 − t1, y2, y1) where p(t, y, x) is the heat kernel
associated to L and

p(t, x, y) ≤ C.m−1
(
B√

t(x)
)
exp

(
− ρ2(x, y)

(4 + ε)t

)
(3.68)

and

p(t, x, y) ≥ 1
C
.m−1

(
B√

t(x)
)
. exp

(
− C

ρ2(x, y)
t

)
(3.69)

3.5.3 Important remarks

• Fabes and Stroock, in [FS86], have given a strategy (modeled on an argument given by Krylov)
to deduce parabolic Harnack inequality from Gaussian bounds. But here [Stu96] it is shown
that the parabolic Harnack inequality is equivalent to the doubling condition and the Poincaré
inequality . This means that for the range of diffusions for which the strategy of Fabes-Stroock
can be applied, Gaussian bounds on the diffusion with respect to the measure ρ are equivalent
to the doubling condition for the measure m and the Poincaré inequality for the Dirichlet form
(E ,D[E ]).

• The distance ρ 3.59 issued from the energy measure appears as the intrinsic object describing
the Gaussian behavior. However if the diffusion takes place on R

d. All that is needed on ρ
is that its topology coincides with the Euclidean one but this does not necessarily mean that
the two distances are equivalent. This would mean that although the diffusion may have a
Gaussian behavior with respect to the distance ρ; its behavior with respect to the Euclidean
distance can be not Gaussian (anomalous). In other words if one has doubling condition and
Poincaré inequality and the relation between ρ and the Euclidean distance is not linear then
the diffusion reflects an anomalous behavior with respect to the Euclidean distance.

• The initial assumptions on m (positive Radon measure) and the Dirichlet form (symmetric,
strongly local and regular) are quite weak in the sense that they allow to consider a wide range
of diffusions.

• The parabolic Harnack inequality is a local property obtained from local estimates (Z is an
open subset of X) with global consequences (bounds on heat kernel). And when the strategy
of Fabes-Stroock holds, the global consequences give back the local properties.

Now,consider for instance the diffusion 3.26 associated with the operator L = 1
2Δ − ∇U∇ on

L2(Rd, e−2Udx) with U ∈ C∞(Rd) (not necessarily bounded). Then it is easy to see that ρ is the
Euclidean distance

ρ(x, y) = 2|x− y| (3.70)

This means, that if e−2U(x)dx satisfies the doubling condition and E(f, g) = 1
2

∫
Rd ∇f(x)∇g(x)e−2U(x)

satisfies the Poincaré inequality then the diffusion shows Gaussian behavior.
Conversely on every open subset Z of R

d, U is bounded and it is easy to see that the strategy of
Fabes-Stroock can be applied to obtain a parabolic Harnack inequality.
Thus the Gaussian behavior of the diffusion 3.26 is equivalent to the doubling property of the mea-
sure mU(dx) = e−2U(x)dx with the same doubling constant d̂ everywhere and the Poincaré inequality
(with the same constant CP everywhere.)
Actually in that situation the behavior of the heat kernel p(t, x, x) on its diagonal is governed by the
behavior of 1√

mU (Bt(x))
which is in 1

t
d
2

for t small since U is smooth and is controlled by the volume

growth associated to mU for t large.
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3.6 Control of the Green function

There exists an other way to characterize the ”normality” of a diffusion (remember ”normality” is
defined with respect to the Brownian motion). This is done through the expectation Ex[τ(x, r)] of
the time τ(x, r) put by the diffusion starting from x to exit a ball Br(x) of center x and radius r.
For a Brownian motion this expectation grows like r2 with the radius of the ball, thus it is natural
to set a criterion of normality the following property:

Criterion 3.6.1. for all x there exists C1 and C2 such that for all r > 0 (or r > r0 > 0 or 0 < r < r1
depending on the range of an observation)

C1r
2 ≤ Ex[τ(x, r)] ≤ C2r

2 (3.71)

At the first sight this control might seem weaker than a control on transition probability densities,
however it will be shown that it has strong consequences on those densities (if it holds for a wide
range of radius r and the beginning of the sentence is inverted: ”there exists C1 and C2 such that
for all x . . . ”).
In the sequel it will be shown through a simple example that the exit times can be obtained from a
control on the Green functions associated to the given diffusion killed when exiting Br(x). In this
process, normality reflects an uniform equivalence in the comparison of the given operator L with
the Laplace operator Δ in an equilibrium sense.

3.6.1 A simple example

Consider now the usual simple example of the diffusion yt 3.26 associated to potential form operator
LU = 1

2Δ−∇U.∇ (U ∈ C∞(Rd)).
For simplicity of the notations the exit times will be characterized for balls centered on the origin O.
Call Gr(x, y) the Green function associated to the divergent form operator −∇(e−2U∇) on the open
ball Br(O) with Dirichlet conditions on ∂Br(O).

−∇(e−2U∇Gr(x, y)
)

= δ(x− y) (3.72)

Then it is easy to see that the expectation of the exit time τ(O, r) is given by the solution ψ of the
Poisson equation

Lψ = −1 (3.73)

with Dirichlet conditions on ∂Br(O). Thus

Ex[τ(0, r)] = 2
∫
Br(0)

Gr(x, y)e−2U(y)dy (3.74)

This means that a control on the Green functions gives a control on the exit times.
Write Hr(x, y) the Green function associated to the Laplace operator on Br(0).

G. Stampacchia, in [Sta66] (see also [Sta65], the proof is beautiful), shows that there exists a
constant Cd > 0 depending only on the dimension d ≥ 3 such that (for x �= y).

1
Cd

exp
(− Cde

Cd Oscr(U)
) ≤ Gr(x, y)

Hr(x, y)
≤ Cd exp

(
Cde

Cd Oscr(U)
)

(3.75)

where Oscr(U) = supBr(O)U − infBr(O)U .
Thus

1
Cd

exp
(− Cde

Cd Oscr(U)
)
r2 ≤ EO[τ(O, r)] ≤ Cd exp

(
Cde

Cd Oscr(U)
)
r2 (3.76)



3. Normal Diffusion 38

And if U is bounded then exit times exhibit necessarily a normal behavior.
Actually there is mainly two ways to obtain such a control on the Green functions. The first one
is through the parabolic Harnack inequality, however the proof is unsatisfactory in the sense that
dynamical properties of the operator L are used to deduce an equilibrium property. The second one
is through the Harnack inequality (see [Sta65], [Anc97], [GW82], [Pin89]).

The Harnack inequality reflects an equilibrium property of harmonic functions: Given a second
order differential operator A, it is said that A satisfies the Harnack inequality in the domain Ω ⊂ R

d,
if for each compact K ⊂ Ω, there exists a constant C = C(K,Ω) such that any positive A-harmonic
function u in Ω satisfies

sup
K
u ≤ C inf

K
U (3.77)

Note that the parabolic Harnack inequality implies the Harnack inequality, the idea behind this
implication is that the reproduction at each time of the same harmonic function is a solution of the
heat equation. For long it was conjectured that Harnack inequality should actually be weaker than
its parabolic version but it is only recently that a counter-example has been proposed.
In a sense the parabolic Harnack inequality reflects the comparison between the heat kernel of
the given diffusion with the one of the Brownian motion and the Harnack inequality reflects the
comparison between the given operator L with the Laplacian Δ in terms of Green functions.



4. ANOMALOUS DIFFUSION

4.1 Anomalous Diffusion

A diffusion said to be anomalous when one of the criterion 3.1.1, 3.1.2 3.1.3 or 3.6.1 given in previous
chapter is not satisfied. Actually, among physicists the breaking of the Fick law is the most popular
criterion of anomaly. More precisely when the square displacement of the diffusion Xt grows like a
power of the time.

E[X2
t ] ∼ tν (4.1)

The diffusion is said to be

• normal for ν = 1

• sub diffusive for ν < 1

• super diffusive for ν > 1

The study of anomalous diffusions is an active field of research and each year an important numbers
of articles from applied to theoretical (rigorous and heuristic) sciences appear on the subject. It
would be foolish to give a complete panorama of the subject here, several good surveys are available:
S. Havlin and D. Ben-Avraham [HBA87]; J.-P. Bouchaud and A. Georges [BG90] and M.B. Isichenko
[Isi92]. An interesting review of recent articles can be found in the XI Max Born Symposium (1998)
[PSW99].

For recent articles in physics, see also [CHS97],[PM96],[GOYK96],[BRC96],
[BF96],[vBD95],[KLLQ98],[Zan98], [VZP98],[VJO98],[YI98],[SD96], [Asl96],
[WUS96],[CMMGV99],[Sai00], [YR99],[DJ96],[Art97], [IIA98],[Leb98],
[Tom98],[WT99].

The sequel will focus mainly on sub diffusive behavior.

4.2 Some Models

The purpose of this section is to present some models of anomalous diffusion. However those models
do not have a direct and clear link with the diffusions in multi scale media considered in this work.
They are here just to show that other types of causes might generate the anomaly of a diffusion (and
the panorama is far from being complete). That’s why it is strongly advised to avoid this section in
a first lecture in order to not loose the thought path of this thesis.

4.2.1 Trapping Models

Trapping models are an example of anomalous diffusion due to long waiting times. Consider a random
walk on a regular lattice (Zd for instance), such that the particle has to wait a time τ(x) on each site
x before performing the next jump (see [BG90]) on a neighboring site (the size of the jump is of size
1 here but it can chosen at random). This waiting time is a random variable independently chosen
at each new jump according to the same distribution ψ(τ).
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Given N(t), the number of steps performed by the walker during the time t; the mean (with respect
to the chosen path) square displacement of the walker is

Epath[X2
t ] = d N(t) (4.2)

Here t is chosen to be the sum of the N waiting times encountered

t =
N∑
n=1

τ(Xn) (4.3)

When the expectation of the waiting times is finite: E[τ ] < ∞ then the diffusions follows the Fick
law

E[X2
t ] ∼ d

t

E[τ ]
(4.4)

However when ψ(τ) is a broad distribution (E[τ ] = ∞) this leads to sub diffusive behavior.
For instance when the tail of ψ behaves like

ψ(τ) = τμτ−(1+μ) (τ →∞) (4.5)

with 0 < μ ≤ 1 then t behaves as

t ∼ τ0N
1
μ (4.6)

and

E[X2
t ] ∼

⎧⎨
⎩

( t
τ0

)μ (0 < μ < 1)
t

τ0 ln( t
τ0

)
(μ = 1) (4.7)

4.2.1.i Comb like structures

Comb like structures constitutes a geometrical example of trapping models and in spite of their ap-
parent simplicity they are reasonable models for disordered media. Imagine on R

2 ((x, y) coordinates)
a random walk moving on the (0, x) axis. At each point xn = ne1 (n ∈ Z) of this axis is attached
a tooth (parallel to the (0, y) axis) with length L(xn). The teeth length are independent random
variable chosen at site according to the same distribution.
The teeth of this of this comb behave as a trap in which the particle stays for some time before
continuing its random motion and if E[L] = ∞ then the diffusion shows an anomalous behavior
which can be characterized by the relation between the distribution of the waiting time τ and the
size of the teeth L.
For infinitely deep teeth (L = ∞) the waiting time distribution ψ(τ) is simply the waiting time dis-
tribution of the first return time at the origin (the entrance of a tooth) which decays as τ−

3
2 for a 1d

Brownian motion. And according to the discussion on trapping models 4.2.1 this broad distribution
(μ = 1

2 see 4.5) the comb like geometry induces an anomalous diffusion along the (0, x) axis with

E[X2
t ∼ t

1
2 ] (4.8)

4.2.1.ii Sub diffusive behavior of random walk on a random cluster

In [Kes86] H. Kesten consider a random walk Xn on the ”incipient infinite cluster” of two-dimensional
bond percolation at criticality and proves that for some ε > 0, the family { 1

n
1
2−ε

Xn} is tight. This
shows that Xn has sub diffusive behavior. The result is obtained by looking at the incipient cluster as
a comb structure: the embedded random walk is analyzed on a sub graph of the percolating cluster
called the backbone. Attached to the backbone are ”dandling ends” (the teeth of the comb) which
are of no help for Xn to get far out. If the random walk enters a dandling end it has to return to
the backbone in order to go to infinity. The time spent in the dandling ends is responsible for |Xn|
growing slower than n

1
2 .
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4.2.1.iii A. Sznitman results

Imagine the following trapping model. A Brownian motion is evolving in R
d with random compact

traps (with non-void interior, closed balls for instance with strictly positive radius) distributed ac-
cording to a Poissonian law below criticality. Imagine that the waiting time associated to each trap is
a.s. infinite. Then the Brownian motion will a.s. be trapped in a finite time where the diffusion will
be stuck forever (the Brownian motion is killed). For the moment it is not very interesting indeed,
but imagine now that you observe the Brownian motion conditioned on the fact that it hasn’t been
killed. Then the striking, beautiful and rigorous result of A.-S. Sznitman (see [Szn99]) is that this
conditioned diffusion evolving in the quenched disorder has a ballistic behavior.
The typical image obtained is the following: At time t the particles (associated with the diffusion)
who have survived have traveled a distance t

(ln t)2
to find clearings of radius (ln t)

1
3 without any ob-

stacle (created by the Poisson process). Those clearings are very small compared to the distance
traveled and far from each other (pinning effect). Moreover the survival clearings change quickly
with the time (intermittence).

4.2.2 A one dimensional model

4.2.2.i F. Solomon’s results

F. Solomon, in [Sol75], consider a random walk Xn on Z, such that

P[Xn+1 = Xn + 1|Xn] = αXn (4.9)

P[Xn+1 = Xn − 1|Xn] = 1− αXn (4.10)

Where {αx, x ∈ Z} is a sequence of independent, identically distributed random variables with
0 ≤ αx ≤ 1 for all x. Then the behavior of the random walk is analyzed on the quenched random
environment ({αx} is fixed). The relevant parameter for the behavior of the walk is

σ =
1− α

α
(4.11)

indeed

• for E[lnσ] < 0, limXn = ∞ a.s. (with respect to the probability measure on the environment)

• for E[lnσ] > 0, limXn = −∞ a.s.

• for E[lnσ] = 0, {Xn} is recurrent. Moreover lim infXn = −∞ and
lim supXn = ∞

Moreover

• E[σ] < 1, implies lim Xn
n = 1+E[σ]

1−E[σ] a.s.

• E[σ−1] < 1, implies lim Xn
n = −1+E[σ−1]

1−E[σ−1]
a.s.

• E[σ]−1 ≤ 1 ≤ E[σ−1], implies lim Xn
n = 0 a.s.

An interesting result of Solomon is the slow approach to infinity. In the case limXn = ∞ a.s. but
lim Xn

n = 0 a.s. the problem is simplified by considering the case where σx can take only two possible
value σx = 0 or θ (with 0 < θ < ∞ fixed). More precisely αx = 1 with probability γ and αx = 1

1+θ
with probability 1 − γ. The points x such that σx = 0 are barriers reflecting to the right. The
principal advantage of this scheme is that the random walk can be decomposed into independent
excursions from one barrier to the next.
Then
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• If γθ = 1 then lnn
n ln θXn converges in probability to 1

2

• If γθ > 1 then along a subsequence Xn
nρ (where ρ = − lnγ

ln θ < 1) converges in distribution to a
non degenerate random variable.

4.2.2.ii Y.G.Sinai’s results

Y. G. Sinai, in [Sin82], consider the previous model analyzed by F. Solomon under the assumption
αx, 1− αx ≥ const > 0 and

E[lnσ] = 0 (4.12)

It is shown that under these conditions, the random walk has an ultra slow behavior and Xn takes
on value of order (lnn)2. Moreover as n → ∞, the probability distribution for Xn

(lnn)2
becomes

concentrated in an arbitrarily small neighborhood of some point depending on the realization {αx}.
More precisely for given ε, δ > 0; for all sufficiently large n there exist a set An in the space of
configurations of the medium {αx} and a point vn = vn(ξ) for each ξ ∈ An such that P(An) ≥ 1−α,
and for ξ ∈ An

P
(| Xn

(ln n)2
− vn| < δ

)→ 1 (4.13)

as n → ∞ uniformly in ξ ∈ An. As n → ∞ the probability distributions for vn converge weakly to
some limit distribution.
This ”ultra slow” diffusion is explained by the fact that randomness generates long barriers of αx
pointing in the direction opposed to the progress of the diffusion and very difficult to cross. Moreover
the longer the distance that the diffusion wants to go is, the longer are the barriers encountered by
the diffusion on his way.

4.3 Fractal Models

Fractals form a tool used by physicists to model the geometrical structure of disordered media. The
most appealing property of fractals is their self-similarity, or scaling, meaning that some parts of
a whole are similar after scaling, to the whole. For fractals involving random element, one speaks
about a statistical self-similarity, meaning equivalent, after the proper rescaling, statistical distribu-
tions characterizing the geometry of a part and of the whole fractal an example of random fractal is
the infinite cluster near the percolation threshold.
It is important ([Isi92]) to note that virtually no physical object in real space qualifies for the formal
definition of a fractal involving a nontrivial Hausdorff dimension, because each physical model has
certain limits of applicability expressed in the length scales involved. Instead, physical fractals are
defined as geometrical objects having sufficiently wide scaling range [lmin, lmax] specifying the length
scales of self-similar behavior. As soon as the ratio lmax/lmin becomes a large parameter, one can
speak about a fractal.
Thus physicists have been interested by the problems such as random walks, diffusions, heat propa-
gation or waves propagation in fractals in order build models of transport problems in geometrically
disordered media [RT83].

This interest grew up with the following observation: Whereas in an Euclidean space the relevant
parameter entering in the scaling law between the energy ε and the density of states N (ε) on the
substrate is the dimension of the space d.

N (ε) ∼ ε
d
2
−1
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On a fractal substrate the relevant parameter is not its Hausdorff dimension df but a constant ds
called fracton or spectral dimension.

N (ε) ∼ ε
ds
2
−1

This constant is different from df and its nature is analytical. This is translated the mathematical
point of view by the scaling law between the Weyl distribution function associated to the Laplace
operator defined on the fractal. For instance the Laplace operator defined on the L2 functions of the
Sierpinski pyramid is self-adjoint, it has a discrete spectra {λk}

0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · ·

and Kozlov, in [Koz93], shows (we write N(λ) = card{λk : λk ≤ λ}) that there exist C1, C2 > 0 such
that.

C1λ
ds
2 ≤ N(λ) ≤ C2λ

ds
2

The fracton also enters in the power relation

S(N) ∼ N
ds
2

between the number of distinct sites S(N) visited by a random walk on the fractal S(N) et and the
number of steps N.

Moreover from an analytical point of view, ds also plays the role of the relevant parameter which
enters in the study of the heat kernel or the Sobolev Inequality (which is the dimension of the space
if the former is Euclidean).
Indeed the Sobolev inequality which in Rd for d > 2, p = 2d

d−2 , f in H1(Rd) is

‖f‖p ≤ c1‖∇f‖2

In the Sierpinski sponge [BB97] this inequality is valid with p = 2ds
ds−2

The Sierpinski Gasket The study of those properties have lead to numerous studies in mathemat-
ics. The first constructions of a diffusion have been given on the Sierpinski Gasket by Goldstein,
Kusuoka and Barlow-Perkins ([Kus87], [Gol87] and [BP88]). The pathwize construction of a diffusion
on the Sierpinski carpet have been given by Barlow-Bass [BB89]; and the Dirichlet form construction
by Kusuoka Zhou [KZ92]. The main difference between those two fractals is that the first finitely
ramified (a removal of only a finite number of points is required to disconnect a subset of the fractal)
and the second not (this makes analysis much more difficult); for instance although the unicity of the
diffusion on finitely ramified fractals has been obtained by C. Sabot, it remains an open problem for
the Sierpinski carpet. Although these objects have strong symmetries and are perfectly self similar
the mathematical tools used are far from being trivial, and they constitutes examples on which a
precise analysis can be undertaken in order to infer properties on more general fractals.

Actually physicists have used numerous parameters to characterize fractals [HBA87]. In addition
to the Hausdorff dimension and the spectral dimension, the ramification can be finite or infinite, the
lacunarity describes the degree of homogeneity of the fractal, the chemical exponent ν̃ describes the
scaling law between the number of links connecting two points on a fractal along the chemical path
(minimal path) between them.

One of the important properties of diffusions or random walks on the fractals is their sub-diffusive
behavior: Thus for a random walk on the Sierpinski gasket the mean square displacement < R2

N >
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after N steps behaves as N
dw
2 where dw > 2 is called the dimension of the walk (because for the

Sierpinski carpet dw is really the fractal dimensionality of the path of the random walker).
Thus in [BB97] the Brownian motion Xt on the Sierpinski sponge verifies

c1t
2

dw ≤ Ex|Xt − x|2 ≤ c2t
2

dw

And its transition probabilities densities are controlled by :

C1t
−df
dw exp(−C2(

|y − x|dw

t
)

1
dw−1 ) ≤ p(t, x, y) ≤ C2t

−df
dw exp(−C3(

|y − x|dw

t
)

1
dw−1 )

Random Fractals Random fractals constitute the next step in degree of complexity in the field of
constructions of Brownian motion on fractals.
Thus M.B. Hambly, in [Ham97], construct a Brownian motion on a random recursive Sierpinski
gasket; in which the symmetries and self-similarity are preserved only in a statistical sense but the
object is not spatially homogeneous, the object is seen as a Galton-Watson process. The spatial
inhomogeneity in the structure leads to oscillations and logarithmic corrections for the heat kernel.
B.M. Hambly, T. Kumagai, S. Kusuoka and X.Y. Zhou, in [HKKZ98], consider construct a Brownian
motion on homogeneous random Sierpinski carpets (those objects have spatial symmetry but their
self similarity is statistical), for fixed environment the process is constructed and anomalous control
on the transition density is obtained. Here a coupling argument plays the key role to obtain an
uniform Harnack inequality. Just as for the random gasket, there are greater oscillations in the heat
kernel than that observed in the exactly self-similar case. It is interesting to note that the natural
distance involved is the chemical path (it interesting to compare this with the notion of intrinsic
metric associated to a Dirichlet form given in the first chapter).
H. Osada, in [Osa98], announce the construction of a diffusion process on a fractal ”bubble” like
media, the process lives on the surface of the bubbles and its speed depends on the size of the bubble
so that the limit process has a Gaussian behavior.
Whereas Barlow-Bass have obtained the limit process through a pathwize construction and tightness,
in all those constructions in random fractals the existence of the limit process is obtained by the
existence of a limiting regular Dirichlet form on the fractal (Kusuoka-Zhou [KZ92] approach) which
is also a natural method for constructing processes on finitely ramified fractals.

4.4 The Sierpinski carpet

The Sierpinski carpet is the fractal subset of R
2 defined as follows. Divide the unit square F0 into

nine identical squares, each with side of length 1
3 and remove the central one to obtain F1. Divide

each of the remaining eight squares into nine identical squares, each with sides of length 1
9 and

remove the central one to obtain F2 (see figure 4.1). Call Fn the set which is left when n stages
of the construction have been done. Sierpinski Carpet F is the fractal subset which remains after
continuing this process indefinitely (n → ∞); it is a closed set with zero Lebesgue measure and
Hausdorff dimension ln 8

ln 3 .
M.T. Barlow and R.F. Bass, in [BB89], have given a construction of a Brownian Motion on

the Sierpinski carpet; this important paper was the first example of a rigorous construction of a
Brownian Motion on an infinitely ramified fractal. The properties of this process are analyzed in
[BB90a], [BB90b], [BB92] and [BB93a]. In [BB97], they extend their work to the Sierpinski Sponge
thanks to a beautiful coupling argument that allows them to prove the crucial uniform Harnack
inequality for d ≥ 3.
S. Kusuoka and X.Y. Zhou, in [KZ92], adopt a different approach, they construct a Brownian motion
on a graphical approximation of the Sierpinski carpet through the Dirichlet form (their proof is valid
for superior dimensions) which play the key role for proving the self similarity of the law of the limit
process trough a deterministic time change.



4. Anomalous Diffusion 45

Fig. 4.1: Construction of the Sierpinski carpet

Fig. 4.2: The Sierpinski sponge

An alternative approach is the one of H. Osada [Osa90], [Osa95], [Osa99]; this point of view is
interesting because the process is constructed and characterized thanks to isoperimetric and analytical
inequalities.
In the sequel the idea of the proofs used by Barlow-Bass will be given as an introduction to the
subject (mainly taken from the above articles of Barlow-Bass and the survey written by R. F. Bass
[Basar]). Basically there are two layers in those proofs, the first layer directly use the very strong
self similarity and strong symmetries of the carpet. The second layer is more abstract and general
(its development has started with the papers about Brownian motion on the Sierpinski Gasket).
Although in the above papers the first layer act as the foundation of the second one, in the sequel,
the second layer shall be focused on since it constitutes the part which might be generalized to other
fractals. Although Barlow-Bass have extended their proofs to the ”generalized Sierpinski carpet”
[BB97](one can have d ≥ 3 and a symmetric ”pixel” pattern taken out from the cube at each stage
of the self-similar construction) the sequel will focus on the standard Sierpinski carpet for simplicity
(d = 2).

4.4.1 Construction of the process

It is not hard to constrain the Brownian motion to be in the set Fn: more precisely define ∂aFn (”a”
for absorbing) to be Fn ∩ {(x, y) : x = 1 or y = 1}. Let ∂rFn (”r” for reflecting) be ∂Fn − ∂aFn (∂F
is the boundary of F ).
Let Wn(t) be a Brownian motion on Fn with normal reflection on ∂rFn and absorption on ∂aFn.
Thus the process Wn is reflecting on the left and lower boundaries of Fn and on all the n scales of
square obstacles inside it and is absorbed on the upper and right boundary of Fn.
But as more and more obstructions are introduced, the mean displacement of the Brownian motion
gets smaller and smaller; it the limit one has only a process that moves not at all. If however,
one performs a renormalization at each stage, that is, if at the nth stage one speeds up the process
deterministically and uniformly by an appropriate amount, one gets a nondegenerate limit, a random
process that is called Brownian motion on the Sierpinski carpet.
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More precisely for any process X, let

τ = τ(X) = inf{t : Xt ∈ ∂aF0} (4.14)

and

αn = sup
x∈Fn

Ex[τ(Wn)] (4.15)

Set

Xn(t) = Wn(αnt) (4.16)

In other words Wn is speeded up so that the largest expected time for Xn to exit Fn is less than or
equal to 1. The difficulty is that there might be points y for which the time to exit is much less than
1, that is, the process moves almost instantaneously to ∂aFn. To show that this cannot happen, let

βn = inf
x∈Fn∩[0, 1

2
]2

Ex[τ(Wn)] (4.17)

And it is shown that there exists c1, c2, c3 independent of n such that

αn ≤ c1αn−1 ≤ c2βn−1 ≤ c3βn ≤ c3αn (4.18)

4.4.2 The Sierpinski pre-Carpet

If one doesn’t want to kill the process and consider it on a non compact subset of R
d, an alternative

point of view is to construct the Brownian Motion on the object called by H. Osada the ”pre-Sierpinski
carpet” ([Osa90],[BB97]). The pre carpet is the set F̃0 defined by

F̃0 = ∪∞
n=03

nFn (4.19)

where 3nFn is the subset of R
2
+ consisting of points 3nx with x ∈ Fn.

Thus the pre-Carpet is subset of R
2
+ consisting of bigger and bigger square holes removed.

Let Wt be the Brownian motion on the pre-carpet F̃0, with normal reflection on ∂F̃0, and let q(t, x, y)
be its transition density with respect to Lebesgue measure on F̃0. These transition densities are the
fundamental solutions to the heat equation ∂u

∂t = 1
2Δu on F̃0 with Neumann boundary conditions.

Then there exist ds < d and dw = 2df

ds
> 2 such that

Theorem 4.4.1. there exists c1, . . . c8 ∈ (0,∞) such that if x, y ∈ F̃0 and

1. t ≥ max(1, |x− y|), then

c1t
−ds
2 exp(−c2( |y − x|dw

t
)

1
dw−1 )

≤ q(t, x, y) ≤ c3t
−ds

2 exp(−c4( |y − x|dw

t
)

1
dw−1 )

(4.20)

2. if t ≤ 1, then

c5t
−d
2 exp(−c6 |y − x|2

t
) ≤ q(t, x, y) ≤ c7t

−d
2 exp(−c8 |y − x|2

t
) (4.21)

3. If t ≥ 1, |x− y| > t, then

c5t
−ds
2 exp(−c6 |y − x|2

t
) ≤ q(t, x, y) ≤ c7t

−ds
2 exp(−c8 |y − x|2

t
) (4.22)
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Those bounds are explained by the following fact: F̃0 is locally similar to R
2 thus for small time

t, q exhibits a Gaussian behavior. When |x − y| > t, then the process to move from x to y in time
t, stays with high probability close to the shortest path connecting x and y and has no time to feel
the fractal structure of F̃0 (this is standard large-deviation theory for Brownian motion). However
for t ≥ max(1, |x − y|), the process feel the global fractal structure of the pre-carpet and exhibit an
anomalous behavior.

Parabolic Harnack Inequality It is important to notice that although the pre-carpet satisfies the
usual volume doubling condition and an uniform global elliptic Harnack inequality; the standard
parabolic Harnack inequality holds locally but not globally (because of the estimates on q). However
a different form of parabolic Harnack inequality can be given for the pre-carpet by using the estimates
on q and following the argument of [FS86]; in the parabolic Harnack inequality on compact sets
containing at least a square of side 1; the natural scaling law between the radius of the compact set
r and the time t = r2 (the delay of propagation of the heat to the whole compact set) is modified to
t = rdw .

4.4.3 The limit process

Write

F̃n =
F̃0

3n
(4.23)

F̃n can be seen as an extension of Fn outside [0, 1]2 by bigger and bigger self-similar square holes
structure.
Then one can consider the Brownian motion Wn reflecting on all the boundaries ∂F̃n of the pre-carpet
F̃n (not killed). As before, to obtain a limit process when n→∞ one has to speed up the reflected
Brownian motion on consider the process Xn = Wn(αnt). Then the limit process X will live on the
unbounded Sierpinski carpet:

F̃ = ∩∞
n=0F̃n (4.24)

Important Remark It is important to notice that the hard point is not the tightness of the a speeded
up version Wn(αnt) of the Brownian motion Wn. If αn is too slow one has always tightness and a
degenerate limit process along a subsequent sequence (a process which doesn’t move at all). If αn is
too fast, then one has not tightness. So the hard point is to obtain a non-void range of acceleration
αn such that one has tightness and the limit process is non-degenerate. For the Sierpinski-carpet
this is possible, because this object has a very strong isotropy due to very strong global symmetries.
If this isotropy is broken then the limit object might be degenerate and live on the straight line
corresponding to the direction on which Wn is the less slow down by the obstacles.

Uniform Harnack inequality The key tool for the construction, the study of the Brownian motion
on the Sierpinski carpet and all the estimates given above is an uniform Harnack Inequality on F̃0:

Let B an open set in R
2. h is said to be harmonic on B ∩ F̃0 if Δh(x) = 0 for x ∈ B ∩ intF̃0 , and

the normal derivate of h is 0 on B ∩ F̃0 almost everywhere with respect to surface measure on ∂F̃0.

Theorem 4.4.2. There exists a constant c1 (not depending on r) such that if x ∈ F̃0, r > 0, and h
is positive and harmonic on B(x, 2r) ∩ F̃0, then writing A = B(x, r) ∩ F̃0

sup
A
h(x) ≤ c1 inf

A
h(y) (4.25)
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Since F̃0 is a Lipschitz domain, for each r a constant c1(r) does exit. The point of this theorem is
that c1 can be taken independent of r. It is important to notice that this uniform Harnack inequality
is an expression of the very strong isotropy of the carpet. That is to say if the obstacles are not
squares and the isotropy is broken the Brownian motion might exhibit an anomalous behavior at
large times without the necessity of an uniform Harnack inequality. This inequality would become
useful if one has to pass to the limit by adding smaller and smaller obstacles in order to obtain a non
degenerate limit.

4.4.4 Main results on the limit process

Write μ (a multiple of) the Hausdorff xdf -measure on F̃ .
Then

Theorem 4.4.3. There exists a no degenerate continuous strong Markov process Xt whose state
space is F̃ . Xt has transition densities which have the strong Feller property and which are μ-
symmetric. The law of the process (Xt, t ≥ 0) is locally invariant under local isometries of F̃ .

Write Pt for the semigroup associated with X, and let (L,D(L)) be the infinitesimal generator of
Pt; L is called the Laplacian on F̃ . The heat equation on F̃ then becomes

∂u

∂t
(x, t) = Lu(x, t), x ∈ F̃ , t > 0 (4.26)

The fundamental solutions to the heat equation are given by the transition densities p(t, x, y) for the
process Xt on F̃ ; then

Theorem 4.4.4. p(t, x, y) is symmetric and jointly continuous on (0,∞)× F̃ × F̃ , and for each x, y
the function p(t, x, y) is C∞ in t. There exist c1, c2, c3, c4 such that for all x, y ∈ F̃ and t > 0,

c1t
−ds
2 exp(−c2( |y − x|dw

t
)

1
dw−1 ) ≤ p(t, x, y) ≤ c3t

−ds
2 exp(−c4( |y − x|dw

t
)

1
dw−1 ) (4.27)

4.4.5 A non degenerate limit

4.4.5.i Resolvent convergence

Write Xn for the speeded up Brownian motion living on F̃n and killed For f bounded and continuous
on R

2 let

Uλnf(x) = Ex[
∫ ∞

0
e−λtf(Xn(t))dt] (4.28)

By the uniform Harnack inequality and a modulus of continuity estimates for harmonic functions, it
is possible to show that {Uλnf(x)}∞n=1 is equicontinuous on compact sets. By a diagonalization and
limit argument, there exists a there exists a subsequence n′ such that {Uλi

n′ f} converges uniformly
on compacts, to a limit called Uλf , for all λ > 0 and f bounded and continuous.
This resolvent convergence is enough to get a Markov process, indeed, the limit Uλ, satisfies the
resolvent identity and ‖Uλ‖∞ ≤ λ−1. Thus the Hille-Yosida theorem can be used to guarantee the
existence of a limit process associated to the limit resolvent (see the previous chapter).
Although, this resolvent convergence is enough to get a Markov process, is not enough to get a
continuous process. For that tightness is used.
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4.4.5.ii Tightness estimate

From the equation 4.18 the exit times from Fn are controlled by

Px(τ(Wn) ≤ s) ≤ c4 +
s

αn
x ∈ Fn ∩ [0,

1
2
]2 (4.29)

This inequality says that if γ is small enough, there is positive probability, say θ = θ(γ), that Wn

does not exit Fn before time γαn.

Px(τ(Xn) ≤ γ) ≤ 1− θ (4.30)

This is enough to give tightness.here is the idea:
Call Dn(x) the square S of side 2.3−n consisting of four squares with side length 3−n and vertices in
3−nZ

2 such that x is closest to the center of S. Call

σX
n

r (x) = inf{t : Xn
t �∈ Dr(x)} (4.31)

Let ε > 0. Choose m such that (1 − θ)m < ε. The inequality 4.30 and the self-similarity is used to
obtain

Px(σXn
2m < c1(m)γ) ≤ 1− θ (4.32)

To exit Fn, Xn must cross at least m squares of the form D2m(y). So by the strong Markov property,

Px(τ < c1(m)γ) ≤ (1− θ)m ≤ ε (4.33)

and another scaling leads to

Px(σXn
r (x) < c2(r,m)γ) ≤ ε (4.34)

which is the tightness estimate in the space of cad lag functions from R+ to F0 (see [EK86] proposi-
tion 3.8.3, Lemma 3.8.1 and theorem 3.7.2). Let P

n
x denote the law of Xn(t) started at x killed when

exiting Fn. Since X is Pnx -a.s. continuous, it follows from [EK86], theorem 10.2, that if Q is any
limit point of {Pnx , n ≥ 1} then X is Q-a.s. continuous. Thus {Pnx , n ≥ 1} is tight in the space of
continuous functions from R+ to F0.

Since {P xn′} is tight, for each x, there exist convergent subsequences. Any limit point Px satisfies
Ex[

∫∞
0 e−λtf(Xt)dt] = Uλf(x) for f bounded and continuous, from which one deduces that P

n′
x

converges. If one calls the limit Px and lets Xt be the canonical process on F , one then can show
that (Px,Xt) has the strong Markov property as well as the other required properties. It is then
straightforward to extend (Px,Xt) to a process on F̃ . Since the expectation of the exit time of this
process for F is less or equal to one, the process is not degenerate and since each Xn is invariant
under isometries of Fn, then so is Xt (so Xt doesn’t live on a straight line). Moreover by the tightness
estimate, the paths of Xt are continuous under each Px.

4.4.5.iii Upper and lower bounds

In the sequel the idea of the proof of the bounds for the reflected Brownian motion on the pre-Carpet
in the theorem 4.4.1 will be given in the case t ≥ max(1, |x− y|).

The upper bound Write

S = inf{t ≥ 0 : |Wt −W0| > 1
2
|x− y|} (4.35)
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then one has by the continuity of q

q(t, x, y) ≤ 2 sup
x′

Px′(S <
t

2
) sup

z
q(
t

2
, z, z) (4.36)

Thus to prove the upper bound it is sufficient to obtain an estimate on the exit time S of the form

Px(S <
t

2
) ≤ exp(−c4( |y − x|dw

t
)

1
dw−1 ) (4.37)

and show that for x ∈ F̃0 and t ≥ 1

q(t, x, y) ≤ c1t
− ds

2 (4.38)

The inequality 4.38 for x = y is deduced from the inequality

q(t, x, y) ≤ c1t
− d

2

for 0 < t ≤ 1 (obtained by dividing the space into cells, proving this local property for the process
living into each cell and using estimate on the exit times of each cell and the strong Markov property)
and extended to x �= y by using

q(t, x, y) ≤ q(t, x, x)
1
2 q(t, y, y)

1
2

The lower bound Using a standard chaining argument the lower bound can be proved once one
has established the estimate

q(t, x, y) ≥ c9t
− ds

2 , |x− y| ≤ c10t
1

dw , t ≥ 1 (4.39)

This estimate is deduced from the upper bound by the following way:
Write

A = {y : q(
t

2
, x, y) > c19t

− ds
2 } (4.40)

Then since

q(t, x, y) ≥ c19t
− ds

2 Py(W t
2
∈ A) (4.41)

it is sufficient to show that Py(W t
2
∈ A) is bounded below by a constant. To achieve this call TC the

coupling time of a Brownian motion W x starting from x with an other W y started from y. Then one
has

Py(W t
2
∈ A) ≥ Px(W t

2
∈ A)− P(TC >

t

2
) (4.42)

Thus it is sufficient to show that Px(W t
2
∈ A) is bounded below by a constant and to control

P(TC > t
2 ); the latter control on the coupling time is the hard point using the strong symmetry and

isotropy of the carpet. The estimate on Px(W t
2
∈ A) can be obtained by proving

q(t, x, x) ≥ c13t
− ds

2 , y ∈ F̃0, t ≥ 1 (4.43)

And this is obtained from the upper bound by using the following inequality

q(t, x, x)μ0(Dr(x)) ≥ [Px(W t
2
∈ Dr(x))]2 (4.44)

where μ0 is the Lebesgue measure on F̃0 and Dr(x) is a square set surrounding x whose side is
optimized so that

Px(W t
2
∈ Dr(x)) ≥ 1

2
and μ0(Dr(x)) ≤ c17t

ds
2 (4.45)
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4.4.5.iv The spectral dimension

It is interesting to notice that the spectral dimension is defined by the behavior of th electrical
resistance of the pre-Carpet. More precisely:
Define the resistance constant Rn by

R−1
n = inf

{∫
3nFn

|∇f |2dx f = 0on x1 = 0, f = 1on x1 = 3n
}

(4.46)

Thus Rn is the resistance between two opposite faces of the set 3nFn. Then it is shown that there
exists a constant

ρF > m
2
d
−1

F (4.47)

(here mF = 32 − 1 = 8 is equal to the number of sub-squares generated minus the number of square
taken out at each iteration of the construction process of the Sierpinski carpet) and constants c1, c2
such that

c1ρ
n
F ≤ Rn ≤ c2ρ

n
F (4.48)

Then the spectral dimension is defined by

ds = 2
lnmF

lnmF + ln ρF
< d (4.49)

and the dimension of the walk by

dw = 2
df
dw

(4.50)

The latter relation between dw and ds might seem intriguing, it will be explained in the next section.

4.5 Fractional Diffusions

M.T. Barlow, in [Bar98](section 3), gives a conceptual framework for the study of diffusions on fractal
media through the definition and characterization of fractional diffusions on fractional metric spaces.
This point view is interesting because it allows seeing clearly the relationship between an anomalous
control on the probability densities and the mean time to exit a ball. It also explains the relation
between the spectral dimension ds, the fractal dimension df and the ”walk” dimension dw (which is
not always the dimension of the paths of the process).

4.5.1 Fractional metric space

A metric space (F, ρ) has the midpoint property if for each x, y ∈ F there exists z ∈ F such that

ρ(x, z) = ρ(z, y) =
1
2
ρ(x, y) (4.51)

Definition 4.5.1. Let (F, ρ) be a complete metric space, and μ be a Borel measure on (F,B(F )).
(F, ρ, μ) is called a fractional metric space if (F, ρ) has the midpoint property and there exist df > 0,
and constants c1, c2 such that if r0 = sup{ρ(x, y) : x, y ∈ F} ∈ (0,∞] is the diameter of F then

c1r
df ≤ μ(B(x, r)) ≤ c2r

df for x ∈ F, 0 < r ≤ r0 (4.52)

Here B(x, r) = {y ∈ F : ρ(x, y) < r}
From this definition it follows that

1. df is the Hausdorff dimension of F and the packing dimension of F

2. F is locally compact.

3. df ≥ 1
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4.5.2 Fractional diffusion

Definition 4.5.2. Let (F, ρ, μ) be a fractional metric space. A Markov process X = (Px, x ∈
F,Xt, t ≥ 0) is a fractional diffusion if

1. X is a conservative Feller diffusion with state space F .

2. X is μ-symmetric

3. X has a symmetric transition density p(t, x, y) = p(t, y, x), t > 0, x, y ∈ F , which satisfies, the
Chapman-Kolmogorov equations and is, for each t > 0, jointly continuous.

4. There exist constant α, β, γ, c1 − c4, t0 = rβ0 , such that

c1t
−α exp

(− c2ρ(x, y)βγt−γ
) ≤ p(t, x, y)

≤ c3t
−α exp

(− c4ρ(x, y)βγt−γ
)
, x, y ∈ F, 0 < t ≤ t0

(4.53)

This fractional diffusion will be written FD(df , α, β, γ)

The Brownian motion on the Sierpinski carpet is a fractional diffusion with α = df (SC)/dw(SC) =
ds(SC)/2, β = dw(SC) and γ = 1/(β − 1)
An important property of a FD(df , α, β, γ) diffusion is that

α =
df
β

(4.54)

This equation is imposed by the fact that p(t, x, .) is a probability density for all t and the growing
rate of the 4.52 of the measure μ. This explains why the general relation

ds = 2
df
dw

(4.55)

is satisfied for diffusions on fractals.

4.5.3 Connections

The estimates 4.53 have the following consequences on the large deviation properties of the FD(df , df/β, β, γ)
process X and its mean time to exit a ball..

1. For t ∈ (0, t0], r > 0

Px(ρ(x,Xt) > r) ≤ c1 exp(−c2rβγt−γ) (4.56)

2. There exists c3 > 0 such that

c4 exp(−c5rβγt−γ) ≤ Px(ρ(x,Xt) > r) for r < c3r0, t < rβ (4.57)

3. For x ∈ F , 0 < r < c3r0, if τ(x, r) = inf{s > 0 : Xs �∈ B(x, r)} then

c6r
β ≤ Ex[τ(x, r)] ≤ c7r

β (4.58)

Now the interesting part is that sufficient conditions for a process to be a fractional diffusion are
isolated in the following theorem.
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Theorem 4.5.1. Let (F, ρ, μ) be a fractional metric space of dimension df . Let (Yt, t ≥ 0,Px, x ∈ F )
be a μ-symmetric diffusion on F which has a transition density q(t, x, y) with respect to μ which is
jointly continuous in x, y for each t > 0. Suppose that there exists a constant β > 0, such that

q(t, x, y) ≤ c1t
− df

β for all x, y ∈ F, t ∈ (t, t0] (4.59)

q(t, x, y) ≥ c2t
− df

β if ρ(x, y) ≤ c3t
1
β , t ∈ (t, t0] (4.60)

c4r
β ≤ Ex[τ(x, r)] ≤ c5r

β for x ∈ F, 0 < r < c6r0 (4.61)

where τ(x, r) = inf{s > 0 : Ys �∈ B(x, r)}. Then β > 1 and Y is a fractional diffusion with
parameters df , df/β, β and 1/(β − 1)

Thus to obtain a fractional diffusion, it is sufficient to have a sharp pointwise estimate on the
mean exit times and a control of the heat kernel near the diagonal. From the latter theorem one
obtains that if X is a FD(df , df/β, β, γ) then necessarily β > 1 and

γ = (β − 1)−1 (4.62)

This means that the behavior a fractional diffusion is determined by only two parameters: the fractal
dimension of the medium df and β with enters in the scaling between the mean time rβ to exit a
ball of radius r. Actually

β = dw (4.63)

And β will now be written dw.

4.5.4 Further properties

The estimates 4.53 on the probability densities allow to prove basic analytic and probabilistic prop-
erties of fractional diffusions.

• For x ∈ F , t ≥ 0 and p > 0

Ex[ρ(Xt, x)p] ∼ t
p

dw (4.64)

• (Modulus of continuity). Let ϕ(t) = t
1

dw (ln(1
t ))

dw−1
dw . Then a.s.

c1 ≤ lim
δ↓0

sup
0≤s<t≤1;|t−s|<δ

ρ(Xs,Xt)
ϕ(t− s)

≤ c2 (4.65)

• (Law of the iterated logarithm). Let ψ(t) = t1/dw(ln ln(1/t))(dw−1)/dw . There exist c1, c2 and
constants c(x) ∈ [c1, c2] such that

lim
t↓0

ρ(Xt,X0)
ψ(t)

= c(x) Px − a.s. (4.66)

• (Dimension of range)

dimH

({Xt : 0 ≤ t ≤ 1}) = df ∧ dw (4.67)

This result helps to explain the terminology ”walk dimension” for dw. Provided the space the
diffusion X moves in is large enough, the dimension of the range of the process is dw.
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4.5.5 Potential theory of Fractional Diffusions

With the strong estimates on the transition densities it is possible to develop a potential theory for
fractional diffusions and obtain a precise description of the diffusion and its associated generator. It
is important to notice that once one has satisfied the conditions of the theorem 4.5.1, then all the
other properties fall as in a domino game; even if sharp estimates are not obtained for the probability
densities some part of the proof might be useful. Conversely for a particular medium an observation
of those properties might give an idea whereas sharp estimates may be obtained on p (for instance,
the Harnack inequality which express an isotropy of the diffusion is an interesting property).

• 1. If ds < 2 then for each x, y ∈ F
Px(X hits y) = 1 (4.68)

2. If ds ≥ 2 then points are polar for X
3. If ds ≤ 2 then X is set-recurrent: for ε > 0

Py({t : Xt ∈ B(y, ε) is not empty and unbounded}) = 1 (4.69)

4. If ds > 2 and r0 = ∞ then X is transient.

• (Polar and non-polar sets). Let A be a Borel set in F .

1. Px(TA <∞) > 0 if dimH(A) > df − dw

2. A is polar for X if dimH(A) < df − dw

• X has k-multiple points if and only if ds < 2k/(k − 1)

• If ds < 2 then X has jointly measurable local times (Lxt , x ∈ F, t ≥ 0) which satisfy the density
occupation formula with respect to μ∫ t

0
f(Xs)ds =

∫
F
f(a)Lat μ(da), f bounded and measurable (4.70)

• write

τA = TAc = inf{t ≥ 0 : Xt ∈ Ac} (4.71)

Then for ds < 2 and r0 = ∞, there exist constant c1 > 1, c2 such that if x, y ∈ F , r = ρ(x, y),
t0 = rdw then

Px(Ty < t0 < τ(x, c1r)) ≥ c2 (4.72)

• (Harnack inequality) If ds < 2, r0 = ∞; there exist constants c1 > 1, c2 > 0 such that if x0 ∈ F ,
and h ≥ 0 is harmonic in B(x0, c1r) with respect to the generator associated to X then

h(x) ≥ c2h(y), x, y ∈ B(x0, c1r) (4.73)

• (Spectral property) If r0 < ∞ then there exist continuous functions ϕi and λi with 0 ≤ λ0 ≤
λ1 ≤ . . . such that for each t > 0

p(t, x, y) =
∞∑
n=0

e−λntϕn(x)ϕn(y) (4.74)

and the sum is uniformly convergent in F × F
Moreover if N(λ) = card{λk : λk ≤ λ}) that there exist c1, c2 > 0 such that:

c1λ
ds
2 ≤ N(λ) ≤ c2λ

ds
2 (4.75)

which explains the term spectral dimension for ds.
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4.6 A note on turbulence

4.6.1 Turbulence and anomalous diffusion

It heuristically known that diffusion in a fully developed turbulence in incompressible flows will be
super-diffusive (between given time scales). It is interesting to note that the expected key to this
anomaly is a large number of scales of mixing length and convection rolls. Thus although Brownian
motion in Fractals and diffusion in turbulent incompressible flows give rise to different anomalies, the
heart of those problems might be close and the understanding of one phenomenon might be beneficial
to the other.
Several papers are available on this subject mainly in physics literature (they describe the turbulent
convection phenomenon and the flow is seen as fractal convection cells): see M. Avellaneda and A.
Majda [AM90]; J. Glimm and Al. [FGLP90], [FGL+91], [GLPP92], J. Glimm and Q. Zhang [GZ92],
Q. Zhang [Zha92], M.B. Isichenko and J. Kalda [IK91]. For mathematical literature see A. Fannjiang
and G.C. Papanicolaou [FP94],[FP96]; M. Avellaneda [Ave96]; and A. Fannjiang [Fan99] (note that
the latter papers appeared in a mathematical literature and homogenization is expected to play a
key role).

4.6.2 Navier-Stokes equations

The Naiver-Stokes equations (assume d = 3) for an unknown velocity vector u(x, t) =
(
ui(x, t)

)
1≤i≤d

are given by

• fundamental Newton law of the dynamic:

∂

∂t
ui = νΔui − u.∇ui − 1

ρ

∂

∂xi
p+ fi(x, t) (4.76)

• Incompressibility

∇.u = 0 (4.77)

• Equation of the internal energy

∂

∂t
e = −u.∇e+ 2νD̄ : D̄ +

K

ρ
ΔT (4.78)

• State equation

e = e(T ) (4.79)

fi(x, t) are the components of a given externally applied force.
ν is the viscosity (a positive coefficient) it has the dimension of ”lenght2 × time”.
p(x, t) is the pressure.
D̄ is the rate of deformation d × d tensor given by ∇u. e is the specific internal energy, it has the
dimensions of ” energy

mass ”.
In the equation 4.78 the term 2νD̄ : D̄ is responsible for the transformation of kinetic energy into
internal energy (heat), more precisely it is the quantity of kinetic energy transformed into heat per
unit time in a unit mass of fluid. This term is usually written ε in the literature and called the energy
dissipation rate.
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4.6.3 A brief reminder on the history

This subsection is taken almost verbatim from [Her95] which is a good introduction to turbulence
(this recent PhD thesis is clear and cover the theory from an experimental point of view) see also
[MK99] for a recent survey on the subject.

4.6.3.i Turbulence

In many industrial processes turbulence is a common phenomenon. However, in spite of its familiar
appearance and research for many years, there is still no good description of turbulence. There is
not even a good definition, and researchers try to describe it in one sentence: ”Turbulence is the
disordered behavior of fluid in space and time ”
in [LL84], turbulence is defined as the region where the Navier-Stokes equations become unstable
with respect to small perturbations.
In [Les93], M. Lesieur start with an enumeration of features that a flow has to satisfy in order to be
classified as turbulent. So, a turbulent flow is or exhibits:

• Irregularity or randomness: the turbulent flow is unpredictable.

• Diffusivity, which causes rapid mixing and increased rates of momentum, heat and mass trans-
fer.

• High Reynolds number: turbulent flows always occur at high Reynolds numbers.

• Three-dimensional vorticity fluctuations: turbulence is rotational and three-dimensional.

• Dissipation: turbulent flows are always dissipative.

• Continuum: turbulence is a continuous phenomenon.

• Flows: turbulence is a feature of fluid flows and not of fluids.

Customary, turbulent flows are classified in terms of the Reynolds number, which is a dimensionless
characteristic parameter of the flow. If the Reynolds number is not too large the flow will be lami-
nar, i.e. the variations in the flow are predictable in both space and time. As the Reynolds number
increases, the flow becomes unstable, and at some large enough value of the Reynolds number it
becomes fully turbulent.
Turbulence may well be the last unsolved problem of classical physics. There is still no theory of fully
developed turbulence that is universally valid. Cascades of energy and momentum are key concepts
of turbulence and describe the generation of motion on small scales out of large-scale motion. A
well-known phenomenological theory for the statistics of small-scale motion was formulated in 1941
by Kolmogorov, based on the idea of cascades. Only in recent years it has become clear that this
theory needs essential corrections.
Hence, turbulence is often referred to as the unsolved problem of classical physics and is often the
item of discussions at conferences. Lesieur [Les93] divides the scientists involved with turbulence into
two groups with opposing points of view: The first group, the statistical and oldest one, tries to model
the flow in averaged quantities. This group follows Kolmogorov and believes in the phenomenology
of cascades and (strongly) denies the possibility of any coherence or order in turbulence. The second
group believes in the coherence among chaos and considers turbulence from a purely deterministic
point of view by studying either the behavior of dynamical systems or the stability of flows in various
situations.
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4.6.3.ii Energy cascade modeling

In case of cascade modeling, Richardson [Ric22] was the first who put forward some ideas on the
theory of fully developed turbulence. He assumed a hierarchy of turbulent disturbances on different
scales. ‘Eddies’ of a certain scale would be the result of the instability of larger ‘eddies’ at a larger
scale. In his scenario, Richardson assumed a cascade process of eddies breaking down. In this cascade
process there is a transmission of energy of the flow motion of smaller and smaller eddies down to
the smallest scale, where the fragmentation process is stopped by dissipation. expressed this idea in
the following rhyme ([Her95]), based on Jonathan Swift’s fleas sonnet.

Big whorls have little whorls
Which feed on their velocity
And little whorls have lesser whorls
And so on to viscosity
(In the molecular sense)

Kolmogorov further developed and formulated the ideas of Richardson in his papers in 1941 [Kol41b],
[Kol41a]. He assumed an inertial range in which energy was transported from large eddies to smaller
eddies. This range of scales is bounded from above by the size of the eddies at which energy is
injected and from below by the size of the eddies where flow kinetic energy is dissipated to heat.
Kolmogorov assumed a uniform energy distribution over all eddies.

Since then many researchers proposed ideas and models to describe the statistical (cascade) be-
havior of fully developed turbulence. Landau was the first to point out the presence of intermittency
which leads to a contradiction with the Kolmogorov theory of 1941. Landau stated that the sta-
tistical laws of small eddies have to depend not only on the mean energy dissipation but also on
the fluctuations of this energy: the Kolmogorov model did not take into account intermittency. By
intermittency Landau meant that turbulence is not uniformly distributed in space and there are
regions with less intense and regions with more intense turbulence. In 1962 Kolmogorov [Kol62] and
Oboukhov [Obo62] derived the so called log-normal model. They assumed that the logarithm of the
energy distribution in the inertial range, was Gaussian.

4.6.3.iii Fractal Models

Many measurements were contradicting these assumptions and in 1964 Novikov and Stewart [NS64]
proposed a model called absolute curdling. In this model it was assumed that the energy of an eddy is
distributed over curds of smaller eddies. In 1974 Mandelbrot [Man76] came with an expansion on the
model, his weighted curdling model, where it was assumed that a weighted amount of the energy of a
large (mother) eddy is distributed over the curds of smaller (daughter) eddies. The absolute curdling
model was reformulated by Frisch, stressing its dynamical and fractal aspects, as the β-model. In
this model the daughter eddies occupy a constant fraction of its mother’s space. The multifractal
model (random β-model) was also introduced by Frisch and Parisi in 1983 [FP85], as a variation on
the weighted curdling model and a possible interpretation of the inertial range. Now it was assumed
that a random fraction of the mother eddy’s space is occupied by its daughter eddies.

In the last years many realizations, interpretations, and variants of the multifractal model have
been developed. In these models the structure function is a significant quantity. It is the equivalent
of the correlation function of fluctuating velocities in two different spatial points. Structure functions
can be measured and their scaling behavior appears to be useful to compare the predictions of these
different models with experimental results. Measurements have shown that the scaling exponents
of the structure function depends on the order of the structure function in a nonlinear way. The
multifractal model seems to give a good description of the turbulence cascade.
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Thus fractal models are an attempt to capture intermittency in a geometric framework. The key idea
is that self-similar cascades do not need to be space filling. Such a process is characterized by a fractal
dimension, even by a continuous dimension function; they provide improved agreement with the
observed scale dependent dispersivities in the field data and the observed geological heterogeneities
on all length scales.
Finally, from an experimental point of view the small-scale structure of turbulence shows a clear
anomalous scaling behavior and multifractal models are useful in attempts to try to understand and
describe the scaling behavior of turbulence. However, no universal model exists yet and turbulence
still remains an unsolved problem.

4.6.4 A brief reminder on the theory of fully developed turbulence

This subsection is almost verbatim taken from the course of Landau-Lifchitz on Fluid mechanics
[LL84] (p. 129). This text has been reproduced here to act as basis of comparison for the physical
interpretation of the supper diffusive model given in this thesis in the chapter 7. Of course it does
not contain the most recent progresses on the subject (for this see [Her95] and [TuS91] for instance)
however it will be sufficient to understand the physical interpretation given in the chapter 7.

4.6.4.i Nature of the irregular motion

The fluid is evolving in a medium with principal (exterior) length scale l. The characteristic variation
of the velocity is written δv, then the Reynolds number is

Re ∼ δu l

ν
(4.80)

Turbulent flow at fairly large Reynolds number is characterized by the presence of an extremely
irregular disordered variation of the velocity with time at each point. This is called ”fully developed
turbulence”. The velocity continually fluctuates about some mean value. A similar irregular variation
of the velocity exists between points in the flow at a given distance.
Introduce the concept of the mean velocity, obtained by averaging over long time intervals the actual
velocity at each point. By such averaging, the irregular variation of the velocity is smoothed out, and
the mean velocity varies smoothly from point to point. In what follows, denote the mean velocity by
u, the difference v′ = v − u between the true velocity and the mean velocity varies irregularly in the
manner characteristic of turbulence; call it the fluctuating part of the velocity.

Consider in more details the nature of this irregular motion that is superposed on the mean
flow. This motion may in turn be qualitatively regarded as the superposition of ”turbulent eddies”
of different sizes; by the size of an eddy it is meant the order of magnitude of the distances over
which the velocity varies appreciably. As the Reynolds number increases, large eddies appear first;
the smaller the eddies, the later they appear. For very large Reynolds numbers, eddies of every size
from the largest to the smallest are present. An important part in any turbulent flow is played by
the largest eddies, whose size (the fundamental or external scale of turbulence) is of the order of
the dimensions of the region in which the flow takes place; in what follows denote l this order of
magnitude for any given turbulent flow. These large eddies have the largest amplitudes. The velocity
in them is comparable with the variation of the mean velocity over the distance l; denote by δu the
order of magnitude of this variation (the order of magnitude, not of the mean velocity itself, but of
its variation, since it is this variation δu which characterizes the velocity of the turbulent flow). The
mean velocity itself can have any magnitude, depending on the frame of reference used (it seems that
in fact the size of the largest eddies is actually somewhat less than l, and their velocity is somewhat
less than δu). The frequencies corresponding to these eddies are of order of u/l, the ratio of the mean
velocity u (and not its variation δu) to the dimension l. For the frequency determines the period
with which the flow pattern is repeated when observed in some fixed frame of reference. Relative to
such a frame, however, the whole pattern moves with the fluid at a velocity of order u.
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The small eddies, on the other hand, which correspond to large frequencies, participate in the
turbulent flow with much smaller amplitudes. They may be regarded as a fine detailed structure
superposed on the fundamental large turbulent eddies. Only a comparatively small part of the total
kinetic energy of the fluid resides in the small eddies.

From the picture of turbulent flow given above, one can draw a conclusion regarding the manner
of variation of the fluctuating velocity from point to point at any given instant. Over large distances
(comparable with l), the variation of the fluctuating velocity is given by the variation in the velocity
of the large eddies, and is therefore comparable with δu. Over small distances (compared with l),
it is determined by the small eddies, and is therefore small compared with δu (but large compared
with the variation of the velocity with time at any given point). Over short time intervals (compared
with t ∼ l/u), the velocity does not vary appreciably; over long intervals, it varies by a quantity of
the order of δu.

4.6.4.ii Energy dissipation

The length l appears as a characteristic dimension in the Reynolds number Re, which determines the
properties of a given flow. Besides this Reynolds number, one can introduce the qualitative concept
of the Reynolds number for turbulent eddies of various size. If λ is the order of magnitude of the
size of a given eddy, and vλ the order of magnitude of its velocity, then the corresponding Reynolds
number is defined as Reλ ∼ vλλ/ν. This number decreases with the size of the eddy.

For large Reynolds number Re, the Reynolds numbers Reλ of the large eddies are also large.
Large Reynolds numbers, however, are equivalent to small viscosities. One therefore concludes that,
for large eddies which are the basis of any turbulent flow, the viscosity is unimportant. It follows
from this that there is no appreciable dissipation of energy in the large eddies.

The viscosity of the fluid becomes important only for the smallest eddies, whose Reynolds number
is comparable with unity. Denote the size of the eddies by λ0,which shall be determined later in this
section. It is in these small eddies, which are unimportant as regards the general pattern of a
turbulent flow, that the energy dissipation occurs.
Thus one is lead to the following conception of energy dissipation in turbulent flow (L. Richardson
1922). The energy passes from the large eddies to smaller ones, practically no dissipation occuring in
this process. One says that there is a continuous flow of energy from large to small eddies,i.e. from
small to large frequencies. This flow of energy is dissipated in the smallest eddies, where the kinetic
energy is transformed into heat. For a steady state to be maintened, it is of course necessary that
external energy sources should be present which continually supply energy to large eddies.

Since the viscosity of the fluid is important only for the smallest eddies, one may say that none of
the quantities pertaining to eddies of size λ >> λ0 can depend on ν (more exactly, these quantities
cannot be changed if ν varies but the other condition of the motion are unchanged). These circum-
stances reduces the number of quantities which determine the properties of turbulent flow, and the
result is that similarity arguments, involving the dimensions of the available quantities, become very
important in the investigation of turbulence.

Apply these arguments to determine the order of magnitude of the energy dissipation in turbulent
flow. Let ε be the mean dissipation of energy per unit time per unit mass of the fluid. It has been
shown that this energy is derived from the large eddies, whence it is gradually transferred to smaller
eddies until it is dissipated in eddies of size ∼ λ0. Hence, although the dissipation is ultimately
due to the viscosity, the order of magnitude of ε can be determined only by those quantities which
characterize the large eddies. These are the fluid density ρ, the dimension l and the velocity δu.
From these three quantities one can form only one having the dimensions of ε, namely ”energy”

”mass”×”time” .
Thus one find

ε ∼ (δu)3

l
(4.81)

and this determines the order of magnitude of the energy dissipation in turbulent flow.
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In some respects a fluid in a turbulent motion may be qualitatively described as having a ”tur-
bulent viscosity” νturb which differs from the true kinematic viscosity ν. Since νturb characterizes the
properties of the turbulent flow, its order of magnitude must be determined by ρ, δu and l. The
only quantity that can be formed from these and has the dimensions of kinematic viscosity lδu, and
therefore

νturb ∼ l δu (4.82)

The ratio of the turbulent viscosity to the ordinary viscosity is consequently

νturb
ν

∼ Re (4.83)

i.e. it increases with the Reynolds number (in reality, however, a fairly large numerical coefficient
should be included. This is because, as mentioned above, l and δu may differ quite considerably from
the actual scale and velocity of the turbulent flow. The ratio νturb/ν may be more accurately written
νturb/ν ∼ Re/Recr, which formula takes into account the fact that νturb and ν must in reality be
comparable in magnitude not for Re ∼ 1, but for Re ∼ Recr).

4.6.4.iii Kolmogorov-Obukhov’s law

Now determine the order of magnitude vλ of the turbulent velocity variation over distances of the
order of λ. It must be determined only by ε and, of course, the distance λ itself. From these two
quantities, one can form only one having the dimensions of velocity, namely (ελ)

1
3 . Hence one can

say that the relation

vλ ∝ (ελ)
1
3 (4.84)

must hold. Thus one found that the velocity variation over a small distance is proportional to the
cube root of the distance (Kolmogorov and Obukhov’s law). The quantity vλ may also be regarded
as the velocity of turbulent eddies whose size is of order of λ: the variation of the mean velocity over
small distances is small compared with the variation of the fluctuating velocity over those distances,
and may be neglected.

The relation 4.84 may be obtained in another way by expressing a constant quantity, the dis-
sipation ε, in terms of quantities characterizing the eddies of size λ; ε must be proportional to the
squared gradient of velocity vλ and to the appropriate turbulent viscosity coefficient νturb,λ ∝ vλλ:

ε ∝ νturb,λ(vλ/λ)2 ∝ v3
λ/λ (4.85)

whence one obtain 4.84.
Now put the problem somewhat differently, and determine the order of magnitude vτ of the

velocity variation at a given point over a time interval τ which is short compared with the time
t ∼ l/u characterizing the flow as a whole. To do this, notice that, since there is a net mean flow,
any given portion of the fluid is displaced, during the interval τ , over a distance of order τu, u being
the mean velocity. Hence the portion of fluid which is at a given point at time τ will have been at a
distance τu from that point at the initial instant. One can therefore obtain the required quantity vτ
by direct substitution of τu for λ in 4.84:

vτ ∝ (ετu)
1
3 (4.86)

The quantity vτ must be distinguished from v′τ , the variation in velocity of a portion of fluid as it
moves about. This variation can evidently depend only on ε, which determines the local properties
of the turbulence, and of course on τ itself. Forming the only combination of ε and τ that has the
dimensions of velocity, one obtains

v′τ ∝ (ετ)
1
2 (4.87)
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Unlike the velocity variation at a given point, it is proportional to the square root of τ , not to the
cube root. It is easy to see that, for τ small compared with t, v′τ is always less than vτ (the inequality
v′τ << vτ has in essence been assumed in the derivation of 4.86).

Using the expression 4.81 for ε, one can rewrite 4.85 and 4.86 as{
vλ ∝ δu(λl )

1
3

vτ ∝ δu( τt )
1
3

(4.88)

This form shows clearly this similarity property of local turbulence: the small-scale characteristics of
different turbulent flows are the same apart from the scale of measurement of lengths and velocities
(or, equivalently, lengths and times).
Now find at what distances the fluid viscosity begins to be important. These distances λ0 also
determine the order of magnitude of the size of the smallest eddies in the turbulent flow (called
the ”internal scale” of the turbulence, in contradiction to the ”external scale” l). To determine λ0,
form the local Reynolds number Reλ ∼ vλλ/ν ∼ δu.λ

4
3 /νl

1
3 ∼ Re(λ/l)

4
3 , with the Reynolds number

Re ∼ lδu/ν for the flow as a whole. The order of magnitude of λ0 is that for which Reλ0 ∼ 1. Hence
one find

λ0 ∼ l/Re
3
4 (4.89)

The same expression can be obtained by forming from ε and ν the only combination having the
dimensions of length, namely

λ0 ∼ (
ν3

ε
)

1
4 (4.90)

Thus the internal scale of the turbulence decreases rapidly with increasing Re. For the corresponding
velocity one have

vλ0 ∼
δu

R
1
4

(4.91)

this also decreases when Re increases (formulae 4.89-4.91 give the manner of variation of the relevant
quantities with Re. Quantitatively, it would be more correct to replace Re in terms of Re/Recr).

The range scale λ ∼ l is called the energy range; the majority of the kinetic energy of the fluid is
concentrated there. Values λ ≤ λ0 form the dissipation range, where the kinetic energy is dissipated.
For very large values of Re, these two ranges are quite far apart, and between them lies the inertial
range, in which λ0 << λ << l; the results derived in this section are valid there.

Kolmogorov and Obukhov’s law can be expressed in an equivalent spatial spectrum form. Replace
the scales λ by corresponding wave numbers k ∼ 1/λ of the eddies; let E(k)dk be the kinetic energy
per unit mass of fluid in eddies with k values in the range dk; let E(k)dk be the kinetic energy per
unit mass of fluid in eddies with k values in the range dk. The function E(k) has the dimensions
(lenght)3/(time)2; the combinations of ε and k having these dimensions gives

E(k) ∝ ε
2
3k−

5
3 (4.92)

The equivalence of this expression and 4.84 is easily seen by noting that v2
λ gives the order of magni-

tude of the total energy in eddies with all scales of the order of λ or less. The same result is reached
by integration of 4.92:

∫ ∞

k
E(k)dk ∝ ε

2
3

k
2
3

∼ (ελ)
2
3 ∼ v2

λ (4.93)
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Together with the spatial scales of the turbulent eddies, one can consider their time characteristics
(frequencies). The lower end of the of the frequency spectrum of turbulent motion is at frequencies
∼ u/l. The upper end is

ω0 ∼ u/λ0 ∼ uRe
3
4 /l (4.94)

corresponding to the internal scale of turbulence. The inertial range corresponds to frequencies

u/l << ω(∼ u/l)Re
3
4 (4.95)

The inequality ω >> u/l signifies that as regards the local properties of turbulence the unperturbed
flow may be treated as steady. The energy distribution in the frequency spectrum in the inertial
range is found from 4.92 by substituting k ∼ ω/u:

E(ω) ∝ (uε)
2
3ω− 5

3 (4.96)

where E(ω)dω is the energy in the frequency range dω. The frequency ω gives the time repetition
period in the region of space concerned, as observed from a fixed frame of reference. It is to be
distinguished from the frequency ω′ which gives the repetition period in a given portion of fluid
moving in space. The energy distribution in this frequency spectrum cannot depend on u, and must
be determined only by ε and the frequency ω′ itself. Again using dimensional arguments, one finds

E(ω′) ∝ ε

ω′2 (4.97)

This is the same relationship to 4.96 as 4.97 is to 4.96.
Turbulence mixing causes a gradual separation of fluid particles that were originally close together.

Consider two particles at a distance λ that is small (in the inertial range). Again, by dimensional
arguments, the rate change of this distance with time is

dλ

dt
∝ (ελ)

1
3 (4.98)

Integration of this shows that the time over which two particles initially at a distance λ1, move apart
to a distance λ2 >> λ1 is in order of magnitude

τ ∼ λ
4
3
2

ε
1
3

(4.99)

Note that the process is self-accelerating: the rate of separation increases with λ. This occurs because
only eddies with scale ≤ λ contribute to the separation of particles at a distance λ; the large eddies
carry both particles and do not cause them to separate (these results can be applied to particles
suspended in the fluid, which are passively conveyed by its motion).

Finally, consider the properties of the flow in regions whose dimension λ is small compared with
λ0. In such regions the flow is regular and its velocity varies smoothly. Hence one can expand vλ
in a series of powers of λ and retaining only the first term, obtain vλ = constant × λ. The order of
magnitude of the constant is vλ0/λ0, since for λ ∼ λ0 one must have vλ ∼ vλ0 . Thus

vλ ∼ vλ0λ/λ0 ∼ δu.Re
1
2λ/l (4.100)

This formula may also be obtained by equating two expressions for the energy dissipation ε: the
expression (δu)3/l, which determines ε in terms of quantities characterizing the large eddies, and the
expression ν(vλ/λ)2, which determines ε in terms of the velocity gradient for the eddies in which the
energy dissipation actually occurs.
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4.6.5 Super diffusion in Turbulence: the history

See [Isi92] for this part. In 1926, Richardson ([Ric26]) analyzed available experimental data on
diffusion in air. Those data varied about 12 orders of magnitude. On that basis, Richardson phe-
nomenologically conjectured that the diffusion coefficient Dλ in turbulent air depend on the scale
length λ of the measurement. The Richardson law,

Dλ ∝ λ
4
3 (4.101)

was related to Kolmogorov-Obukhov turbulence spectrum, v ∝ λ
1
3 , by Batchelor [Bat52]. The supper

diffusion law of the root-mean-square relative displacement λ(t) of advected particles

λ(t) ∝ (Dλ(t)t)
1
2 ∝ t

3
2 (4.102)

was derived by Obukhov [Obu41] from a dimensional analysis similar to the one that led Kolmogorov
[Kol41b] to the λ

1
3 velocity spectrum.





5. HOMOGENIZATION

5.1 A reminder about the theory

This section is mainly based on [BLP78], [JKO91] and [Oll94].

5.1.1 The simplest example - Diffusion in a Periodic Potential Field

Let U be a smooth function on R
d, periodic of period one. So U ∈ C∞(T d1 ), where T d1 ) is the d

dimensional torus of side 1.
Let mU (dx) be the measure

mU (dx) =
exp(−2U)dx∫
T d
1

exp(−2U)
(5.1)

This measure is the invariant measure associated to the operator

LU =
1
2
Δ−∇U.∇ =

1
2
e2U∇(e−2U∇) (5.2)

which is symmetric with respect to the probability measure mU on T d1 . The Stochastic Differential
Equation associated to this operator (generator) is:{

dyt = dωt −∇U(yt)dt
y0 = x

(5.3)

where ω is a standard Brownian motion in R
d

One can wonder what is the behavior of yt for large t ?
The answer is a Central Limit Theorem given by homogenization.
Define for ε > 0

yε = εy(
t

ε2
)

Then yε converges in law to a Brownian with Effective Diffusivity D(U) (for which a formula will be
given).
The proof of this fact is interesting because it will allows to introduce the fundamental tools that
will be useful in the following chapters.

5.1.2 Spectral Gap

The analytical tool that will allow homogenization to take place is the existence of a spectral gap for
the operator LU defined on the torus T d1 (in the sense of its closure in L2(mU )).
Indeed the self-adjoint (with respect to mU ) form 5.1.1 of the operator LU shows that defined as an
evolution operator it is contractive. Since LU is contractive it has a real negative spectrum.
Define λ0 as the gap in the spectrum of L,

λ0 = inf
{
λ > 0 : −λ ∈ spec(L)

}
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then Poincaré inequality shows that this gap is strictly positive.

λ0 = inf
φ∈C∞(T d

1 ) :
∫

Td
1
φdmU =0

1
2

∫
T d
1
(∇φ)2dmU∫
T d
1
φ2dmU

> 0

Because of the strict positivity of the spectral gap the convergence of the transition density probability
associated to the diffusion yt seen as a diffusion on the torus towards the equilibrium measure is
exponential and its speed is controlled by λ0.
Indeed there exist C > 0 such that for any function f ∈ L2(mU ) on the torus and t ≥ 1

supx∈T d
1

∣∣Ex[f(yt)]−
∫
T d
1

fdmU

∣∣ ≤ C exp(−λ0t)‖f‖2
L2

This exponential speed of convergence shows that, given a bounded function φ on the torus such that
its mean value with respect to the invariant measure is 0:∫

T d
1

φdmU = 0

there exists a bounded function ψ on the torus (periodic) unique up to a constant solution of

LUψ = φ

The idea of the probabilistic proof is to write ψ as the limit of a sequence of functions ψα solution
of (Lu − α)ψ = φ

ψα =
∫ ∞

0
exp(−αt)Ex[φ(yt)]dt

and this sequence remains bounded as α converges towards 0 (because of the spectral gap).

5.1.3 The Cell problem

For l unit vector in R
d, define χl by the Poisson equation (on the Torus)

LUχl = −l.∇U (5.4)

χl ∈ C(T d1 ) (χ is periodic) is called ”the solution of the Cell Problem” and is here smooth and
bounded.
The important fact to notice is that a periodic solution to the Poisson equation 5.4 can be found
because the average of the drift ∇U with regards to the invariant measure mU is null.∫

T d
1

∇U dmU = 0

χl is defined up to a constant, so it will often be assumed that χl(0) = 0 to ensure its unicity. It is
also important to notice the χl depends linearly on the unit vector l

χl =
d∑
i=1

χeili (5.5)

Where (ei) is an orthonormal basis of R
d and (li) are the coordinates of l on this basis. This linear

dependence allows to define the vector χ. and the matrix ∇χ. as intrinsic objects whose components
on this basis are

(χ.)j = χej (∇χ.)i,j = ∂iχej (5.6)

This will allow to use the following intrinsic notation:

χl = χ..l (5.7)
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5.1.3.i Utilization of the cell problem

The solution of the cell problem allows to replace the drift of yεt and express it as the sum of a
martingale and a bounded term. Indeed by Ito calculus (Here y(0) = 0)

yε(t).l = −ε
∫ t

ε2

0
l.∇U(ys)ds+ εω t

ε2

χl(yt)− χl(y0) =
∫ t

0
∇χl(ys) dωs −

∫ t

0
l.∇U(ys)ds

So that:

yε.l = ε

∫ t
ε2

0
(l −∇χl)(ys)dωs + ε

[
χl(y t

ε2
)− χl(0)

]
= εM l

t
ε2

+ ε(bounded term)

When ε converges towards 0 the ε(bounded term) disappears and the martingale εM l
t

ε2
is characterized

by the convergence of its quadratic variation. Indeed

〈
εM l

t
ε2

〉
= ε2

∫ t
ε2

0
|l −∇χl|2(ys)ds

a.e.−−→ tDl(U)

(5.8)

The last limit is obtained by ergodicity with

Dl(U) =
∫
T d
1

|l −∇χl|2dmU

Dl(U) is a quadratic form in l DefineD(U) the effective diffusivity (or homogenized matrix) associated
to the potential U by

l.D(U).l = Dl =
∫
T d
1

|l −∇χl|2dmU (5.9)

5.1.4 Convergence of the quadratic variation, towards equilibrium

In the sub-section 5.4 the limit 5.1.3.i of the quadratic variation has been obtained trough ergodicity;
it is interesting to give an alternative and more precise proof of the existence of this limit in order
to be able to control the speed of convergence.
The key tool here is still the spectral gap. Indeed, since the mean of the function |l − ∇χl|2 − Dl

with respect to mU is zero. A periodic solution Φl to the following Poisson equation can be found.

LUΦl = |l −∇χl|2 −Dl (5.10)

Here Φl is smooth and bounded and to ensure its unicity it will be assumed that Φ(0) = 0
Then by Ito formula∫ t

s
|l −∇χl|2(yz)dz = Dl(t− s) + Φl(yt)− Φl(ys)−

∫ t

s
∇Φl(yz)dωz (5.11)

This expression allows to prove that the quadratic variation of the difference martingale associated
to the cell problem

M ε
s,t = εM l

t
ε2
− εM l

s
ε2



5. Homogenization 68

converges a.e. towards (t− s)Dl

This convergence for all t and s and the Markov property of M ε
t are sufficient to prove that the

finite dimensional distributions of the continuous martingale εM l
t

ε2
converges to those of a Brownian

motion with effective diffusivity Dl. And the continuity of the path of the limit process is proven by
the following compactness criterion

lim
δ→0

lim sup
ε→0

P
(

sup
|t−s|≤δ 0<s<t<T

|M ε
s,t| ≥ R

)
= 0

which can be satisfied because the quadratic variation of the martingale M ε
s,t are bounded by

Constant.(t− s)

Thus yε converges in law to a Brownian Motion b with Effective Diffusivity D(U) and transition
probability density given by:

pt(x, y) =
1√

(2π)d detD(U)
exp

(− t(x− y)D−1(U)(x− y)
2t

)
(5.12)

and mean square displacement in the direction l

E[(bt.l)2] = tlD(U)l t (5.13)

5.1.5 The Effective Diffusivity

A lots of efforts have been spent, in several fields of applied sciences (such as composite materials)
to characterize the effective matrix associated to an homogenization problem. Here the effective
diffusivity will be controlled by known variational principles (see [JKO91], Homogenization of Second
Order Elliptic Operators).

5.1.5.i Decrease of the Diffusion

By the Green Formula and the periodicity of the solution to the Cell Problem,∫
T d
1

|∇χl|2dmU = −
∫
T d
1

∇(e−2U∇χl)χl dx∫
T d
1
e−2U(x)dx

= −
∫
T d
1

l.∇(e−2U )χl
dx∫

T d
1
e−2U(x)dx

=
∫
T d
1

l.∇χl dmU

(5.14)

thus the formula 5.9 can be written.

l.D(U).l = l2 −
∫
T d
1

|∇χl|2dmU (5.15)

so

l.D(U).l ≤ l2 (5.16)

and an homogenization on a potential field causes a decrease of the diffusivity. If l.∇U is not the
null function then χl which is smooth here, is not a constant function, and the diffusion is strictly
decreased by the homogenization.

l.∇U �≡ 0 ⇒ l.D(U).l < l2 (5.17)
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Notice also the effective diffusivity D(U) is symmetric and its matrix can be written

D(U) =
∫
T d
1

t(Id −∇χ.).(Id −∇χ.)dmU (5.18)

Moreover, since l.x− χl with respect to LU if g ∈ C∞(T d1 ) then by the Green formula∫
T d
1

(l −∇χl).∇gdmU = 0 (5.19)

Thus

D(U).l =
∫
T d
1

(l −∇χl)dmU (5.20)

5.1.5.ii Upper Bound

By the equation 5.19, if g ∈ C∞(T d1 ) then∫
T d
1

|l −∇(χl + g)|2dmU = Dl(U) +
∫
T d
1

|∇g|2dmU +
∫
T d
1

∇g.(l −∇χl)dmU

= Dl(U) +
∫
T d
1

|∇g|2dmU ≥ Dl(U)

This gives us a nice variational formula acting as an upper bound, the point where this formulation
reaches its minimum Dl(U) is unique up to constant functions and the solution to the cell problem
is a minimizer.

tlD(U)l = inf
f∈C∞(T d

1 )

∫
T d
1

|l −∇f |2dmU (5.21)

This formulation is also often used as a definition of the effective diffusivity because it has a sense
even if U is not smooth, all we need is a well defined probability measure mU on the torus.

5.1.5.iii Lower Bound

First notice that, D(U) is elliptic.Indeed, by the equation 5.9

tlD(U)l ≥ e−2Osc(U)

∫
T d
1

|l −∇χl|l dx

≥ e−2Osc(U)l2

Thus D(U) has an inverse that will be written D(U)−1

In order to prove the lower bound, define the set of smooth divergence free periodic vector field as:

Qsol(T d1 ) =
{
p ∈ (C∞(T d1 ))d|div(p) = 0 and

∫
T d
1

p(x)dx = 0
}

and write m−U the probability measure on the torus associated to −U

m−U(dx) =
dx exp(2U)∫
T d
1

exp(2U)

Then the Lower Bound of Dl is given by a variational formula for the inverse matrix of the effective
diffusivity. Indeed let ξ ∈ R

d be a unit vector |ξ| = 1, then

tξD(U)−1ξ∫
T d
1

exp(−2U(x))dx
∫
T d
1

exp(2U(x))dx
= inf

p∈Qsol

∫
T d
1

|ξ − p|2dm−U (5.22)
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Indeed the above problem admits a unique solution pξ which can be easily expressed in terms of the
solution of the Cell problem.

pξ =
(
Id − e−2U∫

T d
1
e−2U(x)dx

(Id −∇χ.)D(U)−1
)
ξ (5.23)

Notice that div(pξ) = 0 and by the equation 5.20, pξ satisfies
∫
T d
1
pξ(x)dx = 0. Moreover, if ν ∈ Qsol,

then ∫
T d
1

|ξ − pξ − ν|2dm−U =
tξD(U)−1ξ∫

T d
1
e−2U(x)dx

∫
T d
1
e2U(x)dx

+
∫
T d
1

|ν|2dm−U

− 2
∫
T d
1

(ξ − pξ).νdm−U

=
tξD(U)−1ξ∫

T d
1
e−2U(x)dx

∫
T d
1
e2U(x)dx

+
∫
T d
1

|ν|2dm−U

≥
tξD(U)−1ξ∫

T d
1
e−2U(x)dx

∫
T d
1
e2U(x)dx

For p = 0 this variational formulation gives the Voigt-Reiss’ Inequality:

D(U) ≥ 1∫
T d
1

exp(−2U(x))dx
∫
T d
1

exp(2U(x))dx
(5.24)

The lower bound of this inequality is the effective diffusivity in dimension one but for d ≥ 2 the lower
bound is not reached in general.

5.1.6 Tighter bounds and wider class of homogenized matrices

The bounds specified by the Voigt-Reiss inequality are usually to wide and give little information
about the homogenized matrix associated to a second order elliptic operator. The problem of tighter
bounds has been the subject of intensive research in physics and continuum mechanics, especially in
the theory of dispersion of electromagnetic waves on small particles and the theory of elasticity for
microscopically non-homogenous media.
For instance in any dimension an example of stratified media shows that the above bounds are precise
in any dimension, but they are too general to be sharp for more particular media, such as a two-phase
composite medium for which the Hashin-Shtrickman Bounds are more precise. The Chapter 6 of the
book of S:M. Kozlov, V.V. Jikov and O.A. Oleinik [JKO91] is a good introduction to the subject;
see also [MB97].
It is also important to notice that the variational formulae obtained above are nice, simple and
local because the matrix Id exp(−2U)∫

Td
1

exp(−2U)
describing the inhomogeneous medium, is real, symmetric,

definite, positive; elsewhere (for instance when the inhomogeneous medium is associated to a non-
symmetric matrix which can even be complex in conductivity problems in presence of a magnetic
field) the effective matrix would be associated to non local variational formulae or to a pair of saddle-
point variational principles. Here the articles of G.W. Milton [Mil88];[Mil90]; A. Fannjiang, G.C.
Papanicolaou [FP94]; J. R. Norris [Nor97] are a good source of information.

5.1.7 A note on convection enhanced diffusion

If the homogenization takes place on a period free divergence drift then the homogenization is en-
hanced. An interesting series of papers by A. Fannjiang and G. Papanicolaou is available on the
subject (see [FP94] for periodic flows and [FP96] for random flows). In this subsection some basic
results will be given.
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Let Γ be a smooth skew-symmetric d× d matrix on R
d, periodic of period T d1 .

So Γ ∈ (
C∞(T d1 )

)d(d−1)/2 and is the stream function of an incompressible flow t∇.Γ; this notation
designate the horizontal vector

(t∇Γ
)
j

=
d∑
i=1

∂iΓij (5.25)

Let LΓ be the operator associated to this flow:

LΓ =
1
2
Δ + t∇Γ∇ = ∇(Id

2
+ Γ

)∇ (5.26)

which has for invariant measure the Lebesgue measure. The Stochastic Differential Equation associ-
ated to this operator (generator) is: {

dyt = dωt +∇Γ(yt)dt
y0 = x

(5.27)

where ω is a standard Brownian motion in R
d

The behavior of yt for large t is a Central Limit Theorem given by homogenization:
Define for ε > 0

yε = εy(
t

ε2
)

Then yε converges in law to a Brownian with Effective Diffusivity D(Γ) which is positive, definite
and symmetric.
The cell problem associated to the homogenization phenomenon is for l ∈ R

d the solution χl ∈
C∞(T d1 ) (normalized with χl(0) = 0)

LΓ

(
χl − l

)
= 0 (5.28)

Effective diffusivity The effective diffusivity is then given by

tlD(Γ)l =
∫
T d
1

|l −∇χl|2dx = l2 +
∫
T d
1

|∇χl|2dx (5.29)

Note that 5.29 shows clearly the enhancement of the diffusion by an homogenization on a periodic
free divergence drift.
The effective diffusivity (which is defined by the behavior of yk(t).yl(t)/t for large t, see section 2.4
of [JKO91] and 4. of [Oll94]) is given by:
For k, l ∈ R

d

tk.D.l =
∫
T d
1

t(k −∇χk)(l −∇χl)dx (5.30)

This explains why the effective diffusivity D is symmetric.

Flow effective diffusivity One must be careful to not confuse D(Γ) with the ”flow effective diffusiv-
ity” σ(Γ) which is a non-symmetric matrix relating the gradient of the heat intensity with the flux
[FP94].
More precisely write,

Fl(x) = l.x− χl(x) (5.31)
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and

FLUXl(x) =
(Id

2
+ Γ

)∇Fl (5.32)

then ∇Fl represents the gradient of the heat intensity and FLUXl represents the flux induced by the
gradient of heat intensity .
The relation between the mean of the gradient of heat intensity and the mean flux is given by the
”flow effective diffusivity ”(this relation is used to define σ(Γ))

σ(Γ)
∫
T d
1

∇Fl(x)dx =
∫
T d
1

FLUXl(x)dx (5.33)

Thus for k, l ∈ R
d

tk.σ(Γ).l =
∫
T d
1

tk(
Id
2

+ Γ)(l −∇χl) (5.34)

Note that the symmetric part of the ”flow effective diffusivity” σsym(Γ) gives the effective diffusivity
by the following relation:

D = 2σsym(Γ) (5.35)

The following variational formulations are proven by J.R. Norris in [Nor97]

General variational characterization for all l, ξ ∈ Rd
t
(
ξ − σ(Γ)l

)
D−1
sym(Γ)

(
ξ − σ(Γ)l

)
= inf

f,H

∫
T d
1

|ξ −H∇− (
Id
2

+ Γ)(l −∇f)|2dx (5.36)

Where the minimum is taken on f ∈ C∞(T d1 ), H varies in the set of smooth skew-symmetric d × d
periodic matrices in C∞(T d1 )d(d−1)/2. H∇ is the vertical vector

(
H∇)

i
=

d∑
j=1

∂jHij (5.37)

Lower bound For ξ ∈ R
d

tξD(Γ)−1ξ = inf
f,H

∫
T d
1

|ξ −H∇(x) + (
1
2

+ Γ(x))∇f(x)|2dx (5.38)

Where the minimum is taken on f ∈ C∞(T d1 ), H varies in the set of smooth skew-symmetric d × d
periodic matrices.
Note that homogenization on a free divergence drift enhance the diffusion (D(Γ) ≥ 1).

Upper bound For l ∈ R
d

tlD(Γ)l = 4 inf
ξ,f,H

∫
T d
1

|ξ −H∇(x)− (
1
2

+ Γ(x))(l −∇f(x))|2dx (5.39)

Where the minimum is taken on f ∈ C∞(T d1 ), H varies in the set of smooth skew-symmetric d × d
periodic matrices. And ξ ∈ R

d such that ξ.l = 0
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5.2 Multi-scale Homogenization

In this section, the method of asymptotic expansion will be introduced as an introduction to multi-
scale homogenization. Consider for instance a medium characterized by two scales of inhomogeneities
and assume that the ratio between those two scales is big. Now there are three description of such a
medium:

• The first one is microscopical: it means that the mathematical equations associated to the
medium reflect all the inhomogeneities with their distinctive features.

• The second one is macroscopic: it means that those mathematical equations only reflect an
effective medium without any inhomogeneity.

• The third one is mesoscopic: it means that those mathematical equations reflect the large scale
of inhomogeneities but the smaller scale is seen trough an effective medium.

The definition of microscopic, mesoscopic and macroscopic scale depends on a particular observation
of a physical system and the kind of properties to be analyzed. The mesoscopical scale acts as a link
between the extreme scales, and to understand the properties reflected in the macroscopic scale by
the microscopic one, this link is essential.

Notice that this kind of description is as old as Statistical Physics (but the mathematical models of
multi-scale homogenization that will be discussed here are more recent). In fact, most of the quantities
of physical interest, accessible to experience and necessary to applications, are macroscopic: volume,
pressure, temperature, heat capacity, viscosity, refraction value, magnetic susceptibility, resistivity,
... To compute them from microscopic properties, one has to link them with statical means on the set
of particles, whose individual characteristics are inaccessible and not interesting. The explanation of
the macroscopic properties from microscopic components requires the use of probabilistic concepts
and methods, even if the elementary laws are perfectly known and the subjacent were deterministic.

Here the mesoscopic description will be obtained from the microscopic one, in the latter the
mathematical equations are characterized by ”slow” and ”fast” variables according associated to the
different scales of inhomogeneities and the mesoscopic scale is obtained through an homogenization
of the equations on the ”fast” variables.

5.2.1 The Method of Asymptotic Expansion

To illustrate the method of asymptotic expansion, a mesoscopic description of the cell problem
associated to a periodic potential, characterized by a slow and a fast period, will be given here. In
addition to the enormous heuristic importance of this method, it opens up new possibilities for the
mathematical justification of various homogenization phenomena.
Let V, T ∈ C∞(T d1 ), R ∈ N/{0, 1} and

U(x) = V (Rx) + T (x) (5.40)

Let χU,Rl be the solution of the cell problem 5.4 associated to U
The method in question is based upon the concepts of asymptotic analysis, the aim is to find an
approximation for this solution that take into account the rapid oscillation of the coefficients of the
equation.
Thus, it is natural to seek the first approximation in the form:

χU,Rl (x) = χ0(x) +
1
R
χ1(x,Rx) + η1(x) (5.41)

where χ0
l does not depend on the ratio R between scales and is periodic of period one and the function

of two variables χ1(x, y) does not depend on R and is periodic of period one in x (slow variable)
and in y (fast variable.) Moreover it is assumed that those two functions are two times continuously
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differentiable on the torus.
The method of asymptotic expansion allows to find χ0 and χ1; here, since V and T are smooth, those
two functions will be smooth.
Here the function η1 is assumed to act as an error term. This method brings up several problems
of justification according to the utilization of the approximation one has in mind. For instance, the
justification of the asymptotic expansion at order 0 means to show that χ0 is indeed asymptotically
an approximation of χU,Rl (x); then one has to show that the function 1

Rχ
1(x,Rx) + η1 does act

as an error term, and tends towards 0 as R tends towards ∞ in a norm which choice depends on
the regularity of the coefficients of the equations. In general this norm is equivalent to ‖.‖L2(T d

1 );
assuming all coefficients and all functions to be smooth enough then the convergence will be in the
uniform topology.
Moreover, as it will be shown, it will be important to notice that to be able to find the proper
candidate for χ0 and prove this convergence, one has to seek the expansion of χU,Rl up to order 1

R2 .

χU,Rl (x) = χ0(x,Rx) +
1
R
χ1(x,Rx) +

1
R2

χ2(x,Rx) + η2(x) (5.42)

Notice also that, the justification of the asymptotic expansion at order 1 means to show that the
function R

(
1
R2χ

2(x,Rx)+ η2
)

does act as an error term, and tends towards 0 as R tends towards ∞.
And to find the right candidate for χ1 it is needed to seek the expansion of χU,Rl up to order 1

R3 .
Usually, what is sought is an approximation of ∇χU,Rl ; in this case, because of the dependence of χ1

on the fast variable; one needs to show that ∇η1 tends towards 0 as R tends towards ∞. In general,
the norm associated to this convergence is equivalent to ‖∇η1‖L2(T d

1 ). Moreover, for wide range of
boundary value problems (on a domain Ω, notice that here, since the problem takes place on the torus,
this difficulty is not present) the speed of convergence of this norm is in 1√

R
and to be able to improve

it one has to add a ”boundary corrector term” CR(x) so that ∇χU,Rl −χ0(x,Rx)+ 1
Rχ

1(x,Rx)−CR(x)
belongs to the Sobolev space H1

0 (Ω) and the speed of convergence in the norm ‖.‖H1
0 (Ω) becomes in

1
R
However, those justifications are not always needed. That is to say, sometimes, all that is useful
is to know the dependence of χ0 and χ1 in the slow and the fast variables and some information
about their formulae in order to use them as candidates for a variational formula. In those cases the
method allows to find those formulae and this shall be sufficient.

5.2.1.i Computation Rules of the Solution of the Cell Problem

Here, several basic computation rules associated to the solution of the cell problem will be presented.
Those rules will be useful to evaluate the components of the asymptotic expansion of χU,Rl
Let χVl (y) be the solution of the cell problem 5.4 associated to a periodic potential V (y), then by
the computation 5.14

∫
T d
1

∇yχ
V
. (y)dmV (y) = Id −D(V ) (5.43)

This implies that for all (b, h) ∈ R
d ×R

d

∫
T d
1

tb.∇yχ
V
h (y)dmV (y) = tb

(
Id −D(V )

)
h (5.44)

Moreover, for all f ∈ (
C1(Rd)

)d
∫
T d
1

t∇x.∇yχ
V
f(x)(y)dmV (y) = t∇x

(
Id −D(V )

)
f(x) (5.45)
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Finally, the Green formula shows that∫
T d
1

t∇yV (y).∇xχ
V
f(x)(y)dmV (y) =

1
2
t∇x

(
Id −D(V )

)
f(x) (5.46)

5.2.1.ii The Method

As it was mentioned, to be able to find the proper term χ0 we seek the asymptotic expansion up to
order 2.

χU,Rl (x) = χ0(x,Rx) +
1
R
χ1(x,Rx) +

1
R2

χ2(x,Rx) + η2(x) (5.47)

The slow variables will be written x and the fast ones y. Then the operator LU decomposes onto a
sum of three operators acting on those variables:

LU = R2Ly +RLx,y + Lx (5.48)

With

Lx =
1
2
Δx −∇xT∇x

Lx,y = ∇x∇y −∇xT∇y −∇yV∇x

Ly =
1
2
Δy −∇yV∇y

The basic method is simply to identify on each side of the following equation the terms of the same
order n in Rn

LUχ
U,R
l = −Rl.∇yV (y)− l.∇xT (x) (5.49)

• Term of order R2

Lyχ
0(x, y) = 0 ⇔ χ0(x, y) = χ0(x) (5.50)

So at it was expected, χ0 does not depend on the fast variable.

• Term of order R

Lyχ
1(x, y) + Lx,yχ

0(x) = −l.∇yV (y)
⇔ Lyχ

1(x, y) = −(l −∇xχ
0(x)).∇yV (y)

So

χ1(x, y) = χV. (y).
(
l −∇xχ

0(x)
)

+ χ1
0(x) (5.51)

Notice, that the equation associated to the term of order 0 does not give us the evaluation of
χ0 but a mesoscopic relation between χ1 and χ0. This relation is interesting in itself because
it suggests that at the order 0, the matrix Id −∇χU,R. acts like

(
Id −∇χV. (Rx)

)(
Id −∇χ0

. (x)
)

• Term of order R0

Lyχ
2(x, y) + Lx,yχ

1(x, y) + Lxχ
0(x) = −l.∇xT (x)
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This Poisson equation relative to the operator Ly has a periodic solution χ2(x, y) if and only if
its mean with respect to the measure dmV (y) is equal to 0, thus the following equation must
be fulfilled in order to ensure the existence of χ2(x, y):∫

T d
1

Lx,yχ
1(x, y)dmV (y) + Lxχ

0(x) = −l.∇xT (x)

Now, by the computation rules 5.2.1.i∫
T d
1

Lx,yχ
1(x, y)dmV (y)

=
∫
T d
1

(
∇x∇y −∇xT∇y −∇yV∇x

)(
χV. (y)

(
l −∇xχ

0(x)
))
dmV (y)

=
(∇x −∇xT (x)− ∇x

2
)
(Id −D(V ))

(
l −∇xχ

0(x)
)

= −(∇x

2
−∇xT (x)

)
(Id −D(V ))

(∇xχ
0(x)− l

)
Thus the condition for the existence of χ2 fix the value of χ0

(∇x

2
−∇xT (x)

)
D(V )

(∇xχ
0(x)− l

)
= 0 (5.52)

Notice that, although χ0 is the solution of a cell problem associated to the slow potential T ;
the influence of the fast potential on χ0 is felt trough a mean behavior characterized by its
associated effective diffusivity.

These results are sufficient to understand the following chapters, however in what follows, the terms
of χU,Rl will be computed up to order 3 to satisfy our curiosity.

5.2.1.iii Further terms

Since the general method is always the same (equals the terms of the same order in Rn in 5.49 and
satisfy the conditions for the existence of a periodic solution), only the results will be given here. We
seek to characterize the remaining terms in the following asymptotic expansion. Those remaining
terms will not directly be useful because χ0, χ1 and the solutions of the cell problems associated
to them contain all the information that we need. However the remaining terms will put into light
new intrinsic objects (different from the solutions to the cell problems) associated to this mesoscopic
relation between the slow and the fast potential. Those objects would become useful and would be
given a name if one would like to answer to more subtile questions about the mesoscopic relation.

χU,Rl (x) = χ0
l (x,Rx) +

1
R
χ1
l (x,Rx) +

1
R2

χ2
l (x,Rx) +

1
R3

χ3
l (x,Rx) + η3(x) (5.53)

Define the matrices HV
i,j and BV

i,j by

LyH
V
i,j =

(∂yi
2
− ∂yi V (y)

)
χVej

(y) (5.54)

LyB
V
i,j = ∂yi χ

V
ej

(y)− (
Id −D(V )

)
i,j

(5.55)

Then χ2(x, y) is given by

χ2(x, y) = −χV. (y)∇xχ
1
0(x) +∇xH

V (y)∇xχ0(x)

+
(∇x

2
−∇xT (x)

)
BV (y)∇xχ

0(x) +∇xT (x)BV (y).l + χ2
0(x)

(5.56)
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Define the tensors Lki,j(x), M
k
i,j(x) and Nk

i (x) by

(∇x

2
−∇xT (x)

)
D(V )∇xL

k
i,j(x) =

(∂xk
2
− ∂xkT (x)

)
∂xijχ

0(x) (5.57)

(∇x

2
−∇xT (x)

)
D(V )∇xM

k
i,j(x) =

(∂xk
2
− ∂xkT (x)

)(∂xi
2
− ∂xi T (x)

)
∂xj χ

0(x) (5.58)

(∇x

2
−∇xT (x)

)
D(V )∇xN

k
i (x) =

(∂xk
2
− ∂xkT (x)

)
∂xi χ

0(x) (5.59)

Then χ1
0(x) is given by

χ1
0(x) =− Lki,j(x)

( ∫
T d
1

∂ykH
V
i,j(y)dmV (y)

)
−Mk

i,j(x)
( ∫

T d
1

∂ykB
V
i,j(y)dmV (y)

)

−Nk
i (x)

( ∫
T d
1

∂ykB
V
i,j(y)dmV (y)

)
lj

(5.60)

Define the tensors hj(y), H̃k
i,j(y),B̃

k
i,j(y), Ĥ

k
i,j(y) and B̂k

i,j(y) by

Lyhj(y) = χVej
(y)−

∫
T d
1

χVej
(y)dmV (y) (5.61)

LyH̃
k
i,j(y) =

(∂yk
2
− ∂ykV (y)

)
HV
i,j(y) (5.62)

LyB̃
k
i,j(y) =

(∂yk
2
− ∂ykV (y)

)
BV
i,j(y) (5.63)

LyĤ
k
i,j(y) = ∂ykH

V
i,j(y)−

∫
T d
1

∂ykH
V
i,j(y)dmV (y) (5.64)

LyB̂
k
i,j(y) = ∂ykB

V
i,j(y)−

∫
T d
1

∂ykB
V
i,j(y)dmV (y) (5.65)

Then χ3(x, y) is given by

χ3(x, y) =Lx∂xi χ
0(x)hi(y) +HV

i,j(y)∂
x
ijχ

1
0(x)

− H̃k
i,j(y)∂

x
ijχ0(x)− B̃k

i,j(y)
((∂xi

2
− ∂xi T (x)

)
∂xj χ

0(x) + ∂xi T (x)lj
)

− (∇x

2
−∇xT (x)

)
BV (y)∇xL

k
i,j(x)

( ∫
T d
1

∂ykH
V
i,j(y)dmV (y)

)
− (∇x

2
−∇xT (x)

)
BV (y)∇x

((
Mk
i,j(x) +Nk

i (x)lj
)( ∫

T d
1

∂ykB
V
i,j(y)dmV (y)

))

− Ĥk
i,j(y)

(∂xk
2
− ∂ki T (x)

)
∂xijχ

0(x)

− B̂k
i,j(y)

(∂xk
2
− ∂ki T (x)

)((∂xi
2
− ∂xi T (x)

)
∂xj χ

0(x) + ∂xi T (x)lj
)

+ χ3
0(x)

(5.66)

And η3(x) is a solution of

LUη
3(x) = − 1

R2

(
Lxχ

2(x,Rx) + Lx,yχ
3(x,Rx) +

Lx
R
χ3(x,Rx)

)
(5.67)

The expansion will be stopped here, notice that the complexity of the formulae grows quickly with
the order in the expansion; this is a general phenomenon.



5. Homogenization 78

5.2.1.iv Justification

Let’s show that η1(x) = χU,Rl − χ0(x)− 1
Rχ

1(x,Rx) strongly converges towards 0 in H1(T d1 ):

lim
R→+∞

∫
T d
1

|∇η1(x)|2 dmU (x) = 0 (5.68)

This is an easy task here, since everything is smooth and periodic. Indeed,

η1(x) =
1
R2

χ2(x,Rx) + η2(x)

Obviously 1
R2χ

2(x,Rx) strongly converges towards 0 in H1(T d1 ) like 1
R by the Green Formula and

the Poincaré inequality∫
T d
1

|∇η2(x)|2 dmU (x) = −
∫
T d
1

LUη
2(x)

(
η2(x)−

∫
T d
1

η2(y)dmU (y)
)
dmU (x)

≤ C
[ ∫

T d
1

(
LUη

2(x)
)2
dmU (x)

] 1
2
[ ∫

T d
1

|∇η2(x)|2 dmU (x)
] 1

2

Where C is a constant bounded by Cde2 Osc(V )+2Osc(T )

Thus ∫
T d
1

|∇η2(x)|2 dmU (x) ≤ C2

∫
T d
1

(
LUη

2(x)
)2
dmU (x)

And since

LUη
2 = − 1

R

[
Lxχ

1 + (Lx,y +
Lx
R

)χ2
]
(x,Rx)

whose L2(T d1 ) norm converges to 0 like 1
R ; this proves the result.

Moreover, notice that the term χ1
0(x) in χ1 is not relevant here since 1

Rχ
1
0(x) converges strongly to

0 in H1
0 (T d1 ) (the same phenomenon applies to 1

R∇xχ
1(x, y), the gradient of χ1 with respect to the

slow variable).
This proves that

lim
R→+∞

∫
T d
1

∣∣∣∇χU,Rl (x)−∇xχ
0(x)−∇yχ

V
. (Rx)

(
l −∇xχ

0(x)
)∣∣∣2dmU (x) = 0 (5.69)

When the problem has a boundary, and the coefficients are less regular, several methods have
been developed to deal with the justification problem; they will be briefly introduced in the next sub
subsection (it is not necessary to read it understand the following chapters).

5.2.1.v Further topics on the justification of asymptotic expansion

Define Ω a bounded open set in R
d. Let f be a function in L2(Ω) and A(x, y) a matrix with bounded,

measurable, elements, periodic and of period T d1 in y. Assume that there exists two positive constants
0 < α ≤ β such that for all ξ ∈ R

d

αξ2 ≤ tξAξ ≤ βξ2 (5.70)

The latter condition on the matrix A ensure the existence in H1
0 (Ω) of the solution of the following

equation. {
−∇.(A(x, xε )∇uε

)
= f in Ω

uε = 0 on ∂Ω
(5.71)
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Here ε acts as a small parameter reflecting the period of the inhomogeneities. The problem of
asymptotic analysis of periodic structures with boundary value is to seek the asymptotic behavior of
uε as ε tends towards 0. Moreover the uniform coercivity of the matrix A allows to show that all the
solutions uε are uniformly bounded (for all ε)

‖uε‖H1
0 (Ω) ≤ C(Ω, α)‖f‖L2(Ω) (5.72)

Thus by compactness in the weak topology, as ε goes to 0 there exists a limit u such that, up to a
subsequence uε converges weakly to u in H1

0 (Ω) The method of asymptotic expansion allows to guess
a good candidate for the limit u; by postulating the following ansatz.

uε(x) = u0(x,
x

ε
) + εu1(x,

x

ε
) + ε2u2(x,

x

ε
) + · · · (5.73)

By satisfying the equations imposed by the terms of same order in εn in the equation 5.71 up to
order 2. One finds that u0(x, y) = u(x) does not depend on the fast variable and is characterized by
the following equation. {

−∇.(A∗∇u) = f in Ω
uε = 0 on ∂Ω

(5.74)

Where A∗ is an effective, coercive matrix whose formula is given by the cell problem associated to A.
Now u is the good candidate and the problem of justification is to prove the convergence of the
sequence uε to u. Many methods are available or have been developed to this end, some of them are
briefly given here. Define Aε = A(x, xε ):

The G-convergence (developed by S. Spagnolo; see [Spa76], [ZKON79], [JKO91])
The sequence of matrices Aε is called G-convergent to the matrix A∗ in the domain Ω, if for any
f ∈ H−1(Ω) the solution uε of the Dirichlet problem 5.71 converges towards u (defined by the
equation 5.74) in H1

0 (Ω) and Aε∇uε converges towards A∗∇u in L2(Ω).
This notion of convergence is wide in the sense that homogenization is a particular og G-convergence,
thus it allows to develop a large range of abstract theorems characterizing the topology associated
to this convergence and others that ensure this kind of convergence to take place.
For instance, if those matrices are seen as abstract self-adjoint, uniformly coercive and bounded
operators on a separable Hilbert space V with V ∗ as its dual. Then the abstract energy criterion
says that Aε G-converge to A∗ if and only if

lim
ε→0

inf
v∈V

{1
2
(Aεv, v) − (f, v)

}
= inf

v∈V

{1
2
(A∗v, v) − (f, v)

}
(5.75)

Which means that, G-convergence of self adjoint operators is equivalent to pointwise convergence of
the quadratic forms associated with the corresponding inverse operators.
This convergence imply the Γ-convergence of the quadratic forms (Aεv, v) to the form (A∗v, v) (see
below)
One of the significant properties of G-convergence is the fact that the G-limit operator depends only
on the original sequence of operators but neither on the type of boundary conditions, nor on the
domain. Moreover the property of G-convergence is local in the sense that if Aε G-converge towards
A in a domain Ω, then Aε G-converge towards A in any sub domain Ω1 ⊂. This local property
is sometimes [AB96] used to justify the fact that one does not loose in generality to suppose that
inhomogeneities of a problem are periodic (which is stronger that ergodic).

The Γ-convergence The Γ-convergence is a notion of functional convergence which has been intro-
duced by E. De Giorgi; see [Gio75], [JKO91].
The forms (Aεv, v) Γ-converge to the form (A∗v, v) if and only if the two following properties are
satisfied:
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• For any u ∈ V and any sequence uε ∈ V which converges weakly to it, the following inequality
is valid

lim
ε→0

(Aεuε, uε) ≥ (A0u, u) (5.76)

• for any u ∈ V there exist a sequence uε ∈ V converging weakly to it and

lim
ε→0

(Aεuε, uε) = (A0u, u) (5.77)

The energy method (developed by L. Tartar; see [Tar77], [Def93], [Mur78])
The main ingredient is a clever choice of test functions in the variational formulation of the equation
5.71 ∫

Ω
A(
x

ε
)∇uε(x).∇φ(x) dx =

∫
Ω
f(x)φ(x) dx ∀φ ∈ H1

0 (Ω) (5.78)

The goal of this method is to pass in the limit in the above equation; but the left hand side in-
volves the product of two weakly convergent sequences. However one can do so by replacing the
fixed test function φ by a chosen sequence φε (whose formula is given by the solution of the cell
problem associated to tA) which permits to pass to the limit thanks to a compensated compactness
phenomenon ([Tar79],[JKO91]): indeed consider pε, vε vector fields in (L2(Ω))d converging in the
weak topology to p0 and v0. The lack of strong convergence does not allow to pass to the limit in
the scalar product pε.vε, however by adding additional properties to those sequences one can ”com-
pensate” this lack. For instance if in addition div pε and curl vε are compact sequences in H−1(Ω)
(where curl v is a skew-symmetric matrix whose elements belong to H−1(Ω) and are defined by
(curl v, ϕ)ij =

∫
Ω

(
vj(x)∂iϕ(x) − vi(x)∂jϕ(x)

)
dx for all ϕ ∈ H1

0 (Ω)) then pε.vε remains bounded in
L1(Ω) and the following weak convergence is established: for all ϕ ∈ C∞

0 (Ω)

lim
ε→0

∫
Ω
pε(x).vε(x)ϕ(x)dx =

∫
Ω
p0(x).v0(x)ϕ(x)dx

This method proves rigorously the convergence of the homogenization process.

The two-scale convergence method (developed by G. Allaire [All92], [All94], and Nguetseng
[Ngu90])
A sequence of functions uε in L2(Ω) is said to two-scale converge to a limit u0(x, y) belonging to
L2(Ω×T d1 ) if, for any function ψ(x, y) in D(Ω, C∞(T d1 )) (the space of infinitely smooth and compactly
supported functions in Ω with values in the space C∞(T d1 )), we have

lim
ε→0

∫
Ω
uε(x)ψ(x,

x

ε
)dx =

∫∫
Ω×T d

1

u0(x, y)ψ(x, y) dx dy (5.79)

Here are some properties of this kind of convergence:

• For each bounded sequence uε in L2(Ω) one can extract a subsequence two-scale converging to
a limit u0(x, y) in L2(Ω × T d1 ).

• If a sequence uε in L2(Ω) two-scale converge to u0(x, y) in L2(Ω × T d1 ) then uε also weakly
converges to u(x) =

∫
T d
1
u0(x, y)dy in L(Ω).

• If a sequence uε is bounded inH1(Ω) then there exists u(x) ∈ H1(Ω) and u1(x, y) ∈ L2[Ω;H1(T d1 )]
such that, up to a subsequence, uε two-scale converges to u(x), and ∇uε two-scale converges to
∇xu(x) +∇yu1(x, y).

This two-scale convergence framework allows to show that the entire sequences uε of the solutions
of 5.71 and ∇uε converge to u(x) and ∇u(x) + ∇yu1(x, y) (where u1 is the first of order 1 in the
asymptotic expansion 5.73). It also allows to obtain corrector results and to show for instance that
uε(x)− u(x)− εu1(x, xε ) strongly converges to 0 in H1(Ω)



5. Homogenization 81

5.2.2 Differential Effective Medium Theory

Polycrystalline metals, porous rocks, colloidal suspensions, epitaxial thin films, rubber, fiber rein-
forced composites, gels, foams, granular aggregates, sea, ice, shape-memory metals, magnetic ma-
terials, electro-rheological fluids, and catalytic materials are all examples of materials where an
understanding of the mathematics on the different length scales is a key to interpreting their physical
behavior [GGJ+98]; for instance the hydrologists distinguish at least seven different scales ([Zim93]).
Thus in many field of physics and engineering some phenomena can not be explained in terms of a
model of one scale stochastically homogenous random media. One of the heuristic theory (among
others, such as the Self Consistent Approximations, [Bud65], [Hil65], [Wu66]) developed to fill this
gap is the Differential Effective Medium Theory (D-EMT). This theory models a two phase compos-
ite by incrementally adding inclusions of one phase to a background matrix of the other and then
recomputing the new effective background material at each increment ([Bou97], [McL97], [CCL80]).
This theory was first proposed by Bruggeman to calculate the conductivity of a two-component com-
posite structure formed by successive substitutions ([Bru35] and [AIP77]) and generalized by Norris
([Nor85]) to materials with more than two phases. This method is also implemented numerically.
Here the utilization of this theory to evaluate the conductivity of a two phase material (matrix with
aggregates grains) will be reproduced (see the paper of Garboczi and Berryman [GB99], this material
is the concrete) as an introduction to the heuristic DEM Theory though process.

5.2.2.i The heuristic process

The structure is build up by starting from a homogeneous component and using the following iterative
process: replace the a small amount of this homogeneous component by the second component, and
then regard the resulting ”effective” material as the homogeneous component for the succeeding
substitution step.
Thus, in the usual D-EMT ([McL97]), when a particle with conductivity σp is embedded in a matrix
with conductivity σbulk, the dilute limit is used to generate an approximate equation that can be
solved for the effective conductivity: in the dilute limit, the value of c, the volume fraction of
aggregates, is small enough so that the aggregate grains do not influence each other. The effective
conductivity, σ, is then given exactly (heuristical for a mathematician) by ([Tor91],[SGB95]):

σ = σbulk + σbulkmc+O(c2) (5.80)

where m is a dimensionless coefficient often called the dilute limit slope or intrinsic conductivity
[DG95] that is a function of the shape of the particle, and the ratio σp

σbulk
. The higher order terms

in the c expansion come from interactions between aggregate particles, and so are negligible in the
dilute limit.
The dilute limit is now used to generate a differential equation for the conductivity when an arbitrary
amount of aggregates is placed in the matrix. Suppose that a non-dilute volume fraction c of aggre-
gates (of conductivity σp) have been placed in the matrix. The effective conductivity of the entire
composite system is now σ. This system of matrix (volume fraction = φ = 1 − c ) plus aggregates
(volume fraction = c) is treated as being a homogeneous material. Suppose then that additional ag-
gregates are added by removing a differential volume element, dV , from the homogeneous material,
and replacing it by an equivalent volume of aggregates. The new conductivity, σ + dσ , is assumed
to be given by the dilute limit

σ + dσ = σ + σm(σ)
dV

V
(5.81)

where V is the total volume and is the same as that in equation 5.80, but with the replacement
σbulk → σ. This is the key approximation that is made in order to generate the DEM Theory. When
the volume element dV was removed, only a fraction φ was matrix material so that the actual change
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in the matrix volume fraction, dφ, is given by

dφ = −φdV
V

(5.82)

Equation 5.81 then reduces to

dφ

φ
= − dσ

σm(σ)
(5.83)

which can be integrated to yield

−
∫ σ

σbulk

dσ′

m(σ′)σ′
=
∫ φ

1

dφ

φ′
= ln(φ) (5.84)

For spherical aggregates of only one size, with conductivity σp, and embedded in a matrix of con-
ductivity σ [Tor91],

m(σ) = 3
σp − σ

2σ + σp
(5.85)

The integral in equation 5.84 can be done exactly, using equation 5.85, with the result

σ − σp
σbulk − σp

( σ

σbulk

)− 1
3 = 1− c (5.86)

This result shows the heuristic efficiency of D-EMT. Notice also that in the generalization of D-EMT
to multi-phases materials, grains with n different shapes and conductivity are added to the backbone
material, and the equation 5.80 becomes (a sort of ”n dimensional heuristic Taylor expansion”).

σ = σbulk + σbulk

n∑
i=1

mi ci +
n∑
i=1

O(c2i ) (5.87)

Where the mi are the intrinsic conductivity of the different phases and the ci their volume fraction.

5.2.2.ii Some Applications

Electrical and acoustic properties of fluid-saturated sedimentary rocks For sedimentary rocks,
the Archie’s law: σ = σfφ

m (which is an approximate empirical rule) links σ, the dc electrical
conductivity, σf the fluid conductivity, φ the porosity, and m � 2 is a constant. By applying the
D-EMT iterative picture to rocks, in [SSC81] it has been observed that the form of Archie’s law with
m = 3

2 can be exactly reproduced. In a later work, [MC82], it has been shown that the value of
the exponent m is in fact dependent on the shape of the substitution unit, with m = 2 indicating a
general preponderance of randomly oriented platelike solid grains.
In [SC84], calculations based on the differential effective medium of rock microstructure yield pre-
diction of sonic travel times and acoustic attenuation in good agreement with experimental data.
In particular, the theory shows that the large frequency peak and its associated velocity dispersion
observed in sandstones are characteristic of a composite system containing fluid-filled microcracks.

Elastic properties of a composite material consisting of melt (fluid) and crystals (solid) D-
EMT has been used to develop a theoretical model for the elastic properties of a composite material
consisting of melt (fluid) and crystals (solid) (see [TS99b] and [TS99a]). Indeed, the quantification
of melt properties within a magma reservoir is extremely important in predicting and monitoring of
volcanic eruptions. The volcano will erupt when the amount and supply of melt (low density and
high viscosity material) in the magma reservoir is large. As the melt cools, crystals are formed,
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and the density and viscosity of the melt change. Seismic tomography provide information about
the wave velocities, and also attenuation and anisotropy of these regions: the size of the magma
reservoir(s) can be inferred from seismic methods. That’s why a theory to quantify the amount of
melt in the magma reservoir has been developed. More precisely DEM theory is used to examine the
effect of introducing inclusions of melt into a solid matrix on the elastic constants (and hence shear
and compressional velocities), attenuation, and anisotropy of the resulting medium.

Rock elastic properties The DEM theory is used to show that microstructure plays a significant
role in determining the effective elastic properties of porous materials such as porous foam composed
of glass [BB93b], quite good agreement is obtained with experimental data.

The effective conductivity of concrete The effective conductivity of concrete in its representation
as a composite material, with its three phases: matrix, aggregates, and the interfacial transition zone
(a thin shell of altered matrix material surrounding each aggregate grain). Assigning each of these
phases a different transport parameter, diffusivity or conductivity, results in a complicated composite
transport problem. To evaluate the conductivity of concrete, in [GB99] an aggregate particle with a
surrounding interfacial transition zone is mapped onto an effective particle of uniform conductivity,
which is then treated in usual differential effective medium theory.

5.2.3 Reiterated homogenization and Rigorous D-EMT

5.2.3.i Reiterated Homogenization

The method of Reiterated homogenization was introduced in Bensoussan-Lions-Papanicolaou [BLP78],
used, discussed and developed by Avellaneda [Ave87] and Kozlov [Koz95]; by Allaire, Briane [AB96]
and Jikov, Kozlov [JK99].
The typical problem solved by reiterated homogenization is the following is the one discussed the in
sub subsection 5.2.1.v: {

−∇.(Aε(x)∇uε) = f in Ω
uε = 0 on ∂Ω

(5.88)

But now the conductivity matrix Aε has n different ordered microstructure length scales ε1 > ε2 >
· · · > εn (which depends on a parameter ε) and is written

Aε(x) = A(x,
x

ε1
, · · · , x

εn
) (5.89)

where A(x, y1, . . . , yn) ∈
(
L∞(Ω)

)(n+1)2 is T d1 periodic with respect to each variable yk and respect
the coercivity condition 5.70. Each of these scales is microscopic in the sense that for 0 ≤ k ≤ n

lim
ε→0

εk = 0 (5.90)

And the ratio between scales very small: the scales are well separated and can be distinguished from
each other.

lim
ε→0

εk+1

εk
= 0 (5.91)

This is a very strong and yet fundamental assumption for the method used in these works.
The key process in the reiterated homogenization of the operator associated to A(x, y1, . . . , yn) is
to homogenizes first with respect to the faster variable yn, considering x, y1, . . . , yn−1 as a parame-
ter to obtain an operator associated with an homogenized matrix An−1(x, y1, . . . , yn−1) where the
dependence on the faster variable has vanished and been replaced by an effective behavior. The
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next step is to homogenize with respect to yn−1 considering x, y1, . . . , yn−2 as a parameter and this
inductive process goes on until one has homogenized on all the fast variables y1, . . . , yn to obtain
an effective operator associated to an effective matrix A0(x). The justification of this procedure is
obtained thanks to the separations of scales 5.91.
In Bensoussan-Lions-Papanicolaou [BLP78], εk = εk thus this separation is clear. And this justifica-
tion is done for A continuous in y1, . . . , yn in two steps: First approximate A by Aδ smooth in all
the variables and justify the reiterated homogenization for Aδ through asymptotic expansion over
the scales ε and the energy method (see sub subsection 5.2.1.v). Next control the difference A− Aδ
in Lp norm thanks to a generalization of a analytical theorem ([Mey63]) on the Lp estimate for the
gradient of solutions of second order elliptic divergence equations.
In Allaire-Briane [AB96] this justification is done for less regular conditions:

A(x, y1, . . . , yn) ∈
(
L∞(Ω)

)(n+1)2 (5.92)

The main tool is the extension of the notion of two scale convergence 5.2.1.v to the notion of n+ 1
scale convergence. One of the main theorems obtained is the following:
if the scales are microscopic 5.90 and separated 5.91, A is coercive 5.70 and bounded 5.92; if the
following mixing condition is satisfied (called n+ 1-scale convergence):
for all functions ϕ ∈ L2

(
Ω, C(y1 ∈ T d1 , . . . , yn ∈ T d1 )

)
(where C(y1 ∈ T d1 , . . . , yn ∈ T d1 ) is the space of

continuous functions on (T d1 )n)

lim
ε→0

∫
Ω
Aε(x)ϕ(x,

x

ε
, . . . ,

x

εn
)dx =∫

Ω×(T d
1 )n

A(x, y1, . . . , yn)ϕ(x, y1, . . . , yn)dx dy1 · · · dyn
(5.93)

and if limε→0 ‖(Aε)ij‖L2(Ω) = ‖Aij‖L2(Ω×(T d
1 )n) then, the solution uε of the equation 5.88 converges

weakly to a function u of H1
0 (Ω) and its gradient ∇uε (n+ 1)-scale converge to a limit

∇u(x) +
n∑
k=1

∇yk
uk(x, y1, . . . , yk)

where (u, u1, . . . , un) is the unique solution in the space

H1
0 (Ω)×

n∏
k=1

L2[Ω× (T d1 )k−1;H1
l oc(T

d
1 )]

of the (n+ 1)-scale homogenized system⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−∇yn

(
A
(∇u(x) +

∑n
j=1∇yjuj

))
= 0

−∇yk

[ ∫
(T d

1 )n−k A
(∇u(x) +

∑n
j=1∇yjuj

)
dyk+1 . . . dyn

]
= 0 1 ≤ k ≤ n− 1

−∇x

[ ∫
(T d

1 )n A
(∇u(x) +

∑n
j=1∇yjuj

)
dy1 . . . dyn

]
= f

(5.94)

This system of equations reflects the inductive process in the reiterated homogenization of the oper-
ator associated to A (u is also the solution of 5.88 with Aε replaced by A0(x) obtained from A after
n successive steps of reiterated homogenization)

5.2.3.ii Multi-scale Dilution of Phases

In [Ave87], M. Avellaneda proposed a mathematical interpretation of the heuristic D-EMT proce-
dure. To this end he uses the techniques of iterated Homogenization (of Bensoussan, Lions and
Papanicolaou since this work is anterior to [AB96]) and G-convergence to construct a material which
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reflect a D-EMT property (the analytical tool for the study of G-convergence in this paper is the
theorem of Meyers-Elcrat [ME75] on the higher integrability of the gradient of H1 solutions of elliptic
systems of partial differential equations).
This is done in the framework of linear elastostatics equations:

divC(x)Du = 0 (5.95)

Where Du(x) = 1
2 [∇u + t∇u] is the second order tensor of linearized deformations and appears as

the symmetric part of the gradient of the displacement u(x) (which is a vector). C(x) = Cijkl is
fourth-order tensor field, which links deformations with constraints (symmetric in the permutation
of the indices), measurable in x ∈ R

d and satisfying for fixed τ1, τ2 > 0, all x ∈ R
d and all symmetric

d× d matrix η.

τ1η : η ≤ C(x)η : η ≤ τ2η : η (5.96)

(: is the contraction procedure η : ξ = ηijξij)

The DEM material associated to the tensor of elasticity Γj,ε is built by adding m different
phases and m.j different periodic scales (its elastic properties are varying in periodic length scales
ε, ε2, · · · , εm, · · · , εm.j , where ε is a small parameter) to a backbone structure associated to the con-
stant tensor field C0

The phase k appears at scales k+m.p with p varying between 0 and j − 1. Thus, when the number
m of phases remains fixed and j the number of different scales associated to each phase grows large,
each phase is present in a ”homogeneous” way at all scales. However, it is important to notice that
the ratio (here:small scale divided by big scale) between two scales associated to two different phases
is at least in ε. This means that, although each phase is present at ”all” scales, they do not ”see”
or ”interact” with each other; this is true at least in the limit when ε goes to 0 and the tensor of
elasticity Γj,ε G-converge towards Cj which reflects an effective media issued from the previous one
by m.j successive steps of iterated homogenization.
Now, imagine that in the first material Γj,ε the microscopic influence of each phase on the macro-
scopic structure is very small; this is reflected by an integer parameter n and the mathematical image
to have in mind is that when the phase k appears at the scale k + m.p (0 ≤ p ≤ j − 1) it does so
with a concentration 1

nγk(
p
n) where t → γk(t) is a continuous function reflecting the fact that the

concentration at which each phase appears might change with the phase but also with the scale at
which it appears.
Write Γn,j,ε for the tensor field associated to this material, as it was done before, let ε goes to 0; you
obtain through the m.j successive steps of iterated homogenization an effective tensor Cn,j.
Now imagine that the number of scales j at which each phase appears in Γn,j,ε goes to infinity and
the microscopic influence 1

n of each scale goes to 0 but the macroscopic influence of each phase j
n

tends towards a constant t. ( jn → t). Then Avellaneda proves that Cn,j converges to a tensor C(t)
satisfying the ordinary differential equation:

dC(t)
dt

=
m∑
k=1

γk(t)Qk
(
C(t)

)
C(0) = C0 (5.97)

where Qk is an application from the space of all periodic elastic tensor fields to that same space;
reflecting the following procedure: Consider a backbone material with constant tensor field C, add
to this material the phase k at concentration μ with the periodic scale ε (this step is reflected with
ε = 1 trough the operator Tk,μ) then let ε goes to 0, you obtain the effective tensor HTk,μ(C) (the
operator H reflects the homogenization step). Avellaneda proves that the new tensor HTk,μ(C) is
differentiable at the concentration 0 and its differential is given by the formula:

Qk(C) =
d

dμ

∣∣∣
μ=0

HTk,μ(C) (5.98)
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Which reflects the linearized influence on the backbone C of the addition of the phase k at low
concentration μ.
The equation 5.97 is to put into relation with the heuristic D-EMT equation

Ck,eff (μ) = C + μQk(C) + o(μ) (5.99)

which gives the effective linear elasticity of the new configuration Ck,eff(μ) after addition of the
inclusion phase k (whose geometry and linear elasticity are reflected in the operator Qk) to the back-
bone material with linear elasticity C. (this also to put into relation with the equation 5.87)
In resume, this mathematical model, says that the equations appearing in DEM Theory and asso-
ciated with m different phase inclusions are ”homogeneous limit equations” reflecting the following
limit image: each phase is present at an infinite number of scales in a homogeneous way. Yet two
different phases never interact because they always appear at scales whose ratio is 0. Moreover the
macroscopic influence of each phase is totally (but non uniformly) diluted in the infinite number of
scales at which it appears (so its influence is 0 at the microscopic level but the total influence=infinite
times 0 is finite and non null).

5.2.3.iii Multi-scale control of the Homogenized Matrix

The work of Jikov-Kozlov [JK99] is interesting as the most recent result on the subject. This works
develops the ideas which were first appeared in S. Kozlov’s paper [Koz95] and follows the paper of
Avellaneda [Ave87] since it can also be seen as the asymptotic Justification of DEM theory as limit
equations.
Consider the divergent operator,

∇.
(
KN (x)∇

)
(5.100)

Where the matrix KN is equal to

KN (x) = Id a
N (

x

ε1
)aN (

x

ε2
) · · · aN (

x

εN
) (5.101)

The operator associated to this matrix reflects a multi-scale medium with decreasing scale factors
ε1, ε2, . . . εN . Notice also that the macroscopic influence of each microscopic scale is self similar in
the sense that KN has a product form and the influence of each scale is translated by a rescaling of
the same function aN .
Just as in the paper of Avellaneda [Ave87]; it is assumed that the microscopic influence aN of each
scale is diluted in the number N of scales: this is translated by following controls

aN (x) = 1 +O
( 1√

N

)
in W 1,∞(T d1 ) (5.102)

∫
T d
1

aN (x)dx ,
∫
T d
1

1
aN (x)

dx ≤ 1 +
β

N
(5.103)

The scales ε1, ε2, . . . are assumed rationally independent in the sense that for ni ∈ Z,
∑k

i=1 εini = 0
if and only if n1 = · · · = nk = 0. This technical assumption is issued to obtain the functional mixing
result: for fi ∈ L2(T d1 )

∫
T d
1

k∏
i=1

fi(
x

εi
)dx =

k∏
i=1

∫
T d
1

fi(
x

εi
)dx (5.104)
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Moreover as in [AB96] it is assumed that the scales separate quickly:

∞∑
k=2

k
( εk
εk−1

)2
<∞ (5.105)

For a real symmetric definite positive matrix, K(x), the constant homogenized matrix Khom associ-
ated to it is defined by the variational formulation: for η ∈ R

d

tη.Kη = inf
u∈H1(T d

1 )

∫
T d
1

t
(
η +∇u(x))K(

η +∇u(x)) dx (5.106)

In the asymptotic limit where the ratio between scales εk+1

εk
is equal to 0, the homogenized operator

associated to 5.100 is characterized by a homogenized matrix AN computed inductively by reiterated
homogenization:

A0 = Id, A1 = (aId)hom, A2 = (aA1)hom, . . . , Ak = (aAk−1)hom, . . . (5.107)

Here εk+1

εk
is not equal to 0 and the separation between scales in the reiterated homogenization

procedure is not complete. However, under the assumptions of dilution 5.102, 5.103 and quick
separation between scales 5.105, it is proven that the complete homogenization procedure associated
to AN control the homogenized matrix (KN )hom associated to the multi-scale media K:

AN −O(
1
N

) ≤ (KN )hom ≤ AN +O(
1
N

) (5.108)

The general technique used to obtain this is to replace the solution of the cell problem by its first
order approximation in the method of asymptotic expansion and use it as a test function in the two
variational formulations (5.106 for the upper bound and a formulation similar to 5.22 for the lower
bound). But the error one makes by this way is of order of the ratio between scales εk+1

εk
multiplied

by a constant which tends to grow with the number k of scales. Thats way the quick separation of
scales 5.105 is needed for this technique so that quick decrease of εk+1

εk
”compensate” the growing

error term with k.
In order to calculate AN , an additional control is added to aN : the differentiability of the homoge-
nization procedure with respect to the dilution factor (also called concentration in DEM-T) 1

N . That
is to say, for any positive definite matrix C obeying the inequalities ν−1Id < C < νId with ν > 0

(
aNC

)
hom

= C +
M(C)
N

+ o
( 1
N

)
(5.109)

where the remainder is uniformly small with respect to C and M(C) is some symmetric matrix which
depends continuously on C (this matrix function is assumed to be of class C1)
Then just as in the paper of Avellaneda [Ave87], when the number of scales N grows towards infinity
and the concentration 1

N towards 0, the asymptotic behavior of the effective medium (KN )hom is
given by the solution of the following equation, which is a rigorous form of the heuristic equations
found in DEM theory.

dA(t)
dt

= M(A), A(0) = Id (5.110)

lim
N→∞

(KN )hom = A(1) (5.111)

5.3 Rate of Convergence Towards the limit process

When homogenization takes place, two natural problems appear, the first one is to identify and
characterize the limit object; the second one and generally harder one is to control the speed of
Convergence towards equilibrium. In general much less work has been done in the latter field.
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5.3.1 From short time estimates to long time behavior

Consider the self adjoint operator H ∈ L2(Rd) given formally by (see [Dav93] for the introduction of
this section).

Hf = −
∑
i,j

∂i
{
Aij(x)∂jf

}
(5.112)

where A(.) lies in the space F of measurable functions on R
d with values in the set of real symmetric

matrices, and satisfying

λ−1 ≤ A(x) ≤ λ (5.113)

for almost all x ∈ Rd, where 0 < λ <∞. As it has been shown in the chapter 3 many bounds on the
heat kernel p can be written in the form

p(t, x, y) ≤ c1,δt
− d

2 exp[−d(Amax, x, y)
2

(4 + δ)t
] (5.114)

p(t, x, y) ≥ c2,δt
− d

2 exp[−d(Amin, x, y)
2

(4− δ)t
] (5.115)

valid for all δ > 0 and t > 0, where Amin and Amax lie in F . In the above, d(B,x, y) denote the
Riemannian distance between x and y for the Riemannian metric B−1 given B ∈ F . Explicitly

d(b, x, y) = sup{ψ(x) − ψ(y) : ψ ∈ DB} (5.116)

where DB is the set of ψ ∈ C∞(Rd) such that∑
i,j

Bij(x)∂iψ∂jψ ≤ 1 (5.117)

for almost x ∈ Rd.

Aronson type estimates In [Aro67] Aronson proved the existence of the estimates of the form 5.114
and 5.115 with

Amin,i,j(x) = αδij , Amax,i,j = βδij (5.118)

for some positive constants α and β independent of t and x.
In [Dav87], E.B. Davies proved the upper bound with Amax = A.
In is also interesting to note that in [DP89], E.B. Davies and M.M.H. Pang prove that

0 ≤ p(t, x, y) ≤ c4t
− d

2 (1 +
|x− y|2

t
)

1
2 exp[−d(A,x, y)

2

4t
] (5.119)

and in one dimension the following explicit formula is available for x ≤ y

d(a, x, y) =
∫ y

x
A(z)−

1
2dz (5.120)

Short time behavior When A is continuous it is known that

lim
t↓0

t ln p(t, x, y) = −d(A,x, y)
2

4
(5.121)

which gives the short time behavior; this limit reflects a large deviation principle which says that for
x, y fixed and t ↓ 0 the paths of the process concentrate on the geodesics minimizing the distance
between x and y.
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5.3.1.i Long time behavior in periodic medium

Now imagine that A is periodic of period T d1 for instance. Fix the points x, y; for t small (if A is
continuous) the behavior of the heat kernel is governed by the large deviation principle 5.121, the
process remains close to the geodesics. For intermediate t; the process feel the particular form of
A the heat kernel is controlled by Aronson type estimates 5.118. For t large the process only sees
an effective medium and it has been conjectured by E.B. Davies in [Dav93] its heat kernel satisfies
bounds of the form 5.114 and 5.115 where for all x ∈ Rd

lim
t→∞Amin(x) = lim

t→∞Amax(x) = Aeff (5.122)

Where Aeff is the homogenized matrix associated to the effective medium (see the sub subsection
5.2.1.v).
This conjecture concerns the following important question: At what speed, the heat kernel pass from
the Aronson estimates behavior to the effective medium behavior ?

J.R. Norris and D.W. Stroock result In dimension one; the lower bound is a corollary of J.R.
Norris and D.W. Stroock’s result [NS89]. More precisely Norris Stroock proved the lower bound in
dimension d with

A−1
min = gt ∗ A−1 (5.123)

where ∗ denotes convolution,

gt(x) = t−
d
2 g(

x√
(t)

) (5.124)

and g is a positive function on R
d which satisfies∫

g = 1,
∫
g−1|∇g|2 <∞ (5.125)

Then the Norris-Stroock lower bound satisfies

lim
t→∞Amin(x) = K (5.126)

where the constant matrix K is given by

K−1 =
∫
T d
1

A(x)−1 (5.127)

E.B. Davies result In [Dav93], E.B. Davies obtain the upper bound in the general non-periodic
one-dimensional case, which completes the proof of the conjecture in one dimension. .
More precisely, it is proven in [Dav93] (dimension one) that

p(t, x, y) ≤ c5(λ)t−
1
2 exp[−|x− y|2

4Aeff t
] (5.128)

provided

t−
1
2 ≤ exp[−|x− y|2

4Aeff t
] (5.129)
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Norris result In [Nor92], J.R. Norris proves that

lim
|x−y|2/t→∞

|x−y|2/t(ln t)+→0

{
ln t

d
2 + ln p(t, x, y)

}
d(Aeff ,x,y)2

4t

= −1 (5.130)

Thus precise asymptotic are obtained for |x− y|2/t→∞:

• if at the same time |x − y|/t → ∞ then the paths of the process concentrate on the geodesics
and the behavior of the heat kernel is controlled by the Riemannian distance d(A,x, y)

• if at the same time |x− y|2/t(ln t)+ → 0, the process has the time to feel the periodic structure
and the behavior is controlled by the homogenized metric d(Aeff , x, y)

5.3.2 Generalized Aronson estimates

In [Nor97] (see this article for this subsection), J.R. Norris consider the operator L on L2(Rd) given
by ∫

Rd

fLgdm = −
∫
Rd

∇f(A+ Γ)∇g dm +
∫
Rd

fb∇gdx (5.131)

where m is a Borel measure on R
d uniformly equivalent to Lebesgue measure with density μ,

A : R
d → R

d ⊗ R
d, Γ : R

d → R
d ⊗ R

d (5.132)

are measurable, respectively symmetric and anti-symmetric and where b ∈ Rd is a constant vector.
There exists a constant λ ∈ (0,∞) so that for all x, l ∈ Rd

l2

λ
≤ tl.A(x).l ≤ λl2,

1
λ
≤ μ(x) ≤ λ (5.133)

|Γ(x)| ≤ λ (5.134)

In the case b �= 0, it is also assumed that for some bounded measurable vector field ξ on R
d all

test-functions f verify ∫
Rd

fdm−
∫
Rd

fdx =
∫
Rd

ξ.∇fdx (5.135)

with

|b||ξ(x)| ≤ λ (5.136)

Formally

Lg = divm
(
(A+ Γ)∇g) +

b

μ
.∇g (5.137)

where divm denotes the divergence associated with m

Theorem 5.3.1. There exist a constant C <∞, depending only on λ and the dimension, such that
for all x, y ∈ R

d and t > 0

1

Ct
d
2

exp
(− C

|x− y|2
t

) ≤ p(t, x, y + bt) ≤ C

t
d
2

exp
(− |x− y|2

Ct

)
(5.138)
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5.3.2.i Long time estimates in periodic bounded medium

Now assume in addition, that A,Γ, μ are periodic of period T d1 and

m(T d1 ) = 1, |b| ≤ λ (5.139)

then one can characterize an effective conductivity σ by the following variational formulation (σsym
is its symmetric part):
for all l, ξ ∈ Rd

t
(
ξ − σl

)
σ−1
sym

(
ξ − σl

)
= inf

f,H

∫
T d
1

| ξ
μ
−H∇m − (A+ Γ)(l −∇f)− (b.l)ξ + b

f

μ
|2A−1dm

(5.140)

Where the minimum is taken on f ∈ C∞(T d1 ) such that
∫
T d
1
d dm = 0, H varies in the set of smooth

skew-symmetric d×d periodic matrices in C∞(T d1 )d(d−1)/2. H∇m is the divergence of H with respect
to m that is to say; the vector field characterized by∫

T d
1

(H∇, ω)dm = −
∫
T d
1

(H, dω)dm (5.141)

for all one-forms ω.

(
H∇)

i
=

d∑
j=1

∂jHij (5.142)

Theorem 5.3.2. There exist are constants α ∈ (0, 1) and C < ∞, depending only on λ and the
dimension, such that for all x, y ∈ R

d and t > 0

1

t
d
2

exp
(
− C

eC
|x−y|2

t

tα
− C

(
1 +

|x− y|2
t

) 1
2 −

t(x− y)σ−1
sym(x− y)
4t

)
≤ p(t, x, y + bt)

≤ C

(
1 + |x−y|2

t

) d
2

t
d
2

exp
(
C
eC

|x−y|2
t

tα
−

t(x− y)σ−1
sym(x− y)
4t

)
(5.143)

Thus precise homogenized asymptotic are obtained in the regime |x − y|2/t → ∞ and |x −
y|2/t(ln t)+ → 0.

5.3.2.ii Long time estimates in periodic bounded differentiable medium

Now assume in addition, that A,Γ, μ are weakly differentiable and for all i, j; x ∈ R
d

|∇Aij | ≤ λ, |∇μ| ≤ λ (5.144)

|∇Γij | ≤ λ (5.145)

then

Theorem 5.3.3. There exist are constants α ∈ (0, 1) and C < ∞, depending only on λ and the
dimension, such that for all x, y ∈ R

d and t > 0

1

t
d
2

e−C(V E+E
1
2 ) exp

(
−

t(x− y)σ−1
sym(x− y)
4t

)
≤ p(t, x, y + bt)

≤ C
E

d
2 eCV E

t
d
2

exp
(
−

t(x− y)σ−1
sym(x− y)
4t

) (5.146)

where V = |x−y|
t and E = 1 + |x−y|2

t
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Thus precise homogenized asymptotic are obtained in the regime |x−y|2/t→∞ and |x−y|/t→ 0.

5.3.3 Further results

5.3.3.i Speed of convergence to equilibrium in medium with two distinct periodic scales

Rabi Bhattacharya (in [Bha99], see also [BDG99] by Bhattacharya - Denker and Goswami), analyze
the large-time behavior of a class of time-homogeneous diffusion processes in R

d whose medium is
characterized by a small scale T d1 and a large scale RT d1 .

dyt = σ(yt)dωt + (b(yt) + β(
yt
R

))dt (5.147)

where b and β are divergence-free drifts of period T d1 .
This leads to phase changes in the behavior of the process as time increase through different time
zones. In [Bha99] two distinct Gaussian phases (homogenized) occurs:

• The initial Gaussian phase is exhibited over 1 << t << R
2
3 ; where b has been replaced by an

homogenized drift and homogenization is realized on the smaller scale and the fluctuation of β
is not felt

• Depending on geometric conditions on the velocity field β the final Gaussian phase occurs
for times t >> R2(lnR)2, t >> R2 lnR or t >> R4(lnR)2; where b and β are replaced by
homogenized drifts and homogenization is realized on both scales.

• Particular examples of b and β show the existence of non Gaussian intermediate phases when
R→∞ and the time stays in the intermediate phase given by R.

This interesting article was motivated in part by the ”scale effect” in the dispersion of solute mat-
ter such as a chemical pollutant injected at a point in an underground water system in which the
increase of dispersivity is explained by existence of multi-scale heterogeneities in the medium. It
shows the dynamical image of the scales separation phenomenon. Indeed the divergence free drifts b,
and β manifest there influence at well separated scales in time and space and above a certain scale
their uniting creates a Gaussian diffusion but with greater diffusivity than in the molecular diffusion
coefficient of the solute.
It is interesting to observe that the crucial key leading to results of this article is the control of the
speed of convergence towards equilibrium (one of the means is to control of the spectral gap).
An other interesting observation of this article lies in the particular shear flow example b = e1c1 sin(2πx2)
and β = e1c2 cos(2πx2). Indeed between the two Gaussian regime, when R

4
3 << t << R2 or t ∼ cR2,

this diffusion shows a non Gaussian behavior.

5.3.3.ii Competition between large deviation and homogenization

In [FS99] Mark I. Freidlin and Richard B. Sowers consider in R
d the following kind of stochastic

differential equation

dyt =
√
εσ(

yt
δε

)dωt + b(
yt
δε

)dt (5.148)

Where σ and b are periodic of period T d1 .
It is shown that there are three regimes depending on the relative rates at which the small viscosity
parameter ε and the homogenization parameter δ tend to 0.

• limε δε/ε = 0. Homogenization dominates, the large deviation of yt are the same as those of a
constant-coefficient system.
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• limε δε/ε = c ∈ (0,∞). The generator tends to an operator characterized by large deviation
and homogenization

• limε δε/ε = ∞. The large deviation principle for yt is given by first finding the large deviation
principle with δ fixed and then letting the period δ tend to zero.

See also [FX98], [KP91], [Bal95], [Mak93] for more results of this kind.





Part III

COMMENTS, MORE RESULTS AND INSIGHT





6. SUB-DIFFUSIVE MODEL

6.1 Insight

6.1.1 General set up

The purpose of this chapter is to give to the reader an insight of the variety of phenomena manifested
by the solution of the stochastic differential equation (corresponding to 1.1){

dyt = dωt −∇V (yt)dt
y0 = 0

(6.1)

First observe that this SDE is a model of transport associated to the following partial differential
equation

∂

∂t
f =

1
2
Δf −∇V∇f (6.2)

Of course one could consider a greater variety of PDE such as

∂

∂t
f =

d∑
i,j=1

ai,j(x)∂i∂jf + b.∇f (6.3)

but the ideas and tools given here would remain the same (however as it will be shown in the next
chapter the behavior might change). Moreover the model 6.2 allows to dissociate the influence of the
variation of the local diffusivity ai,j (which is fixed to be 1/2 here) from the influence of variation of
the local drift b (which, here, is the gradient of a potential V ).
Thus this chapter focus on the richness of phenomena manifested by the diffusion associated to the
invariant measure e−2V . For a physicist V would represent the potential energy landscape on which a
system yt is evolving under the influence of a thermal noise dωt and the force −∇V which reflects the
propensity of the system to minimize the potential energy, V will be assumed to be time independent
(the next step of exploration would be to make it time dependent).
First observe that if V is periodic or ergodic (and bounded) εyt/ε2 converges (as ε→ 0) to a Gaussian
process with diffusivity matrix D(V ) for which one has a beautiful variational formulation.
Next observe that by the Aronson’s estimates that if V is bounded then yt exhibits a Gaussian
behavior. This is well known, so now let’s look a little bit beyond this picture and assume that V is
unbounded.
If one knows the particular shape of V one might be able to say something on the particular behavior
of yt (particular to the shape) but this is not the case considered here. Now decompose the fluctuations
of V into a infinite sum V =

∑∞
k=0 S1/Rk

Uk where Rk stands for the fluctuations of typical size Rk
(Rk growing with k) and Uk (whose typical fluctuations are of size 1) stands for the shape of those
fluctuations and SR is the scaling operator SR : f(x) → SRf = f(Rx). Of course if one knows
nothing about the Uk one can not say anything, in a real physical system it is reasonable to assume
that the Uk are spatially ergodic, it would reflect the spatial homogeneity of the system for each
typical scale, this would be the ideal picture to analyze but it will not be described in here because
it constitutes the next step of exploration. Thus the first step is to analyze a simpler model where
the ergodicity of the Uk is replaced by a periodicity condition (each Uk is periodic of period T d1 ) in
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a physical system this would mean that the medium on which is evolving the system can be seen as
the manifestation of a large number of scales with crystalline structures.
Moreover it is assumed that the norms ‖∇Uk‖∞ are uniformly bounded (by K1, actually in dimension
one, an uniform bound on the Holder continuity is sufficient), this bounds means that the drift
generated by the scale n is bounded by K1/Rn and converges towards 0 with the scale (the bigger
the scale, the longer one has to wait to feel its drift). Actually this condition is not absolutely
necessary to have a well defined diffusion, however it will be shown that without this condition the
diffusion can be not governed by the holistic influence of all the scales but by the influence of a single
one that might change drastically with the scale (this case is interesting but not studied here.)
Observe that this medium is characterized by a smaller scale R0 (which is physical) but it has no
upper bound on the larger scales, of course one could say the size of the known universe is finite
and this model is just a mathematician’s fantasy and one would be right however one always observe
physical systems over an interval of time which is finite, and it will be shown that to each spacial scale
Rk corresponds a temporal scale tk, and if the system has only a finite number of scales R0, . . . , Rn
then between the times (t0, tn) and the spacial scales (R0, Rn) one will not see the difference (one
has to wait for the time tn or observe the system over distances Rn to see that the system has only
a finite number of scales). Thus for those real physical systems it is important to keep in mind
that the strange behavior of the diffusion yt exhibited in this chapter will manifest itself between
corresponding time and space scales.
Rk is assumed to grow to infinity as k →∞ at least geometrically: the ratio rn = Rn/Rn−1 between
two successive scales is assumed be lower bounded by ρmin ≥ 2 to represent the different orders of
magnitude (of course an other approach would be to decompose V on a continuum of scales but
actually it will be shown that this approach is in a sense similar in the sense of overlapping ratios),
the greater rn is, the more separated the scales Rn−1 and Rn are.
Thus Rn ≥ ρnmin, now a useful assumption is made: Each ratio rn is an integer, with this assumption
each Rn is an integer and each aggregation of scales V n

0 is periodic of period T dRn
. Of course this

assumption is artificial in the sense that it is made to simplify the computations and the proofs (if
one wants absolutely to translate this assumption into a physical scheme one would say that the
crystalline structure of the scale n is a sub-crystalline structure of the scale n+ 1), nevertheless the
ideas given here remain valid without this assumption even in the ergodic case (Un are ergodic), what
does change is the difficulty to translate them into mathematical proofs (actually in dimension one
it is easy to get rid of this assumption, but it will not be done here because it will only makes the
presentation less clear without bringing any new idea).

6.1.2 Heuristic analysis of the mean squared displacement

The purpose of this subsection is to give a short heuristic analysis of the model given in the subsection
1.1.1, more precisely the objective here is to introduce the though process, the philosophy and the
basic concepts which will allow to obtain rigorous results on the solution of the SDE 6.1.
Observe that

yt = x+ ωt −
∫ t

0
∇V n

0 (ys) ds −
∫ t

0
∇V∞

n+1(ys) ds (6.4)

Observe that the term
∫ t
0 ∇V∞

n+1(ys) ds in 6.4 is bounded by 2K1t/Rn+1, thus for t fixed as n ↑ ∞,
the global influence of the scales n+ 1, . . . ,∞ is less and less felt by the diffusion, this is interesting
! but one has to be careful: observe that although bounded by 2K1/Rn+1, ∇Vn+1 may vary over
very small scales (since only the first derivatives of the Un are uniformly bounded), thus one can not
say that

∫ t
0 ∇V∞

n+1(ys) ds behaves as the uniform drift tV∞
n+1(x) whose value is fixed by the starting

point x of the diffusion;
∫ t
0 ∇V∞

n+1(ys) ds is a small drift but not uniform !

Thus it is natural to seek for a critical scale nflu (flu stands for fluctuating scale) above which the
influence of the term

∫ t
0 V

∞
n+1(ys) ds can be neglected in front of the term

∫ t
0 V

n
0 (ys) ds. These brings
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to the important question: how to determine nflu? The answer is: it depends on which property of
the diffusion one is looking at.
Actually since the name of this thesis begins with anomalous one will not be surprised that this
chapter will focus on the properties which underline the anomaly of a diffusion:

• The mean squared displacement E[y2
t ]

• The mean time to exit from a ball of radius r: E[τ(B(0, r))]

• The tail of the transition probability densities P[yt.l ≥ h] (l ∈ S
d where S

d is the unit sphere of
R
d)

Consider for instance the mean squared displacement E[y2
t ], write for l ∈ S

d, χnl the solution of the
cell problem associated to V n

0 (which is periodic of period Rn: now one understands why it is useful
to assume the ratios to be integers, this ensures the existence of a periodic solution to cell problem
associated with an aggregation of finite number of scales). Then one can deduce from 6.4 that for
l ∈ S

d (from now, assume to simplify the equations that the starting point x of the diffusion is 0 and
choose χnl (0) = 0)

yt.l = χnl (yt) +
∫ t

0
(l −∇χnl (ys))dωs −

∫ t

0
∇V∞

n+1(ys)(l −∇χnl (ys)) ds (6.5)

and after a basic computation

E[|yt.l|2] ≤ 3E
[ ∫ t

0
|l −∇χnl (ys)|2

](
1 + ‖∇V∞

n+1‖2
∞t

)
+ 3‖χnl ‖2

∞

≥ E
[ ∫ t

0
|l −∇χnl (ys)|2

](1
3
− ‖∇V∞

n+1‖2
∞t

)− ‖χnl ‖2
∞

(6.6)

Now let’s stop a while to have a close look at 6.6, this equation suggests that the influence of the
larger scales can be neglected if ‖∇V∞

n+1‖2∞t < 1/6 which is implied by

6K1t < R2
n+1 (6.7)

Thus it is natural to fix the value of nflu to be the first integer such that 6K1t < R2
nflu+1, thus

for the mean squared displacement nflu is fixed by the time t and it is natural to call the scales
nflu + 1, . . . ,∞ the drift scales since their influence appear to be limited by ‖∇V∞

n+1‖∞.
Now observe the term ‖χnl ‖2∞, ‖χnl ‖∞ reflects the typical distance put by a diffusion generated by LV n

0

so that the drift
∫ t
0 ∇V n

0 (ys) ds produced by the smaller scales 0, . . . , n, behaves like a martingale.
Observe that for

E
[ ∫ t

0
|l −∇χnl (ys)|2

]
> 12‖χnl ‖2

∞ (6.8)

the error term ‖χnl ‖2∞ can be neglected in front of the leading term E
[ ∫ t

0 |l − ∇χnl (ys)|2
]
, and the

inequality 6.8 is valid for t big enough:

t > t1,n (6.9)

Now observe the term E
[ ∫ t

0 |l −∇χnl (ys)|2
]
, if the generator of ys were LV n

0
, homogenization theory

tells that this term would be equal to

tlD(V n
0 )l t+ E[φnl (yt)] (6.10)

where φnl is the periodic solution of the ergodicity problem 5.10 associated to V n
0 , but here the

generator of the diffusion is LV n
0 +V∞

n+1
, nevertheless the larger scales constitute a very small drift and
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it is reasonable to think that their perturbation of the generator will perturb a little bit but will not
destroy the homogenization picture 6.10 (this is an heuristic hocus pocus for the moment).
Thus it is reasonable to think that for

tlD(V n
0 )l t > C‖φnl ‖∞ (6.11)

E
[ ∫ t

0 |l −∇χnl (ys)|2
]

will be of order of tlD(V n
0 )l t. Let’s see now what has been obtained: for

t2,n < t < R2
n+1 (6.12)

one has

E[|yt.l|2] ∝ tlD(V n
0 )l t (6.13)

Thus, a priori, to obtain the behavior of the mean squared displacement, one has to estimate the
behavior of the effective diffusivity associated to an homogenization over the smaller scales 0, . . . , n
and also to estimate t2,n which reflects the typical time put by the diffusion to homogenize on those
smaller scales.
One might wonder how this will give the anomalous behavior of the diffusion: assume that the ratio
between scales is constant ρmax = ρmin = ρ, and the effective diffusivity associated to each scale is
constant and isotropic D(Un) = λId, homogenization theory says that if the fluctuations Un of the
medium are not constant functions then 0 < λ < 1. Observe now the effective diffusivity associated
to an aggregation of two scales V 1

0 for instance, then the asymptotic expansion method allows to
see that as ρ ↑ ∞, D(V 1

0 ) → λ2, thus if ρ is very large, for each scale that one adds, the effective
diffusivity decreases by a factor λ < 1 and D(V n

0 ) ∝ λn+1. Now assume that the typical time to
homogenize on those scales t2,n behaves like R2

n; then the condition 6.12 fix the value of the cut-off
scale nflu to be

nflu ∝ ln t
2 ln ρ

(6.14)

And it follows from 6.13 that

E[|yt.l|2] ∝ t1−ν (6.15)

with

ν = − lnλ
2 ln ρ

> 0 (6.16)

Which says that the yt is sub-diffusive. Of course this short analysis of the mean squared displacement
was heuristic in the sense that the hard point is to make it rigorous, however it has allowed to
introduce some basic concepts and ideas which will be discussed in the next subsection.

6.1.3 The strategy

Consider U ∈ C∞(T dR), thus U reflects a periodic medium of period T dR (R > 0), the patterns formed
by the particular shape of U in its period are called soft obstacles. Consider now a Brownian motion
evolving in this medium and submitted to the drift −∇U , the generator of this diffusion is LU . From
a heuristic point of view which can be justified through the Dirichlet form if U takes only values
equal to 0 +∞ (then the forms shaped by U are called hard obstacles) where the boundary of the
region with +∞ is smooth, then yt is a Brownian motion moving in the 0 value region and with
normal reflection against the boundary of the +∞ value region.
Then one can associate U with characteristic mixing length (correlation length) ξm(U) and a char-
acteristic mixing time τm(U). They represent the ”size” of the spatial correlation and the temporal



6. Sub-diffusive model 101

correlation of a diffusion evolving among the obstacles shaped by U.
In other words, ξm(U) represents the typical length after which the diffusion has homogenized on
the inhomogeneities of U and ”sees” only an effective medium characterized by D(U) , the effective
diffusivity of U (one might think that ξm(U) is of order of the period length R, in general one will be
right but it will be shown that this is not always the case); and τm(U) reflects the typical time needed
by the diffusion to mean the inhomogeneities of U and ”feel” only an effective medium. (note that
ξm(U) and τm(U) depends on molecular diffusivity of the medium which is 1 here since the diffusive
transport is represented by a Brownian motion)
Now since U is smooth ∇U is also characterized by a visibility time τv(U) and a visibility length
ξv(U). In other words, ξv(U) represents the length (and τv the delay) below which the diffusion
starting from any point, is not too much influenced by the drift ∇U or it feels only a reflection
against an infinite d− 1 dimensional wall if U represents a hard obstacle with smooth boundary (the
wall is then the tangent hyper-plane to the obstacle at x). If U is smooth it is natural to expect that
τv(U) ∝ 1/‖∇U‖∞ and in the case of hard obstacle it is natural to expect that ξv(U) is of order of
the inverse of the typical curvature of the boundaries of the obstacles. Let’s remember the previous
example on the mean squared displacement, when U is smooth τv(U) does not necessarily represent
the time below which ∇U(yt) is very close to ∇U(x) where x is the starting point of the diffusion
(in a sense here there is a conceptual difference between hard and soft obstacles).

How this is translated in the framework of a process evolving among an infinite number of scales:
For instance for the mean squared displacement: It is clear that the only parameter here is t, for
an aggregation of scales V n

0 if τm(V n
0 ) < t then V n

0 is felt by the diffusion only through its effective
diffusivity D(V n

0 ) and for the larger scales if t < τv(V∞
p ) then the drift associated to V∞

p can be
neglected. Now assume that

τm(V n
0 ) < t < τv(V∞

n+1) (6.17)

Then it follows that for this value of t the mean squared displacement behaves as if the diffusion had
homogenized on the scales 0, . . . , n without feeling the scales n+ 1, . . . ,∞. Which leads to

E[y2
t ] ∝ tTrace

(
D(V n

0 )
)

(6.18)

and if D(V n
0 ) decreases geometrically to 0 with n as in the previous example, the diffusion shows an

anomalous behavior. One might think that the parameters ξm, ξv, τm, τv associated to each aggre-
gation of obstacles are no more than conceptual tools, this is not the case: they appear everywhere
in the computations for each property than one tries to characterize; now one might think that if
they appear everywhere it is because of the method used in this work, this is an other point but
those parameters are hidden in the results which characterize the behavior of a IHPD which are
independent from the strategy used to prove them.

6.1.4 Working plan for the application of the strategy

Now it has become clear that to characterize the behavior of an IHPD one has to find estimates (the
sharper, the better) of the mixing and visibility times and scales associated to each aggregation of
scales. Moreover to prove the sub-diffusive behavior of the IHPD one has also to obtain an estimate
of the speed of convergence towards 0 of the effective diffusivity associated with the aggregation of
the first n+ 1 smaller scales.
One might think that this will be sufficient, unfortunately this is not as simple as that, indeed if
the ratio between scales is bounded ρmax < ∞, although one can obtain very sharp estimates for
ξm, τm, ξv, τv and D(V n

0 ) one find oneself in front of the following inequalities

τm(V n
0 ) > τv(V∞

n+1) (6.19)
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and

ξm(V n
0 ) > ξv(V∞

n+1) (6.20)

Which means that one can never find a time t such that

τm(V n
0 ) < t < τv(V∞

n+1) (6.21)

because the scales n+ 1, . . . ,∞ become visible before homogenization on the smaller scales 0, . . . , n
has ended and those larger scales perturb this homogenization process. One might think, that this
pathology is just an artefact created by the fact that the parameters ξm, τm, ξv, τv are not sharp, but
this is not the case; indeed simple examples shows that they are sharp. In fact this pathology is
the reflection of an underlying overlap and interaction between scales, the smaller the ratio between
scales and the stronger and deeper this interaction.
How to get rid of this pathology? One can not because it is inherent one has to do with it !
How to control it? to find the answer observe the following simple example: Consider U ∈ C∞(T d1 )
and the diffusion yt with generator LU evolving in the periodic medium associated to U . For t <
τv(U), yt will behave like a Brownian motion plus a small drift, for t > τm(U), yt will behave like a
Gaussian process with effective diffusivity D(U). It follows that τv(U) < τm(U), then what happens
between τv(U) and τm(U)? Nobody knows because it depends on U , between those two times the
particular shape of U manifests itself in the behavior of the diffusion; homogenization theory does not
control the influence of U between those two times but hide it in the solution of the cell problem χl
associated to U . Can the influence of U be controlled between those two times? Yes, by the Aronson
estimates (which are a control of the transition probability densities) and the control on the Green
functions (which leads to control on the exit times), in those controls U appears as a perturbation
of the Laplace operator.
Now let’s return to the IHPD, and let t > 0, write

nef (t) = sup{p ∈ N : τm(V p
0 ) < t} (6.22)

and

nflu(t) = inf{p ∈ N : τv(V∞
p+1) > t} (6.23)

nper = nflu − nef ndri = nflu + 1 (6.24)

Then the scales 0, . . . , nef are effective scales (ef for effective) in the sense that at the time t
those scales are seen by the diffusion as an effective medium with effective diffusivity D(V nef

0 ).
The scales ndri, . . . ,∞ are drift scales (dri for the drift) in the sense that at the time t their influence
is limited by the norm ‖∇V∞

ndri
‖∞.

What about the remaining nper scales nef + 1, . . . , nef + nper = ndri − 1? One can not consider
those scales as effective scales since the mixing time associated to each of them is bigger than t,
neither can one consider them as drift scales since their visibility time is smaller than t. In fact those
scales are perturbation scales (per for perturbation) in the sense that the particular shape of each of
those scales is manifesting itself in the behavior of the diffusion at the time t. In fact ”interacting
scales” would have been a better name in the sense that it would have reflected the underlying
phenomenon however it has been chosen to call them ”perturbation” scales because they will enter in
the computations and the proofs as a perturbation of the effective scales (if one has no information
about the particular shape of those scales, a priori the only thing that one can do with them is to
consider them as perturbation scales, however with a precise knowledge of their shapes and internal
symmetries one would be able to make them enter into computations as particular scales and keep
their specifities).
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Fig. 6.1: Effective, perturbation and drift scales.
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The scales 0, . . . , nflu (note that nflu ≥ nef ) are fluctuating scales in the sense that at the time
t the fluctuation of the medium at those scales is felt by the diffusion and one can consider none of
them as a drift scale.
If the medium has only a finite number of scales and thus a maximal scale nmax, this makes no
difference in the behavior of the diffusion if ndri ≤ nmax and to the scale nmax corresponds a time
and length scales τmax, ξmax. Thus in the time interval (0, τmax) and length interval (0, ξmax) the
results given in this chapter for a process evolving on a medium characterized by an infinite number
of scales remain valid. After τmax standard homogenization on the scales 0, . . . , nmax will take place
giving a standard Gaussian process with effective diffusivity D(V nmax

0 ).

Now one can see the additional work that has to be undertaken: control the influence of the
perturbation scales. Moreover observe that Aronson estimates and comparison of Green functions
reflects a perturbation of the Laplace operator, here the object which is perturbed is the operator
1
2Δ−∇V nef

0 ∇ and one can not use the strategy used to obtain the Aronson estimates or to compare
Green functions because they will give back an estimate of the influence of V∞

nef +1 which will totally
destroy the slow down of the diffusion due to the effective scales. (one can use Aronson estimates and
Harnack inequality to perturb the Laplace operator but not the operator associated to the effective
scales ! a new strategy has to be found).
How these perturbation scales will manifest themselves in the behavior of the mean squared displace-
ment? Assume that D(V n

0 ) ∝ λnId with 0 < λ < 1, observe that if their influence were null one
would have

E[y2
t ] ∝ tλnef (t) (6.25)

The scales nef + 1, . . . , nef + nper will perturb this relation into

C1tλ
nef (t) 1

μnper(t)
≤ E[y2

t ] ≤ C2tλ
nef (t)μnper(t) (6.26)

with μ > 1, now one can guess that if the perturbation is too strong it might destroy the sub-diffusive
behavior, assume that this is not the case then one would obtain when the ratio between scales is
bounded that

λnef (t)μnper(t) ∝ t−ν2 (6.27)

λnef (t)μnper(t) ∝ t−ν1 (6.28)

with ν1 > ν2 > 0 and

C1t
1−ν1 ≤ E[y2

t ] ≤ C2t
1−ν2 (6.29)

Which gives the sub-diffusive behavior of the mean squared displacement, the lower bound an the
upper bound are not because E[y2

t ] can really oscillate between those two values if the medium is not
self similar.
Now one might wonder what happens in the case of fast separation between scales that is to say
Rn ∼ ρn

α
with α > 1? Indeed, with this fast separation between scales the diffusion has more and

more time to homogenize on the smaller scales before feeling the large ones, and in fact one obtains
that

τm(V n
0 ) < τv(V∞

n+1) (6.30)

Thus there exists times t such that there exists n ∈ N with

τm(V n
0 ) < t < τv(V∞

n+1) (6.31)
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and there is no perturbation scales, thus one will be able to prove sub-diffusivity in a simple way for
those times however a closer look shows that there also exist intervals (tn1 , t

n
2 ) such that for t ∈ (tn1 , t

n
2 )

no n ∈ N does verify the inequalities 6.31 and those intervals correspond to the manifestation of the
particular shape of the fluctuation of the media at each scale n. For those time intervals the number
of perturbation scales will be equal to 1, one can not get rid of them, they are inherent.

In resume here is the list of the main tasks that will be undertaken in this work:

• Estimate D(V n
0 )

• Estimate the mixing times and lengths τm(V n
0 ), ξm(V n

0 ) (actually the estimation of the visibility
times and lengths τv(V∞

n+1), ξv(V
∞
n+1) is a trivial task)

• Obtain a sharp control of the influence of the perturbation scales (this is the hardest part)

• Explore the anomalous behavior of the mean squared displacement

• Explore the anomalous behavior of the hitting times (for each property both cases: ρmax <∞
and ρmax = ∞ will be considered)

• Explore the anomalous behavior of the tail of the probability densities P[yt ≤ h] (here it will be
necessary to improve results on the speed of convergence towards the asymptotic process in a
periodic medium by taking into account the perturbation and improving the speed, one might
wonder how nflu will be fixed here since there are two parameters t and h, it will be shown
that it is fixed by the ratio t/h and this fact has important consequences)

• Explore the pathologies which might appear.

6.2 Anomalous behavior of an IHPD through a simple example

In this section a simple example of anomalous behavior of an one-dimensional IHPD will be given as
an introduction to more general results. Since everything can be computed in this simple example it
will allow to see that a condition ρmin > ρ0(K0,K1, d, λmin, λmax) is indispensable to guarantee the
geometric decrease towards 0 of the effective diffusivity of V n

0 and the sub-diffusive behavior of the
IHPD.
Thus consider a self similar IHPD in dimension one: for all n, Un = U and rn = ρ.
Then (the following corollary is the corollary 8.3.2 of chapter 8).

Corollary 6.2.1. Let yt be a self similar infinitely homogenized potential diffusion. Then

E0[τ(0, r)] = r2+ν(r) (6.32)

with

ν(r) =
Pρ(2U) + Pρ(−2U)

ln ρ
+ ε(r) (6.33)

with ε(r) → 0 as r →∞.

Where Pρ is the topological pressure associated to the shift sρ (see section C.1) and since it
is convex one has Pρ(2U) + Pρ(−2U) ≥ 0. From this corollary it is easy to see that yt shows a
clear anomalous behavior (clear anomalous meaning E[τ(0, r)] ∼ r2+γ with γ > 0) if and only if
Pρ(2U) + Pρ(−2U) > 0. Now the theorem C.1.2 says that this happens if and only if U does not
belong to the closed subspace of C(T d1 ) generated the elements F (x)− F (ρkx) with F ∈ C(T d1 ) and
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k ∈ N. Moreover it is easy to see from the corollary 8.2.2 that there exists ρ0(K1,D(U)) such that if
U is not the constant function, for ρ > ρ0(K1,D(U)) one has Pρ(2U) +Pρ(−2U) > 0 and as ρ→∞

Pρ(2U) + Pρ(−2U) → ln
∫
T d
1

e2Udx+ ln
∫
T d
1

e−2Udx > 0 (6.34)

In resume if U is not a constant function, there exists a constant ρ0(K1,D(U)) such that for ρ > ρ0,
and r big enough E0[τ(0, r)] ∼ r2+ν with ν > 0. The interval (ρ0,+∞) is called ”separating ratios”.
What happens in the region (1, ρ0]? the corollary 6.2.1 and the proposition 9.5.1 say that ln E0[τ(0, r)] =
2 ln r(1 + ε(r)) if and only if

lim
n→∞

1
n

∥∥∥ n−1∑
k=0

(
SρkU −

∫
T d
1

U(x)dx
)∥∥∥

∞
= 0 (6.35)

Can this phenomenon happen? The section 9.5 answers yes with the simple example

U(x) = sin(x)− sin(81x) (6.36)

for this particular shape of fluctuation of the medium V, for ρ = 3, 27 or 81. Thus for this simple
example, E[τ(0, r)] is anomalous (sub-diffusive ∼ r2+ν with ν > 0) for ρ ∈ {2} ∪ {4, . . . , 26} ∪
{28, . . . 80} ∪ {82, . . . ,+∞} and normal (∼ r2) for ρ = 3, 27, 81.
This is interesting. In the interval (1, ρ0] an IHPD may show a normal or an anomalous behavior
according to the value of the ratio between scales ρ and the regions of normal behavior can be
separated by regions of anomalous behavior !
What creates this phenomenon is a strong overlap or interaction between scales that’s why the region
(1, ρ0) will be called ”overlapping ratios”. More precisely what does it mean interaction or overlap
between scales? If one look at the example 6.36 with ρ = 3 one would see that U(x) which is supposed
the represent the fluctuation of the medium V at each scale 3n by U(x/3n) is itself characterized by
fluctuation over at least two scales 1 and 1/81 and for ρ ∈ (1, 81] a fluctuation of size ξ is decomposed
over at least three successive Un. Thus overlap between scales means that for all length scale ξ big
enough in the decomposition

V (x) =
∞∑
n=0

Un(
x

Rn
) (6.37)

the fluctuation of V at the size ξ is not represented by a single S1/Rn
Un but by several ones. Now

one could say, may be there is something wrong with the decomposition of V indeed in the example
6.36 with ρ = 3,

V (x) =
∞∑
n=0

(
sin(

x

3n
)− sin(

81x
3n

)
)

(6.38)

is a rather strange way to write V (x) = sin(x) + sin(3x) + sin(9x) + sin(27x) From where does come
this pathology?
It seems to come from the point of view which has been chosen in this model in the sense that in
this model the shapes Un and the ratios rn are given arbritrary to build a medium V through the
formula 6.37. An other point of view would have been: one knows V , find a decomposition of the
form 6.38 in which the fluctuation of V at each scale ξ is decomposed over at most two Un and at
each scale Rn over a single one. But this is not the point of view considered here, because before
considering this point of view one must be able to characterize an IHPD where the fluctuations Un
would be ergodic and not periodic.
Which point of view is better? it depends on the application. It is clear that if one knows V the
point of view of decomposing V in the best way is more adapted. However if one do not know V and
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Fig. 6.2: Ratios and behavior.

only the shapes of the fluctuations and one wants to explore the properties which might appear with
different choices of ratios rn it is clear that the point of view considered here is more adapted but it
is important to keep in mind that since the summation 6.37 is over an infinite number of elements, in
the overlapping ratios interval V might be very ”sensitive to” or ”unstable under” a slight fluctuation
of the ratios which would be reflected in the instability of the anomaly under a fluctuation of those
ratios. Of course this opens new areas to explore: in the example 6.36 the regions of normality are
only points separated by intervals, imagine now that the ratios can be real numbers and not only
integers, what are the regions of normality? Can they be intervals? Can they be dense in the region
of anomaly? What is their Hausdorff dimension? Moreover in the particular example 6.36 the regions
where the IHPD is not strongly sub-diffusive are quite trivial in the sense that in those regions V is
bounded, but one can imagine that for other examples V could be unbounded the IHPD could have
a weak sub-diffusive behavior in those regions in the sense that E[τ(0, r)] ∼ r2g(r) with g(r) → ∞
as r→∞ but (ln g(r))/ ln r→ 0. This exploration is postponed to a sequel work.

In this work results will be given for a general IHPD underlying its sub-diffusive behavior for
ρmin > ρ0, one might say that this condition on ρmin is artificial in the sense that with a better
strategy one would be able to prove the sub-diffusivity for all the ratios rn ≥ 2, but this is not the
case, if the only knowledge that one has on the fluctuations is K0,K1, λmin and λmax one can not get
rid of this condition.
Indeed assume that U ∈ C∞(T 1

1 ) (non constant) is given, consider the self-similar IHPD such that
for all n, Un = U and rn = ρ. Imagine that one wants to know when this IHPD is clearly sub-
diffusive, then the answer is given by the formula 6.33: this IHPD is clearly sub-diffusive when
P(2U) + P(−2U) > 0 but to give this answer one must have a precise information on the shape
of U , imagine now that one does not have this information and the only thing one knows is D(U)
and that Osc(U) ≤ K0 and ‖∇U‖∞ ≤ K1 then the only way to be sure that this IHPD is sub-
diffusive is that ρ belongs to the separating scale ratios region (ρ0,∞) (the counter example has
been given above if ρ belongs to the overlapping ratios) and the only way to evaluate ρ0 is trough
K0,K1 and D(U) (note that the presence of K1 is natural in the sense that it ensures that U can
not have fluctuations over both scales 1 and 1/ρ). Thus ρ0 the boundary between the overlapping
scales and the separating scales is computed according to the knowledge that one can have on U .
If one knows only K0,K1, λmax, λmin and the dimension d then it will computed according to these
parameters; if one knows the precise shape of U then ρ0 is the first ratio above which the IHPD is
sub-diffusive. In other words, through all this chapter, results will be given showing that a general
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IHPD is sub-diffusive for ρmin > ρ0(d,K0,K1, λmax, λmin) and it is important to remember that the
presence of this ρ0 is indispensable (to avoid the overlapping ratios), if one wants to obtain the
sub-diffusive behavior of a general IHPD with ratios fixed below ρ0 then one is obliged to introduce
new parameters describing the particular shapes of the fluctuations Un. In the overlapping ratios
domain, the influence of the perturbation scales is larger than the influence of the effective scales
and increasing the ratios between scales in this domain can make the IHPD pass from sub-diffusive
behavior to a normal behavior.
In fact the proper question to ask is :”is constant ρ0 given through this chapter the optimal one ?” and
the answer is no because the clarity of the presentation and the proofs has been privileged however
the proofs are constructive and one can follow them to compute the optimal constant (but one would
obtain very heavy expressions), this question is interesting because once one has the optimal constant,
one sees which class of medium V one can decompose in order to obtain a sub-diffusive behavior.

In resume it has been obtained that

Theorem 6.2.1. For a self similar IHPD in dimension one, if U is not a constant function, there
exists a constant ρ0(K1,D(U)) such that for ρ > ρ0,

E0[τ(0, r)] = r2+ν+ε(r) (6.39)

with ν > 0 given by the topological pressure

ν =
Pρ(2U) + Pρ(−2U)

ln ρ
(6.40)

and ε(r) → 0 as r → ∞. Moreover there are examples of U such that there exists ratios ρ1, ρ2

(ρ1 + 10 < ρ2) in the interval (1, ρ0] such that if ρ = ρ1 or ρ2 then C1r
2 ≤ E[τ(0, r)] ≤ C2r

2 and if
ρ ∈ (ρ1, ρ2) ∩ N, E[τ(0, r)] follows the anomalous behavior given in the equation 6.39 with ν > 0 as
above.

6.3 Effective diffusivities

The key point leading to the sub-diffusive behavior of an IHPD is the geometric decrease towards 0
of the effective diffusivities of the aggregation of scales D(V n

0 ). From a heuristic point of view it can
be understood in the following sense: the farther the IHPD travels, the more numerous the felt scales
are, the more it is slown down. In a heuristic mathematical formulation, this sentence becomes: if
t ∼ ρ2nef and D(V n

0 ) ∼ λn with λ < 1 then (with ν > 0)

E[y2
t ] ∼ tD(V nef (t)

0 ) ∼ t1−ν (6.41)

6.3.1 Dimension One

The one-dimensional case is particular because the effective diffusivities can be explicitely computed.
Indeed the following formula is available:

D(V n
0 ) =

R2
n∫ Rn

0 e2V
n
0 (x)dx

∫ Rn

0 e−2V n
0 (x)dx

(6.42)

6.3.1.i General IHPD

The following theorem is the theorem 8.2.2 of chapter 8.

Theorem 6.3.1. For ρmin > 2K1e
2K0

n−1∏
k=0

1∫
T 1
1
e2Uk(x)dx

∫
T 1
1
e−2Uk(x)dx

1

(1 + 2K1e2K0

rk
)2
≤ D(V n−1) (6.43)
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and

D(V n−1) ≤
n−1∏
k=0

1∫
T 1
1
e2Uk(x)dx

∫
T 1
1
e−2Uk(x)dx

1

(1− 2K1e2K0

rk
)2

(6.44)

Remark 6.3.1. If λmax < 1, this theorem imply that for ρmin > ρ0(K0,K1, λmax)

λn1 ≤ D(V n−1
0 ) ≤ λn2 (6.45)

with

λ1 =
λmin

1− 2K1e2K0

ρmin

λ2 =
λmax

1− 2K1e2K0

ρmin

< 1 (6.46)

Observe that if λmin = λmax then as ρmin ↑ ∞
1
n

lnD(V n−1
0 ) → lnλ (6.47)

uniformly in n

The following corollary is the corollary 8.2.1, it allows to see that the influence of the overlap
between scales disappear in the fast separation between scales regime.

Corollary 6.3.1. Assume that for all k, Uk = U and

Rk = Rk−1[
ρk

α

Rk−1
]

with ρ, α > 1 then

lim
n→∞

1
n

lnD(V n−1) =
1∫

T 1
1
e2U(x)dx

∫
T 1
1
e−2U(x)dx

(6.48)

6.3.1.ii Self similar IHPD

Assume that the IHPD is self-similar with ratio between scales ρ ∈ N/{0, 1} and periodic potential
U ∈ C∞(T 1

1 ).
The following theorem is the theorem 8.2.1

Theorem 6.3.2.

lim
n→∞− 1

n
ln
(
D(V n−1)

)
= Pρ(2U) + Pρ(−2U) (6.49)

where Pρ is the topological pressure associated to the shift sρ (see section C.1).
The theorem C.1.2 says that Pρ(2U) + Pρ(−2U) > 0 if and only U does not belong to the closed
subspace of C(T d1 ) generated the elements F (x)−F (ρkx) with F ∈ C(T d1 ) and k ∈ N; the proposition
9.5.1 says that this is equivalent to

lim inf
n→∞

1
n
‖
n−1∑
k=0

SρkU‖∞ > 0 (6.50)

Moreover it is easy to see that as ρ→∞

Pρ(2U) + Pρ(−2U) → ln
∫
T d
1

e2Udx+ ln
∫
T d
1

e−2Udx (6.51)

which is strictly positive if U is not constant.
Thus when the IHPD is self similar, then the behavior of D(V n−1

0 ) can be exactly computed thanks
to a simple application of the thermodynamic formalism and the theory of level 3-large deviations
(see section C.1).
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6.3.2 All dimensions

This sub subsection gives some of the results proven in the chapter 9.
In dimension greater than 1 no explicit formula is generally available (in dimension 2, one has an
explicit formula under the assumption D(Un) = D(−Un)). Moreover DEM theories can not be used
because first the influence of each scale is not completely diluted in their numbers, next the ratio
between scales is not infinite but is finite and fixed independently from the number of scales and for
the same reason standard multi-scaled (or reiterated) homogenization is powerless.
Nevertheless variational formulation giving an upper bound and lower bound for D(V n−1

0 ) are avail-
able, and the general technique used to obtain multi-scale homogenization results for those multi-scale
media is to replace the solution of the cell problem by its first order approximation in the method of
asymptotic expansion and use it as a test function in a variational formula. But the error made by
this way is of order of the ratio between scales multiplied by a constant that tends to grow with the
number of scales.
That’s why this method is also powerless to describe materials for which the ratio between scales is
fixed in dependently from the number of scales and this is the situation of an IHPD with bounded
ratios ρmax <∞. One might think that if this method is powerless it is because the one has plugged
in the variational formulation only the first order approximation in the asymptotic expansion of the
cell problem χl and may be by using the second, third or n − th order approximation one would be
able to obtain a control of D(V n−1

0 ). This is not the case, and the computation of sub subsection
5.2.1.iii is here to show that things will get only worse (expressions more heavy and headaches more
frequent).
An alternative strategy must be sought for, the following theorem (which is the theorem 9.2.2 of
chapter 9) is one of the results of this alternative strategy:

Theorem 6.3.3. If ρmin ≥ C1,d,K0,K1 then for all n ≥ 1

λmax(D(V n−1
0 )) ≤ (1 +

C2,d,K0,K1

ρ
1
2
min

)n
n−1∏
k=0

λmax(D(Uk)) (6.52)

and

λmin

(
D(V n)

) ≥ (1 +
C2,d,K0,K1

ρ
1
2
min

)−n
n−1∏
k=0

λmin

(
D(Uk)

)
(6.53)

C1,d,K0,K1 = Cde
(6d+16)K0(1 +K1)3 (6.54)

and

C2,d,K0,K1 = Cde
(3d+8)K0(1 +K1)

1
2 (6.55)

Of course for the clarity of the presentation the constants C1,d,K0,K1, C2,d,K0,K1 given above are
not the optimal ones. Actually this theorem is a corollary of more general results which allow to
control the whole matrix D(V n−1

0 ) (see propositions 9.3.5 and 9.4.1)
Before giving the alternative strategy observe some simple consequences of this theorem :

Corollary 6.3.2. if one has for all n, λmax

(
D(Un)

) ≤ λmax < 1, then if for all n

rn > ρλmax,d,K0,K1 (6.56)

then

C1λ
n
1 ≤ D(V n) ≤ C2λ

n
2 (6.57)

with 0 < λ1 ≤ λ2 < 1 and

ρλmax,d,K0,K1 =
[C(d,K0,K1)λmax

1− λmax

]2
(6.58)
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This corollary (which corresponds to corollary 9.2.2) gives the boundary ρ0 = ρλmax,d,α,K0,K1

of the separating scales region. Observe that in this region D(V n−1
0 ) decreases towards 0 with a

geometric speed. Below this boundary, in the overlapping ratios region the particular shape of the
fluctuations Un starts to manifest themselves in the holistic behavior of D(V n−1

0 ) which can lead to
the lower boundedness of D(V n−1

0 ).
Without giving additional information on the particular shape of the fluctuations, one can not guess
the precise behavior of D(V n−1

0 ) in the overlapping region, however by the Voigt’ Reiss inequality
one can show that the geometric speed of convergence of D(V n−1

0 ) towards 0 imply

lim inf
n→∞

1
n
‖V n

0 − 1
Rdn

∫
T d

Rn

V n
0 (x) dx‖∞ > 0 (6.59)

which gives a criterion to check whether the ratios rn belongs to a region of weak anomaly (or nor-
mality).

Now observe an other simple consequence of the theorem 6.3.3 is the behavior of the multi-scale
effective diffusivities of a self similar IHPD:

Let R ∈ N/{0, 1} and U ∈ C∞(T d1 ). Write

V n−1
0 =

n−1∑
k=0

(SR)kU (6.60)

then one has the following theorem (corresponding to 9.2.1):

Theorem 6.3.4. If R ≥ C1,d,U then for all n ≥ 1

λmax

(
D(V n−1

0 )
) ≤ (

λmax

(
D(U)

))n
(1 +

C2,d,U

R
1
2

)n (6.61)

λmin

(
D(V n−1

0 )
) ≥ [λmin

(
D(U)

)
1 + C2,d,U

R
1
2

]n
(6.62)

with

C1,d,U = Cde
(6d+16) Osc(U)(1 + ‖∇U‖∞)3 (6.63)

and

C2,d,U = Cde
(3d+8) Osc(U)(1 + ‖∇U‖∞)

1
2 (6.64)

As a first reaction to this theorem, it is interesting to deduce the following corollary (corresponding
to 9.2.1)

Corollary 6.3.3. If in all the directions l ∈ S
d of the space l.∇U is not the null function then

D(U) < 1 and for

R > ρd,U =
[Cd,Osc(U),‖∇U‖∞λmax

(
D(U)

)
1− λmax

(
D(U)

) ]2
(6.65)

D(V n) tends geometrically towards 0 with an explicit control of the speed of convergence given by the
theorem 9.2.1.

This is the key leading to the sub-diffusive behavior in a smooth periodic pre fractal. It is
interesting also to observe that when U is isotropic that is to say the minimal and maximal eigenvalues
of D(U) are equal then the multi-scale effective diffusivity D(V n) behaves like λ

(
D(U)

)n(1 + error

R
1
2

)n

but one must be careful this does not mean that D(V n) is isotropic.
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6.3.2.i Alternative strategy

The proof of the main result allowing to homogenize on an arbitrary large number of scales with
bounded ratios is mainly based on three ideas and observations.

1. When homogenization takes place on two scales separated by a ratio R, a translation of the first
one with respect to the second one does not change much the effective diffusivity (see lemma
9.3.2, the perturbation can easily be controlled).

2. The distance between the solution of the cell problem and itself translated by ek/R is small
with respect to the effective diffusivity of the medium (see lemma 9.3.3).

3. The effective diffusivity of n different scales is obtained by recurrence by adding the smaller
scale to the n − 1 bigger ones (here the point of view is technically different from the one of
DEM theory where at each step a bigger scale is added to a matrix of smaller ones).

Consider V, T ∈ C∞(T d1 ) and R ∈ N/{0, 1}. Thanks to the first observation, one can see that (for
l ∈ S

d) tlD(SRV +T )l is close to
∫
T d
1

tlD(SRΘyV +T )ldy which corresponds to the effective diffusivity
of the sum of the two scales, meaned with respect to a relative translation between them (see the
equation C.5 for the definition of the shift operator SR and the equation C.20 for the translation
operator Θy). Thus what one needs to evaluate is for the upper bound∫

x,y∈T d
1 ×T d

1

l.(l −∇χl(x, y))mSRΘyV+T (dx)dy (6.66)

where x→ χ.(x, y) is the solution of the cell problem associated to SRΘyV +T . Now this integration
in y allows to see that

∫
T d
1

tlD(SRΘyV +T )ldy is close to D(V, T,R = ∞) (corresponding to complete
separation between the scales) in the sense that the error is of the order of

( ∫
x∈T d

1

(∇χl(x, 0) −∇χl(x+
ek
R
, 0))2mSRV+T (dx)

) 1
2

× (tlD(T )l)
1
2 eCd Osc(V )

(6.67)

and now, thanks to the second observation the first term is of the order of tlD(SRV +T )l(e4
‖∇T‖∞

R −1)
and since in the recurrence the T contains n− 1 scales and V only one, the term eCd Osc(V ) does not
explode and the term tlD(T )l is close to tlD(V, T,R = ∞)l.

The idea to add smaller and smaller scales (contrary to DEM theories) might appear a tautology
but this is not the case. In iterative homogenization, the smaller scales are homogenized first, next
the bigger ones. Here it is shown that reversing this iteration allows to obtain sharp estimates in this
homogenization procedure.

6.3.2.ii Connection between cohomology and homogenization, dimension two

In higher dimensions, the constant ρd,U associated to the corollary 9.2.1 appears as an upper bound
to the regions of normal behavior, when U is characterized only by λmax

(
D(U)

)
, ‖∇U‖∞ and Osc(U).

Moreover by the Voigt Reiss’s inequality

lim inf
n→∞− 1

n
ln
(
λmin

(
D(V n)

)) ≤ PR(2U) + PR(−2U) (6.68)

Thus if U belongs to the closed subspace of C(T d1 ) generated the elements T (x)− T (Rkx), then

lim
n→∞

1
n

ln
(
λmin

(
D(V n)

))
= 0 (6.69)
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And the diffusion does not show a clear anomaly, this suggests that regions of normality separated
by regions of anomaly exists (they can be built on simple examples).

Now an interesting question arises: if R ≤ ρd,α,U and is bounded above by a region of normality
(are normal region only points? or can they be open an non void ?) then what is the mechanism
behind this the geometric decrease of D(V n) towards 0, what kinds of large deviations are hidden
behind this sort of transition of phase? This question will be investigated here in dimension, two.
Indeed there is a strong connection between homogenization and cohomology which allows to obtain
the following result (which corresponds to the theorem 9.3.1):

Theorem 6.3.5. For d = 2 one has

λmax

(
D(U)

)
λmin

(
D(−U)

)
= λmin

(
D(U)

)
λmax

(
D(−U)

)
=

1∫
T d
1

exp(2U)dx
∫
T d
1

exp(−2U)dx
(6.70)

from which one deduces that if D(U) = D(−U) then

λmax

(
D(U)

)
= λmin

(
D(U)

)
=

1√∫
T d
1

exp(2U)dx
∫
T d
1

exp(−2U)dx
(6.71)

Moreover

Theorem 6.3.6. In the self-similar case, if d = 2 and for all n, D(V n
0 ) = D(−V n

0 ) then

lim
n→∞− 1

n
ln
(
λ(D(V n−1

0 ))
)

=
PR(2U) + PR(−2U)

2
(6.72)

where PR is the topological pressure associated to the shift sR.
As an example of medium satisfying the condition of the previous theorem one can give the following
corollary

Corollary 6.3.4. In the self-similar case , if d = 2 and for all n, Un(−x) = −Un(x) then

lim
n→∞− 1

n
ln
(
λ(D(V n−1

0 ))
)

=
PR(2U) + PR(−2U)

2
(6.73)

6.3.2.iii Perspectives

These statements show clearly that when the scales are not self-similar and non symmetric (can
be chosen at random) the geometric speed of convergence of D(V n) towards 0 can be controlled
without the necessity to use large deviations techniques, however it is interesting to wonder how this
is translated in the theory of shifts dynamical systems. For instance note that V 0 = U0 and

V n+1 = Srn+1(V
n + Un+1) (6.74)

and the latter inductive definition will be interesting to explore in the shift spaces, what notion will
replace the pressure? What kind of large deviations might be hidden behind the behavior of the
eigenvalues of the matrix D(V n) in any dimension? Those questions will be postponed to a future
work.
All the aspects of the connections between the geometry of homogenization, scaling and cohomology
have not been explored here (in dimension d ≥ 3), this investigation is postponed to a future work.

6.4 Sub-diffusive behavior

The sub-diffusive behavior of an IHPD is a consequence of the decrease towards 0 of the effective
diffusivities.
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6.4.1 Dimension one

(see chapter 8) In dimension one, the mixing length ξ associated to a periodic potential of period T 1
R

is of the size of the period R (the mixing length corresponds to norm of the solution of the associated
cell problem 5.10 and the associated ergodicity problem 5.4 which can be exactly computed). Thus
for each aggregation of scales V n

0 , ξ(V n
0 ) = Rn.

6.4.1.i Exit times

Since ξ(V n
0 ) = Rn the effective scale corresponding to the exit time from the ball B(0, r) is fixed by

nef (r) = sup{n ≥ 0 : Rn ≤ r} (6.75)

This is clear, but now one can wonder how to determine the drift scale since the drift is not apparent
in the expression of τ(0, r). This is done by observing how the presence of the scales nef + 1, . . . ,∞
perturb the value of the value of the exit time E0[τ(0, r)]. This is done by the following corollary:

Perturbation of the exit times (see sub subsection 13.5.2.ii) Let Ω be an open set of R. for
U ∈ C∞(Ω̄) write E

U the expectation associated to the diffusion generated by the operator and τ its
exit time from Ω.

LU =
1
2
Δ−∇U∇ (6.76)

The following corollary corresponds to the corollary 13.5.2.

Corollary 6.4.1. For U,P ∈ C∞(Ω̄), x ∈ Ω

e−4Osc(P ) ≤ E
U+P
x [τ ]
EUx [τ ]

≤ e4Osc(P ) (6.77)

This corollary says that the exit times E
U
x [τ ] is stable under a perturbation of the operator LU by

the drift −∇P , what is important is that this perturbation is completely controlled by Osc(P ) what-
ever U might be. In fact this control comes from a sharp control on the perturbation of the Green func-
tions Ge−2U (x, y) and Ge−2(U+P )(x, y) associated to the operators −∇(e−2U∇) and −∇(e−2(U+P )∇)
with Dirichlet conditions on the boundary of Ω. (the following corollary corresponds to the corollary
6.4.2)

Corollary 6.4.2. For d = 1 and U,P ∈ C∞(Ω̄) one has

e−6‖P‖∞ ≤ Ge−2(U+P )(x, y)
Ge−2(U)(x, y)

≤ e6‖P‖∞ (6.78)

and this corollary is implied by a new analytical inequality (the following theorem is deduced
from the theorem 13.5.1)

Theorem 6.4.1. For d = 1, Ω an open set of R, U ∈ C2(Ω̄) and φ and ψ two C2(Ω̄) functions with
Dirichlet conditions on ∂Ω and both sub harmonic with respect to the operator −∇(e−2U∇) one has∫

Ω

∣∣∇φ(x)∇ψ(x)
∣∣e−2U(x) dx ≤ 3

∫
Ω
∇φ(x)∇ψ(x)e−2U(x) dx (6.79)
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Determination of the perturbation scales Now let’s go back to the determination of the drift scale,
in B(0, r), it follows by the corollary 6.4.1 that E[τ(0, r)] behaves like r2/D(V nef

0 ) multiplied by a
perturbation term which is of order of the exponential of OscB(0,r)(V∞

nef +1) (where OscB(0,r)stands
for the supremum minus the minium taken in the ball B(0, r)); thus the drift scale is determined
by the minimization of this term (V∞

nef +1 is the sum of an infinite number of fluctuations Un, the
first nper will be bounded by the infinite norm K0nper and the remaining ndri, . . . ,∞ by an uniform
bound on their gradient 2K1). And it is easy to see that the number of perturbation scales can here
be limited to be equal to one (this is a direct consequence of the fact that the mixing length are of
the order of the periodicities in dimension one).

These considerations lead to the sub-diffusive behavior of the exit times but one can see that the
sub-diffusive behavior is weaker when the ratios between scales are not bounded, this is due to the
fact that the diffusion must travel longer and longer distances to feel the slow down created by larger
and larger scales.

Sub-diffusivity with bounded ratios The following theorem corresponds to the corollary 8.3.3 of
chapter 8.

Theorem 6.4.2. Let yt be an infinitely homogenized potential diffusion such that, ρmin > 4K1e
2K0 ,

ρmax <∞ and λmax < 1. Then

C1r
2+ν(r) ≤ E0[τ(0, r)] ≤ C2r

2+ν(r) (6.80)

where C1, C2 depends only on K0,K1 and ρmin and

0 < − lnλmax

ln ρmax
− 8K1e

2K0

ρmin ln ρmax
≤ ν(r) ≤ − lnλmin

ln ρmin
+

4K1e
2K0

ρmin ln ρmin
(6.81)

This theorem is the generalization of the corollary 6.2.1 when the IHPD is not self similar. Here
the value given for ν(r) can really depend on r (it is generally not constant), this explains why one
can give only bounds of the form 6.81. Observe that in those bounds the term K1e

2K0/(ρmin ln ρmax)
acts as an error term and is small in front of − lnλmax/ ln ρmax and − lnλmin/ ln ρmin. Observe also
that when ρmin = ρmax = λ, λmin = λmax = λ (which does not mean that the IHPD is self similar
because for that one needs the additional condition for all n Un = U) one has

ν(r) ∼ − lnλ
ln ρ

(6.82)

In fact the corollary 6.4.2 is deduced from a more general theorem 8.3.1 which allow to control
the exit times of an IHPD in very general situations. For instance one could choose the soft obstacles
and ratios Un, rn with a strong dependence on the scale n and at the end one would obtain a strong
variation of ν with r.

Sub-diffusivity with unbounded ratios The following theorem is the corollary 8.3.4 of chapter 8.3.4

Theorem 6.4.3. Assume that for all k, Uk = U and

Rk = Rk−1[
ρk

α

Rk−1
]

with ρ, α > 1 then

C1r
2eg(r) ≤ E0[τ(0, r)] ≤ C2r

2eg(r) (6.83)
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where C1, C2 depends only on K0,K1, ρ, α and

g(r) = (ln r)
1
α

ln
( ∫

T 1
1
e2U(x)dx

∫
T 1
1
e−2U(x)dx

)
(ln ρ)

1
α

(6.84)

Observe that this theorem says how by a fine tuning of the parameter α (which reflects the speed
of the separation between scales) the IHPD behavior changes from weakly sub-diffusive to strongly
sub-diffusive.

6.4.1.ii Mean squared displacement

Bounded ratios The following theorem corresponds to the theorem 8.5.3.

Theorem 6.4.4. Assume λmax < 1, ρmin > 10e−
30

ln λmax
(K1+4K2

0 ), t > R9 and ρmax <∞ then

E[y2
t ] = t1−ν(t) (6.85)

ν(t) ≤ − lnλmin

2 ln ρmin
+

2K1e2K0 lnρmin
ρmin

+ 16K0 ln( 16
15λmin

)

(ln ρmin)2
+ ε(t) (6.86)

ν(t) ≥ − lnλmax

2 ln ρmax
−

2K1e2K0 ln ρmin
ρmin

+ 8K0 ln( 9
8λmin

)

ln ρmin ln ρmax
− ε(t) (6.87)

where ε(t) → 0 as t→∞ and

− lnλmax

2 ln ρmax
−

2K1e2K0 lnρmin
ρmin

+ 8K0 ln( 9
8λmin

)

ln ρmin ln ρmax
> 0 (6.88)

Observe that this theorem gives the sub-diffusive behavior of the IHPD, Note also that the terms
2K1e2K0 ln ρmin

ρmin
+16K0 ln( 16

15λmin
)

(ln ρmin)2
and

2K1e2K0 ln ρmin
ρmin

+8K0 ln( 9
8λmin

)

lnρmin ln ρmax
are error terms (small) in front of − lnλmin

2 ln ρmin

and − lnλmax
2 ln ρmax

. The upper bound and the lower bound for ν(t) in 6.86 are not equal because it does
really fluctuate between those bounds (this is due to the fact that the IHPD is not self similar).
Observe also that if λmax = λmin = λ and ρmax = ρmin = ρ then

1− ν(t) ∼ 1 +
lnλ
2 ln ρ

(6.89)

In fact the theorem 6.4.4 is deduced from more general theorems 8.5.1 and 8.5.2 which allow to
control the mean squared displacement of an IHPD in very general cases. For instance one could
choose the ratios and ratios Un, rn with a strong dependence on the scale n and at the end one would
obtain from this theorem a strong variation of ν with t.

Unbounded ratios The following theorem corresponds to the theorem 8.5.4

Theorem 6.4.5. Assume that for all k, Uk = U and

Rk = Rk−1[
ρk

α

Rk−1
]

with ρ, α > 1 then

C1te
−g(t) ≤ E0[y2

t ] ≤ C2te
−g(t) (6.90)
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where C1, C2 depends only on K0,K1, ρ, α and

g(t) = (ln t)
1
α

ln
( ∫

T 1
1
e2U(x)dx

∫
T 1
1
e−2U(x)dx

)
(2 ln ρ)

1
α

(1 + ε(t)) (6.91)

with ε(t) → 0 as t→∞.

Observe that E[y2
t ]/t → 0 as t → ∞ but for all 1 > β > 0, E[y2

t ]/t1−β → ∞. Moreover this
theorem shows how the behavior of the diffusion passes from a slightly anomalous one to a strongly
anomalous one.

E[y2
t ] ∼

t

( ∫
T 1
1
e2U(x)dx

∫
T 1
1
e−2U(x)dx

) 1

(2 ln ρ)
1
α

(ln t)
1
α

(6.92)

Perturbation scales The heuristic proof of the mean squared displacement has been given above,
however the essential point was missing: how is it possible to take into account the perturbation
scales in the mean square displacement? The answer to this question will allow to look closer at the
significance of the cell problem.
Consider U ∈ C∞(T d1 ), in homogenization theory the solution of the cell problem χl seems to play an
essential role in the sense that it contains all the information on the homogenization over a periodic
medium U but if one look closer, one would see that the essential point to obtain homogenization is
not the existence of a periodic solution χl to the cell problem, but the existence of linear harmonic
(with respect LU) functions Fl = l.x − χl, of course when U is periodic those point of views are
equivalent, but this is not the case when U is only ergodic or contains an infinite number of scales.
Moreover observe that when U is periodic, the corresponding effective diffusivity is given by D(U) =
mU

(
t∇F.∇F.

)
, and the solution of ergodic problem is given by φl = |Fl|2 − tlD(U)lψl which allows

to introduce ψl the solution of the Poisson equation LUψl = 1 in R
d, observe the importance of Fl

in those equations.
When U is only ergodic, one can still find harmonic functions Fl growing linearly as l.x (this is
clear in dimension one, in greater dimensions this will be shown in a sequel work) but the difference
l.x− Fl(x) is not bounded that’s why the solution of the cell problem does not exit, nevertheless Fl
exists on contains all the information that lead to homogenization results. What about the solution
to the ergodic problem LUφl = |∇Fl|2− tlD(U)l? Again when U is periodic, one can find φl periodic
solution of that equation and this is used to say that E[

∫ t
0 |∇Fl(ys)|2 ds] behaves like tlD(U)l t plus

a bounded term E[φl(yt)] − φ(y0), but when U is ergodic but not periodic such a solution periodic
solution does not exist. Nevertheless one can find solutions to Poisson equation LUψl = 1 growing
like (l.x)2 (plus something growing less quickly in the transverse directions for d ≥ 2, this is the
subject of a sequel work). Now write for c > 0, φcl = (Fl)2− ctlD(U)lψl, for c = 1, φ1

l is generally not
bounded however one can see that for c > 1, φcl is upper bounded and for c < 1 φcl is lower bounded,
this is interesting ! because it means that for all ε > 0, E[

∫ t
0 |∇Fl(ys)|2 ds] is upper bounded by

(1 + ε)tlD(U)l t+ Cε and lower bounded by (1 − ε)tlD(U)l t − Cε. Now one understands how to do
homogenization without cell problem and without the necessity to sit on the particle (and see the
medium moving).
Note that the level lines of those linear harmonic functions Fl can be seen as corresponding to
the equipotentials of a capacitor with parallel plates perpendicular to the direction l with distance
and tension 2L (L is very large) between them and permittivity e−2U , saying that homogenization
operates is equivalent to say that those equipotentials behave as those of a linear harmonic function
(Fl has a clear physical signification, χl is just here to evaluate how close is Fl from l.x).
What about the case when U = V contains an infinite number of scales? In dimension one Fl exists
and can be exactly computed Fl(x) =

∫ x
0 e

2V (y) dy, it is harmonic with respect to LV but it does not
behave linearly with x, this is due to the fact that homogenization operates at all the scales. Let’s
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remember the purpose of this sub subsection, it is to control the mean square displacement, and it
has been shown above that the drift scale is fixed by

ndri = sup{n ∈ N : R2
n ≤ t}+ 2 (6.93)

if Rn = ρn is behaves like ln t/(2 ln ρ). The visibility time of the scales V∞
ndri

behaves like

τv(V∞
ndri

) ∼ R2
ndri

(6.94)

and the mixing time corresponding to the scales V ndri−1
0 behaves like

τm(V ndri−1
0 ) ∼ R2

ndri−1/D(V ndri−1
0 ) (6.95)

and when the ratios are bounded one has τm(V ndri−1
0 ) > τv(V∞

ndri
) which makes error terms larger

than effective terms in the computations. To find how to determine the perturbation scales and
bypass this difficulty one must look at the origin of τm(V ndri−1

0 ), if one tries to compute E0[y2
t ] for

t ∼ R2
ndri

, and if one assumes that homogenization has fully operated on V ndri−1
0 then one would ob-

tain that E0[y2
t ] ∼ D(V ndri−1

0 )t+error, where ”error” is of the order of ‖χV
ndri−1
0
l ‖2∞+‖φl‖∞ ∼ R2

ndri−1

which represents the error created by the ”distance” between yt and its martingale behavior fixed by

F
V

ndri−1
0

l (yt) at the scale Rndri−1 and the error one makes by assuming that
∫ t
0 |∇F

V
ndri−1
0

l (yt)|2 ds
behave like D(V ndri−1

0 )t. In resume if one tries to compare E[y2
t ] to effective behavior of the scale

Rndri−1: D(V ndri−1
0 )t one makes an error which is bigger than the latter term. The solution is to

compare E[y2
t ] to μD(V ndri−1

0 )t hoping that for μ big enough E[y2
t ] ≤ μD(V ndri−1

0 )t+Cμ where Cμ is
an error smaller than the main term D(V ndri−1

0 )t and for μ small enough E[y2
t ] ≥ μD(V ndri−1

0 )t−Cμ
with the error term Cμ smaller than the main term. This is done by decomposing V ndri−1

0 as a sum
over effective scales V nef

0 and perturbation scales V nef +nper

nef +1 and observing their respective analytical

influence on the linear harmonic function F V
ndri−1
0

l associated to the medium V ndri−1
0 .

Deformation of the linear harmonic functions Consider W ∈ C∞(T 1
1 ) and T ∈ C∞(T 1

R) (of period
R ∈ N). Consider FU the linear harmonic function associated to the medium U = W + T which
is periodic of period R. This medium is characterized by two scales 1 and R. The purpose of
this paragraph is to determine the influence of each scale on FU . Observe that the cell problem
χU = x− FU (x) associated to LU is periodic of period R and since ‖χU‖∞ = R one makes an error
of order R by assuming that the diffusion yt generated by LU behaves like its associated martingale
behavior

∫ t
0 ∇FU (ys) ds. Moreover by assuming that E[

∫ t
0 |∇FU (ys)|2 ds behaves like D(U)t one

makes an error of the size of R2 which corresponds to the norm of the ergodicity problem. Thus
when one assumes that E[y2

t ] behaves like its homogenized behavior D(U)t, one makes an error of
order R2 which becomes negligible for D(U)t >> R2.
But now one is interested on what happens for 1/D(W ) < t < R2/D(U), in this interval it is natural
to think that homogenization on the smaller scale W is complete but the scale T acts as a perturbation
scale, how is this translated in the behavior of FU the linear harmonic function containing all the
information about the homogenization on U?
As one can decompose FU into l.x a linear term corresponding to a flat medium minus χU the
solution of the cell problem of period R corresponding to the fluctuations over the scale R, one can
also decompose FU into

FU (x) = F T (x) + χW,T (x) (6.96)

where F T (x) is the linear harmonic function associated to the medium T (of period R) and χT,W

which is close to the solution of the cell problem associated to W but perturbed by T . χT,W is not
of period 1 but R however

‖χW,T‖∞ ≤ 2e2Osc(T )[1 + 4‖∇T‖∞] (6.97)
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In other words if one compares FU to l.x which is equivalent to say that one has homogenized on
both scales of U , one makes an error of the order of R, however if one compares FU to F T which
is equivalent to say that one has homogenized only on the smaller scale W one makes an error of
order of e2 Osc(T ) << R and this is the key to obtain the multi-scale behavior of the mean squared
displacement. Then one has to control the influence of T on the mean squared displacement and this
is done thanks to the following inequality

e−4Osc(T )x2 ≤ |F T (x)− x|2 ≤ e4Osc(T )x2 (6.98)

6.4.1.iii Heat kernel tail

There are mainly two ways to prove the anomalous behavior of the transition probability densities
tail, the first one is trough the control on the exit times (this is the strategy used by Barlow-Bass for
the Sierpinski carpet), the second one is trough an improvement of the speed of convergence towards
the asymptotic process in homogenization theory (see sub subsection 5.3.1.i). The latter strategy
will be used and developed in the section 6.5.
J. R. Norris in an interesting paper [Nor97] has shown that the homogenized behavior of the heat
kernel p(t, x, y) corresponding to a periodic operator of period T d1 starts at least for t ln t >> |x− y|2
(one must have also |x− y|2 << t to be far from the heat kernel diagonal regime); in this chapter it
will be shown that it starts for t >> |x− y| (and that boundary is sharp) in any dimension and this
is the key leading to the multi-scale control of the tail of the heat kernel. Since the there is much
to say about it, the multi-scale results will be given first but let’s remember that if one wants to
understand the deep origin of those results one must look at the section 6.5.
In short, one is in front of an IHPD, and one wants to show that the heat kernel tail

P0(yt ≥ h) (6.99)

manifests a sub-diffusive behavior for t and h in a region to be determined. How to do this? How to
fix the drift scale and the effective scales since here there are two parameters t and h?
One knows that to give an anomalous upper bound to the heat kernel tail 6.99 it is sufficient to
evaluate the Laplace transform of the IHPD E[eλyt ] for λ > 0 and then optimize on λ in the following
inequality

P0[yt ≥ h] ≤ E[eλ(yt−h)] (6.100)

Then how to evaluate the Laplace transform E[eλyt ]? Observe that one can decompose yt into a
fluctuating scales and drift scales by

yt = χV
nflu
0 (yt) +

∫ t

0
∇F V

nflu
0 (ys)dωs −

∫ t

0
∇V∞

ndri
.∇F V

nflu
0 (ys)ds (6.101)

In this equation one sees that the fluctuating scales act trough their martingale behavior (generat-
ing the error term χV

nflu
0 (yt)) and the drift scales trough their drift behavior, now just plug this

decomposition in the exponential in 6.100 to obtain (by playing with the deformation of the linear
harmonic functions) from which it follows that

P0[yt ≥ h] ≤ Ce
λ(eCK0nperRnef

−h)
e‖∇V

∞
ndri

‖2∞t/4
E[e8λ

2
∫ t
0 |∇FV

nflu
0 (ys)|2ds] (6.102)

(the drift scales and effective scales have not been specified yet). Now things start to become serious,
indeed one must evaluate

E[e8λ
2
∫ t
0 |∇FV

nflu
0 (ys)|2ds] (6.103)
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how to do this?
Observe that if homogenization were complete on the fluctuating scales one would have

E[e8λ
2
∫ t
0 |∇FV

nflu
0 (ys)|2ds] ∼ e8λ

2tD(V
nflu
0 ) (6.104)

but homogenization is never complete over fluctuating scales however if one separates those scales
into effective scales nef and perturbation scales nper and call Ft the filtration generated by the IHPD
one can show that for z < t one can homogenize on the effective scales by paying the price of an
error created by the perturbation scales

E[
∫ t

z
|∇F V

nflu
0 (ys)|2ds|Fz] ≤ e2K0nperD(V nflu

0 )(t− z) + CR2
neff

(6.105)

Can one deduce from the conditional expectations 6.105 a sharp control on the Laplace transform
6.103? The answer is yes and this is a result which is far from being trivial whose explanation is
postponed to the section 6.5, one of the consequences of this result is that the homogenized behavior
of the heat kernel p(t, x, y) in a perturbed periodic medium starts for t >> |x − y|. In short this
result says that for λ small enough

λ < CRnef
(6.106)

the Laplace transform can be upper bounded by the behavior of the conditional expectations 6.105
and

E[e8λ
2
∫ t
0
|∇FV

nflu
0 (ys)|2ds] ≤ Cλ,Ref

e8λ
2te2K0nperD(V

nflu
0 ) (6.107)

finally one obtains after an optimization on λ ∝ h/(tD(V nflu

0 )).

P0[yt ≥ h] ≤ small terms× e‖∇V
∞

ndri
‖2∞t/4e

−Ce2K0nper h2

D(V
nflu
0 )t (6.108)

Now one sees how to determine the drift scales: it is fixed so that

‖∇V∞
ndri

‖2
∞t/2 < Ce2K0nper

h2

D(V nflu

0 )t
(6.109)

Thus it is fixed by the value of t/h, in other words, the greater t/h, the greater the number of
fluctuating and effective scales. This fact is important because it explains the anomalous shape of
the tail of the heat kernel. To understand this fact observe the following example with this value of
ndri: assume Rn ∼ ρn and D(V n

0 ) ∼ λn with λ < 1, then one has

ndri ∼
ln t

h

ln ρ

λ
1
2

(6.110)

and

P0[yt ≥ h] ≤ small terms× e
− h2

tλ
nef

≤ e−
h2

t
( t

h
)ν

(6.111)

with

ν ∼ − lnλ
ln ρ

(6.112)
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What about the condition λ small enough 6.106? one must not forget it ! in fact this condition says
one must have t > CK0,K1,R2h. This is interesting ! it means that even in a multi-scale medium,
multi-scale homogenizations starts for t >> h (the presence of an infinite number of scales does not
perturb this fact).
Actually there is an other condition which has been put under the carpet in the above computation,
one can find it in the equation 6.102. One must have h > 2eCK0nperRnef

, in other words h must
be greater than the mixing length associated to the effective scales, it is easy to understand this
necessity because if try to evaluate P[yt ≥ h] for h smaller than this mixing length then one has to
take into account the particular shape of those scales (thus one can not say that homogenization has
operated on those scales). But now observe that the size of the mixing length of the effective scales
grow with nef which is in the first approximation proportional to t/(hD(V nef

0 )
1
2 ) this lead to the

condition

h2

t
> CK1,ρ(

t

h
)

ln λ
2 ln ρ (6.113)

This is interesting ! indeed if the medium were periodic a condition h2/t >> 1 would mean that one
is far from the heat kernel diagonal regime, here in a medium with an infinite number of scales one
finds again this condition that one must be far from the heat kernel diagonal regime but h2/t can be
allowed to be very small in front of one (observe that lnλ

2 ln ρ < 0) this additional flexibility is created
by the slow down of the diffusion.

Now one can understand the origin and the signification of the results which will be given below
on the sub-diffusive behavior of the heat kernel’s tail.

Bounded ratios The following theorem corresponds to the theorem 8.6.2

Theorem 6.4.6. Assume ρmax <∞, λmax < 1,
ρmin > C16

h2

t
≥ C11(

t

h
)

ln λmax
2 ln ρmax

+
C12

(ln ρmin)2 (6.114)

and

t

h
≥ C13 (6.115)

then for l ∈ S
d

P[l.yt ≥ h] ≤ C14e
−C15

h2

t
( t

h
)ν

(6.116)

with

ν = − lnλmax

ln ρmax
− C6

ln ρmin ln ρmax
> 0 (6.117)

Where C16, C15 depend on K0,K1, ρmin, ρmax, λmax; C11 depends on K0,K1,
ρmax, ρmin; C13 on K0,K1, R2 and C6, C12 on K0,K1

It is not surprising to have the condition 6.115 since even with one scale the homogenized be-
havior of the transition probability densities starts for t > h. Observe also that the condition 6.114
corresponds to the condition that the behavior of the diffusion is far from the heat kernel diagonal
regime, however here since lnλmax

2 ln ρmax
+ C12

(ln ρmin)2
< 0 one can have h2/t << 1 before reaching this
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regime.
Observe that the equation 6.116 is equivalent to

P[l.yt ≥ h] ≤ C14e
−C15(hdw

t
)

1
dw−1 (6.118)

with dw = 1 + 1
1−ν which is the form found for a diffusion in the Sierpinski carpet. It is interesting

to notice that this particular form is due to the fact that the fluctuating scale is fixed by the ratio
t/h.
Observe also that for a self similar diffusion

ν ∼ − lnλ
ln ρ

(6.119)

In fact the theorem 6.4.6 is deduced from a more general theorem 8.6.1 that allows to control the
IHPD in very general cases. For instance one could choose the ratios and ratios Un, rn with a strong
dependence on the scale n and at the end one would obtain from this theorem a strong variation of
ν with t/h.

Unbounded ratios The following theorem corresponds to the theorem 8.6.3

Theorem 6.4.7. Assume that for all k, Uk = U (U non constant) and

Rk = Rk−1[
ρk

α

Rk−1
]

with ρ, α > 1 then for

C1 <
t

h
< C2h (6.120)

one has

P[l.yt ≥ h] ≤ C3e
−C4

h2

t
g( t

h
) (6.121)

with

g(x) = (
1
λ

)(
x

ln ρ
)

1
α (1+ε(x)) (6.122)

and ε(x) → 0 as x→∞
Where the constants C1, C2 depend on ρ, α,K0,K1 and C4 on ρ,K0,K1, λ.

Remark 6.4.1. Observe that t
h2 ln P[l.yt ≥ h] → −∞ as t/h→∞. Moreover this theorem shows how

the behavior of the diffusion passes from weakly anomalous to strongly anomalous.

6.4.2 All dimensions

(see chapter 10 for this subsection) In fact, if one looks at the proofs leading to the sub-diffusive
behavior of an IHPD in dimension one; one would see that there are mainly two layers in those
proofs. The first one is probabilistic and it is straightforward to extend it to dimensions greater
than one, the second one is analytical and concerns the deformations of linear harmonic functions
which is in a sense close to perturbation of elliptic operators with non regular coefficients. This is
the generalization of this analytical layer to higher dimensions which constitutes the additional work
to be undertaken.
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First of all, one must estimate the mixing length associated to the effective scales, this can be
done through the following analysis. Let U ∈ C∞(T dR) (period R), it has been shown that if the
dimension is equal to one then the mixing length associated to an homogenization on U is equal to
the period R. What about the case d ≥ 2? Does a universal result exists saying that the mixing
length must be of the order of the period ξm(U) ≤ CdR even for d ≥ 2. As not intuitive it might
appear the answer is no ! Pathologies with very long range correlations ξm(U) >> R does exist (for
any C > 0 one can find U ∈ C∞(T d1 ) such that ξm(U) > CR), they will be given in the subsection
6.6.1.
Does it mean that one has to restrict the fluctuations Un to avoid those pathologies to be able to
say something? The answer is no because ξm(U) can be uniformly controlled by Osc(U) and here it
has been assumed that there exists a uniform bound on the oscillations of all the fluctuations of the
multi-scale medium: for all n, Osc(Un) ≤ K0.
This is the subject of the chapter B in which it is shown that for U of period R one has

ξm(U) ≤ Cde
(3d+2) Osc(U)R (6.123)

This control is an application of the theory of elliptic operators with discontinuous coefficients.

6.4.2.i Anomaly starting from the invariant measure

The purpose of this sub subsection is to underline the sub-diffusive behavior of the exit times of an
IHPD in all dimensions. First of all how the effective scales are chosen? The answer is now easy
since the control 6.123 imply that for the multi-scale medium corresponding to a general IHPD one
has

ξm(V nef

0 ) ≤ CdRnef
e(3d+2)K0nef (6.124)

Thus the effective scales corresponding to the estimation of the expectation of the exit time from the
ball of center 0 and radius r (E[τ(0, r)]) are simply fixed by the necessity that their mixing length
must be smaller than r:

nef = sup{p ∈ N : ξm(V p
0 ) <

r

2
} (6.125)

If the perturbation created by the remaining scales nef + 1, . . . ,∞ were equal to 0 one would have

E0[τ(0, r)] ∼ r2

λmax(D(V nef

0 ))
(6.126)

which would lead directly to the sub-diffusive behavior of the exit times by remembering that the
effective diffusivities D(V nef

0 ) decrease geometrically towards 0 with the number of effective scales
nef and the latter increase as the logarithm of the radius of the ball: if for instance Rn ∼ ρn and
λmax(D(V nef

0 )) ∼ λnef (λ < 1) one would have nef ∼ ln r/(ln ρ + (3d + 2)K0) which would lead in
the first approximation in 1/ ln ρ that

E0[τ(0, r)] ∼ r2−
ln λ
ln ρ (6.127)

This would give the anomalous behavior but the influence of the scales nef + 1, . . . ,∞ is in general
not null, one has to control it. And this is the hard core of the work. Because to do this one
must in a sense compare the Green function (in fact only the exit times but the techniques are
similar) associated to the operator LV of the IHPD in the ball B(0, r) with Dirichlet conditions on
the boundary to the Green function associated to the generator L

V
nef
0

corresponding to the effective
scales alone. With some work this is possible if one assumes that homogenization on the scales
0, . . . , nef were complete in the sense that in the operator LV and L

V
nef
0

only the effective diffusivity
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D(V nef

0 ) corresponding to the aggregation of those scales appears. But this is not the case ! what
one has to perturb is something which is not the standard Laplace operator and one can not use
usual techniques based on the Harnack inequality or the parabolic Harnack inequality (the constants
associated to those inequalities blow up with the number of effective scales because those scales are
not necessarily homogeneous and isotropic), an new strategy must be found to obtain strong stability
results for operators of the form −∇e−2U∇ where U ∈ C( ¯B(0, r)).

Mean sub-diffusive behavior If one considers Green functions of symmetric elliptic operators as
quadratic forms, then it is easy to compare them. In terms of exit times this imply that one can
compare expectation of the exit times associated to the generators LV and L

V
nef
0

if one takes their

spacial mean with respect to the invariant measure e−2V /
∫
B(0,r) e

−2V (x)dx.
In other words one can show that for any U,P ∈ C∞(Ω̄), and Ω a smooth bounded open subset of
R
d, if one writes E

U , E
U+P the expectations associated to the diffusions generated by LU and LU+P

and τ(Ω) the exit time from Ω; mΩ
U the following probability measure on Ω:

mΩ
U(dx) =

e−2U(x) dx∫
Ω e

−2U(x) dx
(6.128)

then (proposition 10.0.2)

∫
Ω

E
U
x

[
τ(Ω)

]
mΩ
U+P (dx) ≤ e2Osc(P )

∫
Ω

E
U+P
x

[
τ(Ω)

]
mΩ
U+P (dx)

≥ e−2Osc(P )

∫
Ω

E
U+P
x

[
τ(Ω)

]
mΩ
U+P (dx)

(6.129)

Now it is straightforward to control the perturbation induced by the scales nef + 1, . . . ,∞ on the
exit time τ(0, r) for a general IHPD, one might wonder how the drift scales are distinguished from
the perturbation scales. Observe that the application of the inequality 6.129 to the IHPD is done
with P = V∞

nef +1, thus ndri is chosen to minimize the error term Osc(P ) on B(0, r), that is to say

ndri = inf{n ∈ N : Rn ≥ r} (6.130)

and the scales nef + 1, . . . , ndri − 1 are perturbation scales so that

Osc(P ) ≤ nperK0 + 2K1 (6.131)

(the fluctuations Un for n ≥ ndri are bounded by the norm of their gradient ‖Un‖∞r/Rn that’s
why they are called drift scales). Observe that contrary to the one-dimensional case, the number of
perturbation scales is not limited to one and tends to grow with r, this is due to the fact that the
mixing length of each scale can be very large in front of its respective period.

Bounded ratios between scales In resume, those considerations lead to the following theorem
(theorem 10.1.1) if the IHPD has bounded ratios ρmax <∞.

Theorem 6.4.8. One has for r > C16,∫
B(0,r)

Ex

[
τ(B(0, r))

]
m
B(0,r)
V (dx) = r2+ν(r) (6.132)

with for ρmin > C13

ν(r) ≤ ln 1
λmin

ln ρmin

(
1 +

C7

ln ρmin

)
+

1
ln r

C6 (6.133)
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and

ν(r) ≥ ln 1
λmax

ln ρmax

(
1− C12

ln ρmin

)− 1
ln r

C11 > C15 > 0 (6.134)

Where the constants C11, C12, C7, C6 depends on d,K0,K1; C13 on d,K0,K1,
λmax and C15, C16 on d,K0,K1, λmax, ρmax

This theorem gives the sub-diffusive behavior of exit times of the IHPD, the upper bound in
the control of ν is not equal to its lower bound because the non self similarity can really creates
fluctuations between those two bounds.
Observe that if λmax = λmin = λ and ρmax = ρmin = ρ

ν(r) ∼ ln 1
λ

ln ρ
(6.135)

Now if one wonders what happens for ρmin below the constant C13, one has to remember what
has been said about overlapping ratios, one can have intervals of ratios corresponding to anomalous
behavior surrounded by points of normal behavior and without specifying the particular shape of the
fluctuations Un one can not say in which region one is. However to be in a region of strong anomaly
it is easy to see that one must have at least (use the Voigt Reiss inequality on the multi-scale effective
diffusivities),

lim sup
n→∞

1
n
‖V n

0 − 1
Rdn

∫
T d

Rn

V n
0 (x)dx‖∞ > 0 (6.136)

In fact the theorem 6.4.8 is deduced from a more general proposition 10.1.1 which allow to control the
IHPD in very general cases. For instance one could choose the ratios and ratios Un, rn with a strong
dependence on the scale n and at the end one would obtain from this theorem a strong variation of
ν with r.

Fast separation between scales Now one can also wonder what happens with fast separating scales,
then the following theorem (which corresponds to theorem 10.1.2) gives the answer:

Theorem 6.4.9. Assume that Rn = Rn−1[ ρ
nα

Rn−1
] (ρ, α > 1) and λmax = λmin = λ < 1 then

∫
B(0,r)

Ex

[
τ(B(0, r))

]
m
B(0,r)
V (dx) =

r2

λβ(r)
(6.137)

with for r > C16(d,K0,K1)

β(r) =
( ln r
ln ρ

) 1
α (1 + ε(r)) (6.138)

with ε(r) → 0 as r →∞
Observe that this theorem shows how the diffusion becomes more and more anomalous as the

separation between scales is less and less large: α ↓ 1

6.4.2.ii Anomaly starting from any point

The proof of the anomaly of the exit times starting from any point is similar in the computation
of the effective and perturbation scales to that of the anomaly starting from the invariant measure
however there is a crucial difference: the control of the influence of the scales nef+1, . . . ,∞ is harder.

In fact to obtain such a control for all kinds of fluctuations Un ∈ C∞ it is necessary and sufficient
to prove the following conjecture:
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Strong stability conjecture I Let U ∈ C∞(T d1 ) and P ∈ C∞(B(0, 1)). Write E
SRU , E

SRU+P the
expectations associated to the diffusions generated by LSRU and LSRU+P and τ(B(0, 1)) the exit
time from the d dimensional unit ball B(0, 1).

Conjecture 6.4.1. The exists Cd > 0 a constant depending only on the dimension such that for

R > Cde
Cd(Osc(U)+Osc(P )) Osc(P ) <

1
Cd

Osc(U) (6.139)

and

‖∇P‖∞ <
R

Cd
(6.140)

one has

ESRU+P
0

[
τ(B(0, 1))

] ≤ Cde
Cd Osc(P ) sup

x∈B(0,1)
ESRU
x

[
τ(B(0, 1))

]
(6.141)

and

ESRU+P
0

[
τ(B(0, 1))

] ≥ Cde
−Cd Osc(P ) inf

x∈B(0, 1
2
)
ESRU
x

[
τ(B(0, 1))

]
(6.142)

In other words to be able to say something about anomaly starting from any point for all kinds
of IHPD one must be able to prove the conjecture 6.4.1 which says that if the size of the period 1/R
is small enough and the perturbation P small and smooth enough then the exit times associated to
the operator LSRU are stable under a perturbation of this operator by the fluctuations of P .

Actually in the chapter 10 the proofs are made under the following conjecture 6.4.2 which is stronger
than 6.4.1 (it does not changes much to re write them under the conjecture 6.4.1) because there are
good reasons to believe that the conjecture 6.4.2 is true.

Strong stability conjecture II Let U,P ∈ C∞( ¯B(0, 1)). Write E
U , E

U+P the expectations associated
to the diffusions generated by LU and LU+P and τ(B(0, 1)) the exit time from the d dimensional
unit ball B(0, 1).

Conjecture 6.4.2. The exists Cd > 0 a constant depending only on the dimension such that

EU+P
0

[
τ(B(0, 1))

] ≤ Cde
Cd Osc(P ) sup

x∈B(0,1)
EUx

[
τ(B(0, 1))

]
(6.143)

and

EU+P
0

[
τ(B(0, 1))

] ≥ Cde
−Cd Osc(P ) inf

x∈B(0, 1
2
)
EUx

[
τ(B(0, 1))

]
(6.144)

Here the results corresponding to the chapter 10 will be given, nevertheless with a slight change
although in the chapter 10 they are given conditionally to the conjecture 6.4.2, here they will be given
conditionally to the fact than the exit times created by the smaller scales of the IHPD are stable
under the influence of its own larger fluctuations. Which leads to introduce the following condition:

Stability condition of an IHPD An IHPD is said to satisfy the stability condition 6.4.1 if and only
if:

Condition 6.4.1. Under the notation of 6.4.2, the exists μ > 0 such that for all n ∈ N , all z ∈ R
d,

and all r > 0,

EVz
[
τ(B(z, r))

] ≤ μeμOscB(z,r)(V
∞

n+1) sup
x∈B(z,r

E
V n
0
x

[
τ(B(z, r))

]
(6.145)

and

EVz
[
τ(B(z, r))

] ≥ 1
μ
e−μOscB(z,r)(V

∞
n+1) inf

x∈B(z, r
2
)
E
V n
0
x

[
τ(B(z, r))

]
(6.146)

In fact with the conjecture 6.4.2 says that all the IHPD do satisfy the stability condition 6.4.1.
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Anomalous exit times With the definition of effective scales nef given above:

nef(r) = sup{n ≥ 0 : e(n+1)(9d+15)K0R2
n ≤ C1

dr
2} <∞ (6.147)

which corresponds to the maximal scale n such that its associated mixing length is less or equal to the
radius of the ball B(0, r) divided by two: ξm(V n

0 ) ≤ r/2 one can define a mean ratio between scales
ρef (r) and a mean maximal eigenvalue λefmax(r) for each fluctuation Un, if the multi-scale medium
associated to the IHPD is not self similar, those parameters do vary with r, nevertheless at the scale
r they represent the self similar multi-scale medium which would have the same effect on the IHPD
as its own non self similar medium Un, rn.

λefmax(r) = (λmax

(
D(V 0,nef (r)))

) 1
nef (r)+1 (6.148)

λefmax(r) is called the geometric mean maximal eigenvalue. It reflects the following image: At a scale
of order r the maximal eigenvalue of the effective medium characterized by the scales 0, . . . , nef + 1
behaves as if those scales were totally separated and the diffusivity of each scale were characterized
by the same maximal eigenvalue λefmax(r) (all associated to the same eigenvector: whose direction
does not change with the scale).

ln ρef (r) =
ln r
nef(r)

(6.149)

ρef (r) reflects the following image: The behavior of the IHPD at the scale r is the same as a
diffusion with nef(r) effective scales, the maximal eigenvalue associated to each scale being λmmax(r)
and the ratio between each scale being ρef (r). Then the following theorem (which corresponds to
the theorem 10.2.1) says that the IHPD is at the first approximation in 1/ ln ρmin totally controlled
my this geometric mean eigenvalue λefmax(r) and ratio ρef (r).

Theorem 6.4.10. If the IHPD satisfies the stability condition 6.4.1 and λmax < 1, then for ρmin >
C1,d,K0,K1,λmax,μ, r > C2,d,K0,K1,ρmax,μ one has

Ex

[
τ(B(x, r))

] ≤ C32,d,K0,K1,μr
2+σ(r)(1+γ)

≥ C33,d,K0,K1,μr
2+σ(r)(1−γ) (6.150)

σ(r) =
ln 1

λef
max(r)

ln ρef (r)
, γ = C2,d

K0

ln ρmin
< 0.5 (6.151)

ln 1
λmax

ln ρmax
(1 +

C34,d,K0,K1,μ

ln ρmin
)−1 ≤ σ(r) (6.152)

and

σ(r) ≤ ln 1
λmin

ln ρmin
(1 +

C35,d,K0,K1,μ

ln ρmin
) (6.153)

This theorem says that the behavior of the exit times is fixed by the geometric mean effective
diffusivity λefmax(r) and ratio ρef (r) at the scale r; the parameter γ plays the role of an error term
generated by the perturbation scales. Observe that this theorem is very general in the sense that
one can have ρmax = ∞ and underline all kinds of exotic behaviors by choosing ratios rn a function
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of n oscillating between ρmin and very high values with n. Observe also that if ρmax <∞ then this
theorem gives the anomalous behavior of the exit times since

0 < racln
1

λmax
ln ρmax(1 +

C34,d,K0,K1,μ

ln ρmin
)−1 ≤ σ(r) (6.154)

and it follows that

Ex[τ(x, r)] = r2+ν(r)+ε(r) (6.155)

with ε(r) → 0 as r →∞ and

0 < ν1 ≤ ν(r) ≤ ν2 (6.156)

Observe also that if ρmax = ρmin = ρ and λmax = λmin = λ then in the first approximation in 1/ ln ρ

Ex[τ(B(x, r))] ∼ r
2+

ln 1
λ

ln ρ (6.157)

Fast separation between scales

Theorem 6.4.11. If the IHPD satisfies the stability condition 6.4.1, Rn = Rn−1[ ρ
nα

Rn−1
] (ρ, α > 1)

and λmax = λmin = λ < 1 then

E0

[
τ(B(0, r)

]
=

r2

λβ(r)
(6.158)

with for r > C16(d,K0,K1)

β(r) =
( ln r
ln ρ

) 1
α (1 + ε(r)) (6.159)

with ε(r) → 0 as r →∞
Observe that for this theorem shows how the diffusion becomes more and more anomalous as

α ↓ 1. In fact the stability condition 6.4.1 is not necessary because with fast separating ratios
homogenization operates (and it is easy to control the error in the asymptotic expansion for the
expression of Ex[τ(0, r)], then the result is given by an adaptation of the Aronson estimates, this is
quite straightforward).

6.4.2.iii Sub-diffusive behavior of the tail of the heat kernel (starting from any point)

From the anomaly of the exit times one can deduce the anomaly of the density of probability of
transitions by adapting a strategy used by M.T. Barlow and R. Bass for the Sierpinski Carpet. Since
the anomaly of the exit times starting from any point is needed the following results are based on
the stability condition 6.4.1 of the IHPD.
The following theorem corresponds to the corollary 10.3.2

Theorem 6.4.12. If the IHPD satisfies the stability condition 6.4.1, ρmax <∞ and λmax < 1. Then
for ρmin > C(d,K0,K1) and

C40r ≤ t ≤ C41r
2+σ(r)(1−3γ)

one has

ln Px[|yt| ≥ r] ≤ ln Px[τ(x, r) ≤ t] ≤ −C7
r2

t

( t
r

)ν′
with

0 < c <
ln 1

λmax

ln ρmax
(1− C50,d,K0

ln ρmin
) ≤ ν ′(r) ≤ ln 1

λmin

ln ρmin
(1− C50,d,K0

ln ρmin
) (6.160)

C50,d,K0 < 0.5 ln ρmin and the constants C40, C41, C42 depend on
d,K0,K1, ρmax, ρmin. All the constants depending on K0 also depend on μ.
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σ(r) and γ are those given in the theorem 6.4.10 observe that the condition

t ≤ C41r
2+σ(r)(1−3γ)

reflects the fact the heat kernel must be far from its diagonal regime but what is interesting is that
the parameter r2+σ(r)(1−3γ) which appear here corresponds in the first approximation in 1/ ln ρmin to
the expectation of the exit time from the ball B(0, r) for the IHPD (for a Brownian motion it would
be r2).
The condition

C40r ≤ t

corresponds to the fact that even with a periodic medium the homogenized behavior of the heat
kernel starts for t >> r. Observe that if ρmax = ρmin and λmax = λmin then at the first order in
1/ ln ρmin, ν ′ behaves like

ν ′ ∼ ln 1
lnλ

ln ρ
(6.161)

Anomaly of the transition probability densities with fast separating scales

Theorem 6.4.13. If the IHPD satisfies the stability condition 6.4.1, Rn = Rn−1[ ρ
nα

Rn−1
] (ρ, α > 1)

and λmax = λmin = λ < 1 then for

C60r ≤ t ≤ C61r
2

one has

ln Px[|yt| ≥ r] ≤ ln Px[τ(x, r) ≤ t] ≤ −C63
r2

t
g(
t

r
)

with

g(x) = (
1
λ

)(
x

ln ρ
)

1
α (1+ε(x)) (6.162)

where ε(x) → 0 as x→∞ and the constant C60 to C63 depends on ρ, α,K0,K1, d. All the constants
depending on K0 also depend on μ.

Observe that t
h2 ln P[l.yt ≥ h] → −∞ as t/h→∞. Moreover this theorem shows how the behavior

of the diffusion passes from a slightly anomalous one to a strongly anomalous one.

6.5 Davies conjecture, exponential martingales and homogenization

The section concerns the chapter 12. The purpose of this section is to show that the homogenized
behavior of the heat kernel p(t, x, y) associated to a periodic generator starts for t >> |x − y|.
This gives an answer to the Davies conjecture for the upper bound and obtain a sharp lower bound
estimate of the tail of the heat kernel in all dimensions allowing to complete the picture describing
the behavior of p(t, x, y) (see the section 5.3). For previous results concerning that subject see the
work of E. B. Davies [Dav87],[Dav93]; E.B. Davies and M.M.H. Pang [DP89]; J.R. Norris and D.W.
Stroock [NS89]; J.R. Norris [Nor92], [Nor97]; R. Bhattacharya, M. Denker and A. Goswami [BDG99];
A. Dembo [Dem96]. In fact the key theorem 6.5.1 for this result concerns more general objects than
periodic generators, it can be applied for instance to ergodic media since its input is only the behavior
of the conditional quadratic variation of the diffusion.
For instance in this chapter it has been used to give the anomalous behavior of an IHPD for which
the medium has an infinite number of scales, below it will be used to draw the three different regimes
of the heat kernel associated to generator 1

2Δ−∇U∇ with U ∈ C∞(T d1 ) as an example of its utility.
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The three different regimes of the heat kernel in a periodic medium

1. Large deviation regime: for |x − y| >> t the paths of the diffusion concentrate on the
geodesics and

ln p(t, x, y) ∼ −|x− y|2
2t

(6.163)

2. Homogenization regime: for 1 << |x − y| << t and |x − y|2 >> t, homogenization takes
place and

p(t, x, y) ∼ 1

t
d
2

exp(− |x− y|2
2D(ey−x)t

) (6.164)

3. Heat kernel diagonal regime: for |x− y|2 << t, the behavior is fixed by the diagonal of the
heat kernel and

p(t, x, y) ∼ C0(x)

t
d
2

(6.165)

Note that |x− y| << 1 and |x− y| << t imply |x− y|2 << t thus all the regimes are here.
In fact for the homogenization regime (1 << |x− y| << t and |x− y|2 >> t) it will be shown that

p(t, x, y) � 1

t
d
2

exp(− |x− y|2
2D(ey−x)t

) (6.166)

and writing yt the diffusion associated to p(t, x, y), for l ∈ R
d, |l| = 1, λ > 0 one has the following

tail estimate

P[yt.l ≥ λ] ≥ 1
4
√

2π

∫ ∞

X
e−z

2/2dz (6.167)

with

X ∼ λ√
tlD(U)lt

(6.168)

one can combine the strategy given in the proof with the Aronson estimates to obtain a sharp lower
bound for the behavior of the heat kernel as it is done for the upper bound in the corollary 6.5.2.
This is quite straightforward in dimension one and needs some care in higher dimensions, this will
be the subject of a sequel work.

6.5.1 The key theorem, an exponential inequality for martingales

The following theorem corresponds to the theorem 12.1.1. ConsiderMt a continuous square integrable
Ft adapted martingale such that M0 = 0 and for λ, t > 0, E[eλMt ] <∞.
Assume that there exists a function f : R

+ → R
+ such that for all t2 > t1 ≥ 0 one has a.s.

E[

t2∫
t1

d < M,M >s |Ft1 ] ≤
t2−t1∫
0

f(s)ds

With f(s) = f1 for s < t0 and f(s) = f2 for s ≥ t0 with t0 > 0 and 0 < f2 < f1.

Theorem 6.5.1. For the martingale given above one has
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1. for all

0 < |λ| < 1(
2e(f1 − f2)t0

) 1
2

(6.169)

one has

E[exp(λMt)] ≤ e3(1−1/g(λ)) exp(
g(λ)

2
λ2f2t) (6.170)

with g(λ) = 1
1−λ2(f1−f2)t0e

which verify 1 ≤ g ≤ 2

2. for all

0 < ν <
1

2e(f1 − f2)t0
(6.171)

one has

E[exp(ν < M,M >t)] ≤ exp(νf2t)
exp

(
νt0(f1 − f2)

)
((f1 − f2)νt0)2

(6.172)

As one can see, this theorem use the knowledge on the conditional behavior of the quadratic
variation of a martingale to upper bound its Laplace transform, and one knows that once one has
a sharp control on the Laplace transform, one has a sharp control on the probability of going far.
Observe also that g → 1 when λ→ 0 so the control is sharp. The condition λ small enough 6.169 is
absolutely necessary in the sense that it marks the boundary between the large deviation regime and
the homogenization regime. It is interesting to note that in the proof this boundary corresponds to
a point above which a series becomes divergent.

6.5.2 Application to bound from above the tail estimate of a martingale

The direct application of the key theorem is the following result which corresponds to the corollary
12.1.1

Corollary 6.5.1. Let Mt be the martingale given in theorem 6.5.1.
Write C1 =

(
2e(f1 − f2)t0

) 1
2 /f2. Then for

r =
C1x

t
< 1 (6.173)

one has

P(Mt ≥ x) ≤ e
3
2
r2 exp

(− (1− r2)
x2

2f2t

)
(6.174)

Note that 0 < g1(r) ≤ 1 and that g1 converges towards 1 with the speed r2 as r → 0, so this
upper bound gives an estimate the speed of convergence towards the limit process of the behavior
of the martingale. Note that the homogenization behavior starts when r < 1 and converges towards
the asymptotic process as x/t→ 0 with the speed given above.

6.5.3 Application to homogenization in periodic media

As an example, the theorem 6.5.1 will be applied here to obtain estimates on the speed of convergence
towards the asymptotic process of periodic potential form diffusions.

dyt = dωt −∇U(yt)dt (6.175)

where U ∈ C1(T d1 ) (U(0) = 0)
The following corollary corresponds to the corollary 12.1.2.
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Corollary 6.5.2. Consider p(t, x, y) the transition density probabilities of the diffusion 6.175 with
respect to the measure mU . then for

20k1|x− y| < t, k2 <
|x− y|√

t
, |x− y| > 4Cχ (6.176)

one has

p(t, x, y) ≤ E1

t
d
2

exp
(− (1− E)

|y − x− 2Cχ|2
2D(ey−x)t

)
(6.177)

where k1, k2, Cχ, E1 are constants depending only on d and Osc(U). Moreover

E = 8(
k1|x− y|

t
)2 + 2

√
t

|x− y| ≤
1
10

(6.178)

Remark 6.5.1. Since the constants appearing in this corollary does not depend on ‖∇U‖∞ but only
on Osc(U) it is an easy task to extend this result to case where U is only bounded (left to the reader,
see for instance the theorem 1.2 of [CQHZ98]).
Observe that this corollary gives a sharp upper bound corresponding to the homogenized behavior
of the heat kernel.

In fact this is only an example and one can consider a wider class of periodic diffusions. Indeed,
the corollary 6.5.2 is deduced from the theorem 6.5.2 can be used to give estimates on the rate of
convergence to the limit process of a diffusion in a periodic media as soon as a cell problem is well
defined and Aronson kind of estimates do exist(see the next subsection).
For instance one can consider the operator 5.131 considered by J.R. Norris, one has to combine
the theorem 12.1.2 to the generalized Aronson type estimates obtained by J.R. Norris [Nor97] (see
subsection 5.3.2) in order to obtain estimates on the rate of convergence towards the limit process of
the diffusions associated to those operators (this application is left to the reader).

6.5.4 Application to the upper bound estimate of the transition probability densities
of a diffusion

Here the key theorem will be applied to give a sharp upper bound for the heat kernel of a diffusion
for which a sort of cell problem can be defined (”sort of” because the so called cell problem solution
χ does only need to be upper bounded). The medium associated to the diffusion is not specified
(it may be ergodic) the only thing that is needed is a sharp control on the conditional quadratic
variation of the martingale associated to the diffusion.
Consider yt is a diffusion on R

d such that for t > 0

yt = x+ χ(t) +Mt (6.179)

where χ(t) is a uniformly (in t) bounded random vector process (‖χ‖∞ ≤ Cχ) and Mt is a continuous
square integrable Ft adapted martingale such that M0 = 0 and for λ, t > 0, E[eλMt ] <∞.
Assume also that there exists a function f : R

+ → R
+ such that for all l ∈ R

d with |l| = 1 for all
t2 > t1 ≥ 0 one has a.s.

E[

t2∫
t1

d < M.l,M.l >s |Ft1 ] ≤
t2−t1∫
0

f(s)ds

With f(s) = f1 for s < t0 and f(s) = tlDl < f1 for s ≥ t0 with t0 > 0 and 0 < f2 < f1.
where D is a positive definite symmetric matrix.
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Assume also that the diffusion yt has symmetric Markovian probability densities p(t, x, y) with respect
to the measure m(dy) such that for all x, y ∈ R

d and t > 0

p(t, x, y) ≤ C2

t
d
2

(6.180)

and for δ > 0

Px(|yt − x| ≥ δ) ≤ C3e
−C4

δ2

t (6.181)

where C2, C3, C4 are constants.
The following theorem corresponds to the theorem 12.1.2

Theorem 6.5.2. Assume that yt is the diffusion described above. Then with k1 =
(
2e(f1−λmin(D))t0

) 1
2/λmin(D)

and k2 = 30 + 10dλmax(D)(1 + C4)

20k1|x− y| < t, k2 <
|x− y|√

t
, |x− y| > 4Cχ (6.182)

one has

p(t, x, y) ≤ E1

t
d
2

exp
(− (1− E)

|y − x− 2Cχ|2
2D(ey−x)t

)
(6.183)

with

E1 = C2(
e3/2

2λmin(D)C4
+ 2dC3) (6.184)

and

E = 8(
k1|x− y|

t
)2 + 2

√
t

|x− y| ≤
1
10

(6.185)

Remark 6.5.2. Note that E → 0 as |x−y|
t +

√
t

|x−y| → 0, this gives an estimate on the speed of con-
vergence towards asymptotic process. The exact homogenized behavior appears in the asymptotic
regime |x− y|/t→ 0 and |x− y|2/t→∞.
It is interesting to note that the homogenization regime begins as soon as the time t is of order of
the distance x− y (which must be at least of the order of Cχ).
The condition k2

√
t < |x − y| is a natural one in the sense that if it says that the behavior of the

diffusion is not too close to the center of the Gaussian, however with 20k1|x − y| < t the large de-
viation regime is replaced by a homogenized regime. Note also that if one is only interested in the
behavior of the diffusion in the direction y − x all that is needed is that χ.ey−x is upper bounded (χ
may have a greater generality than the solution of the cell problem).

6.5.5 Lower bound. Sharp estimate of the speed of convergence towards the
asymptotic process

The key theorem can also be used to give a lower bound on the tail of the heat kernel in a periodic
medium, this is the object of this subsection.
Consider the diffusion yt on R

d associated to the generator (U ∈ C∞(T d1 ))

L =
1
2
Δ−∇U.∇ (6.186)

(as usual this is only an example, one can consider wider class of generators as soon as a cell problem
is well defined) The following theorem corresponds to the theorem 12.2.1.
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Theorem 6.5.3. For l ∈ S
d, λ > C6(d,Osc(U)) and

C7(d,Osc(U))λ < t (6.187)

one has

P[yt.l ≥ λ] ≥ 1
4
√

2π

∫ ∞

X
e−z

2/2dz (6.188)

with

X =
λ√

tlD(U)lt
(1 + E) (6.189)

and

E =
C8(d,Osc(U))

λ
+ C5(d,Osc(U))

√
λ

t
≤ 1

10
(6.190)

Remark 6.5.3. Observe that all the constants appearing above only depends on d and Osc(U), thus
it is easy to extend this result to the case when U is only bounded and periodic (left to the reader).

Note also that E → 0 as 1/λ +
√

λ
t → 0 giving the speed of convergence towards the asymptotic

process. Note also that one can consider a wider class of periodic diffusions such as the one 5.131
considered by J.R. Norris (this extension is left to the reader)

one can combine the strategy given in this theorem with the Aronson estimates to obtain a
sharp lower bound for the behavior of the heat kernel as it has been done for the upper bound in
the corollary 6.5.2. This is quite straightforward in dimension one and needs some care in higher
dimensions (because one needs to show that for well chosen time changes one can approximate a
multidimensional martingale by a Gaussian process, this will be the subject of a sequel work).

6.6 Pathologies

6.6.1 The long range correlation pathology

In dimension one, the mixing length associated to a smooth periodic potential U ∈ C∞(T d1 ) is upper
bounded by the period which is one here. One might think that this is also the case for d ≥ 2, the
purpose of the pathology presented in the subsection is to show that this intuition is false for d ≥ 2.
Indeed observe the figure 6.3. This is an illustration of a periodic obstacle U (consider it as a
reflecting obstacle for a Brownian motion for the moment), of period T d1 , for clarity, the x2 axis has
been stretched in comparison to the x1. Observe that basically each period is decomposed into three
regions A, B and C parallel to the (0, x1) axis and the central B one is separated from the two others
by two reflecting walls. There are tunnels linking the central region to the two others (above and
below along the (0, x2) axis) and observe that those ”correlations tunnels” can be as long as one
wants along the direction (0, x1). Because of this particular structure what happens in the central
region is not correlated to what happens half a period above and below along the (0, x2) plus half a
period along the (0, x1) axis; it is correlated to what happens half a period above and below along the
(0, x2) plus a translation of ξm (which can big as big as one wants) along the (0, x1) axis. How is this
translated in the mathematical terms? Just consider the solution of the cell problem χ1 associated
to U along the (0, x1) axis, observe that one can write this periodic solution as χ = x1−F1(x) where
F1(x) is the harmonic function associated to the generator LU with linear growth along the (0, x1)
axis (an periodic along the (0, x2) axis), because of those correlation tunnels F1 has a fluctuation of
order ξm along the (0, x2) axis and one obtains that ‖χ1‖∞ ∼ ξm. And since χ reflects the difference
between the diffusion and its martingale behavior it has been obtained that the mixing length of the
diffusion built on the periodic medium U is of order of ξm >> 1 which can be chosen as large as
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Fig. 6.3: Long range correlation periodic obstacles.

needed.
Here, this little presentation has been done with a hard reflecting obstacle, nevertheless one can
approximate it by smooth periodic versions Wn ∈ C∞(T d1 ) whose associated solution of the cell
problem will converge to χ as Osc(Wn) →∞.
Now one understands why a condition such as for all n, Osc(Un) ≤ K0 < ∞ is necessary, if one
takes it away one must be aware that the mixing length might explode (one will have to introduce a
geometric condition to avoid this pathology).

6.6.2 The Critical Point Pathology

This pathology has been found by Alano Ancona [Anc99]. The strategy used to control the pertur-
bation scales of an IHPD in dimension one (for the study of the mean squared displacement) is based
on the deformation of the linear harmonic functions. More precisely given U ∈ C∞(T 1

1 ), write χ the
solution of the associated cell problem and F (x) = x− χ(x) the linear harmonic function associated
to the generator LU . In dimension one it is elementary to show that for x ∈ R

|F (x)| ≥ e−2Osc(U)|x| (6.191)

and this trick is used to control the influence of the perturbation scales on the mean squared dis-
placement of the diffusion.
Thus it is natural to wonder whether this trick can be extended to higher dimensions, more precisely
for U ∈ C∞(T d1 ) (d ≥ 1) write (x ∈ R

d) F. = x−χ. (with LUχl = −l∇U) the linear harmonic vector
associated to LU , is it true that F must satisfy ‖F (x)‖ ≥ C‖x‖, x ∈ R

d for some C = CU > 0?
As it has been pointed out by A. Ancona, this question is equivalent to the following one:
Is F. a diffeomorphism of R

d (onto R
d)? Which is equivalent to wonder whether the Jacobian of F.

is non degenerate at every x ∈ R
d.

In resume the answer to those questions is yes if it is not possible for F. to have a critical point for
d ≥ 2.
A. Ancona in [Anc99] shows that F. can not have a critical point for d = 2 (which suggests that the
one-dimensional trick might work) but for d ≥ 3 there exists a periodic function U ∈ C∞(T d1 ) such
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Fig. 6.4: Obstacles with critical points.

that the associated linear harmonic function in R
d has critical points.

The counter example given by A. Ancona is drawn in the figure 6.4 (a single period has been illus-
trated). The pathology is built by considering reflective tubular (the diffusion can enter into them by
their cut ends) half circles (and considering smooth approximations of that pattern). This structure
is interesting in itself because it shows that for d ≥ 3 the geometry of the obstacles can correlate dis-
tant points so that if one observe the propagation of heat among those them one will see its gradient
vanishing and changing upside down in some points of the space.
Now for d ≥ 3 imagine that all the fluctuations Un associated with the IHPD are all characterized
by the fact that their corresponding linear LUn harmonic vector admits a critical point at the origin
0, what is their exact influence on the IHPD starting from the origin? This question has not been
investigated in this work, nevertheless it might hide interesting behaviors.

6.7 Perturbation

6.7.0.i Mathematical Interpretation and consequences

See the chapter 13 for this section.
The proof of the sub-diffusive behavior starting from any point for (d ≥ 2) is based on the stability
condition 6.4.1. This condition says that the exit times of the diffusion whose generator is associated
to the smaller scales, are stable under the influence of the larger ones. If one can find an IHPD such
that this condition is violated one would have found an IHPD whose behavior can be quite weird at
some fixed points of the medium. Actually there are good reasons to believe that such an IHPD can
not be found, in other words, they necessarily all satisfy the condition 6.4.1. This fact is implied by
the conjecture 6.4.1 which is true in dimension one. This conjecture is also implied by the stronger
conjecture 6.4.2 which is also true in dimension one.

Comparison of elliptic operators To prove the stability condition 6.4.1 or the conjectures 6.4.1,
6.4.2 one is lead to compare two different elliptic operators. The chapter 3 gives the usual techniques
to do so. But if one look closer at those techniques one would see that they all corresponds to a
comparison with the Laplace operator, if one tries to use them to compare to operators which are not
the Laplace operator one would obtain their equivalence nevertheless with constants which tends to
explode. The reason is simple, for instance if one tries to compare the Green functions associated to
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two elliptic operators −∇(eU∇), −∇(eU+V∇) with Dirichlet condition on B(0, 1) one can do so by
comparing them to the Laplace operator −Δ and using for instance the result of Stampacchia (see
subsection 3.6.1) but one will obtain a bound on the ratio between the Green functions GU+V /GU
which will depend on U and will explode as Osc(U) →∞.
The Harnack inequality and Aronson estimates are also comparisons with respect to the Laplace
operator (the constants explode as Osc(U) → ∞). Actually the strategy given by Davies to obtain
Gaussian bounds could be developed to obtain anomalous bounds nevertheless one would have to
improve the constants given for the Parabolic Harnack inequality by P. Li and S. T. Yau, in [LY86].
Actually when the scales separates quickly it is easy to use the techniques of the chapter 3 to prove
the stability of the IHPD (left to the reader, it is not done here because this work focus on bounded
ratios between scales).

Deformation of elliptic operators Those conjectures are based on the comparison of two different
operators which is quite not pleasant to handle. The purpose of the chapter chapter 13 is to show
how two operators can be compared by an analytical inequality verified by a single one.
More precisely it is possible to show by the techniques developed in the chapter 13 that the conjecture
6.4.1 is implied by to the following conjecture:

Conjecture 6.7.1. There exist a constant Cd depending only on the dimension of the space such
that for λ ∈ C∞(B(0, 1)) such that λ > 0 on B(0, 1) one has

sup
x∈B(0,1)

∫
B(0,1)

λ(y)|∇yGλ(x, y).∇y

∫
B(0,1)

Gλ(y, z)λ(z) dz| dy ≤

sup
x∈B(0,1)

Cd

∫
B(0,1)

G(x, z)λ(z) dz
(6.192)

where Gλ(x, y) are is the Green function of the operator −∇(λ∇) on B(0, 1) with Dirichlet conditions
on the boundary.

The conjecture 6.7.1 is itself implied by the conjecture 6.7.2

Conjecture 6.7.2. For Ω ⊂ R
dan open subset with smooth boundary, there exist a constant Cd,Ω

depending only on the dimension of the space and the open set such that for λ ∈ C∞(Ω̄) such that
λ > 0 on Ω̄ and φ,ψ ∈ C2(Ω̄) null on ∂Ω and both sub harmonic with respect to the operator −∇(λ∇),
one has ∫

Ω
λ(x)|∇φ(x).∇ψ(x)| dx ≤ Cd,Ω

∫
Ω
λ(x)∇φ(x).∇ψ(x) dx (6.193)

This conjecture is true in dimension one with Cd,Ω = 3 (this constant is an homotopy invariant,
this is proven by the corollary 13.5.1). In fact one can show that (the following corollary corresponds
to the corollary 13.5.4)

Corollary 6.7.1. Let Ω be a smooth bounded open subset of R
d. Assume that φ,ψ are both convex

or both concave and null on ∂Ω, then∫
Ω
|∇xφ(x).∇xψ(x)| dx ≤ 3

∫
Ω
∇xφ(x).∇xψ(x) dx (6.194)

this result is deduced from the following theorem (which corresponds to 13.5.3)

Let λ ∈ C∞(Ω̄) such that λ > 0 on Ω̄, then ψ ∈ C2
D(Ω) is said to be strongly sub harmonic

(resp. strongly super harmonic) with respect to the operator −∇(λ∇) if for all x ∈ Ω, all e ∈ S
d

− ∂
∂e

(
λ(x) ∂∂eφ

) ≥ 0 (resp. ≤ 0)
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Theorem 6.7.1. For all ψ, φ ∈ C2(Ω) strongly sub harmonic or super harmonic with respect to the
operator −∇(λ∇) and null on ∂Ω one has∫

Ω
|∇xφ(x)λ(x)∇xψ(x)| dx ≤ 3

∫
Ω
∇xφ(x)λ(x)∇xψ(x) dx (6.195)

In fact the 6.7.1 is deduced from a more general result given in the chapter 13 (see the theorem
13.5.2). In fact the chapter 13 shows that the conjecture 6.7.2 is equivalent to the stability of the
Green functions associated to the operator −∇(λ∇) under a small isotropic deformation of that
operator, this is the object of the corollary 13.4.1.

6.7.0.ii Physical interpretation and consequences

The conjecture 6.7.2 has an interesting signification (and consequences) in the framework of electro-
static theory, one can see Ω as a dielectric cavity with conducting boundary and the conjecture 6.7.2
is equivalent to the stability of the electrostatic potential created by a density of negative charges
under a small isotropic perturbation of the dielectric constant of the material.
In fact it has other mathematical and physical consequences (see the chapter 13, all will not be given
here). One of them is directly connected to the notion of localization of the electrostatic energy. As
it is shown in the section 13.1 there has been an interesting debate among physicists on that subject,
and as it has been underlined by R. F. Feynman ([Fey79] page 142) ”the idea of locating the energy
in the field is incompatible with the assumption existence of punctual charges. One way out of the
difficult would be to say that elementary charges, such as an electron, are not points but are really
small distribution of charge. Alternatively, we could say that there is something wrong in our theory
of electricity at very small distances, or with the idea of the local conservation of the energy. There
are difficulties with either point of view. These difficulties have never been overcome; there exists to
this day.”
It is interesting to note that this difficulty is one of the causes of the infinite terms appearing in
quantum electrodynamics (the other being the infinite number of degree freedom of the field but it
is easy to get rid of that one by a change of the origin of the energies).
If the conjecture 6.7.2 is true then the energy displaced by an introduction of a small quantity of
charges is stable (see the chapter 13) if it is false, then there would be a strange point in the idea
of the local conservation of the energy: by spending a small amount of energy one could displace a
huge amount of energy (without a priori bound) ! And the chapter 13 shows also how this notion
of local conservation of energy is linked to the stability of the electrostatic potentials under a small
perturbation of the permittivity of the material.

6.7.1 Strong conjectures

In fact heuristic considerations lead to conjecture that:

Conjecture 6.7.3. For Ω ⊂ R
dan open subset with smooth boundary, there exist a constant Cd,Ω,1

depending only on the dimension of the space and the open set such that for M a symmetric smooth
coercive matrix on Ω̄ and φ,ψ ∈ C2(Ω̄) null on ∂Ω and both sub harmonic with respect to the operator
−∇(M∇), one has ∫

Ω
|∇φ(x)M∇ψ(x)| dx ≤ Cd,Ω,1

∫
Ω
∇φ(x)M∇ψ(x) dx (6.196)

Conjecture 6.7.4. For Ω ⊂ R
dan open subset with smooth boundary, there exist a constant Cd,Ω,2

depending only on the dimension of the space and the open set such that for M a symmetric smooth
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coercive matrix on Ω̄ and φ,ψ ∈ C2(Ω̄) null on ∂Ω and both sub harmonic with respect to the operator
−∇(M∇), one has ∫

Ω
‖∇φ(x)‖‖M∇ψ(x)‖ dx ≤ Cd,Ω,2

∫
Ω
∇φ(x)M∇ψ(x) dx (6.197)

The conjecture 6.7.3 is equivalent to the strong stability of the Green function associated to the
operator −∇(M∇) (with Dirichlet condition on the boundary) under an isotropic perturbation of
the permittivity M (see theorem 13.4.1 and the theorem 13.4.3).
If Cd,Ω,1 = 3 as it is true in dimension one, this would mean that the energy displaced in the elec-
trostatic cavity by the importation of new charges (of the same sign as those present in the cavity)
is always less or equal to work accomplished.
The conjecture 6.7.3 is equivalent to the strong stability of the Green function associated to the
operator −∇(M∇) (with Dirichlet condition on the boundary) under a non isotropic perturbation
of the permittivity M (see corollary 13.4.2 and 13.4.4).

6.8 Link with the Infinitely Ramified Fractals

The purpose of this section is to investigate on the connections between an IHPD and so called
Brownian motions constructed of fractals such as the Sierpinski Carpet.

6.8.1 The Sierpinski carpet

What is the link between an IHPD and the reflected Brownian motion on the Sierpinski pre-Carpet?
Take for all n ∈ N, Un periodic of period T d1 (d ≥ 2) such that

Un(x) =

{
+∞ for x ∈ [1/3, 2/3]d

0 for x ∈ [0, 1]d − [1/3, 2/3]d
(6.198)

Choose ρmin = ρmax = 3, then observe that the function U(x) on R
d given by the equation 1.2 is

equal to 0 on the generalized pre-Sierpinski Carpet and equal +∞ outside of it.
Of course, one has to choose Un smooth for all n, but one can approximate 6.198 to obtain a soft
version of the carpet where the reflection on the faces of the cubes is replaced by a strong drift.
Observe also that similarly, one can construct a soft version of the random Sierpinski carpets studied
in [HKKZ98].
Moreover, since the Un are allowed to vary in C∞(T d1 ) without any symmetries, it will be shown that
interesting pathologies may appear.
Thus the Sierpinski pre-carpet is a particular case of the multi-scale medium associated to a self
similar IHPD, nevertheless there is no uniform bound on the norm and gradient of the Un (K0 =
K1 = ∞) for the hard version of the pre-Sierpinski carpet. And the theorems given above do not give
any rigorous result for this particular case because they are too general and reflect an other point of
view in the following sense:

• The point of view of the construction of the Brownian motion on the generalized Sierpinski
carpet is to control the diffusion through the knowledge of the particular shape and symme-
tries of the medium on which it is evolving. More precisely the first layer of the proofs are
calibrated to exactly fit the corresponding symmetries and reflecting planes. This point of view
is interesting in the following sense: it allows to go far deeper in the analysis of the diffusion
and to obtain very precise results for some particular multi-scale media which can be used
to help the imagination in more general situations. Moreover its corresponding breakthrough
is accompanied with new mathematical tools and results which can be used in more general
situations.
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• The point of view of the construction of an IHPD is to characterize a diffusion evolving on
a medium with an infinite number of scales with the greater generality, of course there is
a price to pay for this generality, since the only knowledge on the medium that one has is
ρmax, ρmin, λmax, λmin,K0,K1, the proofs must always be done by imagining the worst case
corresponding to those parameters, and with the parameters K0 = K1 = ∞ corresponding
to the Sierpinski carpet the worst case says that the diffusion does not move at all or it can
also be normal (both cases are possible because the ratio between scales always belongs to the
overlapping ratios interval), thus either one assumesK1 <∞, either one gives more information
on the particular shape of the fluctuations by the introduction of new parameters in order to
be able to say something because with K1 = ∞, the overlapping ratios interval is not upper
bounded ! (equal to (1,∞)). To develop this point of view one is lead to develop the tools of
homogenization theory.

6.8.2 From soft obstacles to hard obstacles

Of course the next step in the development of the IHPD is to consider multi-scale media such that
K0 = K1 = ∞, indeed this work on the IHPD is mainly based on homogenization theory and this
theory allows to consider wider objects than soft fluctuations Un one can consider reflecting obstacles
(also called hard obstacles by opposition to soft obstacles). The purpose of this subsection is to
show how the tools developed in this work could be used and to underline the additional work to be
undertaken.
If one look closer at the proofs given in this work, one would see that there are basically two layers,
the first one is analytical and the second probabilistic. The probabilistic layer can be directly used
without any changes however the analytical one is based on the behavior of solutions of elliptic op-
erators with discontinuous coefficients, and the operators will be modified to the Laplace operator
with Neumann condition on the boundaries of the obstacles, this is the location of the additional
work.
It is clear that the notion of effective scales remains unchanged, indeed one can still compute mixing
length associated to ξm(V nef

0 ), however with K0 = ∞ those mixing length could grow very quickly
to infinity (see the long range correlation pathology) that’s why one have to introduce a parameter
that will ensure that the mixing length of the effective scales will remain of the size of their period;
how to do this? If the boundaries of the obstacles are regular a cell problem χ. associated to the
homogenization on those effective scales is still well defined, one would have to ensure that its asso-
ciated norm (which one to chose is not clear for the moment) will remain bounded.
What about the drift scales? Indeed with hard obstacles K1 = ∞ and the influence of a reflecting
obstacle can not be considered has a small drift. Nevertheless one can assume that the radius of
curvature of the boundaries of the hard obstacles tend towards infinity with their size, and one can
associate a visibility length ξv(Un) (equal to the radius of the curvature) to each obstacle correspond-
ing to the following image: below ξv(Un) the diffusion feels the influence of the obstacles Un only
through the reflection against an hyperplane and one knows that such a reflection will not change
the anomalous behavior of the diffusion.
What about the perturbation scales? This will be the hard part for which specific new parameters
will have to be introduced in order to ensure the stability of the reflected diffusion under the influence
of a few scales.
Of course one would have also to control the speed of convergence towards 0 of the multi-scale
effective diffusivities (not necessarily geometric if the medium is not self similar).

6.8.3 Limit process

An interesting problem has not been investigated in this work (which is focused on the anomaly of
the diffusion), it is the existence of a limit process. In other words, for a diffusion yt evolving on a
periodic medium U ∈ C∞(T d1 ) one knows that ε

1
2 yt/ε converges in law to a Gaussian diffusion zt with
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covariance matrix D(U), zt in a sense, reflects the long time behavior of yt.
What about a Infinitely Homogenized Potential Diffusion associated to a medium V with an infinite
number of scales? Is it possible to find a spacial rescaling function ε → k(ε) such that as ε ↓ 0,
k(ε)yt/ε converges in law to some limit process? The answer is of course yes, take k(ε) = 0 but this
is not very interesting indeed; to obtain an interesting answer one must refine the question by ”... a
limit process which is non degenerated?”. Now the answer is in general no and the explanation is
very simple.
Indeed at the time t, the slowdown of the IHPD is reflected by multi-scale effective diffusivityD(V nef

0 );
now observe that this matrix can be non isotropic and one can have λmax

(
D(V nef

0 )
)
/λmin

(
D(V nef

0 )
)→

+∞ ! in such a situation it is easy to see that for any choice of k(ε) can not converge to a limit process
living in a d-dimensional space, either it will blow up in the direction of the maximal eigenvalue,
either it will converge to a point in the direction of the minimal eigenvalue; and if the direction of
the associated eigenvectors is not stable with t one can imagine that this will produce a very weird
rotation of the degenerate axes of the diffusion with the time t.
In a sense to find such an answer is natural since there are no a priori reasons for an IHPD to have
a unique long time behavior since there are an infinite number of scales which are not self similar.
Now imagine that one still needs to obtain a limit process, then there are two strategies to force the
diffusion to do so:

• Either one accelerates differently the diffusion along direction corresponding to each eigenvector
of D(V nef

0 ): k(ε)yεitei

• Either one spatially rescale differently the diffusion along direction corresponding to each eigen-
vector of D(V nef

0 ): ki(ε)yεtei

Now observe that the first one will produce a diffusion whose dynamic at the time t is not Markovian
!
The second one, corresponds to a deformation of the space with a biased lense whose magnification
are different along the different axis of the eigenvectors.
What if the diffusion is one dimensional or D(V nef

0 ) is always isotropic? Then the problem of the
existence of a degenerate axis vanish, however is the medium is not self similar it is easy to see that
although k(ε)yt/ε might be tight in some non degenerate space, it will only converge along specific
subsequences of ε because the limit is not unique. This pathology is created by the oscillation of the
invariant measure (the next subsection will come back to it) at the scale of the observation (because
the medium is not self similar).
What about if D(V nef

0 ) is isotropic and the medium self similar? In that case the question is impor-
tant but postponed to a sequel work.

Now observe that the existence of a limit process requires an a priori choice which has been
put under the carpet above. Indeed for the construction of the Brownian motion on the Sierpinski
carpet, the diffusion is not constructed by rescaling the space but by adding smaller and smaller
obstacles, although those two point of view seems equivalent when the medium is self similar, they
are certainly not when the medium is not self similar. This choice is also reflected in the construction
of the invariant measure associated to the limit process (or to the Dirichlet form), this is the subject
of the next subsection.

6.8.4 Soft Pre Fractal Measure

See the section C.2 for this part.
The medium on which an IHPD is built in this work, is not a fractal in the usual sense of this
term. An IHPD is uniquely controlled by the drift −∇V characterized by an infinite number of
scales, however it is more convenient to describe it through the invariant measure e−2V (x) dx of
the associated generator (and its is a also the proper way because it has a precise physical and
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mathematical signification). In this work the invariant measure will sometimes be called smooth pre-
fractal measure or smooth periodic pre-fractal (this notion is introduced and discussed in the section
C.2)will be introduced and analyzed (this name is given according the name ”Sierpinski pre-Carpet”
introduced by H. Osada).

Definition 6.8.1. A smooth pre-fractal measure is a collection {(rn, Un)n∈N} where for each n,
rn ∈ N/{0, 1} and Un ∈ C∞(T d1 ) such that Un(0) = 0 and

K1 = sup
n∈N

‖∇Un‖∞ <∞ (6.199)

It constitute the medium on which the diffusion takes place. From a physical point of view its
density e−2V can be seen as an energy landscape with an infinite number of potential pits (all with
approximately same depth).
Observe that the condition Un(0) = 0 is not necessary to have a well defined drift ∇V however it is
necessary to have a well defined invariant measure e−2V (something is hidden behind this fact, the
section 6.8.5 will come back to it).
Of course the first thing that one would like to do in front of a pre-fractal measure is to characterize
it by a sort of fractal dimension, however the notion of Hausdorff dimension which is convenient to
describe subsets of R

d is not well adapted to a measure on R
d.

Nevertheless one knows that the Hausdorff measure associated to a fractal subset keeps in its growth
rate the signature of the Fractal dimension. Thus it is natural to seek what is the growth rate
associated to the smooth pre-fractal measure.
At this stage since a soft pre-fractal measure is characterized by a smaller scale and has no upper
bound for the size of its scales it is natural to explore the growth rate at infinity:

Growth rate at infinity

Definition 6.8.2. The Growth rate at infinity of a measure μ on R
d is the segment [d∞f,min(μ), d∞f,max(μ)]

where

d∞f,min(μ) = lim inf
r→∞

μ(B(0, r))
ln r

(6.200)

d∞f,max(μ) = lim sup
r→∞

μ(B(0, r))
ln r

(6.201)

If the pre-fractal measure is self similar (Un = U , rn = ρ) the growth rate at infinity is a point
given by the topological pressure of U .

d∞f,max(e
−2V dx) = d∞f,min(e

−2V dx) = d∞f (e−2V dx) = d+
Pρ(−2U)

ρ
(6.202)

Note that this definition of growth rate at infinity dimension is not invariant under a translation of
U0 (indeed under a translation by Θy, U0 should be modified to x→ U0(x+ y)−U0(y) so that U0 is
well defined). Observe also that the value of d∞f (m0

U ) is fixed by the necessity of e−2U0
to be a well

defined density measure but it can be greater than the dimension of the space.
Thus d∞f (m0

U ) is not translation invariant and one can have d∞f (m0
U ) > d (so one must be careful if

one tries to link it with a sort of Hausdorff fractal dimension of the pre-fractal).
For a non self similar pre fractal measure the growth rate at infinity is in an interval given by

d∞f,min(m
0
U ) = d+ lim inf

r→∞
ln
∫
T d
1

exp(−2U−n(r),0(x))dx

ρ(r)n(r)
(6.203)
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d∞f,min(m
0
U ) = d+ lim sup

r→∞

ln
∫
T d
1

exp(−2U−n(r),0(x))dx

ρ(r)n(r)
(6.204)

where

ρ(r) =
ln r
n(r)

(6.205)

n(r) = sup{n ∈ N : Rn ≤ r} (6.206)

and

U−p,k =
k+p∑
n=0

Un(
Rpx

Rn
) (6.207)

6.8.4.i Growth rate at 0

One might think, that this definition of df which gives back a value that can be greater than d is
unsatisfactory, and may be by analyzing the growth rate at 0 of the torus one might obtain a better
characterization, this is the object of this sub subsection.

The natural way to define a growth rate at 0 is to consider the measure mU−p,0 on the torus T d1 ,
observe that this measures are invariant if one add to each Un a different constant cn, then define
the growth rate at 0 at the point x by the segment [d0

f,x,min, d
0
f,x,max] by for 0 < α < 1

d0
f,x = lim

p→∞

− ln
(
mU−p,0

(
B(x, 1

R[pα]
)
))

lnR[pα]
(6.208)

Then one can show that d0
f,x does not depend on 0 < α < 1 and

d0
f,x,min = d+ lim inf

r→∞

ln
∫
T d
1
e−2

(
U−n(r),0(y)−U−n(r),0(x)

)
dy

ρ(r)n(r)
(6.209)

d0
f,x,max = d+ lim sup

r→∞

ln
∫
T d
1
e−2

(
U−n(r),0(y)−U−n(r),0(x)

)
dy

ρ(r)n(r)
(6.210)

Thus the growth rate at 0 at the point 0 is the same that the growth rate at infinity at the point
0, moreover it depends on the point x and d0

f,x,max can be greater than d. Thus the growth rate at
0 does suffer from the same pathology (something is hidden behind this fact, the section 6.8.5 will
come back to it).

6.8.4.ii From a SPFM to a fractal measure

The purpose of this subsection is to investigate on the following problem: how to build a fractal
measure on the torus from a given smooth pre fractal measure?
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Completion of a self similar SPFM If the SPFM is self similar the problem is easy and there are
basically two ways: The first one is to consider the sequence (mU−p,0)p∈N of probability measures on
the torus T d1 , where

mU−p,0 =
e−2U−p,0(x)dx∫
T d
1
e−2U−p,0(x)dx

(6.211)

Since the torus is compact this sequence of measures in tight and one can extract a subsequence
converging to a measure on the torus and call fractal measure the limit.
The second one is to consider the sequence (mU−p,+∞)p∈N of probability measures on the cube R

d,
where

mU−p,+∞ =
e−2U−p,+∞(x)dx∫
T d
1
e−2U−p,0(x)dx

(6.212)

This sequence of measures in tight and one can extract a subsequence converging to a measure on
the each compact subset of R

d and call fractal measure the limit.
Unicity problems will be studied in a sequel work.

Completion of a non self similar SPFM In this case the problem is more serious because it requires
an a priori choice. Indeed the first way would be to consider the sequence mU−p,0 on the torus, this
sequence is tight and one can call fractal measure the limits of converging subsequences. It is easy to
see that with this method the limits are not unique because the scale of order 0 is always changing.
The same pathology happens if on consider the sequence of probability measures mU−p,∞ on the unit
cube [0, 1]d

The alternative way to avoid this pathology would be to complete the non self similar SPFM by
smaller scales (U−k)k∈N∗ (U−k ∈ C∞(T d1 )) and (r−k)k∈N∗ , (r−k)k∈N∗ . Then write

1
R−k

= r−1 . . . r−k (6.213)

and

V −m,p =
p∑

k=−m
Uk(

x

Rk
) (6.214)

then consider the measure

mV −p,0 =
e−2V −p,0(x)dx∫
T d
1
e−2V −p,0(x)dx

(6.215)

on the torus T d1 or the measure

mV −p,+∞ =
e−2V −p,+∞(x)dx∫
T d
1
e−2V −p,0(x)dx

(6.216)

on Rd. With these choices the obstacle of order 0, −1, . . . ,−k does not change for p ≥ k, as usual
one can extract subsequences and call fractal measure the limit measure. The unicity problem is
postponed to a sequel work.
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6.8.5 Creation of a logarithmic pit

The growth rate at infinity of the invariant measure e−2V associated to the dynamic of an IHPD
is fixed by the necessity of for all x, V (x) < ∞, the growth rate at the origin of the signature of
the multi-scale medium on the torus depends also on the starting point x. This phenomenon does
not appear for a ”hard fractal” such as the Sierpinski carpet because the starting point x is always
”conditioned” to be outside of all the scales of obstacles.
Is something hidden behind this fact? Indeed observe that the dynamic of an IHPD does only depend
on the gradient −∇Un of the fluctuations, and the condition Un(0) = 0 has no reason to interfere
with it.
Nevertheless, look a little bit closer at the mechanism of the dynamic dyt = dωt − ∇f(yt)dt from
an other point view: how to chose f to ensure that the resulting diffusion yt will be sub-diffusive?
Then the natural answer is that f must corresponds to a potential pit (and the dynamic is invariant
under the change of the origin of the energies f → f + c). Now refine a little bit this question, how
to choose f to ensure that the mean squared displacement of yt will be of the form E[y2

t ] ∼ t1−ν?
Assume that f is radial (thus also Ex[y2

t ]), then write r2(t) = Ex[y2
t ], then from a heuristic point of

view

∂r2(t)
∂t

= Lfr
2 (6.217)

is written

2r
∂r

∂t
=

1
2
∂2(r2)
∂r2

+
d− 1
2r

∂(r2)
∂r

− ∂(r2)
∂r

∂f

∂r

= d− 2r
∂f

∂r

(6.218)

And using r(t) = t
1−ν
2 , it follows that ∂tr(t) = 1−ν

2 r−
1+ν
1−ν and

∂f

∂r
=

d

2r
− 1− ν

2
1

r
1+ν
1−ν

(6.219)

Thus

f(r) =
d

2
ln r +

(1− ν)2

4ν
r−

2ν
1−ν + constant (6.220)

Thus from a heuristic point of view, the potential pit corresponding to the behavior of the mean
squared displacement E[y2

t ] ∼ t1−ν is logarithmic .
Now consider a self similar IHPD, and observe that the growth rate of

V (x) =
∞∑
n=0

U(
x

Rn
) (6.221)

is like

sup
x∈B(0,r)

V ∼ Osc(U)
ln r
lnR

(6.222)

it has logarithmic shape, is it a coincidence? The above heuristic computation suggests no. In fact
the generator of an IHPD is the h-transform (see for instance [Pin95] section 7.4) of the generator of
the Brownian motion with h = e−2V . And one knows that h-transforming a generator on a bounded
open set Ω is equivalent to conditioning the behavior of its associated diffusion, for an IHPD, Ω = R

d

is unbounded nevertheless the h-transformation condition the diffusion to approach infinity (the
boundary) at a specified sub diffusive speed.
In resume these heuristic considerations suggest that a diffusion in a fractal medium such as the
Sierpinski carpet or a smooth pre fractal is sub-diffusive because through the subjacent dynamic the
multi-scale medium is seen as an effective logarithmic pit.



6. Sub-diffusive model 146

6.8.6 Origin of the anomalous estimates on fractals

The purpose of this subsection is to answer to the following question: Why the estimates of the
behavior of the Brownian on an infinitely ramified fractal (or an IHPD on a smooth pre fractal) are
of the form

E[y2
t ] ∼ t

2
dw (6.223)

E[τ(0, r)] ∼ rdw (6.224)

ln p(t, x, y) ∼ −( |x− y|dw

t

) 1
dw−1 (6.225)

(the ratio between the scales is equal to ρ and D(V n
0 ) ∼ λn with λ < 1) To do so the multi-scale

homogenization technique used for the IHPD will also be used for the Sierpinski carpet on a heuristic
point of view. Below the formulae giving the number of the effective scales are the same as those used
for the IHPD (and the influence of the perturbation scales will be neglected). This will give three
values of dw corresponding to the forms 6.223, 6.224, 6.225 and the interesting point is to compare
them.

6.8.6.i Mean squared displacement

The origin of the behavior of the mean squared displacement 6.223 is the fact that the number
effective scales is fixed by the time t according to the following formula

nef ∼ ln t
2 ln ρ

(6.226)

and

E[y2
t ] ∼ tλnef (t) ∼ t

1+ ln λ
2 ln ρ (6.227)

thus

dw,1 =
2

1 + lnλ
2 ln ρ

(6.228)

6.8.6.ii Exit times

The origin of the behavior of the exit times 6.224 is the fact that the number effective scales is fixed
by the radius r according to the following formula

nef ∼ ln r
ln ρ

(6.229)

and

E[τ(0, r)] ∼ r2

λnef
∼ r

2− ln λ
ln ρ (6.230)

thus

dw,2 = 2− lnλ
ln ρ

(6.231)
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E0[y2
t ] E0[τ(0, y)] ln P0[yt ≥ h]

nef
ln t

2 ln ρ
ln r
lnρ

ln t
h

ln ρ

λ
1
2

Heuristic tλnef r2

λ
nef − h2

tλ
nef

Anomaly t
2

dw,1 rdw,2 −(hdw,3

t

) 1
dw,3−1

dw,i
2

1+ ln λ
2 ln ρ

2− lnλ
lnρ 1 + 1

1+ ln λ

ln ρ−1
2 ln λ

6.8.6.iii Transition probability densities

The origin of the behavior of the transition probability densities 6.225 is the fact that the number
effective scales is fixed by the ratio t/|x− y| according to the following formula

nef ∼
ln t

|x−y|
ln ρ

λ
1
2

(6.232)

and

ln p(t, x, y) ∼ −|x− y|2
tλnef

∼ −|x− y|2
t

(
t

|x− y|)
− ln λ

ln
ρ

λ
1
2

= −− ( |x− y|dw,3

t

) 1
dw,3−1

(6.233)

with

dw,3 = 1 +
1

1 + lnλ
ln ρ− 1

2
lnλ

(6.234)

6.8.6.iv Comparisons

Observe that the multi-scale homogenization techniques gives back the right forms for the mean
squared displacement, the exit times and the transition probability densities; it interesting to note
that they are explained by the number of effective scales (on which homogenization can be considered
as complete) associated to each observation. Moreover dw,1, dw,2 and dw,3 are equal up the first order
approximation in 1/ ln ρ nevertheless they are not equal and this is not surprising. Indeed when
ρ is small the second order term in 1/(ln ρ)2 can not be neglected since the perturbation scales
becomes more and more dominant (and it has been shown with the IHPD that the influence of the
perturbation scales is of the order of 1/(ln ρ)2).

6.8.7 Uniform Harnack inequality

The proof used by Barlow-Bass to construct the reflecting Brownian motion on the Sierpinski carpet
is based on an uniform Harnack inequality (it is the very core of the proof) thus it is natural to wonder
what is the connection between the uniform Harnack inequality of Barlow Bass and the anomalous
behavior of an IHPD? In fact there is no direct connection in the sense that the uniform Harnack
inequality is in general not verified by the generator associated to an IHPD. Why is it so? The reason
is simple the uniform Harnack inequality reflects an isotropy of the space seen by the diffusion, this
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isotropy is broken for an IHPD (since one can have λmax(D(V n
0 ))/λmin(D(V n

0 )) →∞ as n→∞) this
make the constant associated to the Harnack inequality explode with the number scales nevertheless
it does not prevent the diffusion from being anomalous because this condition is not necessary. Where
would it be useful if it was verified for an IHPD? It would be useful to control the perturbation scales,
indeed the uniform Harnack inequality would allow to use the standard techniques used to control
the stability of the Laplace operator because it would in a sense say that the behavior of the Green
functions of the perturbed operator are close to those of the Laplace operator.

6.9 Some pictures of multi-scale media associated to an IHPD

The figure 6.5 illustrate the contour lines (6 contour lines) of

V (x, y) =
2∑

k=0

U(
x

ρk
,
y

ρk
) (6.235)

with ρ = 4 and

U(x, y) = cos(x+ π sin(y) + 1)2 sin(π cos(x)− 2y + 2) cos(π sin(x) + y) (6.236)

The figure 6.6 illustrates the same function but with 9 contour lines.
The figure 6.7 illustrates the function V with ρ = 3 and

U(x, y) = cos(x+ π sin(y)) sin(y + π cos(x+ 1))

+ 0.4 sin(π cos(x) + π cos(y) + 2) + 0.4 cos(π(cos(x))2 + y + 0.5)
(6.237)

The figure 6.8 illustrates the same function but with 9 contour lines.
The figure 6.9 illustrates the function

V (x, y) =
2∑
k=0

Uk(
x

Rk
,
y

Rk
) (6.238)

with R0 = 1, R1 = 3, R2 = 12 and 14 contour lines.

U2(x, y) = 1.5 cos(x+ 2π sin(y + 0.4) + 1)
(
cos(x+ 3)

)2( sin(y + 0.2)
)2 (6.239)

U1(x, y) = sin(x− y + 1.4)
(
cos(x+ 1.1)

)2( cos(y + 0.3)
)2 (6.240)

U0(x, y) = 0.7
(
cos(2π cos(x) + 2π sin(y) + 1)

)4( cos(x+ 3)
)2( sin(y)

)2 (6.241)
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Fig. 6.5: Smooth pre fractal medium
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Fig. 6.6: Smooth pre fractal medium
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Fig. 6.7: Smooth pre fractal medium
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Fig. 6.8: Smooth pre fractal medium
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Fig. 6.9: Smooth pre fractal medium





7. SUPER-DIFFUSIVE MODEL

7.1 Infinitely homogenized eddy diffusion

7.1.1 The strategy

The strategy to analyze Infinitely Homogenized Eddy Diffusion is the same as for an Infinitely
Homogenized Potential Diffusion, in the sense that the multi-scale analysis is done through effective
scales, perturbation scales and drift scales. Nevertheless there are some important differences. The
first and must important one is that for an IHED the multi-scale effective diffusivities D(Γ0,n) must
be shown to diverge towards infinity with geometric speed in order to obtain a clear super-diffusive
process in fact the divergence towards infinity of the multi-scale effective diffusivities is the key to
obtain a super-diffusive process.
The second one is the apparition of the diffusivity powers γn, in fact by the variational formulation
of D(Γ0,n) one can show that

D(Γ0,n) ≤
∫
T d
1

∣∣1 + 2(Γ0,n(Rnx)−
∫
T d
1

Γ0,n(Rny) dy)
∣∣2 dx

≤ (1 + 2K0

n∑
k=0

γn)2
(7.1)

this inequality suggests that to obtain a geometric speed of divergence of the effective diffusivities
D(Γ0,n) on must have at least the same speed of divergence for the diffusivity powers γn; and fact
for γn = 1, the speed of divergence of D(Γ0,n) when the scales are well separated is linear (which
suggests a weak form of super-diffusivity). In fact those parameters γn have a clear signification
when the flow is compared to a real turbulent flow (will be given in a sequel section).
The third one is the fact that the generator of the diffusion is not symmetric and this has deep
consequences on the method used to control the multi-scaled effective diffusivities and the influence
of the perturbation scales.

Overlapping ratios For an IHPD sub diffusivity has been proved for ρmin > ρ0 in the separating
scales region and it has been show that when ρmin is smaller than ρ0, the ratios belongs to the
overlapping region and both behaviors (normal and anomalous) are possible for the process (there
are regions of anomalous behavior surrounded by regions of normal behavior in real line associated
to the ratios).
Can the same phenomenon happen for an IHED?
The answer is yes, assume the IHED self-similar for simplicity (Rn = ρn, γn = γn, Γn = Γ0) and
choose

Γ0 = H(x)− γpHp(a−px) (7.2)

where H is a skew symmetric matrix and a ∈ N/{0, 1}, p ∈ N
∗. And observe that for ρ = a,

Γ =
∑∞

n=0 Γn is a bounded matrix which lead to normal diffusion by the Norris-Aronson estimates.
Thus as for an IHPD without a priori knowledge on the geometry of the eddies, results giving
the super-diffusive nature of an IHED can exist only for ρmin ≥ ρ0, below this boundary both
behaviors are possible and to determine whether the diffusion is super-diffusive or not, on needs
more informations than the knowledge of the parameters K0,K1, λmax, λmin, γn.
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7.2 The shear flow model

7.2.1 The results

Those results are proven in the chapter 11.

7.2.1.i Multi-scale effective diffusivity

Consider a IHSFD, the following theorem corresponds to the theorem 11.2.1.

Theorem 7.2.1. assume γmin > 1 and

ε =
2

3
2

ρmin

K1

γmin − 1
< 1 (7.3)

then for all p ∈ N

D(Γ0,p) =
(

1 0
0 D(Γ0,p)22

)
(7.4)

with

1 + 4(1− ε)
p∑

k=0

γ2
k ≤ D(Γ0,p)22 ≤ 1 + 4(1 + ε)

p∑
k=0

γ2
k (7.5)

Observe that the control on the multi-scale effective diffusivities of a IHSFD is sharper that on
an IHPD, this fact is created by the introduction and divergence of the diffusivity powers γn.

7.2.1.ii Mean squared displacement

Bounded ratios The following theorem corresponds to the theorem 11.3.1.

Theorem 7.2.2. assume γmin > 1, γmax, ρmax <∞,
ρmin > ρ0(γmin, γmax,K0,K1) and t > t0(γmin, γmax, R1,K0,K1) then

E0[|yt.e2|2] = t1+ν(t) (7.6)

with

ν(t) ≤ ln γmax

ln ρmin + ln γmin
γmax

+
C2

ln t
(7.7)

ν(t) ≥ ln γmin

ln ρmax + ln γmax

γmin

− C1

ln t
(7.8)

Where the constants C1 and C2 depends on ρmin, γmin, γmax, ρmax,K1,K2

Observe that the control on the mean squared displacement of a IHSFD is sharper that on an
IHPD, this fact is created by the introduction and divergence of the diffusivity powers γn. Indeed
for each t, the behavior of E[y2

t ] is dominated by a single scale.
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Fast separating ratios The following theorem corresponds to the theorem 11.3.2.

Theorem 7.2.3. assume γp = γp and Rp = Rp−1[ ρ
pα

Rp−1
] with γ, ρ > 1 and α ≥ 1 Then for t >

t0(γ2, R2,K0,K1)

C1tγ
β(t) ≤ E0[|yt.e2|2] ≤ C2tγ

β(t) (7.9)

with

β(t) = 2(
1

2 ln ρ
)

1
α (ln t)

1
α (7.10)

Where the constants C1 and C2 depends on ρ, γ, α,K1,K2

Remark 7.2.1. Note that this theorem shows how the diffusion becomes more and more super-
diffusive as α ↓ 1: the ratio between scales tends to be constant.

7.3 Links with turbulence

7.3.1 Turbulent Convection

It is clear that an infinitely homogenized eddy diffusion is a model of diffusion-convection in a
incompressible turbulent flow. One knows that a turbulent flow is characterized by a large number
of scales of eddies and convection rolls, the purpose of this model is to show that the presence of
multi-scale eddies generates the anomalous behavior of the diffusion between appropriate time scales
(or length scales) corresponding to the minimal length of the eddies and their maximal length.
Of course in a real turbulent flow each Γn should be time dependent and the periodicity should
be replaced by a time and spacial ergodicity conditions. The study of those real turbulent flows is
postponed to a sequel work.

7.3.2 Physical interpretation

Observe that this model of IHED has an interesting interpretation in the framework of fully developed
turbulence (Read the subsection 4.6.4 prior to reading this one).
Here the mean velocity of the fluid is 0.
The parameters γn‖∇Γn‖∞ represents the amplitude of the pulsations of size Rn. Since for all scales
‖∇Γn‖∞ ≤ K1, the fact that γn is increasing reflects the fact that the amplitude of the pulsations
increase with the scale.
The energy dissipated per unit time and unit volume in the eddies of scale n is of order of

εn ∝ γ2
n

R4
n

K2
2 (7.11)

So to say that the energy is dissipated mainly in the small eddies is equivalent to say that γn/R2
n → 0

as n→∞ or if Rn = ρn and γn = ραn, this equivalent to say that α < 2.
The Kolmogorov-Obukhov’s law is equivalent to say that K2 <∞ for all n, ∇Γn(0) = 0 and

γn ∝ R
4
3
n (7.12)

or if Rn = ρn and γn = ραn, this equivalent to say that α = 4
3 .
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7.3.3 Links with Richardson law

Richardson’s empirical law Dλ ∼ λ
4
3 says that

lnD(Γ0,n−1)
lnRn

→ 4
3

(7.13)

If Rn ∼ ρn, γn ∼ γn and D(Γ0,n−1) ∼ γβn, it would say that γβ = ρ
4
3 . One has to be careful in

the comparison with the shear flow model which is strongly anisotropic (the effective medium scale
is fixed by the law of a standard Brownian motion and not the accelerated diffusion, contrary to
Kolmogorov turbulence).
Now for the compatibility with the Kolmogorov law, one must have γβ = γ, this would mean that
D(Γ0,n−1) ∼ γn this is quite interesting.

7.3.4 Heuristic consideration and Ansatz on the apparition of turbulence

The Navier Stokes equations

∂

∂t
ui = νΔui − u.∇ui − 1

ρ

∂

∂xi
p+ fi(x, t) (7.14)

corresponds to the convective diffusion of the velocities of the flow. Imagine the initial flow being
laminar at the instant t0 and introduce some small fluctuations or perturbations by an exterior source
(ultrasonics for instance). Now those fluctuations of the flow enhance the diffusion, nevertheless
although the diffusion is enhanced the smoothing term of the operator νΔui remains unchanged,
thus the fluctuations are also enhanced and observe that as those fluctuations spread over more and
more scales the convective diffusion of the flow is more and more enhanced by the super-diffusive
transport phenomenon enhancing the fluctuations and spreading them over more and more scales
(this is a self maintained phenomenon).
Why does turbulence appear only for a sufficiently high Reynolds number? What is the link with
this Ansatz? The link is quite simple. In fact the initial perturbation is increased by the local
enhancement of the diffusion due to that perturbation but decreased by the smoothing term νΔui,
there is a competition between those two phenomenon and one can imagine that when the kinematic
viscosity is high the smoothing term wins and when it is low then the enhancing term wins. In
fact the Reynolds number in the framework of an IHED corresponds to the multi-scale effective
diffusivities: Assume that the flow has only n scales Γ0, . . . ,Γn−1 then the proper Reynolds number
characterizing the flow is

Re = D(Γ0,n−1) (7.15)

7.4 Some pictures of multi-scale flow associated with an IHED

The figures given in this section illustrate the contour lines of the stream function H(x, y) associated
to the stream matrix

Γn(x1, x2) =
(

0 H(x, y)
H(x, y) 0

)
(7.16)

with

H(x, y) =
2∑
k=0

ραK(
x

ρk
,
y

ρk
) (7.17)

The figure 7.1 illustrate (9 contour lines) the case α = 0.5, ρ = 3 with

K(x, y) = cos(x+ π sin(y)) sin(y + π cos(x+ 1))

+ 0.4 sin(π cos(x) + π cos(y) + 2) + 0.4 cos(π(cos(x))2 + y + 0.5)
(7.18)
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Fig. 7.1: Multiscale flow , α = 0.5, ρ = 3

The figure 7.2 (9 contour lines) illustrate the same case but with case α = 4/3, ρ = 3.
The figure 7.3 (11 contour lines) illustrate the case

K(x, y) = cos(x+ π sin(y) + 1)2 sin(π cos(x)− 2y + 2) cos(π sin(x) + y) (7.19)

with case α = 0.5, ρ = 4.
The figure 7.3 (11 contour lines) illustrate the same case but with α = 4/3
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Fig. 7.2: Multiscale flow , α = 4/3, ρ = 3
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Fig. 7.3: Multiscale flow , α = 0.5, ρ = 4
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Fig. 7.4: Multiscale flow , α = 4/3, ρ = 4



Part IV

PROOFS AND TOOLS





8. SUB DIFFUSIVITY IN DIMENSION ONE

8.1 Exact Formulas

8.1.1 Periodic potential

Let U ∈ C∞(T 1
1 ),

Effective Diffusivity

D(U) =
1∫ 1

0 e
−2Udx

∫ 1
0 e

2Udx
(8.1)

Cell problem For l ∈ S
1, the solution of the cell problem 5.4 is equal to

χl(x) = l
(
x−m−U ([0, x])

)
= l

(
x−

∫ x
0 e

2Udy∫ 1
0 e

2Udy

) (8.2)

and the associated quasi-linear harmonic function is

Fl(x) = l.x− χl(x) = m−U ([0, x])

= l

∫ x
0 e

2Udy∫ 1
0 e

2Udy

(8.3)

Ergodicity problem For l ∈ S
d, the solution of the ergodicity problem 5.10 is equal to

φl(x) =2
∫ x

0

(
m−U

(
[0, z]

) −mU

(
[0, z]

))
m−U(dz)

− 2m−U
(
[0, x]

) ∫ 1

0

(
m−U

(
[0, z]

) −mU

(
[0, z]

))
m−U(dz)

(8.4)

Exit time Write

ψ(x) = 2
∫ x

0
e2U(y)

∫ y

0
e−2U(z)dy dz (8.5)

Since LUψ = 1 it follows by the Ito formula that

E0[ψ(yτ(0,1))] = E0[τ(0, 1)] (8.6)

Observe that since Fe1 is harmonic with respect to LU it follows that,

P0[yτ(0,1) = 1] = P0[yτ(0,1) = −1] = 1/2

and

E0[τ(0, 1)] =
∫ 1

0
e2U(y)

∫ y

0
e−2U(z)dy dz +

∫ −1

0
e2U(y)

∫ y

0
e−2U(z)dy dz (8.7)

and by periodicity

E0[τ(0, 1)] =
∫ 1

0
e2U(y)dy

∫ 1

0
e−2U(y)dy =

1
D(U)

(8.8)
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8.2 Effective diffusivities

8.2.1 Self-similar case

Let yt be a self-similar infinitely homogenized potential diffusion with ratio between scales R ∈
N/{0, 1} and periodic potential U ∈ C∞(T 1

1 ).
By the theorem C.1.1

Theorem 8.2.1.

lim
n→∞− 1

n
ln
(
D(V n−1)

)
= PR(2U) + PR(−2U) (8.9)

where PR is the topological pressure associated to the shift sR.
And the theorem C.1.2 says that PR(2U)+PR(−2U) > 0 if and only U does not belong to the closed
subspace of C(T d1 ) generated the elements T (x)− T (Rkx) with T ∈ C(T d1 ) and k ∈ N. Moreover it is
easy to see that as R→∞

PR(2U) + PR(−2U) → ln
∫
T d
1

e2Udx+ ln
∫
T d
1

e−2Udx (8.10)

which is strictly positive if U is not constant.

8.2.2 General case

Theorem 8.2.2. For ρmin > 2K1e
2K0

n−1∏
k=0

1∫
T 1
1
e2Uk(x)dx

∫
T 1
1
e−2Uk(x)dx

1

(1 + 2K1e2K0

rk
)2
≤ D(V n−1) (8.11)

and

D(V n−1) ≤
n−1∏
k=0

1∫
T 1
1
e2Uk(x)dx

∫
T 1
1
e−2Uk(x)dx

1

(1− 2K1e2K0

rk
)2

(8.12)

Proof. Direct consequence of the corollary C.1.1 and a simple induction.

Corollary 8.2.1. Assume that for all k, Uk = U and

Rk = Rk−1[
ρk

α

Rk−1
]

with ρ, α > 1 then

lim
n→∞

1
n

lnD(V n−1) =
1∫

T 1
1
e2U(x)dx

∫
T 1
1
e−2U(x)dx

(8.13)

Proof. Direct consequence of the theorem 8.2.2 and a simple induction.

8.3 Exit times

Let yt be an infinitely homogenized potential diffusion.

Let r > 1, write

nef (r) = sup{n ≥ 0 : Rn ≤ r} (8.14)

nef (r) is the effective scale (aggregation of the scales 0, . . . , nef ) corresponding to the length r.
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Theorem 8.3.1.

r2

D(V nef

0 )
1
Cτ

≤ E0[τ(0, r)] ≤ r2

D(V nef

0 )
Cτ (8.15)

with

Cτ = 4e4(K0+K1
ρmin

ρmin−1
) (8.16)

Proof. Observe that for x ∈ B(0, r),

|V∞
nef +1| ≤ K0 +K1

ρmin

ρmin − 1
(8.17)

Indeed, Unef +1 acts as a perturbation scale and its norm is bounded by K0 and V∞
nef +2 acts as a drift

scale and is bounded by
∑∞

p=nef +2 ‖∇Uk‖∞r/Rk on B(0, r).
Write

pef = sup{p ≥ 1 : pRnef
≤ r} (8.18)

pef corresponds to the maximum number of periods of the scale nef included in the segment [0, r]
Observe that

E0[τ(0, r)] ≥ E0[τ(0, pefRnef
)] (8.19)

and

E0[τ(0, r)] ≤ E0[τ(0, (pef + 1)Rnef
)] (8.20)

And observe that (write ykt the diffusion associated to the potential V k
0 and E

k its expectation) by
the equation 8.8 and the invariance by scaling of the effective diffusivity

E
nef

0 [τ(0, pRnef
)] =

p2R2
nef

D(V nef

0 )
(8.21)

It follows by the corollary 13.5.2 that

E0[τ(0, r)] ≥ r2

D(V nef

0 )
1
4
e
−4(K0+K1

ρmin
ρmin−1

) (8.22)

and

E0[τ(0, r)] ≤ r2

D(V nef

0 )
4e4(K0+K1

ρmin
ρmin−1

) (8.23)

Corollary 8.3.1.

r2+ν
1
Cτ

≤ E0[τ(0, r)] ≤ r2+νCτ (8.24)

with

ν(r) = − 1
ln r

ln
[
D(V nef (r)

0 )
]

(8.25)

and

Cτ = 4e4(K0+K1
ρmin

ρmin−1
) (8.26)

Proof. Direct consequence of the previous theorem.
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Self-similar case

Corollary 8.3.2. Let yt be a self-similar infinitely homogenized potential diffusion. Then

E0[τ(0, r)] = r2+ν(r) (8.27)

with

ν(r) =
Pρ(2U) + Pρ(−2U)

ln ρ
+ ε(r) (8.28)

with ε(r) → 0 as r →∞.

Proof. Direct consequence of the corollary 8.3.1 and the theorem 8.2.1.

General case

Corollary 8.3.3. Let yt be an infinitely homogenized potential diffusion such that, ρmin > 4K1e
2K0 ,

ρmax <∞ and λmax < 1. Then

C1r
2+ν(r) ≤ E0[τ(0, r)] ≤ C2r

2+ν(r) (8.29)

where C1, C2 depends only on K0,K1 and ρmin and

0 < − lnλmax

ln ρmax
− 8K1e

2K0

ρmin ln ρmax
≤ ν(r) ≤ − lnλmin

ln ρmin
+

4K1e
2K0

ρmin ln ρmin
(8.30)

Remark 8.3.1. Observe that

λmax = sup
k∈N

1∫
T 1
1
e2Uk(x)dx

∫
T 1
1
e−2Uk(x)dx

(8.31)

and the diffusion shows a clear anomalous behavior as soon as

ρmin > −8
K1e

2K0

lnλmax
(8.32)

Proof. Direct consequence of the corollary 8.3.1 and the theorem 8.2.2.

Fast separation of scales case

Corollary 8.3.4. Assume that for all k, Uk = U and

Rk = Rk−1[
ρk

α

Rk−1
]

with ρ, α > 1 then

C1r
2+ν(r) ≤ E0[τ(0, r)] ≤ C2r

2+ν(r) (8.33)

where C1, C2 depends only on K0,K1, ρ, α and

ν(r) =
1

(ln r)1−
1
α

ln
( ∫

T 1
1
e2U(x)dx

∫
T 1
1
e−2U(x)dx

)
(ln ρ)

1
α

(8.34)

Remark 8.3.2. Observe that this corollary shows how the behavior of the diffusion passes from weakly
anomalous one to strongly anomalous as α ↓ 1 and the ratio between scales tends to be constant.

Proof. Direct consequence of the corollary 8.3.1 and the theorem 8.2.2.
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8.4 Massage of the harmonic functions

8.4.1 Linearity versus norm of the cell problem

Let U,P ∈ C∞(T 1
1 ) be smooth periodic potentials. Write V = SRU +P , with R ∈ N

∗. Write χV , χP

the solutions of the cell problems associated to V and P .

Lemma 8.4.1.

‖χV − χP ‖∞ ≤ 2
e2 Osc(P )

R
[1 + 4‖∇P‖∞] (8.35)

Proof. This follows from the explicit formulas for χ an application of the corollary C.1.1 and a
straightforward computation.

8.4.2 Perturbed ergodicity

Let U,P ∈ C∞(T 1
1 ) and T ∈ C∞(R1) a smooth potential with bounded gradient. Write for R ∈

N/{0, 1}, V = SRU+P +T and yt the diffusion associated to the generator LV . Write W = SRU+P
and χW the solution of the cell problem associated to LW .
Write for ζ > 0

φζ = 2
∫ x

0

e2V (y)∫ 1
0 e

2W (y)dy

[ ∫ y

0

e2(P−T )(z)∫ 1
0 e

2P (z)dz
dz(1 + I)− ζ

∫ y

0

e−2(P+T )(z)∫ 1
0 e

−2P (z)dz
dz
]
dy (8.36)

Lemma 8.4.2. For l ∈ S
1, and ζ > 0

LV φζ = |l − χWl |2 − ζD(W ) (8.37)

Moreover if

R > 16e4 Osc(P )(‖∇P‖∞ + ‖∇T‖∞)e2‖∇T‖∞/R

then

1. for ζ = 6e4 Osc(P )

sup
R

φζ ≤ 900
e10 Osc(P )

R2
e4‖∇T‖∞/R (8.38)

2. for ζ = e−4 Osc(P )

6

inf φζ ≥ −100
e10 Osc(P )

R2
e4‖∇T‖∞/R (8.39)

Proof. Observe that by the corollary C.1.3

∣∣∣ ∫ x

0

e2(W+T )(y)∫ 1
0 e

2W (y)dy
dy −

∫ x

0

e2(P+T )(y)∫ 1
0 e

2P (y)dy
dy
∣∣∣ ≤ I

R

with

I =2e2 Osc(P )
[
e2

‖∇T‖∞
R

(
e2T (x) + 2(‖∇P‖∞ + ‖∇T‖∞)|

∫ x

0
e2T (y)dy|)

+ 2‖∇P‖∞
∫ x
0 e

2(P+T )(y)dy∫ 1
0 e

2P (y)dy

]
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It follows that (with R is chosen so that I1 < R)

φζ ≤2
∫ x

0

e2V (y)∫ 1
0 e

2W (y)dy

[ ∫ y

0

e2(P−T )(z)∫ 1
0 e

2P (z)dz
dz(1 +

I1
R

) +
I2
R

(1 + ζ)e−2T (y)

− ζ(1− I1
R

)
∫ y

0

e−2(P+T )(z)∫ 1
0 e

−2P (z)dz
dz
]
dy

with

I1 = 8(‖∇P‖∞ + ‖∇T‖∞)e4 Osc(P )+2‖∇T‖∞/R

and

I2 = 2e2Osc(P )2‖∇T‖∞/R

This leads to

φζ ≤ 2
∫ x

0

e2V (y)∫ 1
0 e

2W (y)dy

[I2
R

(1 + ζ)e−2T (y) − I3

∫ y

0
e−2T (z)dz

]
dy

with

I3 = ζ(1− I1
R

)e−2 Osc(P ) − e2Osc(P )(1 +
I1
R

)

now

φζ ≤ 2
∫ x

0

e2W (y)∫ 1
0 e

2W (y)dy

[I2
R

(1 + ζ)− I3

∫ y

0
e−2‖∇T‖∞zdz

]
dy

and the function

f(y) =
I2
R

(1 + ζ)− I3

∫ y

0
e−2‖∇T‖∞zdz

is negative for x ≥ x0 with

x0 = − 1
2‖∇T‖∞ ln

(
1− I2

RI3
(1 + ζ)2‖∇T‖∞

)
chose

ζ = 6e4 Osc(P )

with the inequality

R > 16e4 Osc(P )(‖∇P‖∞ + ‖∇T‖∞)e2‖∇T‖∞/R

so that

I2
RI3

(1 + ζ)2‖∇T‖∞ <
1
2

but for 0 < x < 1/2, − ln(1− x) ≤ 2x. It follows that

φζ ≤ 2
∫ x0

0

e2W (y)∫ 1
0 e

2W (y)dy

I2
R

(1 + ζ)

≤ 2e2 Osc(P ) I2
R2

(1 + ζ)[1 + 2
I2
I3

(1 + ζ)]
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and using I3 ≥ e4 Osc(P ) it follows after a straightforward computation that

φζ ≤ 900
e10 Osc(P )

R2
e4‖∇T‖∞/R

which proves the upper bound.

The proof of the lower bound is similar. First observe that

φζ ≥2
∫ x

0

e2V (y)∫ 1
0 e

2W (y)dy

[ ∫ y

0

e2(P−T )(z)∫ 1
0 e

2P (z)dz
dz(1 − I1

R
)− I2

R
(1 + ζ)e−2T (y)

− ζ(1 +
I1
R

)
∫ y

0

e−2(P+T )(z)∫ 1
0 e

−2P (z)dz
dz
]
dy

≥2
∫ x

0

e2V (y)∫ 1
0 e

2W (y)dy

[
I3

∫ y

0
e−2T (z)dz − I2

R
(1 + ζ)e−2T (y)

]
dy

with

I1 = 8(‖∇P‖∞ + ‖∇T‖∞)e4 Osc(P )+2‖∇T‖∞/R < R/2

and

I3 = e−2Osc(P )(1− I1
R

)− ζ(1 +
I1
R

)e2 Osc(P )

choose

ζ =
e−4Osc(P )

6

Then

I3 ≥ e−2Osc(P )

6

It follows that

φζ ≥ 2
∫ x

0

e2W (y)∫ 1
0 e

2W (y)dy

[
I3

∫ y

0
e−2‖∇T‖∞y − I2

R
(1 + ζ)

]
dy

and by noting that I3
∫ y
0 e

−2‖∇T‖∞y − I2
R (1 + ζ) is positive for y ≥ x0 = I2

R
(1+ζ)
I3

it follows after a
straightforward computation that

φζ ≥− I2
R2

(1 + ζ)e2 Osc(P )
(I2
I3

(1 + ζ) + 1
)

≥− 100
e10 Osc(P )

R2
e4‖∇T‖∞/R

8.5 Anomalous mean square displacement

Let yt be an infinitely homogenized potential diffusion.
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Theorem 8.5.1. Assume that ρmin > 16e4K0K1e
2K1 , then for t > ρ2

min

E[y2
t ] ≤ C2e

8nperK0D(V nflu

0 )t (8.40)

with

nflu = sup{n ∈ N : R2
n ≤ t} (8.41)

and

nper = inf{n ∈ N : R2
nflu−n ≤ tD(V nflu

0 )}
is well defined with nper ≤ nflu

C2 = 40eK
2
1 (8.42)

Theorem 8.5.2. Assume ρmin > 10e30K1 and t > R9 then

E[y2
t ] ≥

e−8nperK0

50
D(V nflu

0 )t (8.43)

with

nflu = sup{n ∈ N : R2
n ≤ t}+ 1 (8.44)

and

nper = inf{n ∈ N : R2
nflu−ne

14nK0104e4K1 ≤ tD(V nflu

0 )}
is well defined and nper ≤ nflu

8.5.1 Proof

Let t > ρ2
min, write

nflu = sup{n ∈ N : R2
n ≤ t} (8.45)

Let nper ∈ N such that nper ≤ nflu choose for the aggregation of effective scales

Ueff = V
nflu−nper

0

for the aggregation of perturbation scales

Pper = V
nflu

nflu−nper+1

and for the aggregation of drift scales

Tdri = V∞
nflu+1

Now observe that the conditions of the lemma C.3.3 are satisfied by the lemmas 8.4.2 and 8.4.1 with
for χP the solution of the cell problem associated to Pper and for χU , χV

nflu
0 − χPper .

Cχ1 = e−4nperK0 Cχ2 = e4nperK0 CU = 2e2nperK0[1 + 4K1]

RW = Rnflu
RP =

Rnflu

Rnflu−nper

and under the assumption

ρmin > 16e4K0K1e
2K1 (8.46)

ζ2 = 6e4nperK0 ζ1 =
e−4nperK0

6

Cφ2 = 900e10nperK0e4K1 Cφ1 = 100e10nperK0e4K1
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8.5.1.i Upper bound

Proof. It follows by the lemma C.3.3 that

E[y2
t ] ≤8e8nperK0R2

nflu−nper
[1 + 4K1]2

+ 4e4nperK0eK
2
1

(
6e4nperK0D(V nflu

0 )t+R2
nflu−nper

e4nperK0

) (8.47)

Then nper is chosen so that the influence of the perturbations are less or equal to the influence of the
aggregation of the effective scales:
More precisely with

nper = inf{n ∈ N : R2
nflu−n ≤ tD(V nflu

0 )}

It is easy to see that for ρmin > e2K0 , one has nper ≤ nflu and

E[y2
t ] ≤ C2e

8nperK0D(V nflu

0 )t (8.48)

with

C2 = 40eK
2
1 (8.49)

8.5.1.ii Lower bound

Proof. For t > R2
1, choose

nflu = sup{n ∈ N : R2
n ≤ t}+ 1 (8.50)

and define the aggregation of scales as for the upper bound with this new definition of nflu.
Observe that

t‖∇Tdri‖2
∞ ≤ R2

neff
(2K1/Rneff +1)2

Observe that for ρmin > 4K1 It follows by the lemma C.3.3 that

E[y2
t ] ≥

e−8nperK0

24
D(V nflu

0 )t−R2
nflu−nper

25e6nperK0e4K1

− 4R2
nflu−nper

[1 + 4K1]2
(8.51)

Then nper is chosen so that the influence of the perturbations are strictly less to the influence of the
aggregation of the effective scales:
More precisely with

nper = inf{n ∈ N : R2
nflu−ne

14nK0104e4K1 ≤ tD(V nflu

0 )}

It is easy to see that for ρmin > 10e30K1 and t > R9, such n exists with nper ≤ nflu and

E[y2
t ] ≥

e−8nperK0

50
D(V nflu

0 )t (8.52)
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Corollary 8.5.1. Assume that ρmin > 16e4K0K1e
2K1 , then for t > ρ2

min

E[y2
t ] ≤ C2λ

nflu

2 t (8.53)

where the constant C2 depends only on K1,K0, λmin, ρmin and

nflu = sup{n ∈ N : R2
n ≤ t} (8.54)

λ2 = λmax(1 +
4K1e

2K0

ρmin
+

16K0

ln ρmin
ln(

9
8λmin

)) (8.55)

Proof. This is a simple application of the theorem 8.5.1. Observe that by the theorem 8.2.2, for
ρmin > 16e4K0K1e

2K1 one has

D(V n−1
0 ) ≥ (

8
9
λmin)n (8.56)

It follows that

nper ≤ inf{n ∈ N : ρ−nmin ≤ (
8
9
λmin)nflu+1}

≤ (nflu + 1)
1

ln ρmin
ln(

9
8λmin

) + 1

Thus

E[y2
t ] ≤ C3e

nflu8
K0

ln ρmin
ln( 9

8λmin
)
D(V nflu

0 )t (8.57)

where the constant C3 depends only on K1,K0, λmin, ρmin and it follows by the theorem 8.2.2 that

E[y2
t ] ≤ C4λ

nflu

2 t (8.58)

with

λ2 = (
9

8λmin
)

8K0
ln ρmin

λmax

1− 2K1e2K0

ρmin

≤ λmax(1 +
4K1e

2K0

ρmin
+

16K0

ln ρmin
ln(

9
8λmin

))

(8.59)

Corollary 8.5.2. Assume ρmin > 10e30(K1+4K2
0 ) and t > R9 then

E[y2
t ] ≥ C1λ

nflu

1 t (8.60)

nflu = sup{n ∈ N : R2
n ≤ t} (8.61)

where the constant C1 depends only on K1,K0, λmin, ρmin and

λ1 = λmin(1− 4K1e
2K0

ρmin
− 32K0

ln ρmin
ln(

16
15λmin

)) (8.62)
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Proof. This is a simple application of the theorem 8.5.2. Observe that by the theorem 8.2.2, for
ρmin > 10e30K1 one has

D(V n−1
0 ) ≥ (

15
16
λmin)n (8.63)

It follows that

nper ≤ inf{n ∈ N : ρ−nmine
14nK0104e4K1 ≤ (

15
16
λmin)nflu+1}

≤ 1
ln ρmin − 14K0

(
(nflu + 1) ln(

16
15λmin

) + 12 + 4K1

)
+ 1

Thus

E[y2
t ] ≥ C5e

−8nflu

ln( 16
15λmin

)

ln ρmin−14K0
K0D(V nflu

0 )t (8.64)

where the constant C5 depends only on K1,K0, λmin, ρmin and it follows by the theorem 8.2.2 that

E[y2
t ] ≥ C6λ

nflu

1 t (8.65)

with

λ1 = e
−8

ln( 16
15λmin

)

ln ρmin−14K0
K0 λmin

1 + 2K1e2K0

ρmin

≥ λmin(1− 4K1e
2K0

ρmin
− 32K0

ln ρmin
ln(

16
15λmin

))

(8.66)

8.5.1.iii Bounded ratio between scales case

Theorem 8.5.3. Assume λmax < 1, ρmin > 10e−
30

ln λmax
(K1+4K2

0 ), t > R9 and ρmax <∞ then

E[y2
t ] = t1−ν(t) (8.67)

ν(t) ≤ − lnλmin

2 ln ρmin
+

2K1e2K0 lnρmin
ρmin

+ 16K0 ln( 16
15λmin

)

(ln ρmin)2
+ ε(t) (8.68)

ν(t) ≥ − lnλmax

2 ln ρmax
−

2K1e2K0 ln ρmin
ρmin

+ 8K0 ln( 9
8λmin

)

ln ρmin ln ρmax
− ε(t) (8.69)

where ε(t) → 0 as t→∞ and

− lnλmax

2 ln ρmax
−

2K1e2K0 lnρmin
ρmin

+ 8K0 ln( 9
8λmin

)

ln ρmin ln ρmax
> 0 (8.70)

Remark 8.5.1. Observe that for a self-similar diffusion, λmax = λmin = λ and ρmax = ρmin = ρ,

1− ν(t) ∼ 1 +
lnλ
2 ln ρ

(8.71)

Proof. Straightforward by the corollaries 8.5.1 and 8.5.2
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8.5.1.iv Fast separation between scales case

Theorem 8.5.4. Assume that for all k, Uk = U and

Rk = Rk−1[
ρk

α

Rk−1
]

with ρ, α > 1 then

C1t
1−ν(t) ≤ E0[y2

t ] ≤ C2t
1−ν(t) (8.72)

where C1, C2 depends only on K0,K1, ρ, α and

ν(t) =
1

(ln t)1−
1
α

ln
( ∫

T 1
1
e2U(x)dx

∫
T 1
1
e−2U(x)dx

)
(2 ln ρ)

1
α

(1 + ε(t)) (8.73)

with ε(t) → 0 as t→∞.

Remark 8.5.2. Observe that E[y2
t ]/t→ 0 as t→∞ but for all 1 > β > 0, E[y2

t ]/t1−β →∞. Moreover
this theorem shows how the behavior of the diffusion passes from a slightly anomalous one to a
strongly anomalous one.

E[y2
t ] ∼

t

( ∫
T 1
1
e2U(x)dx

∫
T 1
1
e−2U(x)dx

) 1

(2 ln ρ)
1
α

(ln t)
1
α

(8.74)

Proof. Straightforward by the theorems 8.5.1 and 8.5.2. Observe that the ratio between the number
of perturbation scales with the numbers of fluctuating scales tends towards 0 as t→∞

8.6 Transition probability densities, upper bound

Let yt be an inifintely homogenized potential diffusion.
For p ∈ N

∗ define the function

nper(p) = inf{n ∈ N :
Rp
Rp−n

e−3nK0 ≥ 29K1e
2(K0+K1)(D(V p−1

0 ))
−1
2 } (8.75)

nper(p) corresponds to the number of perturbation scales among p fluctuating scales. Observe that
for

ρmin ≥ 29(1 +K1)e(8K0+2K1) (8.76)

this function is well defined and 1 ≤ nper(p) ≤ p. (one can assume K1 ≥ 1 without restricting the
results) Then choose

nflu = inf{n ∈ N :
K1

Rn+1
26e2nper(n)K0(D(V n

0 ))
1
2 ≤ h

t
} (8.77)

nflu − nper corresponds to the number of fully homogenized scales given h/t. nflu well defined and
greater than 1 under the assumption that

K1

R2
e−2K026 ≥ h

t
(8.78)
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Theorem 8.6.1. Under the assumptions 8.76, 8.78 and

max(X,Y ) ≤ h2

t(D(V nflu−1
0 ))

1
2

(8.79)

with

X = K1e
2K027e2nperK0 Y = 214e4(nper+2)K0 ln

[
Rnflu+1

]
(D(V nflu

0 ))
1
2 (8.80)

it follows that

P[l.yt ≥ h] ≤ Ce
− h2

211e4nperK0D(V
nflu
0

)t (8.81)

Proof. Let nflu ∈ N and nper ∈ N , nper ≤ nflu observe that by the explicit formula for the solution
of the cell problem and the lemma 8.4.2 under the assumption ρmin > 16e4K0K1e

2K1 the conditions
of the lemma C.4.2 are satisfied with for the aggregation of effective scales

Ueff = V
nflu−nper

0

for the aggregation of perturbation scales

Pper = V
nflu

nflu−nper+1

and for the aggregation of drift scales

Tdri = V∞
nflu+1

RW = Rnflu
RP =

Rnflu

Rnflu−nper

ζ2 = 6e4nperK0 Cφ2 = 900e10nperK0e4K1 Cχ = 1

Observe that with the definition of nflu the left inequality in C.68 is satisfied. Moreover Then the
right inequality in C.68 is satisfied if

K1

Rnflu

26e2nper(nflu)K0(D(V nflu−1
0 ))

1
2 ≤ e−nperK0e−2K1

Rnflu−nper5
D(V nflu

0 ) (8.82)

which is implied by the definition of nper.
Now observe that the inequality C.67 is satisfied if

2Rnflu
≤ h

By the definition of nflu, this inequality is implied by

h

2
≥ K1t

h
26e2nper(nflu−1)K0(D(V nflu−1

0 ))
1
2 (8.83)

which follows from

h2

t(D(V nflu−1
0 ))

1
2

≥ 2K1e
2K026e2nper(nflu)K0 (8.84)
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Now observe that the inequality C.69 is satisfied if

2116e4nperK0 ln
[ 1
Rnflu−nper5enperK0e2K1

D(V nflu

0 )
t

h

]
≤ h2

D(V nflu

0 )t
(8.85)

by the definition of nflu this inequality is satisfied if

2116e4nperK0 ln
[ Rnflu+1(D(V nflu

0 ))
1
2

Rnflu−npere
3nperK0K128e2K1

]
≤ h2

D(V nflu

0 )t
(8.86)

and by the definition of nper this inequality is satisfied if

214e4(nper+1)K0 ln
[Rnflu+1Rnflu−nper−1

Rnflu−nper

]
≤ h2

D(V nflu

0 )t
(8.87)

which is implied by

214e4(nper+1)K0 ln
[
Rnflu+1

]
≤ h2

D(V nflu

0 )t
(8.88)

With this assumption, it follows by the lemma C.4.2 that

P[l.yt ≥ h] ≤ Ce
− h2

211e4nperK0D(V
nflu
0

)t (8.89)

Theorem 8.6.2. Assume ρmax <∞, λmax < 1,
ρmin > C16(K0,K1, ρmin, ρmax, λmax)

h2

t
≥ C11(K0,K1, ρmax, ρmin)(

t

h
)

ln λmax
2 ln ρmax

+
C12(K0,K1)

(ln ρmin)2 (8.90)

and
t

h
≥ C13(K0,K1, R2) (8.91)

then for l ∈ S
d

P[l.yt ≥ h] ≤ C14e
−C15(K0,K1,ρmax,ρmin,λmax)h2

t
( t

h
)ν

(8.92)

with

ν = − lnλmax

ln ρmax
− C6(K0,K1)

ln ρmin ln ρmax
> 0 (8.93)

Remark 8.6.1. It is not surprising to have the condition 8.91 since even with one scale the homoge-
nized behavior of the transition probability densities starts for t > h. Observe also that the condition
8.90 corresponds to the condition that the behavior of the diffusion is far from the heat kernel di-
agonal regime, however here since lnλmax

2 lnρmax
+ C12(K0,K1)

(ln ρmin)2
< 0 one can have h2/t << 1 before reaching

this regime.
Observe that the equation 8.92 is equivalent to

P[l.yt ≥ h] ≤ C14e
−C15(K0,K1,ρmax,ρmin,λmax)(hdw

t
)

1
dw−1 (8.94)

with dw = 1+ 1
1−ν which is the form found for a diffusion in the Sierpinski carpet. It is very interesting

to notice that this particular form is due to the fact that the fluctuating scale is fixed by the ratio
t/h.
Observe also that for a self-similar diffusion

ν ∼ − lnλ
ln ρ

(8.95)
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Proof. This is a direct application of the theorem 8.6.1. First observe that under the assumption
8.76,

nflu ≥ inf{n ∈ N :
K1

Rn+1
26(D(V n

0 ))
1
2 ≤ h

t
}

≥ ln( th)
ln ρmax +K0

− C1(K1, ρmax)
(8.96)

Moreover

nper(p) ≤ K0p

ln ρmin − 3K0
+ C2(K0,K1, ρmax) (8.97)

It follows that

e4nperK0D(V nflu

0 ) ≤ C4(K0,K1, ρmax)
(
λmax(1 +

C3(K0,K1)
ρmin

)e4
K2

0
ln ρmin−3K0

)nflu

≤ C5(K0,K1, ρmax, ρmin, λmax)(
t

h
)

ln λmax
ln ρmax

+
C6(K0,K1)

ln ρmin ln ρmax

(8.98)

and observe that in the condition 8.79

(D(V nflu−1
0 ))

1
2X ≤ C7(K0,K1, ρmax, ρmin)(

t

h
)

ln λmax
2 ln ρmax

+
C8(K0,K1)

(ln ρmin)2 (8.99)

and

(D(V nflu−1
0 ))

1
2Y ≤ C9(K0,K1, ρmax, ρmin)(

t

h
)

ln λmax
ln ρmax

+
C10(K0,K1)

(ln ρmin)2 (8.100)

and the condition 8.79 is satisfied if

h2

t
≥ C11(K0,K1, ρmax, ρmin)(

t

h
)

ln λmax
2 ln ρmax

+
C12(K0,K1)

(ln ρmin)2 (8.101)

8.6.0.v Fast separation between scales case

Theorem 8.6.3. Assume that for all k, Uk = U (U non constant) and

Rk = Rk−1[
ρk

α

Rk−1
]

with ρ, α > 1 then for

C1(ρ, α,K0,K1) <
t

h
< C2(ρ, α,K0,K1)h (8.102)

one has

P[l.yt ≥ h] ≤ C3e
−C4(K0,K1,ρ,λ)h2

t
g( t

h
) (8.103)

with

g(x) = (
1
λ

)(
x

ln ρ
)

1
α (1+ε(x)) (8.104)

and ε(x) → 0 as x→∞
Remark 8.6.2. Observe that t

h2 ln P[l.yt ≥ h] → −∞ as t/h→∞. Moreover this theorem shows how
the behavior of the diffusion passes from a slightly anomalous one to a strongly anomalous one.

Proof. This is a simple application of the theorem 8.6.1. Observe that the ratio between the number
of perturbation scales with the numbers of fluctuating scales tends towards 0 as t/h→∞





9. MULTI-SCALE CONTROL OF THE POTENTIAL
EFFECTIVE DIFFUSIVITY

9.1 General set up

The purpose of this chapter is to compute the effective diffusivities associated to a smooth periodic
pre-fractal media (see section C.2). As it has been shown in section 5.2, DEM theories and reiter-
ated homogenization techniques have been developed to deal with such problems when the scales are
well separated. The general technique used to obtain Multi-scale homogenization results for those
media is to replace the solution of the cell problem by its first order approximation in the method of
asymptotic expansion and use it as a test function in a variational formula. But the error made by
this way is of order of the ratio between scales multiplied by a constant that tends to grow with the
number of scales.
That’s why this method can not be used to describe materials for which the ratio between scales is
fixed in dependently from the number of scales and this is the situation of this chapter.

Indeed, here it will not be assumed that the ratio between scales goes to 0 as the number of
scales grows to infinity, moreover the influence of each scale won’t be assumed to be diluted on global
behavior.

The proof of the main result allowing homogenization on an arbitrary large number of scales with
bounded ratios is mainly based on three ideas and observations.

1. When homogenization takes place on two scales separated by a ratio R, a translation of the first
one with respect to the second one does not change much the effective diffusivity (see lemma
9.3.2, the perturbation can easily be controlled).

2. The distance between the solution of the cell problem and itself translated by ek/R is small
with respect to the effective diffusivity of the medium (see lemma 9.3.3).

3. The effective diffusivity of n different scales is obtained by recurrence by adding the smaller
scale to the n − 1 bigger ones (here the point of view is technically different from the one of
DEM theory where at each step a bigger scale is added to a matrix of smaller ones).

9.2 Main results

9.2.1 Smooth self-similar periodic pre-fractal

Let R ∈ N/{0, 1} and U ∈ C∞(T d1 ). Write

V n−1 = V n−1
0 =

n−1∑
k=0

(SR)kU (9.1)

then one has the following theorem:
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Theorem 9.2.1. If R ≥ C1,d,U then for all n ≥ 1

λmax

(
D(V n−1)

) ≤ (
λmax

(
D(U)

))n
(1 +

C2,d,U

R
1
2

)n (9.2)

λmin

(
D(V n−1)

) ≥ [λmin

(
D(U)

)
1 + C2,d,U

R
1
2

]n
(9.3)

with

C1,d,U = Cde
(6d+16) Osc(U)(1 + ‖∇U‖∞)3 (9.4)

and

C2,d,U = Cde
(3d+8) Osc(U)(1 + ‖∇U‖∞)

1
2 (9.5)

As a first reaction to this theorem, it is interesting to deduce the following corollary

Corollary 9.2.1. If in all the directions l ∈ S
d of the space l.∇U is not the null function then

D(U) < 1 and for

R > ρd,U =
[Cd,Osc(U),‖∇U‖∞λmax

(
D(U)

)
1− λmax

(
D(U)

) ]2
(9.6)

D(V n) tends geometrically towards 0 with an explicit control of the speed of convergence given by the
theorem 9.2.1.

This is the key leading to the sub diffusive behavior in a smooth periodic pre fractal. It is
interesting also to observe that when U is isotropic that is to say the minimal and maximal eigenvalues
of D(U) are equal then the multi-scale effective diffusivity D(V n) behaves like λ

(
D(U)

)n(1 + error

R
1
2

)n

but one must be careful this doesn’t mean that D(V n) is isotropic.
In fact the theorem 9.2.1 is deduced from a more general result allowing to control the effective

diffusivities when the medium is not self-similar.

9.2.2 General smooth periodic pre-fractal

Let (Un)n∈N be a sequence of functions in C∞(T d1 ) such that for all n, Osc(Un) ≤ K0 and ‖∇Un‖∞ ≤
K1

(rn)n∈N a sequence of integer in N
∗ such that for all n ≥ 1, rn ≥ ρmin

Write Rn = r0 · · · rn and

V n(x) =
n∑
k=0

Uk(
xRn
Rk

)

Thus the scales can be non symmetric, non self-similar, the ratios may vary and all those elements
characterizing the multi-scale media may be chosen at random.

Theorem 9.2.2. If ρmin ≥ C1,d,K0,K1 then for all n ≥ 1

λmax(D(V n−1)) ≤ (1 +
C2,d,K0,K1

ρ
1
2
min

)n
n−1∏
k=0

λmax(D(Uk)) (9.7)
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and

λmin

(
D(V n)

) ≥ (1 +
C2,d,K0,K1

ρ
1
2
min

)−n
n−1∏
k=0

λmin

(
D(Uk)

)
(9.8)

C1,d,K0,K1 = Cde
(6d+16)K0(1 +K1)3 (9.9)

and

C2,d,K0,K1 = Cde
(3d+8)K0(1 +K1)

1
2 (9.10)

The constants C1,d,K0,K1, C2,d,K0,K1 given above are not the optimal ones because clarity of pre-
sentation has been privileged. The theorem above is deduced from the theorems 9.3.2 and 9.4.1.

And those theorems are themselves deduced from more general results, that is to say, the propo-
sitions 9.3.5 and 9.4.1 which allow to control the whole matrix D(V n−1).

It is also interesting to deduce the following corollary

Corollary 9.2.2. if one has for all n, λmax

(
D(Un)

) ≤ λmax < 1, then if for all n

rn > ρλmax,d,K0,K1 (9.11)

then

C1λ
n
1 ≤ D(V n) ≤ C2λ

n
2 (9.12)

with 0 < λ1 ≤ λ2 < 1 and

ρλmax,d,K0,K1 =
[C(d,K0,K1)λmax

1− λmax

]2
(9.13)

9.2.3 Dimension one

In the results given above the geometric speed of convergence of D(V n) towards 0 is obtained only for
ρmin greater than constant ρd,K0,K1,λmax characterized by the medium. Thus it is natural to wonder
whether this condition is necessary (it will shown that the answer yes) and what happens below this
constant.

Consider the self-similar case given in subsection 9.2.1 in dimension one. Here the theorem C.1.1
says that

Theorem 9.2.3. in dimension one for all R ∈ N/{0, 1}

lim
n→∞− 1

n
ln
(
D(V n)

)
= PR(2U) + PR(−2U) (9.14)

where PR is the topological pressure associated to the shift sR.
And the theorem C.1.2 says that PR(2U)+PR(−2U) > 0 if and only U does not belong to the closed
subspace of C(T d1 ) generated the elements T (x)− T (Rkx) with T ∈ C(T d1 ) and k ∈ N. Moreover it is
easy to see that as R→∞

PR(2U) + PR(−2U) → ln
∫
T d
1

e2Udx+ ln
∫
T d
1

e−2Udx (9.15)

which is strictly positive if U is not constant.
This is very interesting because if one take for instance U = T −S81T with T ∈ C∞(T 1

1 ) one sees that
for R = 3; 9 or 81, D(V n) remains lower bounded by a strictly positive constant whereas between
these integers it can have a geometric decrease towards 0, it does suggest that with a fine tuning
of the ratio between scales a diffusion on a smooth pre fractal may successively pass from a normal
behavior to an anomalous behavior and the regions of anomaly in the space of ratios can be non
connected and separated by regions of normal behavior.
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9.2.4 Connection between cohomology and homogenization, dimension two

In higher dimensions, the constant ρd,U associated to the corollary 9.2.1 appears as an upper bound
to the regions of normal behavior, when U is characterized only by λmax

(
D(U)

)
, ‖∇U‖∞ and Osc(U).

Moreover by the Voigt Reiss’s inequality

lim inf
n→∞− 1

n
ln
(
λmin

(
D(V n)

)) ≤ PR(2U) + PR(−2U) (9.16)

Thus if U belongs to the closed subspace of C(T d1 ) generated the elements T (x)− T (Rkx), then

lim
n→∞

1
n

ln
(
λmin

(
D(V n)

))
= 0 (9.17)

And the diffusion doesn’t show a clear anomaly, this suggests that regions of normality separated by
regions of anomaly exists (they can be built on simple examples).

Now an interesting question arises: if R ≤ ρd,α,U and is bounded above by a region of normality
(are normal region only points? Or can they be open an non void ?) then what is the mechanism
behind this the geometric decrease of D(V n) towards 0, what kinds of large deviations are hidden
behind this sort of transition of phase ? This question will be investigated here in dimension, two.
Indeed as there is a strong connection between homogenization and cohomology that allows to obtain
the following result (which corresponds to the theorem 9.3.1):

Theorem 9.2.4. For d = 2 one has

λmax

(
D(U)

)
λmin

(
D(−U)

)
= λmin

(
D(U)

)
λmax

(
D(−U)

)
=

1∫
T d
1

exp(2U)dx
∫
T d
1

exp(−2U)dx
(9.18)

from which one deduces that if D(U) = D(−U) then

λmax

(
D(U)

)
= λmin

(
D(U)

)
=

1√∫
T d
1

exp(2U)dx
∫
T d
1

exp(−2U)dx
(9.19)

Moreover

Theorem 9.2.5. In the self-similar case given in the subsection 9.2.1, if d = 2 and for all n,
D(V n) = D(−V n) then

lim
n→∞− 1

n
ln
(
λ(D(V n−1))

)
=
PR(2U) + PR(−2U)

2
(9.20)

where PR is the topological pressure associated to the shift sR.
As an example of medium satisfying the condition of the previous theorem one can give the following
corollary

Corollary 9.2.3. In the self-similar case given in the subsection 9.2.1, if d = 2 and for all n,
Un(−x) = −Un(x) then

lim
n→∞− 1

n
ln
(
λ(D(V n−1))

)
=
PR(2U) + PR(−2U)

2
(9.21)
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9.2.5 Perspectives

These statements show clearly that when the scales are not self-similar and non symmetric (can
be chosen at random) the geometric speed of convergence of D(V n) towards 0 can be controlled
without the necessity to use large deviations techniques, however it is interesting to wonder how this
is translated in the theory of shifts dynamical systems. For instance note that V 0 = U0 and

V n+1 = Srn+1(V
n + Un+1) (9.22)

and the latter inductive definition will be interesting to explore in the shift spaces, what notion will
replace the pressure? What kind of large deviations might be hidden behind the behavior of the
eigenvalues of the matrix D(V n) in any dimension? Those questions will be postponed to a future
work.

9.3 Upper Bound

9.3.1 Cohomological Framework

Consider U ∈ C∞(T d1 ) and mU the measure 5.1 associated to U on the torus. Write C =
(
C∞(T d1 )

)d
the set of C∞ vector fields on T d1 and H = (L2(mU ))d the completion of C with respect to the norm
‖.‖H where for ξ ∈ C

‖ξ‖2
H =

∫
T d
1

|ξ(x)|2mU (dx) (9.23)

Thus H is a real Hilbert space equipped with the scalar product

(ξ, ν)H =
∫
T d
1

ξ(x).ν(x)mU (dx) (9.24)

Write (”pot” for potential vector fields and ”sol” for solenoidal)

Cpot =
{
ξ ∈ C | ∃f ∈ C∞(T d1 ) with ξ = ∇f

}
(9.25)

Csol =
{
ξ ∈ C|∃p ∈ C with div(p) = 0 and ξ = p exp(2U)

∫
T d
1

e−2U(x)dx
}

(9.26)

and Hpot, Hsol the closure of Cpot, Csol in H with respect to the norm ‖.‖H .
Observe now that the following orthogonal decomposition can easily be obtained

H = Hpot ⊕Hsol (9.27)

Proof. Indeed, let ν ∈ Cpot and ξ ∈ Csol. Then ν = ∇f with f ∈ C∞(T d1 ) and ξ = pe2U with p ∈ C
and div(p) = 0. It follows that

(ν, ξ)H =
∫
T d
1

∇f.pdx =
∫
T d
1

f div(p)dx = 0 (9.28)

and since Cpot and Csol are dense in Hpot and Hsol, it follows that Hsol ⊂ H⊥
pot. Now let ξ ∈ H⊥

pot ∩ C,
then for all f ∈ C∞(T d1 )

0 = (∇f, ξ)H =
div(e−2Uξ)f(x) dx∫

T d
1
e−2Udx

(9.29)

it follows that ξ = pe2U
∫
T d
1
e−2Udx with p ∈ C and div p = 0. Thus H⊥

pot ⊂ Hsol and Hsol = H⊥
pot

which proves the orthogonal decomposition.
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Now observe that for l ∈ R
d, √

tlD(U)l = dist(l,Hpot) (9.30)

is then norm in H of the orthogonal projection of l on Hsol (which is equivalent to say to projection
on Hsol parallel to Hpot). Indeed this is a direct consequence of the variational formulation 5.21.
Moreover if χl is the solution of the cell problem 5.4 Then

l = ∇χl + exp(2U)pl (9.31)

is the orthogonal decomposition of l

9.3.2 Abstract Tools

9.3.2.i Duality

Lemma 9.3.1. For all ξ ∈ H

dist(ξ,Hpot) = sup
δ∈Csol

(δ, ξ)H
‖δ‖H (9.32)

Proof. This is a direct consequence of the orthogonal decomposition 9.27 Indeed ξ = ν + μ with
ν ∈ Hsol and μ ∈ Hpot and

dist(ξ,Hsol) = inf
f∈C∞(T d

1 )
‖ξ −∇f‖H = ‖ξ − μ‖H = ‖ν‖H

since Cpot is dense in Hpot it follows that Thus

inf
f∈C∞(T d

1 )
‖ξ −∇f‖H = sup

δ∈Csol

(ν, δ)H
‖δ‖H

= sup
δ∈Csol

(ξ, δ)H
‖δ‖H

Remark 9.3.1. This lemma gives the following variational formula for the effective diffusivity by
taking ξ = l ∈ R

d

tlD(U)l = sup
p∈C div(p)=0

( ∫
T d
1
l.pdx

)2∫
T d
1
p2 exp(2U)dx

∫
T d
1

exp(−2U)dx
(9.33)

which gives back the Voigt-Reiss’s inequality 5.24 by taking p = l

9.3.2.ii Connections between cohomology and duality

Write

Fsol =
{
p ∈ C|div(p) = 0 and

∫
T d
1

pdx = 0
}

Write Q(U) the positive, definite, symmetric matrix associated to the following variational problem.
For l ∈ S

d

tlQ(U)l = inf
p∈Fsol

∫
T d
1
|l − p|2 exp(2U)dx∫
T d
1

exp(2U)dx
(9.34)

Then the following proposition is a direct consequence of the equation 9.33.
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Proposition 9.3.1. For all l ∈ S
d

tlD(U)l =
1∫

T d
1

exp(2U)dx
∫
T d
1

exp(−2U)dx
sup
ξ∈Sd

(l.ξ)2
tξQ(U)ξ

(9.35)

The previous proposition allows to establish a one to one correspondence between the eigenvalues
of D(U) and Q(U). Indeed write in the increasing order λ(D(U))i and decreasing order λ(Q(U))i
those eigenvalues, then the following proposition is a simple consequence of proposition 9.3.1

Proposition 9.3.2. For all i ∈ {1, . . . , d}

λ(D(U))iλ(Q(U))i =
1∫

T d
1

exp(2U)dx
∫
T d
1

exp(−2U)dx
(9.36)

In particular

λmax(D(U))λmin(Q(U)) = λmin(D(U))λmax(Q(U))

=
1∫

T d
1

exp(2U)dx
∫
T d
1

exp(−2U)dx
(9.37)

Proof. In the orthonormal basis corresponding to the diagonalization of Q observe that

(l.ξ)2
tξQ(U)ξ

=
(l.ξ)2∑d

i=1 λ(Q(U))iξ2i
(9.38)

And it is an easy exercise to check that the supremum of the equation 9.38 on S
d is reached for ξ

proportional to the vector (li/λ(Q(U))i). Which gives

tlD(U)l =
1∫

T d
1

exp(2U)dx
∫
T d
1

exp(−2U)dx

d∑
i=1

l2i
λ(Q(U))i

(9.39)

Dimension two In dimension two, the Poincaré duality establishes a simple correspondence between
Q(U) and D(−U).

Proposition 9.3.3. For d = 2, one has

Q(U) = tPD(−U)P (9.40)

where P stands for the rotation matrix

P =
(

0 −1
1 0

)
(9.41)

Proof. Observe that by the Poincaré duality one has

Fsol = {P∇f : f ∈ C∞(T d1 )} (9.42)

Then the results follows directly from the definition of Q(U).

Theorem 9.3.1. For d = 2 one has

λmax

(
D(U)

)
λmin

(
D(−U)

)
= λmin

(
D(U)

)
λmax

(
D(−U)

)
=

1∫
T d
1

exp(2U)dx
∫
T d
1

exp(−2U)dx
(9.43)
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Proof. This is a direct consequence of the propositions 9.3.3 and 9.3.2.

Corollary 9.3.1. For d = 2 if D(U) = D(−U) then

D(U) = λId (9.44)

with

λ =
1√∫

T d
1

exp(2U)dx
∫
T d
1

exp(−2U)dx
(9.45)

Proof. This is a direct consequence of the theorem 9.3.1.

9.3.2.iii Multi-scale translation and multi-scale homogenization

Let R ∈ N
∗ , V, T ∈ C∞(T d1 ) and write U = SRV + T . Write D(V ), D(T ) and D(U) the effective

diffusivities associated to the homogenization on V , T and U . For y ∈ T d1 , write ΘyV the function
x→ V (x+ y). (we recall that Θy is the translation operator by −y).
Then the following lemma shows that when R is large with respect to ‖∇T‖∞, a relative translation
between the two scales, does not change much the multi-scale effective diffusivity.

Lemma 9.3.2. For all y ∈ R
d,

e−4
‖∇T‖∞

R D(SRV + T ) ≤ D(SRV + ΘyT ) ≤ e4
‖∇T‖∞

R D(SRV + T ) (9.46)

Proof. The result follows from the following simple observation: ([Ry] is the vector with the integral
parts of (yR)i as coordinates)

SRV + ΘyT = Θ[Ry]/R(SRV + T ) + ΘyT −Θ[Ry]/RT (9.47)

Thus

D(SRV + ΘyT ) ≤ e4‖ΘyT−Θ[Ry]/RT‖∞D(Θ[Ry]/R(SRV + T )) (9.48)

and the result follows by observing that D(Θ[Ry]/R(SRV +T )) = D(SRV +T ) (the effective diffusivity
is invariant under a translation of the medium)

Now choose a sequence (Un, rn) of smooth functions on the torus T d1 with uniformly bounded gradients
‖∇Un‖∞ ≤ K1 and integers uniformly bounded from below rn ≥ ρmin (for n ≥ 1). Then the following
proposition is a direct consequence of the previous lemma and a simple induction (we recall that
Rn = r0 . . . rn)

Proposition 9.3.4. For all n ∈ N, (y0, . . . , yn − 1) ∈ R
d×n

D(
n−1∑
i=0

ΘynS1/Rk
SRnUn) ≤ D(

n−1∑
i=0

S1/Rk
SRnUn)

n−1∏
k=1

e
4

K1
rk

≥ D(
n−1∑
i=0

S1/Rk
SRnUn)

n−1∏
k=1

e
−4

K1
rk

(9.49)
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9.3.3 Upper bound with two scales

Let R ∈ N
∗ , V, T ∈ C∞(T d1 ). Write for y ∈ T d1 , x → χ(x, y) the solution of the cell problem

associated to SRΘyV + T .
Write χV the solution of the cell problem associated to V and χD(V ),T the T d1 periodic solution of
the following cell problem (which corresponds to a complete homogenization on the smaller scale):
for l ∈ S

d

∇(e−2TD(V )(l −∇χD(V ),T
l )

)
= 0 (9.50)

Write D(V, T,R = ∞) the effective diffusivity corresponding to multi-scale homogenization on V, T
with complete separation between the scales, that is to say:

D(V, T,R = ∞) =
∫
x∈T d

1

t(l −∇χD(V ),T
l (x))D(V )(l −∇χD(V ),T

l (x))mT (dx) (9.51)

Lemma 9.3.3. One has for l ∈ S
d and k ∈ {1, . . . , d} ({e1, . . . , ed} being an orthonormal basis of

R
d) ∫

T d
1

|∇χl(x+
ek
R
, 0) −∇χl(x, 0)|2mSRV+T (dx) ≤ tlD(SRV + T )l(e4

‖∇T‖∞
R − 1) (9.52)

Proof. Observe that (using the standard property of the solution of the cell problem)∫
T d
1

|∇χl(x+
ek
R
, 0)−∇χl(x, 0)|2mSRV+T (dx)

=
∫
T d
1

|l −∇χl(x, 0) +∇χl(x+
ek
R
, 0)−∇χl(x, 0)|2mSRV+T (dx)

− tlD(SRV + T )l

≤ e4
‖∇T‖∞

R

∫
T d
1

|l −∇χl(x+
ek
R
, 0))|2mΘ

ek
R

(SRV+T )(dx)

− tlD(SRV + T )l

(9.53)

which leads to the result

Proposition 9.3.5. One has

D(SRV + T ) ≤D(V, T,R = ∞)e24
‖∇T‖∞

R

(1 + Cd

√
e8

‖∇T‖∞
R − 1e(3d+5) Osc(V ))2

(9.54)

Proof. Let l ∈ S
d. By using the standard property of the solution of the cell problem, one has∫

y∈T d
1

tlD(SRΘyV + T )ldy =
∫
T d
1 ×T d

1

(l −∇xχl(x, y)).l mSRΘyV+T )(x)(dx) dy

= I1 − I2

(9.55)

with

I1 =
∫
T d
1 ×T d

1

(l −∇xχl(x, y))(Id −∇χV. (Rx+ y))(l −∇χD(V ),T
l (x))

mV (Rx+y)+T (x)(dx) dy
(9.56)
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and

I2 =
∫
T d
1 ×T d

1

(l −∇xχl(x, y))∇χV. (Rx+ y)(∇χD(V ),T
l (x)− l)mV (Rx+y)+T (x)(dx) dy (9.57)

Now, by the Cauchy Schwartz inequality applied to the integration in x and y one has

I1 ≤
( ∫

(x,y)∈(T d
1 )2

|l −∇xχl(x, y)|2mV (Rx+y)+T (x)(dx) dy
) 1

2

×
( ∫

(x,y)∈(T d
1 )2

|(Id −∇χV. (Rx+ y))(l −∇χD(V ),T
l (x))|2mV (Rx+y)+T (x)(dx), dy

) 1
2

(9.58)

Which leads to

I1 ≤
(∫

y∈T d
1

tlD(SRΘyV + T )l dy
) 1

2

×
(
tlD(V, T,R = ∞)l

) 1
2
e

‖∇T‖∞
R

(9.59)

Next, observe that

I2 = J1 + J2 + J3 (9.60)

with

J1 =
∫

(x,y)∈T d
1 ×[0,1]d

(l −∇xχl(x+
y

R
, 0))∇χV. (Rx+ y)(∇χD(V ),T

l (x)− l)

e−2(V (Rx+y)+T (x+ y
R

))∫
T d
1
e−2(V (Rz+y)+T (z))dz

dx dy

(9.61)

J2 =
∫

(x,y)∈T d
1 ×[0,1]d

(∇xχl(x+
y

R
, 0)−∇xχl(x, y))∇χV. (Rx+ y)(∇χD(V ),T

l (x)− l)

e−2(V (Rx+y)+T (x+ y
R

))∫
T d
1
e−2(V (Rz+y)+T (z))dz

dx dy

(9.62)

and

J3 =
∫

(x,y)∈T d
1 ×[0,1]d

(l −∇xχl(x, y))∇χV. (Rx+ y)(∇χD(V ),T
l (x)− l)

e−2(V (Rx+y)+T (x+ y
R

))∫
T d
1
e−2(V (Rz+y)+T (z))dz

(1− e2(T (x)−T (x+ y
R

)))dx dy
(9.63)

Then, just as for the computation associated to I1, by using Cauchy-Schwartz inequality one obtains:

|J3| ≤(e2
‖∇T‖∞

R − 1)e
‖∇T‖∞

R

(∫
y∈T d

1

tlD(SRΘyV + T )l dy
) 1

2

×
(∫

x∈T d
1

(l −∇χD(V ),T
l (x))(Id −D(V ))(l −∇χD(V ),T

l (x))dx
) 1

2

(9.64)

and by using Voigt Reiss’s inequality D(V ) ≥ e−2Osc(V ) one obtains that

|J3| ≤(e2
‖∇T‖∞

R − 1)e
‖∇T‖∞

R
+Osc(V )

( ∫
y∈T d

1

tlD(SRΘyV + T )l dy
) 1

2

×
(
D(V, T,R = ∞)

) 1
2

(9.65)
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and by noticing that for y ∈ [0, 1]d∫
x∈T d

1

|∇xχl(x+
y

R
, 0)−∇xχl(x, y)|2 e−2(V (Rx+y)+T (x))∫

T d
1
e−2(V (Rz+y)+T (z))dz

dx dy

=
∫
x∈T d

1

|l −∇xχl(x+
y

R
, 0)|2 e−2(V (Rx+y)+T (x))∫

T d
1
e−2(V (Rz+y)+T (z))dz

dx dy

− tlD(SRΘyV + T )l

≤tlD(SRV + T )le4
‖∇T‖∞

R − tlD(SRΘyV + T )l

≤tlD(SRΘyV + T )l(e8
‖∇T‖∞

R − 1)

(9.66)

(in the last inequality, the lemma 9.3.2 has been used), it follows that (by the same computation
associated to J3)

|J2| ≤
( ∫

y∈T d
1

tlD(SRΘyV + T )l
) 1

2
(
D(V, T,R = ∞)

) 1
2

× (e8
‖∇T‖∞

R − 1)
1
2 e4

‖∇T‖∞
R

+Osc(V )

(9.67)

Now, observe that

J1 = K1 +K2 (9.68)

with

K1 =
∫

(x,y)∈T d
1 ×[0,1]d

(l −∇xχl(x+
y

R
, 0))∇χV. (Rx+ y)(∇χD(V ),T

l (x)− l)

e−2(V (Rx+y)+T (x+ y
R

))
( 1∫

T d
1
e−2(V (Rz+y)+T (z))dz

− 1∫
T d
1
e−2V (z)dz

∫
T d
1
e−2T (z)dz

)
dx dy

(9.69)

and

K2 =
∫

(x,y)∈T d
1 ×[0,1]d

(l −∇xχl(x+
y

R
, 0))∇χV. (Rx+ y)(∇χD(V ),T

l (x)− l)

e−2(V (Rx+y)+T (x+ y
R

))∫
T d
1
e−2V (z)dz

∫
T d
1
e−2T (z)dz

dx dy

(9.70)

Now, as usual, one obtains that

|K1| ≤
( ∫

y∈T d
1

tlD(SRΘyV + T )l
) 1

2
(
tlD(V, T,R = ∞)l

) 1
2

× (e2
‖∇T‖∞

R − 1)e6
‖∇T‖∞

R
+Osc(V )

(9.71)

and by noticing that∇y

(
e−2(V (Rx+y)+T (x+ y

R
))(l−∇xχl(x+

y
R , 0))

)
= 0, ∇χV. (Rx+y) = ∇yχ

V
. (Rx+

y) and integrating by parts in y, one obtains (writing ∂i([0, 1]d) = {x ∈ [0, 1]d : xi = 0})

K2 =
d∑
i=1

∫
x∈T d

1 ,y
i∈∂i([0,1]d)

(
e−2T (x+

yi+ei
R

)(l −∇xχl(x+
yi + ei
R

, 0))

− e−2T (x+ yi

R
)(l −∇xχl(x+

yi

R
, 0))

)
.ei

χV. (Rx+ yi)(∇χD(V ),T
l (x)− l)

e−2V (Rx+yi)∫
T d
1
e−2V (z)dz

∫
T d
1
e−2T (z)dz

dx dyi

(9.72)
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Now observe that

K2 = G1 +G2 (9.73)

with

G1 =
d∑
i=1

∫
x∈T d

1 ,y
i∈∂i([0,1]d)

(
(e−2T (x+

yi+ei
R

) − e−2T (x+ yi

R
))(l −∇xχl(x+

yi + ei
R

, 0))
)
.ei

χV. (Rx+ yi)(∇χD(V ),T
l (x)− l)

e−2V (Rx+yi)∫
T d
1
e−2V (z)dz

∫
T d
1
e−2T (z)dz

dx dyi

(9.74)

and

G2 =
d∑
i=1

∫
x∈T d

1 ,y
i∈∂i([0,1]d)

(
−∇xχl(x+

yi + ei
R

, 0) +∇xχl(x+
yi

R
, 0)

)
.ei

χV. (Rx+ yi)(∇χD(V ),T
l (x)− l)e−2T (x+ yi

R
) e−2V (Rx+yi)∫
T d
1
e−2V (z)dz

∫
T d
1
e−2T (z)dz

dx dyi

(9.75)

By applying Cauchy inequality for the integration in x to G1, one obtains

|G1| ≤(e
2‖∇T‖∞

R − 1)
d∑
i=1

∫
yi∈∂i([0,1]d)

( ∫
x∈T d

1

(
(l −∇xχl(x+

yi + ei
R

, 0)).ei
)2 e−2V (Rx+yi)−2T (x+

yi+ei
R

)∫
T d
1
e−2V (z)dz

∫
T d
1
e−2T (z)dz

dx
) 1

2

( ∫
x∈T d

1

(
χV. (Rx+ yi)(∇χD(V ),T

l (x)− l)
)2 e−2V (Rx+yi)−2T (x+

yi+ei
R

)∫
T d
1
e−2V (z)dz

∫
T d
1
e−2T (z)dz

dx
) 1

2
dyi

(9.76)

which leads to

|G1| ≤(e
2‖∇T‖∞

R − 1)
(
tlD(SRV + T )l

) 1
2
d‖χV. ‖∞e3 Osc(V )

(
tlD(V, T,R = ∞)l

) 1
2
e

2‖∇T‖∞
R

(9.77)

Moreover by applying Cauchy inequality for the integration in x to G2, one obtains

|G2| ≤
d∑
i=1

∫
yi∈∂i([0,1]d)

(∫
x∈T d

1

(
(−∇xχl(x+

yi + ei
R

, 0)

+∇xχl(x+
yi

R
, 0)).ei

)2 e−2V (Rx+yi)−2T (x+ yi

R
)∫

T d
1
e−2V (z)dz

∫
T d
1
e−2T (z)dz

dx
) 1

2

( ∫
x∈T d

1

(
χV. (Rx+ yi)(∇χD(V ),T

l (x)− l)
)2 e−2V (Rx+yi)−2T (x+ yi

R
)∫

T d
1
e−2V (z)dz

∫
T d
1
e−2T (z)dz

dx
) 1

2
dyi

(9.78)

and using the same trick associated to the lemma 9.3.3 one obtains that

|G2| ≤(e
8‖∇T‖∞

R − 1)
1
2

(
tlD(SRV + T )l

) 1
2
d‖χV. ‖∞e3Osc(V )

(
tlD(V, T,R = ∞)l

) 1
2
e

2‖∇T‖∞
R

(9.79)
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In resume, by using the lemma 9.3.2 and the theorem B.2.1 (‖χV. ‖∞ ≤ Cde
(3d+2) Osc(V ))

it has been obtained that for all l ∈ S
d

tlD(SRV + T )l ≤e12 ‖∇T‖∞
R

√
tlD(SRV + T )l

√
tlD(V, T,R = ∞)l

(1 + Cd

√
e8

‖∇T‖∞
R − 1e(3d+2) Osc(V ))

(9.80)

which leads to

tlD(SRV + T )l ≤tlD(V, T,R = ∞)le24
‖∇T‖∞

R

(1 + Cd

√
e8

‖∇T‖∞
R − 1e(3d+5) Osc(V ))2

(9.81)

Corollary 9.3.2. One has for R ≥ Cd(1 + ‖∇T‖∞)e(6d+10) Osc(V )

D(SRV + T ) ≤D(V, T,R = ∞)

(1 + Cd

√
‖∇T‖∞

R
e(3d+5) Osc(V ))

(9.82)

9.3.4 With an arbitrary large number of scales

Let (Un)n∈N be a sequence of functions in C∞(T d1 ) with for all n, Osc(Un) ≤ K0 and ‖∇Un‖∞ ≤ K1

(rn)n∈N a sequence of integer in N
∗ with for n ≥ 1, rn ≥ ρmin ≥ 2

Write Rn = r0 · · · rn and

V n
p (x) =

n∑
k=p

Uk(
xRn
Rk

)

Theorem 9.3.2. There exists Cd > 0 such that if ρmin ≥ Cd(1 +K1)e(6d+10)K0 then for all n ∈ N

one has

λmax

(
D(V n−1

0 )
) ≤ n−1∏

k=0

λmax

(
D(Uk)

) × (
1 + Cd

e(3d+5)K0
√
K1√

ρmin

)n (9.83)

Proof. The result follows by a simple recurrence showing that for all p ≤ n− 1

λmax

(
D(V n−1

p )
) ≤ n−1∏

k=p

λmax

(
D(Uk)

)× (
1 + Cd

e(3d+5)K0
√
K1√

ρmin

)n−p (9.84)

This is trivially true for p = n− 1, assume that this is true for p = m > 0, then apply the corollary
9.3.2 with T = V n

m, V = Um−1, R = Rn
Rm−1

to obtain the result by observing that

‖∇T‖∞
R

≤ K1

n−1∑
k=m

Rm−1

Rk
≤ 2/ρmin (9.85)
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9.4 Lower Bound

9.4.1 Cohomological framework

Let U ∈ C∞(T d1 )
We write C =

(
C∞(T d1 )

)d the set of C∞ vector fields on T d1 and Q = L2(m−U ) the completion of C
with respect to the norm ‖.‖Q where for ξ ∈ C

‖ξ‖2
Q = m−U (ξ2)

Thus Q is a real Hilbert space equipped with the scalar product

(ξ, ν)Q = m−U (ξ.ν)

Write

Fpot =
{
ξ ∈ C | ∃f ∈ C∞(T d1 ) l ∈ R

d with ξ =
exp(−2U)∫
T d
1
e−2Udx

(l +∇f)
}

Fsol =
{
p ∈ C|div(p) = 0 and

∫
T d
1

pdx = 0
}

and Qpot, Qsol the closure of Fpot, Fsol in Q with respect to the norm ‖.‖Q Then just as for the upper
bound, the following orthogonal decomposition can easily be proved

Q = Qpot ⊕Qsol (9.86)

Moreover by the variational formula 5.22, for ξ ∈ R
d

[ tξD(U)−1ξ∫
T d
1

exp(−2U(x))dx
∫
T d
1

exp(2U(x))dx

] 1
2 = dist(ξ,Qsol) (9.87)

is then norm in Q of the orthogonal projection of ξ on Qpot (which is equivalent to say to projection
on Qpot parallel to Qsol). Moreover, let’s remember (see sub subsection 5.1.5.iii) that the unique
solution of the variational problem 5.22 is given by pξ = P.ξ where P is the matrix

P = Id − exp(−2U)∫
T d
1
e−2Udx

(Id −∇χ.)D(U)−1 (9.88)

χ. is the solution of the cell problem associated to U and

ξ = P.ξ +
exp(−2U)∫
T d
1
e−2Udx

(Id −∇χ.)D(U)−1ξ (9.89)

is the orthogonal decomposition of ξ. Moreover

D(U)−1∫
T d
1
e−2Udx

∫
T d
1
e2Udx

= m−U
(
t(Id − P )(Id − P )

)
(9.90)

Representation of solenoidal vector fields

Lemma 9.4.1. There exists a d× d× d tensor Hijm such that Hijm = −Hjim ∈ C∞(T d1 ),

Pim =
d∑
j=1

∂jHijm (9.91)

and

‖Hijm‖∞ ≤ Cde
(3d+6) Osc(U)(1 + ‖∇U‖∞) (9.92)
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Proof. Since for each m ∈ {1, . . . , d}, P.,m ∈ Fsol, by the proposition 4.1 of [JK99] there exists a
skew-symmetric T d1 -periodic smooth matrices Hij1, . . . ,Hijd (Hijm = −Hjim) such that for all m

Pim =
d∑
j=1

∂jHijm (9.93)

Moreover writing

P.m =
∑
k �=0

pk.me
2iπ(k.x) (9.94)

the Fourier series expansion of P , one has (see the proposition 4.1 of [JK99])

Hnjm =
1

2iπ

∑
k �=0

pknmkj − pkjmkn

k2
e2iπ(k.x) (9.95)

Now, observe that

Hnjm = ∂jBnm − ∂nBjm (9.96)

where Bnm and Bjm are the smooth T d1 -periodic solutions of

ΔBnm = Pnm ΔBjm = Pjm (9.97)

Now using G. Stampacchia’s theorem B.1.1, it is easy to see that ifBnm is chosen so that
∫
T d
1
Bnm(x)dx =

0 then ‖Bnm‖∞ ≤ Cd‖Pnm‖∞. Now using the theorem B.1.2 on Gradient estimates for Poisson’s
equation, it is simple to obtain that

‖∇Bnm‖∞ ≤ Cd‖Pnm‖∞ (9.98)

Then it follows that

‖Hnjm‖∞ ≤ Cd(‖Pnm‖∞ + ‖Pjm‖∞) (9.99)

Which leads to the result of the lemma by using the expression of P and the theorem B.2.1 which
allows to control ‖∇χ‖∞

Duality The following lemma is just a remark that will not be used for the final proof, nevertheless,
it might be interesting to notice the variational formulation associated to it.

Lemma 9.4.2. For all ξ ∈ Q,

dist(ξ,Qsol) = sup
δ∈Fpot

(δ, ξ)Q
‖δ‖Q (9.100)

Proof. This is a direct consequence of the orthogonal decomposition 9.86 and the density of Fpot in
Qpot

Remark 9.4.1. This lemma gives the following variational formula for the effective diffusivity D(U):
for ξ ∈ R

d

tξD(U)−1ξ = sup
l∈Rd f∈C∞(T d

1 )

( ∫
T d
1
ξ.(l +∇f)dx

)2∫
T d
1
|l +∇f |2mU (dx)

(9.101)
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9.4.2 Lower bound with two scales

Let R ∈ N
∗ , V, T ∈ C∞(T d1 ), then under the notations of subsection 9.3.3 write

P (x, y) = Id − exp(−2(SRΘyV + T ))∫
T d
1

exp(−2(SRΘyV + T )(x))dx
(Id −∇χ(x, y).)D(SRΘyV + T )−1 (9.102)

which is the matrix giving the elements of Qsol associated to the homogenization SRΘyV +T . Write
also P V the element of Qsol associated to V and

PD(V ),T (x) = Id − e−2T (x)∫
T d
1
e−2T (x)dx

D(V )(Id −∇χD(V ),T (x).)D(V, T,R = ∞)−1 (9.103)

which corresponds to a complete homogenization on the smaller scale.

Proposition 9.4.1. One has

D(SRV + T )−1 ≤D(V, T,R = ∞)−1

× e20
‖∇T‖∞

R

(
1 +Cd(1 + ‖∇V ‖∞)e(3d+8) Osc(V )(e8

‖∇T‖∞
R − 1)

1
2

)2 (9.104)

Proof. Observe that for ξ ∈ S
d one has by the equation 9.90.∫

y∈T d
1

tξD(SRΘyV + T )−1ξ dy

=
∫

(x,y)∈(T d
1 )2

(∫
T d
1

e−2(SRΘyV+T )(z)dz
)
e2(SRΘyV+T )(x)tξt(Id − P (x, y))ξ dx dy

≤ e
2‖∇T‖∞

R

∫
T d
1

e−2V (z) dz

∫
T d
1

e−2T (z) dz

∫
(x,y)∈(T d

1 )2
e2(SRΘyV+T )(x)tξt(Id − P (x, y))ξ dx dy

≤ e
2‖∇T‖∞

R (I1 + I2)

(9.105)

with

I1 =
∫
T d
1

e−2V (z) dz

∫
T d
1

e−2T (z) dz

∫
(x,y)∈(T d

1 )2
e2(SRΘyV+T )(x)tξt(Id − P (x, y))

(Id − P V (Rx+ y))(Id − PD(V ),T (x))ξ dx dy
(9.106)

I2 =
∫
T d
1

e−2V (z) dz

∫
T d
1

e−2T (z) dz

∫
(x,y)∈(T d

1 )2
e2(SRΘyV+T )(x)tξt(Id − P (x, y))

P V (Rx+ y)(Id − PD(V ),T (x))ξ dx dy
(9.107)

Now as in the proof of proposition 9.3.5, by using Cauchy Schwartz inequality for the integration in
x then y, one obtains that:

|I1| ≤
∫
T d
1

e−2V (z) dz

∫
T d
1

e−2T (z) dz
( ∫

(x,y)∈(T d
1 )2

e2(SRΘyV+T )(x)((Id − P (x, y))ξ)2

dx dy
) 1

2

( ∫
(x,y)∈(T d

1 )2
e2(SRΘyV+T )(x)

(
(Id − P V (Rx+ y))(Id − PD(V ),T (x))ξ

)2
dx dy

) 1
2

≤ e
‖∇T‖∞

R

( ∫
y∈T d

1

tξD(SRΘyV + T )−1ξ dy
) 1

2
(
tξD(V, T,R = ∞)−1ξ

) 1
2

(9.108)
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Next observe that

I2 = J1 + J2 (9.109)

with

J1 =
∫
T d
1

e−2V (z) dz

∫
T d
1

e−2T (z) dz

∫
(x,y)∈(T d

1 )2
e2(SRΘyV+T )(x)

tξt(P (x+
y

R
, 0) − P (x, y))P V (Rx+ y)(Id − PD(V ),T (x))ξ dx dy

(9.110)

and

J2 =
∫
T d
1

e−2V (z) dz

∫
T d
1

e−2T (z) dz

∫
(x,y)∈(T d

1 )2
e2(SRΘyV+T )(x)tξt(Id − P (x+

y

R
, 0))

P V (Rx+ y)(Id − PD(V ),T (x))ξ dx dy
(9.111)

Now by using Cauchy-Schwartz inequality for the integration in x and y in J1, one obtains that

|J1| ≤ K
1
2
1 K

1
2
2 (9.112)

with

K1 =
∫
T d
1

e−2V (z) dz

∫
T d
1

e−2T (z) dz

∫
(x,y)∈(T d

1 )×[0,1]d
e2(SRΘyV+T )(x)

(
((P (x +

y

R
, 0) − P (x, y))ξ

)2
dx dy

(9.113)

and

K2 =
∫
T d
1

e−2V (z) dz

∫
T d
1

e−2T (z) dz

∫
(x,y)∈(T d

1 )×[0,1]d
e2(SRΘyV+T )(x)

(
P V (Rx+ y)(Id − PD(V ),T (x))ξ

)2
dx dy

=
∫
T d
1

e−2T (z) dz

∫
x∈T d

1

e2T (x)tξt(Id − PD(V ),T (x))

(Id

∫
T d
1

e−2V (z) dz

∫
T d
1

e2V (z) dz −D(V )−1)(Id − PD(V ),T (x))ξ dx dy

≤e2Osc(V )D(V, T,R = ∞)−1

(9.114)

where in the last inequality,
(Id

∫
T d
1
e−2V (z) dz

∫
T d
1
e2V (z) dz −D(V )−1) ≤ e2Osc(V )D(V )−1 has been used.

Concerning K1, observe that since P (x, y).ξ minimizes the following variational formula on p ∈ Qsol,∫
T d
1

e2(SRΘyV+T )(x)|ξ − p(x)|2 dx (9.115)

one has for y ∈ [0, 1]d ∫
x∈T d

1

e2(SRΘyV+T )(x)
(
((P (x+

y

R
, 0)− P (x, y))ξ

)2
dx =

∫
x∈T d

1

e2(SRΘyV+T )(x)
(
((P (x+

y

R
, 0)− Id)ξ

)2
dx

−
∫
x∈T d

1

e2(SRΘyV+T )(x)
(
((Id − P (x, y))ξ

)2
dx

(9.116)
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from which it follows that

|K1| ≤ e2
‖∇T‖∞

R
tξD(SRV + T )−1ξ − e−2 ‖∇T‖∞

R

∫
y∈[0,1]d

tξD(SRΘyV + T )−1ξ dy (9.117)

and using the lemma 9.3.2 it follows that

|K1| ≤ (e6
‖∇T‖∞

R − e−2 ‖∇T‖∞
R )

∫
y∈[0,1]d

tξD(SRΘyV + T )−1ξ dy (9.118)

Concerning J2, observe that

J2 = G1 +G2 (9.119)

with

G1 =
∫
T d
1

e−2V (z) dz

∫
T d
1

e−2T (z) dz

∫
(x,y)∈T d

1 ×[0,1]d
(e2(SRΘyV+T )(x)

− e2(V (Rx+y)+T (x+ y
R

)))
tξt(Id − P (x+

y

R
, 0))P V (Rx+ y)(Id − PD(V ),T (x))ξ dx dy

(9.120)

and

G2 =
∫
T d
1

e−2V (z) dz

∫
T d
1

e−2T (z) dz

∫
(x,y)∈T d

1 ×[0,1]d
e2(V (Rx+y)+T (x+ y

R
))

tξt(Id − P (x+
y

R
, 0))P V (Rx+ y)(Id − PD(V ),T (x))ξ dx dy

(9.121)

As usual, by using Cauchy Schwartz inequality one obtains that

|G1| ≤ e
‖∇T‖∞

R (e2
‖∇T‖∞

R − 1)eOsc(V )
(
tξD(SRV + T )ξ

) 1
2
(
tξD(V, T,R = ∞)ξ

) 1
2 (9.122)

Now observe that

G2 =
∫
T d
1

e−2V (z) dz

∫
T d
1

e−2T (z) dz L1 (9.123)

with

L1 =
∫

(x,y)∈T d
1 ×[0,1]d

e2(V (Rx+y)+T (x+ y
R

))

tξt(Id − P (x+
y

R
, 0))P V (Rx+ y)(Id − PD(V ),T (x))ξ dx dy

=
1∫

T d
1

exp(−2(SRV + T )(z))dz

∫
(x,y)∈T d

1 ×[0,1]d

tξtD(SRV + T )−1

t
(
Id −∇χ.(x+

y

R
)
)
P V (Rx+ y)(Id − PD(V ),T (x))ξ dx dy

(9.124)

Now, let HV
ijk be the d×d×d tensor associated to P V in the lemma 9.4.1. It follows by an integration

by parts (in y) that

L1 =
1∫

T d
1

exp(−2(SRV + T )(z))dz

∫
(x,y)∈T d

1 ×[0,1]d

d∑
i,j,k=1

(tξt(Id − PD(V ),T (x)))i∂kHV
j,k,i(Rx+ y)(

(Id −∇χ.(x+
y

R
)
)
D(SRV + T )−1ξ

)
j
dx dy

(9.125)
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Thus by using the same notation as in the equation 9.72, one has

L1 =
1∫

T d
1

exp(−2(SRV + T )(z))dz

d∑
i,j,k=1

∫
(x,yk)∈T d

1 ×∂k([0,1]d)
(tξt(Id − PD(V ),T (x)))i

HV
j,k,i(Rx+ yk)

(
(∇χ.(x+

yk

R
)−∇χ.(x+

yk + ek
R

)
)
D(SRV + T )−1ξ

)
j
dx dyk

(9.126)

Which leads to (using Cauchy Schwartz inequality):

|L1| ≤
Cd supijk ‖HV

j,k,i‖∞∫
T d
1

exp(−2(SRV + T )(z))dz

d∑
k=1

∫
yk∈∂k([0,1]d)(∫

x∈T d
1

(
(Id − PD(V ),T (x))ξ

)2
e2(V (Rx+yk)+T (x+ yk

R
))dx

) 1
2

(∫
x∈T d

1

((
(∇χ.(x+

yk

R
)−∇χ.(x+

yk + ek
R

)
)

D(SRV + T )−1ξ
)2
e−2(V (Rx+yk)+T (x+ yk

R
))dx

) 1
2
dyk

(9.127)

But using the same trick associated to the lemma 9.3.3 one obtains that∫
x∈T d

1

((
(∇χ.(x+

yk

R
)−∇χ.(x+

yk + ek
R

)
)
D(SRV + T )−1ξ

)2

e−2(V (Rx+yk)+T (x+ yk

R
))∫

T d
1

exp(−2(SRV + T )(z))dz
dx ≤ ξD(SRV + T )−1ξ(e4

‖∇T‖∞
R − 1)

(9.128)

and by observing that∫
T d
1

e−2(SRV+T )(x)dx

∫
x∈T d

1

(
(Id − PD(V ),T (x))ξ

)2

e2(V (Rx+yk)+T (x+ yk

R
))dx ≤ e4Osc(V )tξD(V, T,R = ∞)−1ξ

(9.129)

it follows that (using the lemma 9.4.1)

|G2| ≤Cde(3d+8) Osc(V )(1 + ‖∇V ‖∞)e4
‖∇T‖∞

R (e4
‖∇T‖∞

R − 1)
1
2

(
ξD(SRV + T )−1ξ

) 1
2

(
tξD(V, T,R = ∞)−1ξ

) 1
2

(9.130)

In resume, summing up all the inequalities and using the lemma 9.3.2, it has obtained that

tξD(SRV + T )ξ ≤e10 ‖∇T‖∞
R (1 + Cd(1 + ‖∇V ‖∞)e(3d+8) Osc(V )(e8

‖∇T‖∞
R − 1)

1
2 )(

ξD(SRV + T )−1ξ
) 1

2
(
tξD(V, T,R = ∞)−1ξ

) 1
2

(9.131)

which leads to

D(SRV + T )−1 ≤e20 ‖∇T‖∞
R (1 + Cd(1 + ‖∇V ‖∞)e(3d+8) Osc(V )(e8

‖∇T‖∞
R − 1)

1
2 )2

D(V, T,R = ∞)−1
(9.132)

Corollary 9.4.1. One has for R ≥ Cd(1 + ‖∇T‖∞)(1 + ‖∇V ‖∞)2e(6d+16) Osc(V )

D(SRV + T ) ≥D(V, T,R = ∞)

× 1

1 + 1√
R
Cd(1 + ‖∇V ‖∞)e(3d+8) Osc(V )‖∇T‖

1
2∞

(9.133)
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9.4.3 Lower bound with an arbitrary large number of scales

In the context of the subsection 9.3.4

Theorem 9.4.1. There exists Cd > 0 such that if ρmin ≥ Cd(1 +K1)3e(6d+16)K0 then for all n ∈ N

one has

λmin

(
D(V n−1

0 )
) ≥ n−1∏

k=0

λmin

(
D(Uk)

) × (
1 + Cd(1 +K1)

e(3d+8)K0
√
K1√

ρmin

)−n (9.134)

Proof. The result follows by a simple recurrence showing that for all p ≤ n− 1

λmin

(
D(V n−1

p )
) ≥ n−1∏

k=p

λmin

(
D(Uk)

)× (
1 + Cd(1 +K1)

e(3d+8)K0
√
K1√

ρmin

)n−p (9.135)

This is trivially true for p = n− 1, assume that this is true for p = m > 0, then apply the corollary
9.4.1 with T = V n

m, V = Um−1, R = Rn
Rm−1

to obtain the result by observing that

‖∇T‖∞
R

≤ K1

n−1∑
k=m

Rm−1

Rk
≤ 2/ρmin (9.136)

9.5 Overlapping ratios

Proposition 9.5.1. Let U ∈ C∞(T d1 ) such that
∫
T d
1
U(x) dx = 0 and R ∈ N/{0, 1}, then

PR(2U) + PR(−2U) = 0 ⇔ lim
n→∞

1
n
‖
n−1∑
k=0

SRkU‖∞ = 0 (9.137)

Proof. (⇐): This implication is easy since

0 ≤ PR(2U) + PR(−2U) ≤ lim
n→∞

4
n
‖
n−1∑
k=0

SRkU‖∞ (9.138)

(⇒): Assume PR(2U) + PR(−2U) = 0 then let ε > 0. Then there exists V1, . . . , Vk ∈ C(T d1 ) and
m1, . . . ,mk ∈ N/{0, 1}, λ1, . . . , λk ∈ R such that

V =
k∑
p=1

λp(Vp − SRmpVp) (9.139)

and

‖U − V ‖∞ ≤ ε (9.140)

Observe then that since
∑n−1

p=0 SRpV remains bounded it follows that

lim
n→∞

1
n
‖
n−1∑
k=0

SRkU‖∞ ≤ ε (9.141)

which leads to the proof.
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9.5.1 A simple example

Consider the function

f(x) = sin(x)− sin(81x) (9.142)

Observe that for R ∈ N/{0, 1} if R �= 3, 27, 81 then

∫ 1

0

( n−1∑
k=0

f(Rkx)
)2 = n (9.143)

it follows by the proposition 9.5.1 that

PR(f) + PR(f) = 0 ⇔ R = 3, 27 or 81 (9.144)

and between these ratios PR(f) + PR(f) > 0





10. SUB DIFFUSIVE BEHAVIOR OF AN IHPD IN ALL
DIMENSIONS

The purpose of this chapter is to show how from a sharp geometric control on the multi scale
effective diffusivities (given in the chapter 9) one can deduce the anomalous behavior of an infinitely
homogenized potential diffusion.

10.0.2 Sharp control of the effective medium

Let R > 0 and U ∈ C∞(T dR)
Write yt the solution of the stochastic differential equation

dyt = dωt −∇U(yt)dt (10.1)

Write for x ∈ R
d, r > 0 and l ∈ S

d

τ(x, r, l) = inf{t ≥ 0 : |(yt − x).l| = r}

τ(x, r) = inf{t ≥ 0 : |yt − x| = r}
Theorem 10.0.1. Let yt be the solution of 10.1, then

E[τ(x, r, l)] ≤ C2
r2

tlD(U)l
+ Cde

(9d+15) Osc(U)R2 (10.2)

E[τ(x, r, l)] ≥ C1
r2

tlD(U)l
− Cde

(9d+15) Osc(U)R2 (10.3)

E[τ(x, r)] ≤ C2
r2

λmax

(
D(U)

) + Cde
(9d+15) Osc(U)R2 (10.4)

E[τ(x, r)] ≥ C1
r2

λmax

(
D(U)

) − Cde
(9d+15) Osc(U)R2 (10.5)

Proof. A proof will be given in the x = 0 case, the proof in the general case being quite similar.
Let l ∈ S

d

Write χl the T dR-periodic solution of the cell problem associated to LU with χl(0) = 0.
Write φl the T dR-periodic solution of the ergodicity problem

LUφl = |l −∇χl|2 − tlD(U)l (10.6)

with φl(0) = 0. Write Fl(x) = l.x − χl(x) and ψl(x) = F 2
l (x) − φl(x), observe that since LUF 2

l =
|l −∇χl|2 it follows that

LUψl = tlD(U)l (10.7)
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Thus by the Ito formula

ψl(yt) =
∫ t

0
∇ψl(ys)dωs + tlD(U)l t (10.8)

Now write Mt,l the martingale

Mt,l = ψl(yt)− tlD(U)l t (10.9)

Notice that

C1|l.x|2 − C2(‖χl‖2
∞ + ‖φl‖∞) ≤ ψl(x) ≤ C3(|l.x|2 + ‖χl‖2

∞ + ‖φl‖∞) (10.10)

Now by the theorems B.2.1, B.2.2 and the lemma B.2.1 one has

‖χl‖2
∞ + ‖φl‖∞ ≤ Cde

(9d+13) Osc(U)R2 (10.11)

Write

τ ′(0, r, l) = inf{t ≥ 0 : |ψl(yt)| = r}
According to the inequality 10.10 one has

τ(0, r, l) ≤ τ ′(0, C3(r2 + ‖χl‖2
∞ + ‖φl‖∞), l) (10.12)

τ(0, r, l) ≥ τ ′(0, C1r
2 − C2(‖χl‖2

∞ + ‖φl‖∞), l) (10.13)

Since Mt∧τ ′(0,r,l),l is uniformly integrable (easy to prove by using the inequalities 10.12 and 10.13)
one obtains

E[τ ′(0, r, l)] =
r

tlD(U)l
(10.14)

Thus, by using the inequality 10.11 and the Voigt-Reiss’ inequality D(U) ≥ e−2 Osc(U) one obtains

τ(0, r, l) ≤ C3
r2

tlD(U)l
+ Cde

(9d+15) Osc(U)R2

τ(0, r, l) ≥ C1
r2

tlD(U)l
− Cde

(9d+15) Osc(U)R2

Now if one defines Mt to be the martingale

Mt =
d∑
i=1

Mt,ei

and if one uses the following stopping times:

τ ′(0, r) = inf{t ≥ 0 : |
d∑
i=1

ψei(yt)| = r}

one obtains obtain as before

E[τ(x, r)] ≤ C ′
2

r2

sup|l|=1
tlD(U)l

+ Cde
(9d+15) Osc(U)R2

E[τ(x, r)] ≥ C ′
1

r2

sup|l|=1
tlD(U)l

− e(9d+15) Osc(U)R2
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10.0.3 Perturbation of the effective medium

10.0.3.i Weak stability result

Let U,P ∈ C∞(Ω̄), and Ω a smooth bounded open subset of R
d. Write E

U , E
U+P the expectations

associated to the diffusions generated by LU and LU+P and τ(Ω) the exit time from Ω. Write mΩ
U

the following probability measure on Ω:

mΩ
U(dx) =

e−2U(x) dx∫
Ω e

−2U(x) dx
(10.15)

Proposition 10.0.2.∫
Ω

E
U
x

[
τ(Ω)

]
mΩ
U+P (dx) ≤ e2Osc(P )

∫
Ω

E
U+P
x

[
τ(Ω)

]
mΩ
U+P (dx)

≥ e−2Osc(P )

∫
Ω

E
U+P
x

[
τ(Ω)

]
mΩ
U+P (dx)

(10.16)

Proof. This is a direct consequence of the theorem 13.5.4 by observing that

E
U
x

[
τ(Ω)

]
= 2

∫
Ω
GU (x, y)e−2U(y) dy (10.17)

whereGU is the Green function on Ω associated to the operator −∇(e−2U∇) with Dirichlet conditions
on the boundary.

10.0.3.ii Strong stability conjecture I

Let U ∈ C∞(T d1 ) and P ∈ C∞( ¯B(0, 1)). Write E
SRU , E

SRU+P the expectations associated to the
diffusions generated by LSRU and LSRU+P and τ(B(0, 1)) the exit time from the d dimensional unit
ball B(0, 1).

Conjecture 10.0.1. There exists Cd > 0 a constant depending only on the dimension such that for

R > Cde
Cd(Osc(U)+Osc(P )) Osc(P ) <

1
Cd

Osc(U) (10.18)

and

‖∇P‖∞ <
R

Cd
(10.19)

one has

ESRU+P
0

[
τ(B(0, 1))

] ≤ Cde
Cd Osc(P ) sup

x∈B(0,1)
ESRU
x

[
τ(B(0, 1))

]
(10.20)

and

ESRU+P
0

[
τ(B(0, 1))

] ≥ Cde
−Cd Osc(P ) inf

x∈B(0, 1
2
)
ESRU
x

[
τ(B(0, 1))

]
(10.21)

10.0.3.iii Strong stability conjecture II

Let U,P ∈ C∞( ¯B(0, 1)). Write E
U , E

U+P the expectations associated to the diffusions generated by
LU and LU+P and τ(B(0, 1)) the exit time from the d dimensional unit ball B(0, 1).

Conjecture 10.0.2. The exists Cd > 0 a constant depending only on the dimension such that

EU+P
0

[
τ(B(0, 1))

] ≤ Cde
Cd Osc(P ) sup

x∈B(0,1)
EUx

[
τ(B(0, 1))

]
(10.22)

and

EU+P
0

[
τ(B(0, 1))

] ≥ Cde
−Cd Osc(P ) inf

x∈B(0, 1
2
)
EUx

[
τ(B(0, 1))

]
(10.23)
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10.1 Anomaly with respect to the invariant measure

Consider yt an infinitely homogenized potential diffusion and write E the expectation associated to
its law. Write for r > C(d,K0) (a constant that is computed so that nef(r) ≥ 1)

nef(r) = sup{n ≥ 0 : e(n+1)(9d+15)K0R2
n ≤ C1

dr
2} <∞ (10.24)

where C1
d = C1/(8Cd) and Cd and C1 are the constants appearing in the inequality 10.5. nef (r) + 1

corresponds to the number of effective scales in the ball B(0, r) (the scales 0, 1, . . . , nef are effective
scales).
Write

nper(r) = inf{n ≥ 0 : Rn+1 ≥ r} − nef (r) (10.25)

nper(r) corresponds to the number of perturbation scales in the ball B(0, r), that is to say the
scales nef + 1, . . . , nef (r) + nper(r) are perturbation scales and the scales 0, . . . , nef (r) + nper(r) are
fluctuating scales. Observe that for r > C(d,K0), nper ≥ 0 and is well defined.

Proposition 10.1.1. There ∃C(K0, d) > 0 such that for r > C(K0, d), nef (r) and nper(r) are well
defined and one has∫

B(0,r)
Ex

[
τ(B(0, r))

]
m
B(0,r)
V (dx) ≤ e8(2K1+nper(r)K0)C6

r2

λmax

(
D(V 0,nef (r))

)
≥ e−16K1−(8nper(r)+2)K0C7,d

r2

λmax

(
D(V 0,nef (r))

) (10.26)

Moreover

nper(r) ≤ inf{m ≥ 0 :
Rm+nef (r)+1

Rnef (r)+1
≥ 1√

C1
d

e(nef (r)+2)(9d+15)K0/2} (10.27)

Proof. Observe that for p > nef (r)

V nef (r)+1,+∞ = V nef (r)+1,p + V p+1,∞

But on B(0, r)

|V p+1,∞(x)| ≤ 1
Rp+1

+∞∑
n=p+1

Rp+1

Rn
r sup

n
‖∇Un‖∞ ≤ 2r

Rp+1
K1

and

|V nef (r)+1,p(x)| ≤ (p− nef (r)) sup
n

Osc(Un) ≤ (p − nef(r))K0

Choose p(r) = nper(r) + nef(r) it follows that on B(0, r)

|V nef (r),∞(x)| ≤ (2K1 + nper(r)K0)

Now observe that by the theorem 10.0.1, and the definition of nef (r) for x ∈ B(0, r/2)

E
V

0,nef (r)

x

[
τ(B(0, r))

] ≥ E
V

0,nef (r)

x

[
τ(B(x, r/2))

]
≥ C4

r2

λmax

(
D(V 0,nef (r))

) (10.28)
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and for x ∈ B(0, r)

E
V

0,nef (r)

x

[
τ(B(0, r))

] ≤ C5
r2

λmax

(
D(V 0,nef (r))

) (10.29)

It follows by observing that mB(0,r/2)
V ≥ Cde

−2K0nper the proposition 10.0.2 that

∫
B(0,r)

Ex

[
τ(B(0, r))

]
m
B(0,r)
V (dx) ≤ e8(2K1+nper(r)K0)C6

r2

λmax

(
D(V 0,nef (r))

)
≥ e−16K1−(8nper(r)+2)K0C7,d

r2

λmax

(
D(V 0,nef (r))

) (10.30)

Moreover observe that

e(nef (r)+1)(9d+15)K0R2
nef (r) ≤ C1

dr
2 ≤ e(nef (r)+2)(9d+15)K0R2

nef (r)+1 (10.31)

thus

r ≤ 1√
C1
d

e(nef (r)+2)(9d+15)K0/2Rnef (r)+1 (10.32)

it follows that if

Rp+1

Rnef (r)+1
≥ 1√

C1
d

e(nef (r)+2)(9d+15)K0/d (10.33)

then

Rp+1 ≥ r (10.34)

Thus

nper(r) ≤ inf{m ≥ 0 :
Rm+nef (r)+1

Rnef (r)+1
≥ 1√

C1
d

e(nef (r)+2)(9d+15)K0/2} (10.35)

10.1.1 Anomalous hitting times with bounded ratio between scales

In this subsection assume that the soft pre-fractal associated to the IHPD has bounded ratios ρmax <
∞ between its different scales, then the following theorem shows the anomaly of the diffusion.

Theorem 10.1.1. One has for r > C16,∫
B(0,r)

Ex

[
τ(Ω)

]
m
B(0,r)
V (dx) = r2+ν(r) (10.36)

with for ρmin > C13(d,K0,K1, λmax)

ν(r) ≤ ln 1
λmin

ln ρmin

(
1 +

C7(d,K0,K1)
ln ρmin

)
+

1
ln r

C6(d,K1,K0) (10.37)

and

ν(r) ≥ ln 1
λmax

ln ρmax

(
1− C12(d,K0,K1)

ln ρmin

)− 1
ln r

C11(d,K1,K0) > C15 > 0 (10.38)

Where C15, C16 depends on d,K0,K1, λmax, ρmax
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Remark 10.1.1. Observe that for the self-similar case,

ν(r) ∼ ln 1
λ

ln ρ
(10.39)

Proof. This is a direct application of the proposition 10.1.1, indeed according to this proposition for
r > Cd,K0

∫
B(0,r)

Ex

[
τ(B(0, r))

]
m
B(0,r)
V (dx) = r2+ν(r) (10.40)

with

ν(r) ≤ 1
ln r

[
8(2K1 + nper(r)K0) + lnC6 − ln

(
λmax

(
D(V 0,nef (r))

))]
(10.41)

and

ν(r) ≥ 1
ln r

[
− 16K1 − (8nper(r) + 2)K0 + lnC7,d − ln

(
λmax

(
D(V 0,nef (r))

))]
(10.42)

now observe that by the theorem 9.2.2 one has

λmax

(
D(V 0,nef (r))

) ≤ λ
nef (r)+1
max (1 +

C(d,K0,K1)

ρ
1
2
min

)nef (r) (10.43)

and

λmax

(
D(V 0,nef (r))

) ≥ λ
nef (r)+1
min (1 +

C(d,K0,K1)

ρ
1
2
min

)−nef (r) (10.44)

Observe that by the definition of nef(r)

nef (r) ≤ 2
ln r

2 ln ρmin + (9d + 15)K0
+ C2(d,K0) (10.45)

and

nef(r) ≥ 2
ln r

2 ln ρmax + (9d + 15)K0
− C2(d,K0) (10.46)

and by the inequality 10.27,

nper(r) ≤ nef (r)(9d+ 15)K0/2 + C3(d,K0)
ln ρmin

(10.47)

It follows that for ρmin > C13(d,K0,K1)

ν(r) ≤ 1
ln r

[
C4(d,K1,K0) + nef (r)

(4(9d+ 15)K2
0

ln ρmin
− lnλmin

+ ln(1 +
C(d,K0,K1)

ρ
1
2
min

)
)]

≤ 1
ln r

[
C4(d,K1,K0) + nef (r)

(C5(d,K0,K1)
ln ρmin

− lnλmin

)]

≤ 1
ln r

C6(d,K1,K0) +
ln 1

λmin

ln ρmin

(
1 +

C7(d,K0,K1)
ln ρmin

)
(10.48)
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similarly

ν(r) ≥ 1
ln r

[
C8(d,K1,K0) + nef (r)

(− 4
(9d + 15)K2

0

ln ρmin
− lnλmax

− ln(1 +
C(d,K0,K1)

ρ
1
2
min

)
)]

≥ 1
ln r

[
− C9(d,K1,K0) + nef(r)

(− C10(d,K0,K1)
ln ρmin

− lnλmax

)]

≥− 1
ln r

C11(d,K1,K0) +
ln 1

λmax

ln ρmax

(
1− C12(d,K0,K1)

ln ρmin

)
(10.49)

10.1.2 Anomalous hitting times with fast separation between scales

In this subsection assume that the soft pre-fractal associated to the IHPD has fast separating ratios
Rn = Rn−1[ ρ

pα

Rn−1
] (ρ, α > 1) between its different scales, and λmax = λmin = λ < 1 then the following

theorem shows the weak anomaly of the diffusion.

Theorem 10.1.2. ∫
B(0,r)

Ex

[
τ(B(0, r))

]
m
B(0,r)
V (dx) =

r2

λβ(r)
(10.50)

with for r > C16(d,K0,K1)

β(r) =
( ln r
ln ρ

) 1
α (1 + ε(r)) (10.51)

with ε(r) → 0 as r →∞
Remark 10.1.2. Observe that for this theorem shows how the diffusion becomes more and more
anomalous as α ↓ 1

Proof. This is a direct application of the proposition 10.1.1 and for the sharp control of D(V n
0 ), this

is a simple application of the propositions 9.3.5 and 9.4.1.

10.2 Almost sure anomaly

This section is based on the Conjecture 10.0.2, it shows that if this conjecture is true how one can
deduce the anomalous behavior of an IHPD starting from any point. Actually the conjecture 10.0.1
which is weaker than 10.0.2 is sufficient to prove the anomaly of diffusion starting from any point,
however, for the clarity of the proof it has been chosen to use the Conjecture 10.0.2 (the proof based
on the conjecture 10.0.1 is quite similar).

10.2.1 Anomaly of the hitting times

Consider yt an infinitely homogenized potential diffusion and write E the expectation associated to
its law. Write for r > C(d,K0) (a constant that is computed so that nef(r) ≥ 1)

nef(r) = sup{n ≥ 0 : e(n+1)(9d+15)K0R2
n ≤ C1

dr
2} <∞ (10.52)

where C1
d = C1/(8Cd) and Cd and C1 are the constants appearing in the inequality 10.5. nef (r) + 1

corresponds to the number of effective scales in the ball B(0, r) (the scales 0, 1, . . . , nef are effective
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scales).
Write

nper(r) = inf{n ≥ 0 : Rn+1 ≥ r} − nef (r) (10.53)

nper(r) corresponds to the number of perturbation scales in the ball B(0, r), that is to say the
scales nef + 1, . . . , nef (r) + nper(r) are perturbation scales and the scales 0, . . . , nef (r) + nper(r) are
fluctuating scales. Observe that for r > C(d,K0), nper ≥ 0 and is well defined.

Proposition 10.2.1. Assume that the conjecture 10.0.2 is true. Then there ∃C(K0, d) > 0 such
that for r > C(K0, d), nef(r) and nper(r) are well defined and one has

Ex

[
τ(B(x, r))

] ≤ eCdnper(r)K0C20(d,K0,K1)
r2

λmax

(
D(V 0,nef (r))

)
≥ e−Cdnper(r)K0C21(d,K0,K1)

r2

λmax

(
D(V 0,nef (r))

) (10.54)

Moreover

nper(r) ≤ inf{m ≥ 0 :
Rm+nef (r)+1

Rnef (r)+1
≥ 1√

C1
d

e(nef (r)+2)(9d+15)K0/2} (10.55)

Proof. One can assume x = 0 without loss of generality.
Just as in the proof of the proposition 10.2.1, observe that on B(0, r)

|V nef (r),∞(x)| ≤ (2K1 + nper(r)K0)

Now observe that by the theorem 10.0.1, and the definition of nef (r)

E
V

0,nef (r)

0

[
τ(B(0, r))

] ≥ E
V

0,nef (r)

0

[
τ(B(0, r))

]
≥ C4

r2

λmax

(
D(V 0,nef (r))

) (10.56)

and similarly

E
V

0,nef (r)

0

[
τ(B(0, r))

] ≤ C5
r2

λmax

(
D(V 0,nef (r))

) (10.57)

It follows by the conjecture 10.0.2 that

E0

[
τ(B(0, r))

] ≤ eCdnper(r)K0C22(d,K0,K1)
r2

λmax

(
D(V 0,nef (r))

)
≥ C23(d,K0,K1)e−Cdnper(r)K0

r2

λmax

(
D(V 0,nef (r))

) (10.58)

Moreover just as in the proof of the proposition 10.2.1 observe that

nper(r) ≤ inf{m ≥ 0 :
Rm+nef (r)+1

Rnef (r)+1
≥ 1√

C1
d

e(nef (r)+2)(9d+15)K0/2} (10.59)
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10.2.1.i Anomaly of the expectations of the hitting times with bounded ratio between scales

For r > C(d,K0,K1) write

λefmax(r) = (λmax

(
D(V 0,nef (r)))

) 1
nef (r)+1 (10.60)

λefmax(r) will be called the geometric mean maximal eigenvalue. It reflects the following image:
At a scale of order r the maximal eigenvalue of the effective medium characterized by the scales
0, . . . , nef + 1 behaves as if those scales were totally separated and the diffusivity of each scale were
characterized by the same maximal eigenvalue λefmax(r) (all associated to the same eigenvector: whose
direction does not change with the scale).
Write

ln ρef (r) =
ln r
nef(r)

(10.61)

ρef (r) reflects the following image: The behavior of the IHPD at the scale r is the same as a diffusion
with nef(r) effective scales, the maximal eigenvalue associated to each scale being λmmax(r) and the
ratio between each scale being ρef (r).

Theorem 10.2.1. Assume that the conjecture 10.0.2 is true. Then for ρmin > C(d,K0,K1), r >
C(d,K0,K1, ρmax) one has

Ex

[
τ(B(x, r))

] ≤ C32(d,K0,K1)r2+σ(r)(1+γ)

≥ C33(d,K0,K1)r2+σ(r)(1−γ) (10.62)

σ(r) =
ln 1

λef
max(r)

ln ρef (r)
, γ = C2,d

K0

ln ρmin
< 0.5 (10.63)

0 < c <
ln 1

λmax

ln ρmax
(1 +

C(d,K0,K1)
ln ρmin

)−1 ≤ σ(r) (10.64)

and

σ(r) ≤ ln 1
λmin

ln ρmin
(1 +

C(d,K0,K1)
ln ρmin

) (10.65)

Remark 10.2.1. This theorem says that the behavior of the hitting times is fixed by the geometric
mean effective diffusivity λefmax(r) and ratio ρef (r) at the scale r; the parameter γ plays the role of
an error term generated by the perturbation scales. Notice that the parameters do not depend on
x and that Ex[τ(x, 2r)] can be bounded by the same formulas if one modifies the constants C32 and
C33. Observe that in the self-similar case when ρ is big

Ex[τ(B(x, r))] ∼ r2+
ln 1

λ
ln ρ (10.66)

Proof. By the proposition 10.2.1, just as in the proof of the theorem 10.1.1, one has

nper(r) ≤ nef (r)(9d+ 15)K0/2 + C3(d,K0)
ln ρmin

(10.67)

Then by the proposition 10.2.1

Ex

[
τ(B(x, r))

] ≤ C30(d,K0,K1)e
Cd

ln ρmin
nef (r)K0 r2

λmax

(
D(V 0,nef (r))

)
≥ C31(d,K0,K1)e

− Cd
ln ρmin

nef (r)K0 r2

λmax

(
D(V 0,nef (r))

) (10.68)
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Notice that by Voigt Reiss inequality, λmmax(r) ≥ e−2K0 , it follows by the definition of λmmax(r) that

Ex

[
τ(B(x, r))

] ≤ C32(d,K0,K1)e
nef (r)

(
Cd

ln ρmin
K0+ln 1

λ
ef
max(r)

)
r2

≥ C33(d,K0,K1)e
nef (r)

(
− Cd

ln ρmin
K0+ln 1

λ
ef
max(r)

)
r2

(10.69)

Thus by the definition of ln ρef (r), it follows that

Ex

[
τ(B(x, r))

] ≤ C32(d,K0,K1)r2+σ(r)(1+γ)

≥ C33(d,K0,K1)r2+σ(r)(1−γ) (10.70)

σ =
ln 1

λef
max(r)

ln ρef (r)
(10.71)

and

γ = C2,d
K0

ln ρmin
(10.72)

just as in the proof of the theorem 10.1.1, one has

nef (r) ≤ 2
ln r

2 ln ρmin + (9d + 15)K0
+ C2(d,K0) (10.73)

and

nef(r) ≥ 2
ln r

2 ln ρmax + (9d + 15)K0
− C2(d,K0) (10.74)

Thus for r > C(d,K0, ρmax)

ln ρef (r) ≤ ln ρmax + (9d+ 15)
K0

2
+
C(d,K0, ρmin)

ln r
(10.75)

ln ρef (r) ≥ ln ρmin + (9d+ 15)
K0

2
− C(d,K0, ρmin)

ln r
(10.76)

now observe that by the theorem 9.2.2 one has

λefmax(r) ≤ λmax(1 +
C(d,K0,K1)

ρ
1
2
min

) (10.77)

and

λefmax(r) ≥ λmin(1 +
C(d,K0,K1)

ρ
1
2
min

)−1 (10.78)

It follows that for ρmin > C(d,K0,K1), r > C(d,K0,K1, ρmax)

σ(r) ≤ ln 1
λmin

ln ρmin
(1 +

C(d,K0,K1)
ln ρmin

) (10.79)

and

σ(r) ≥ ln 1
λmax

ln ρmax
(1 +

C(d,K0,K1)
ln ρmin

)−1 (10.80)
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10.2.1.ii Anomaly of the expectations of the hitting times with fast separating scales

In this subsection assume that the soft pre-fractal associated to the IHPD has fast separating ratios
Rn = Rn−1[ ρ

pα

Rn−1
] (ρ, α > 1) between its different scales, and λmax = λmin = λ < 1 then the following

theorem shows the weak anomaly of the diffusion.

Theorem 10.2.2. Assume that the conjecture 10.0.2 is true then

E0

[
τ(B(0, r)

]
=

r2

λβ(r)
(10.81)

with for r > C16(d,K0,K1)

β(r) =
( ln r
ln ρ

) 1
α (1 + ε(r)) (10.82)

with ε(r) → 0 as r →∞
Remark 10.2.2. Observe that for this theorem shows how the diffusion becomes more and more
anomalous as α ↓ 1

Proof. This is a direct application of the proposition 10.2.1 by observing that the perturbation scale
is limited to only one scale.

10.3 Anomaly of the density of probability of transitions

From the anomaly of the hitting times one can deduce the anomaly of the density of probability of
transitions by adapting a strategy used by M.T. Barlow and R. Bass for the Sierpinski Carpet. This
strategy is described in details in the proof of the theorem 3.11 of [Bar98].

Below the Lemma 3.14 of [Bar98] is given (this is also the Lemma 1.1 of [BB90a]) without re
producing the proof.

Lemma 10.3.1. Let ξ1, ξ2, . . . , ξn, V be non-negative r.v. such that V ≥∑n
i=1 ξi. Suppose that for

some p ∈ (0, 1), a > 0 and t > 0

P
(
ξi ≤ t|σ(ξ1, . . . , ξi−1)

) ≤ p+ at

Then

ln P(V ≤ t) ≤ 2
(ant
p

) 1
2 − n ln

1
p

Now, using the notation of the theorem 10.2.1, let yt be a IHPD, the following lemma allows to
control the law of the exit times.

Lemma 10.3.2. Let yt be a IHPD. Then for r > C(d,K0,K1, ρmax) one has

Px[τ(x, r) ≤ t] ≤ t

r2+σ(r)(1+γ)C35(d,K0,K1)
+ 1− C36(d,K0,K1)r−2γσ(r)

Proof. This lemma is an adaptation of the lemma 3.16 of [Bar98]. Observe that

Ex[τ(x, r)] ≤t+ Ex[1(τ(x, r) > t)Eyt [τ(x, r)− t]]
≤t+ Px[1(τ(x, r) > t)] sup

y∈B(x,r)
Ey[τ(x, r)]

But ∀y ∈ B(x, r), Py a.s. τ(x, r) ≤ τ(y, 2r)
Hence by the theorem 10.2.1 for r > C(d,K0,K1, ρmax)

C33(d,K0,K1)r2+σ(r)(1−γ) ≤ Ex[τ(x, r)]
≤ t+ Px[τ(x, r) > t]C34(d,K0,K1)r2+σ(r)(1+γ)
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Thus

Px[τ(x, r) ≤ t] ≤ t

r2+σ(r)(1+γ)C35(d,K0,K1)
+ 1− C36(d,K0,K1)r−2γσ(r)

The following lemma is a technical calculus, not very interesting indeed but necessary.

Lemma 10.3.3. Let v > 0, β2 > β1 > 1, a > 0 and β1 >
1+β2

2 Let

ψ(x) = a
x

1+β2
2√

1− v xβ2−β1
− x ln

1
1− v xβ2−β1

Then with x0 = ( v
2
√

2a
)

1

β1−
1+β2

2 and x1 = ( 1
2v )

1
β2−β1 one has for x ≤ x0 ∧ x1

ψ(x) ≤ −v
2
xβ2−β1+1

and for x0 ≥ 2

ψ([x0]) ≤ − v

2β2−β1+2
(

v

2
√

2a
)

β2−β1+1

β1−
1+β2

2

Proof. One has for 0 ≤ y ≤ 1
2

y ≤ ln
1

1− y
≤ ln 2

Write f(x) = a x
1+β2

2√
1−v xβ2−β1

and h(x) = x ln 1
1−v xβ2−β1

Then for 0 ≤ v xβ2−β1 ≤ 1
2

vx
1+β2

2 ≤ f(x) ≤ 2vx
1+β2

2

and

vxβ2−β1+1 ≤ h(x) ≤ x ln 2

But

2vx
1+β2

2 ≤ 1
2
vxβ2−β1+1 ⇔ xβ1− 1+β2

2 ≤ v

2
√

(2)
⇔ x ≤ x0

With x0 = ( v
2
√

2a
)

1

β1−
1+β2

2

Thus for x ≤ x0 ∧ x1 with x1 = ( 1
2v )

1
β2−β1 we have

ψ(x) ≤ −v
2
xβ2−β1+1
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Proposition 10.3.1. Assume that the conjecture 10.0.2 is true. Then for ρmin > C(d,K0,K1) and

C40r ≤ t ≤ C41r
2+σ(r)(1−3γ)

one has

ln Px[|yt| ≥ r] ≤ ln Px[τ(x, r) ≤ t] ≤ −C42
r2

t

( t
r

)ν(r3+2γσ(r)

t2

)μ
with

ν(r) =
σ(r)(1− γ)

1 + σ(r)(1− 3γ)

μ(r) =
2σ(r)γ

1 + σ(r)(1− 3γ)

1− 3γ > 0.5 and the constants C40, C41, C42 depend on d,K0,K1, ρmax, ρmin.

Remark 10.3.1. Observe that the term μ is very small in comparison to ν, it acts as an error term
generated by the perturbation scales, in the next theorem it will be shown that one can make
this term disappear by a slight modification of ν. Actually this proposition says that for C1r < t
(homogenization has started) and t < C2r

2+κ (the behavior is far from the heat kernel diagonal
regime) one has at the first order

p(|yt| > h) ∼ −h
2

t
(
t

h
)σ(r) (10.83)

with σ(r) ∼ (
ln(1/λefmax(r))

)
/(ln ρef (r)): at the first order the behavior of the transition probability

densities is fixed by the mean effective maximal diffusivity λefmax(r) and the mean ratio between scales
ρef (r) associated to the effective scales corresponding to the length r.

Proof. Let n ≥ 1 and g = r
n

Define the stopping times Si i ≥ 0 by S0 = 0 and

Si+1 = inf{t ≥ Si : |yt − ySi | ≥ g}

Write ξi = Si−Si−1 for i ≥ 1 Let Ft be the filtration of yt and let Gi = FSi Then it follows from the
lemma the lemma 10.3.2 that for g > C(d,K0,K1, ρmax)

Px[ξi+1 ≤ t|(G)i] = PySi
[τ(ySi , g) ≤ t]

≤ C37(d,K0,K1)
t

g2+σ(r)(1+γ)
+ 1− C36(d,K0,K1)g−2σ(r)γ

Since |ySi − ySi+1| = g it follows that Px a.s. |x− ySn | ≤ r
Thus

Sn =
n∑
i=1

ξi ≤ τ(x, r)

And by the lemma 10.3.1 with

a = C37(d,K0,K1)(
n

r
)2+σ(r)(1+γ)

p = 1− C36(d,K0,K1)(
n

r
)2σ(r)γ
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One has

ln Px[τ(x, r) ≤ t] ≤ 2
(n tC37(nr )

2+σ(r)(1+γ)

1− C36(nr )
2σ(r)γ

) 1
2 − n ln

1
1− C36(nr )

2σ(r)γ

Now use the lemma 10.3.3 to choose n with β2 = 2+σ(r)(1+γ), β1 = 2+σ(r)(1−γ), a = 2(tC37r
−β2)

and v = C36r
β1−β2

It follows that

x0 =
( C36r

β1−β2

4
√

2C37r−β2

) 1

β1−
1+β2

2

=
( C36

4
√

2C37

) 1

β1−
1+β2

2
r

β1−
β2
2

β1−
1+β2

2

t
1

2(β1−
1+β2

2 )

and

x1 = (
1
C36

)
1

β2−β1 r

But one needs n ≤ x0 ∧ x1 and r/n > C(d,K0,K1, ρmax)

x0 ≤ x1 ⇔
( C36

4
√

2C37

) 1

β1−
1+β2

2 r

1

2(β1−
1+β2

2 ) ≤ (
1
C36

)
1

β2−β1 t

1

2(β1−
1+β2

2 )

⇔ r ≤ C38(d,K0,K1, ρmin, ρmax)t

Choose C38 so that x0C(d,K0,K1, ρmax) < r is also satisfied.
Moreover

x0 ≥ 2 ⇔ r ≥ C39(d,K0,K1, ρmin, ρmax) t
1

2β1−β2

so for r ≥ C39t
1

2β1−β2 and r ≤ C38t

ln Px[τ(x, r) ≤ t] ≤ −C4r
β1−β2

22+β2−β1

( C4r
β1−β2

4
√

2tC3r−β2

) 1+β2−β1

β1−
1+β2

2

and after some calculus and simplifications

ln Px[τ(x, r) ≤ t] ≤ −C40
r2

t

( t
r

)ν(r3+β2−β1

t2

)μ
with

ν =
β1 − 2

2β1 − 1− β2
=

σ(r)(1− γ)
1 + σ(r)(1 − 3γ)

μ =
β2 − β1

2β1 − 1− β2
=

2σ(r)γ
1 + σ(r)(1 − 3γ)

Corollary 10.3.1. Assume that the conjecture 10.0.2 is true. Then for ρmin > C(d,K0,K1) and

C40r ≤ t ≤ C41r
2+σ(r)(1−3γ)
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one has

ln Px[|yt| ≥ r] ≤ ln Px[τ(x, r) ≤ t] ≤ −C7
r2

t

( t
r

)ν′
with

ν ′(r) = σ(r)(1 − C(d,K0)
ln ρmin

)

and the constants C40, C41, C42 depend on d,K0,K1, ρmax, ρmin.

Remark 10.3.2. Notice that the second term in the expression of ν ′ is an error term created by
perturbation scales.

Proof. Observe that if one chooses

ν − ν ′ = 4μ

then

( t
r

)ν(r3+β2−β1

t2

)μ
≥ ( t

r

)ν′ ⇔ t ≥ r
ν−ν′−(3+2γσ(r))μ

ν−ν′−2μ

⇔ t ≥ r
1−2γσ(r)

2

thus in the previous theorem one can choose

ν ′(r) =
σ(r)(1− γ)

1 + σ(r)(1 − 3γ)
− 4

2σ(r)γ
1 + σ(r)(1− 3γ)

= σ(r)(1− C(d,K0)
ln ρmin

)

10.3.1 Anomaly of the transition probability densities with bounded ratio between
scales

Corollary 10.3.2. Assume that the conjecture 10.0.2 is true, ρmax < ∞ and λmax < 1. Then for
ρmin > C(d,K0,K1) and

C40r ≤ t ≤ C41r
2+σ(r)(1−3γ)

one has

ln Px[|yt| ≥ r] ≤ ln Px[τ(x, r) ≤ t] ≤ −C7
r2

t

( t
r

)ν′
with

0 < c <
ln 1

λmax

ln ρmax
(1 − C50(d,K0)

ln ρmin
) ≤ ν ′(r) ≤ ln 1

λmin

ln ρmin
(1− C50(d,K0)

ln ρmin
) (10.84)

C50(d,K0) < 0.5 ln ρmin and the constants C40, C41, C42 depend on
d,K0,K1, ρmax, ρmin

Remark 10.3.3. Observe that if ρmax = ρmin and λmax = λmin then at the first order in 1/ ln ρmin, ν ′

behaves like

ν ′ ∼ ln 1
lnλ

ln ρ
(10.85)

Proof. This is a direct consequence of the corollary 10.3.1.
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10.3.2 Anomaly of the transition probability densities with fast separating scales

In this subsection assume that the soft pre-fractal associated to the IHPD has fast separating ratios
Rn = Rn−1[ ρ

pα

Rn−1
] (ρ, α > 1) between its different scales, and λmax = λmin = λ < 1 then the following

theorem shows the weak anomaly of the diffusion.

Theorem 10.3.1. Assume that the conjecture 10.0.2 is true then for

C60r ≤ t ≤ C61r
2

one has

ln Px[|yt| ≥ r] ≤ ln Px[τ(x, r) ≤ t] ≤ −C63
r2

t
g(
t

r
)

with

g(x) = (
1
λ

)(
x

ln ρ
)

1
α (1+ε(x)) (10.86)

where ε(x) → 0 as x→∞ and the constant C60 to C63 depends on ρ, α,K0,K1, d.

Remark 10.3.4. Observe that t
h2 ln P[l.yt ≥ h] → −∞ as t/h → ∞. Moreover this theorem shows

how the behavior of the diffusion passes from a slightly anomalous one to a strongly anomalous one.

Proof. Straightforward by observing that the ratio between the number of perturbation scales with
the numbers of fluctuating scales tends towards 0 as t/r →∞



11. SUPER DIFFUSIVITY IN THE SHEAR FLOW MODEL

11.1 Explicit formulas

Let J be smooth periodic 2× 2 skew-symmetric matrix

J(x1, x2) =
(

0 j(x1)
−j(x1) 0

)
(11.1)

with j ∈ C∞(T 1
1 ), j(0) = 0. write LJ its associated diffusion operator

LJ =
1
2
Δ +∇J.∇ (11.2)

11.1.1 Cell problem

The T 2
1 periodic solution χl (l ∈ S

2) of the cell problem LJ(χl − l.x) = 0 is (χl(0) = 0)

χl(x1, x2) = 2l2
[ ∫ x1

0
j(y)dy − x1

∫ 1

0
j(y)dy

]
(11.3)

its associated harmonic functions is

Fl(x) = l.x− χl(x) = l.x− 2l2
[ ∫ x1

0
j(y)dy − x1

∫ 1

0
j(y)dy

]
(11.4)

11.1.2 Effective Diffusivity

The solution of the cell problem allows to compute the effective diffusivity

tlD(J)l =
∫
T 2
1

|l −∇χl(x)|2dx (11.5)

and it follows that

D(J) =
(

1 0
0 1 + 4Var(j)

)
(11.6)

11.2 Multi-scale effective diffusivity

Consider a IHSFD,

Theorem 11.2.1. assume γmin > 1 and

ε =
2

3
2

ρmin

K1

γmin − 1
< 1 (11.7)

then for all p ∈ N

D(Γ0,p) =
(

1 0
0 D(Γ0,p)22

)
(11.8)
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with

1 + 4(1− ε)
p∑

k=0

γ2
k ≤ D(Γ0,p)22 ≤ 1 + 4(1 + ε)

p∑
k=0

γ2
k (11.9)

Proof. Observe that

Var(Hp) =
∫ 1

0

(
(Hp−1(Rpx)−

∫ 1

0
Hp−1(Rpy)dy) + γp(hp(x)−

∫ 1

0
hp(y)dy)

)2
dx (11.10)

It follows that ∣∣Var(Hp)−Var(Hp−1)− γ2
p | ≤ 2γp|E| (11.11)

with (Cov designate the covariance: Cov(f, g) =
∫ 1
0 (f(x)− ∫ 1

0 f(y)dy)(g(x) − ∫ 1
0 g(y)dy)dx)

E = Cov(SRpH
p−1, hp) (11.12)

By the corollary C.1.1,

|E| ≤ ‖∇hp‖∞Rp−1

Rp

∫ 1

0
|SRpH

p−1(x)|dx

≤ K1

rp

√
Var(Hp−1)

(11.13)

Now it will be shown by induction that

(1− ε)
p∑
k=0

γ2
k ≤ Var(Hp) ≤ (1 + ε)

p∑
k=0

γ2
k (11.14)

This is trivially true for p = 0. Assume that 11.14 is true for p ∈ N.
Then observe that

√
Var(Hp) ≤ (1 + ε)

1
2γp+1

( p∑
k=0

(
γk
γp+1

)2
) 1

2

≤ (1 + ε)
1
2γp+1

( ∞∑
k=1

(
1

γkmin

)2
) 1

2

≤ (1 + ε)
1
2γp+1

( 1
γ2
min − 1

) 1
2

≤ (1 + ε)
1
2γp+1

1
γmin − 1

(11.15)

and {
ε ≥ 2K1

ρmin
(1 + ε)

1
2

1
γmin−1

ε < 1
⇐ ε =

2K1

ρmin

√
2

1
γmin − 1

< 1 (11.16)

then by the inequalities 11.13 and 11.11 it follows that∣∣Var(Hp+1)−Var(Hp)− γ2
p+1| ≤ εγ2

p+1 (11.17)

which proves the induction.
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11.3 Mean square displacement

Lemma 11.3.1. If ρmin > γmax and γmin > 1 then for all x ∈ R∣∣∣ ∫ x

0

(
Hp(y)− 1

Rp

∫ Rp

0
Hp(z)dz

)
dy
∣∣∣ ≤ RpK0γp

γmin

γmin − 1
(11.18)

∣∣Hp+1,∞(x)
∣∣ ≤ K1

γp+1

Rp+1

ρmin

ρmin − γmax
|x| (11.19)

∣∣∂1H
p+1,∞(x)

∣∣ ≤ K1
γp+1

Rp+1

ρmin

ρmin − γmax
(11.20)

Proof. Straightforward computation

Lemma 11.3.2. Assume γmin > 1 and

ε =
2

3
2

ρmin

K1

γmin − 1
<

1
2

(11.21)

For p ∈ N
∗, and t > 0

E[
∫ t

0
(Hp(bs)− κp)2 ds] ≤ 5tγ2

p(
γmin

γmin − 1
)2 + 4K2

0γ
2
pR

2
p(

γmin

γmin − 1
)2 (11.22)

and

E[
∫ t

0
(Hp(bs)− κp)2 ds] ≥ 2tγ2

p − 4K2
0γ

2
pR

2
p(

γmin

γmin − 1
)2 (11.23)

Proof. Write

Ip = E[
∫ t

0
(Hp(bs)− κp)2 ds]

and

f(x) =
∫ x

0

(
Hp(y)− κp

)2 −Var(Hp)x (11.24)

g(x) = 2
( ∫ x

0
f(y) dy − x

Rp

∫ Rp

0
f(y) dy

)
(11.25)

Observe that g is periodic of period Rp and by the Ito formula

Ip = Var(Hp)t+ E[g(bt)] (11.26)

Now the result follows by the theorem 11.2.1 and by observing that

‖g‖∞ ≤ 4K2
0γ

2
pR

2
p(

γmin

γmin − 1
)2 (11.27)

Lemma 11.3.3. For p ∈ N∗, and t > 0

∣∣E[
∫ t

0
(Hp−1(bs)− κp−1)(Hp,p(bs)− κp) ds]

∣∣ ≤
K0γp−1γp

γmin

γmin − 1
(
8K0Rp−1

√
t+ t

K1

rp

) (11.28)
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Proof. For p ∈ N∗, write

Jp,2 = E[
∫ t

0
(Hp−1(bs)− κp−1)(Hp,p(bs)− κp) ds] (11.29)

write for x ∈ R,

g(x) =
∫ x

0
(Hp−1(y)− κp−1)(Hp,p(y)− κp)dy (11.30)

Observe that by Ito formula

2E[
∫ bs

0
g(y)dy] = Jp,2 (11.31)

But by the corollary C.1.4

|g(x)| ≤ 2K0γp−1
γmin

γmin − 1
(
4γpK0Rp−1 + |x|K1

γp
rp

)
(11.32)

It follows that

|Jp,2| ≤ K0γp−1γp
γmin

γmin − 1
(
8K0Rp−1

√
t+ t

K1

rp

)
(11.33)

Lemma 11.3.4. Let f,G ∈ C∞(T 1
R) such that

∫ R
0 f(y)dy = 0 and

∫ R
0 G(y)dy = 0, with R ∈ N

∗, let
r ∈ N

∗ such that R/r ∈ N
∗ and t > 0

∣∣∣E[G(bt)
∫ t

0
∂1f(rbs) ds

]∣∣∣ ≤ ‖f‖L2(T 1
R)‖G‖L2(T 1

R)

15

rR
1
2 t

1
4

(11.34)

Proof. write

I = E
[
G(bt)

∫ t

0
∂1f(rbs) ds

]
(11.35)

write fk and Gk the Fourier decomposition of f and G.

f(x) =
∑
k∈Z

fke
ik 2π

R
x (11.36)

Note that

‖f‖2
L2(T 1

R) = R
∑
k∈Z

|fk|2 (11.37)

Write for k,m ∈ Z

Jk,m =
∫ t

0
E
[
eikr

2π
R
bseim

2π
R
bt
]
ds (11.38)

By a straightforward computation

Jk,m =
∫ t

0
e−( 2π

R
)2

(kr+m)2

2
s−( 2π

R
)2 m2

2
(t−s)

= 2e−( 2π
R

)2 m2

2
t 1− e−( 2π

R
)2( (kr)2

2
+krm)t

(2π
R )2( (kr)2

2 + krm)

(11.39)
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(in last fraction in the above equation, if the denominator is equal to 0, consider it as a limit to
obtain the exact value t)
Now

I =
∑

k,m∈Z2

Jkmik
2π
R
fkGm (11.40)

Thus since f0 = G0 = 0

|I| ≤ 2
∑
m∈Z∗

e−( 2π
R

)2 m2

4
t|Gm|2π

R

(∑
k∈Z

|fk|2
) 1

2J
1
2
m (11.41)

with

Jm =
∑
k∈Z∗

(1− e−( 2π
R

)2( (kr)2

2
+krm)t

(kr22 + rm)(2π
R )2

)2
e−( 2π

R
)2 m2

2
t

≤ t

4
(
2m
r

)2e−( 2π
R

)2 m2

2
t +

∑
k∈Z∗

4
r2k2(2π

R )2

≤ R2

2r2

(11.42)

Thus

|I| ≤ ‖f‖L2(T 1
R)‖G‖L2(T 1

R)

10
Rr

( ∑
k∈Z∗

e−( 2π
R

)2 m2

2
t
) 1

2

≤ ‖f‖L2(T 1
R)‖G‖L2(T 1

R)

30

rRt
1
4

(
R

2π
)

1
2

(11.43)

Corollary 11.3.1.

∣∣∣E[ ∫ t

0
∂1H

p−1(ωs.e1)ds
∫ bt

0
(Hp,p(y)− κp,p)dy

]∣∣∣ ≤
15K2

0

γmin

γmin − 1
γp−1γp

R
5
2
p

rpt
1
4

(11.44)

Proof. Straightforward by the lemma 11.3.4.

Lemma 11.3.5. Assume γmin > 1 and

ρmin ≥ 8(K0γmaxγmin + 1)
K1

γmin − 1
(11.45)

then with

Ip = E

[( ∫ t

0
∂1H

p(ωs.e1)ds
)2] (11.46)
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one has

Ip ≤ t
(
5γ2
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γmin − 1
)2 + 8K0γp−1γp
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K1

rp
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+
√
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(11.47)

and

Ip ≥ tγ2
p−1

−
√
t68γp−1γpRp−1K

2
0

γmin

γmin − 1

− 1

t
1
4

60K2
0

γmin

γmin − 1
γp−1γp

R
5
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p

rp

− 4K2
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2
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2
p−1(

γmin

γmin − 1
)2

(11.48)

Proof. Observe that

Ip = Ip−1 + E

[( ∫ t

0
∂1H

p,p(ωs.e1)ds
)2]+ 2Jp (11.49)

with

Jp = E

[( ∫ t

0
∂1H

p,p(ωs.e1)ds
)( ∫ t

0
∂1H

p−1(ωs.e1)ds
)]

(11.50)

Now by the Ito formula (bt = ωt.e1)∫ t

0
∂1H

p,p(ωs.e1)ds = 2
∫ bt

0
(Hp,p(y)− κp,p)dy − 2

∫ t

0
(Hp,p(bs)− κp,p)dbs (11.51)

and ∫ t

0
∂1H

p−1(ωs.e1)ds = 2
∫ bt

0
(Hp−1(y)− κp−1)dy − 2

∫ t

0
(Hp−1(bs)− κp−1)dbs (11.52)

It follows by the lemma 11.3.1 that,

|Jp| ≤γp−1Rp−1K0
γmin

γmin − 1
2K0γp

√
t+ 4|Jp,2|+ 2|Jp,3| (11.53)

with

Jp,2 = E[
∫ t

0
(Hp−1(bs)− κp−1)(Hp,p(bs)− κp) ds] (11.54)

and

Jp,3 = E
[ ∫ t

0
∂1H

p−1(ωs.e1)ds
∫ bt

0
(Hp,p(y)− κp,p)dy

]
(11.55)
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It follows by the lemma 11.3.2, the lemma 11.3.3 and the corollary 11.3.1 that

Ip ≤ 5tγ2
p−1(

γmin

γmin − 1
)2 + 4K2

0γ
2
p−1R

2
p−1(

γmin

γmin − 1
)2

+K2
1

γ2
p
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p
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γmin − 1
2K0γp

√
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√
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K1
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R
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rpt
1
4
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Thus

Ip ≤ t
(
5γ2
p−1(

γmin

γmin − 1
)2 + 8K0γp−1γp

γmin

γmin − 1
K1

rp

)

+ t2K2
1
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p
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p

+
√
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2
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+
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t
1
4

60K2
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R
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rp

+ 4K2
0γ

2
p−1R

2
p−1

(11.57)

Similarly by using the lemma 11.3.2, the lemma 11.3.3 and the corollary 11.3.1 one obtains that

Ip ≥ 2tγ2
p−1 − 4K2

0γ
2
p−1R

2
p−1(

γmin

γmin − 1
)2

− 2γp−1Rp−1K0
γmin

γmin − 1
2K0γp

√
t
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(
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√
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rp

)
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R
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rpt
1
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(11.58)

Thus

Ip ≥ t
(
2γ2
p−1 − 8K0γp−1γp

γmin

γmin − 1
K1

rp

)
−
√
t68γp−1γpRp−1K
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rp

− 4K2
0γ

2
p−1R

2
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γmin

γmin − 1
)2

(11.59)

Then the results follows by observing that

ρmin ≥ 8K0K1γmax
γmin

γmin − 1
(11.60)
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implies

γ2
p−1 ≥ 8K0γp−1γp

γmin

γmin − 1
K1

rp
(11.61)

Lemma 11.3.6. Assume γmin > 1 and

215(1 +K0)3(1 +K1)3
γmin

γmin − 1
γ4
max ≤ ρmin (11.62)

then for

t > 240
R2

1

r
4
5
1

K
8
5
0 (

γmin

γmin − 1
)

4
5 (
γ1

γ0
)

4
5

one has

t
γ2
p−1

4
≤ E

[
(yt.e2)2

]
t ≤ γ2

m30(
γmin

γmin − 1
)2(1 +K1)2 (11.63)

with

p(t) = sup{p ∈ N : t ≥ 240
R2
p

r
4
5
p

K
8
5
0 (

γmin

γmin − 1
)

4
5 (

γp
γp−1

)
4
5} (11.64)

and

m(t) = inf{p ∈ N : t ≤ R2
p} (11.65)

Proof. Since

yt.e2 = ωt.e2 +
∫ t

0
∂1h(ωs.e1)ds (11.66)

It follows that (by the independence of ωt.e2 with ωt.e1),

E
[
(yt.e2)2

]
= t+ E

[( ∫ t

0
∂1h(ωs.e1)ds

)2] (11.67)

thus for all p ∈ N
∗

E
[
(yt.e2)2

]
=t+ E

[( ∫ t

0
∂1H

p(ωs.e1)ds
)2]+ E

[( ∫ t

0
∂1H

p+1,∞(ωs.e1)ds
)2]

+ 2E

[( ∫ t

0
∂1H

p+1,∞(ωs.e1)ds
)( ∫ t

0
∂1H

p(ωs.e1)ds
)] (11.68)

Thus by bounding the term with ∂1H
p+1,∞ as a drift scale (see lemma 11.3.1) it follows that

E
[
(yt.e2)2

] ≥ t+
1
2

E

[( ∫ t

0
∂1H

p(ωs.e1)ds
)2]− E

[( ∫ t

0
∂1H

p+1,∞(ωs.e1)ds
)2]

≥ t+
1
2

E

[( ∫ t

0
∂1H

p(ωs.e1)ds
)2]− t2

(
K1

γp+1

Rp+1

ρmin

ρmin − γmax

)2 (11.69)
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and

E
[
(yt.e2)2

] ≤ t+ 2E

[( ∫ t

0
∂1H

p(ωs.e1)ds
)2]+ 2E

[( ∫ t

0
∂1H

p+1,∞(ωs.e1)ds
)2]

≤ t+ 2E
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0
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p(ωs.e1)ds
)2]+ 2t2

(
K1
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Rp+1
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ρmin − γmax

)2 (11.70)

Then it follows by the lemma 11.3.5 that if γmin > 1 and

ρmin ≥ 8(K0γmaxγmin + 1)
K1

γmin − 1
(11.71)

one has
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(11.72)

and

E
[
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(11.73)

Now observe that in the equation 11.73 the first member is greater than 8 times the second one if

R2
p+1

γ2
p−1

16γ2
p+1K

2
1

(
1− γmax

ρmin

)2 ≥ t (11.74)

In the equation 11.73 the first member is greater than 8 times the third one if

t ≥ 219 γ2
p

γ2
p−1

R2
p−1K

4
0 (

γmin

γmin − 1
)2 (11.75)

In the equation 11.73 the first member is greater than 8 times the fourth one if

t ≥ 240
R2
p

r
4
5
p

K
8
5
0 (

γmin

γmin − 1
)

4
5 (

γp
γp−1

)
4
5 (11.76)

In the equation 11.73 the first member is greater than 8 times the fifth one if

t ≥ 32K2
0R

2
p−1(

γmin

γmin − 1
)2 (11.77)
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Then choose

p(t) = sup{p ∈ N : t ≥ 240
R2
p

r
4
5
p

K
8
5
0 (
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4
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)
4
5} (11.78)

Observe that with this choice

t < 240
R2
p+1

r
4
5
p+1

K
8
5
0 (
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γmin − 1
)

4
5 (
γp+1

γp
)

4
5 (11.79)

and assume that

215(1 +K0)3(1 +K1)3
γmin

γmin − 1
γ4
max ≤ ρmin (11.80)

Then a straightforward computation shows that 11.78, 11.79 and 11.80 implies the conditions 11.74,
11.75, 11.76 and 11.77. It follows that

t
γ2
p−1

4
≤ E

[
(yt.e2)2

]
(11.81)

Similarly with the choice

p(t) = inf{p ∈ N : t ≤ R2
p} (11.82)

it follows under the assumption 11.80 that

E
[
(yt.e2)2

] ≤ tγ2
p30(

γmin

γmin − 1
)2(1 +K1)2 (11.83)

Theorem 11.3.1. assume γmin > 1, γmax, ρmax <∞,
ρmin > ρ0(γmin, γmax,K0,K1) and t > t0(γmin, γmax, R1,K0,K1) then

E0[|yt.e2|2] = t1+ν(t) (11.84)

with

ν(t) ≤ ln γmax

ln ρmin + ln γmin
γmax

+
C2

ln t
(11.85)

ν(t) ≥ ln γmin

ln ρmax + ln γmax

γmin

− C1

ln t
(11.86)

Where the constants C1 and C2 depends on ρmin, γmin, γmax, ρmax,K1,K2

Remark 11.3.1. Note that for γmin = γmax and ρmin = ρmax = ρ

|ν(t)− ln γ
ln ρ

| ≤ C(γ, ρ)
ln t

(11.87)

Proof. Straightforward by the lemma 11.3.6.

Theorem 11.3.2. assume γp = γp and Rp = Rp−1[ ρ
pα

Rp−1
] with γ, ρ > 1 and α ≥ 1 Then for t >

t0(γ2, R2,K0,K1)

C1tγ
β(t) ≤ E0[|yt.e2|2] ≤ C2tγ

β(t) (11.88)

with

β(t) = 2(
1

2 ln ρ
)

1
α (ln t)

1
α (11.89)

Where the constants C1 and C2 depends on ρ, γ, α,K1,K2
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Remark 11.3.2. Note that this theorem shows how the diffusion becomes more and more super dif-
fusive as α ↓ 1: the ratio between scales tends to be constant.

Proof. Straightforward by the lemma 11.3.6.





12. RATE OF CONVERGENCE TOWARDS THE LIMIT
PROCESS

12.1 Sharp upper bound for the rate of convergence towards the asymptotic process

12.1.1 Cluster expansion

Lemma 12.1.1. Let Mt be a continuous square integrable Ft adapted martingale such that M0 = 0
and for λ, t > 0, E[eλMt ] <∞.
Assume that there exists a function f : R

+ → R
+ such that for all t2 > t1 ≥ 0

E[

t2∫
t1

d < M,M >s |Ft1 ] ≤
t2−t1∫
0

f(s)ds a.s. (12.1)

1. Then for all λ ∈ R and all q > 1

E[ exp(λMt)] ≤ [1 +
+∞∑
n=1

(
q2

2(q − 1)
λ2)n

∫
ui>0

1(u1 + · · ·+ un < t)f(u1) · · · f(un)du1 · · · dun]
1
q

(12.2)

2. If f(s) = f1 for s < t0 and f(s) = f2 for s ≥ t0 with t0 > 0 and 0 ≤ f2 ≤ f1 then with a = f2
f1

and μ = t
t0

E[exp(λMt)] ≤
[
1 +

+∞∑
n=1

( q2

2(q−1)λ
2f1t0)n

n!

∑
0≤m≤n∧μ

(μ−m)nCmn (a− 1)m
] 1

q (12.3)

Proof. (a) Note that for c > 0

E[exp(λMt)] = E[exp(λMt − cλ2 < M,M >t) exp(cλ2 < M,M >t)]

Then by Hölder inequality

E[exp(λMt)] ≤ E[exp(pλMt − cpλ2 < M,M >t)]
1
pE[exp(cqλ2 < M,M >t)]

1
q

with 1/p + 1/q = 1; choose c = p/2 then by the Ito formula exp(pλMt − (p2/2)λ2 < M,M >t) is a
positive local martingale equal to 1 at t = 0 thus it is a sur-martingale and

E[exp(pλMt − (p2/2)λ2 < M,M >t)] ≤ 1

Thus for all q > 1

E[exp(λMt)] ≤ E[exp(
q2

2(q − 1)
λ2 < M,M >t)]

1
q
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Write Xt = exp(hqλ2 < M,M >t) with hq = q2

2(q−1)
Then

Xt =
+∞∑
n=0

(hqλ2 < M,M >t)n

n!

Xt = 1 +
+∞∑
n=1

(hqλ2)n
∫

1(0 < t1 < · · · < tn < t)d < M,M >t1 · · · d < M,M >tn

Write

Wn =
∫

1(0 < t1 < · · · < tn < t)d < M,M >t1 · · · d < M,M >tn

Now it will be proved by induction that

E[Wn] ≤
∫

ui>0

1(0 < u1 + · · ·+ un < t)f(u1) · · · f(un)du1 · · · dun

First of all,
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· · · d < M,M >tn−1 ]

E[Wn] ≤E[
∫
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· · · d < M,M >tn−1 f(tn − tn−1)dtn]

and the following inequality completes the first step of the induction

E[Wn] ≤E[
∫

1(0 < t1 < · · · < tn−1 < t)1(0 < un < t− tn−1)

d < M,M >t1 · · · d < M,M >tn−1 f(un)dun]

The mechanism is now clear: if

E[Wn] ≤ E[
∫

ui>0

1(0 < t1 < · · · < tk < tk+1 < t)1(0 < uk+2 + · · ·+ un < t− tk+1)

d < M,M >t1 · · · d < M,M >tk f(uk+2) · · · f(un)duk+2 · · · dun]
Then

E[Wn] ≤ E[
∫

ui>0

1(0 < t1 < · · · < tk < t)1(0 < uk+2 + · · ·+ un < t− tk)d < M,M >t1

· · · d < M,M >tk E[

t−uk+2−···−un∫
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d < M,M >tk+1
|Ftk ]f(uk+2) · · · f(un)duk+2 · · · dun]
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E[Wn] ≤ E[
∫

ui>0

1(0 < t1 < · · · < tk < t)1(0 < uk+2 + · · ·+ un < t− tk)d < M,M >t1

· · · d < M,M >tk

t−tk−uk+2−···−un∫
0

f(tk+1)dtk+1f(uk+2) · · · f(un)duk+2 · · · dun]

E[Wn] ≤E[
∫

ui>0

1(0 < t1 < · · · < tk < t)1(0 < uk+1 + · · ·+ un < t− tk)

d < M,M >t1 · · · d < M,M >tk f(uk+1) · · · f(un)duk+1 · · · dun]
And the following inequality is deduced from this induction

E[Wn] ≤
∫

ui>0

1(0 < u1 + · · ·+ un < t)f(u1) · · · f(un)du1 · · · dun

Thus

E[exp(λMt)] ≤[1 +
+∞∑
n=1

(hqλ2)n
∫

ui>0

1(0 < u1 + · · ·

+ un < t)f(u1) · · · f(un)du1 · · · dun]
1
q

This proves the first part of the lemma, now the second part will be proven.

(b) Assume that f(s) = f1 for s < t0 and f(s) = f2 for s ≥ t0 with t0 > 0 and 0 ≤ f2 ≤ f1

Then write a = f2
f1

and μ = t
t0

and

Hn =
∫

ui>0

1(0 < u1 + · · ·+ un < t)f(u1) · · · f(un)du1 · · · dun

Now, by writing g(z) = 1(z < 1) + a1(z ≥ 1) and ui = zit0

Hn = (f1t0)n
∫

zi>0

1(0 < z1 + · · · + zn < μ)g(z1) · · · g(zn)dz1 · · · dzn
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Gn =
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Write

Gpn =
∫
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If
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(p + j)!
1(0 < zp+j+1 +

· · · + zn < μ− p− k)1(zp+j+1 < 1) · · · 1(zn < 1)dzp+j+1 · · · dzn +
...

+
∫

zi>0

vjj
(μ− p− j − zp+j+1 − · · · − zn)p+j

(p+ j)!
1(0 < zp+j+1 +

· · · + zn < μ− p− j)1(zp+j+1 < 1) · · · 1(zn < 1)dzp+j+1 · · · dzn
Then

Gpn =
∫

zi>0

(μ− p− zp+j+2 − · · · − zn)p+j+1

(p+ j + 1)!
1(0 < zp+j+2 +

· · ·+ zn < μ− p)1(zp+j+2 < 1) · · · 1(zn < 1)dzp+j+2 · · · dzn

+
j+1∑
k=1

∫
zi>0

(vkj − vk−1
j )

(μ− p− k − zp+j+2 − · · · − zn)p+j+1

(p+ j + 1)!
1(0 < zp+j+2 +

· · ·+ zn < μ− p− k)1(zp+j+2 < 1) · · · 1(zn < 1)dzp+j+2 · · · dzn
Which proves the induction.
Thus

Gpn =
(μ− p)n

n!
1(p < μ)− (n− p)

(μ− p− 1)n

n!
1(p + 1 < μ)

+
(n− p)(n− p− 1)

2
(μ− p− 2)n

n!
1(p+ 2 < μ)

+vkn−p
(μ− p− k)n

n!
1(p + k < μ) + · · · + vn−pn−p

(μ− n)n

n!
1(n < μ)

Now it will be shown by a double induction that ∀j ≥ k

vkj = Ckj (−1)k

v0
0 = 1 so this is true for j=0

Assume that it is true for j ≤ j0 Observe that v0
j0+1 = 1, now assume that the statement is true in

j0 + 1 for k ≤ k0 < j0 + 1 then

vk0+1
j0+1 = vk0+1

j0
− vk0j0

= (−1)k0+1[Ck0+1
j0

+Ck0j0 ]

= (−1)k0+1 (j0)!
(k0)!(j0 − k0 − 1)!

[
1

k0 + 1
+

1
j0 − k0

]

= (−1)k0+1Ck0+1
j0+1

Which proves the induction
Thus

Gn =
n∑
p=0

apCpn

n−p∑
k=0

Ckn−p(−1)k
(μ− p− k)n

n!
1(p+ k < μ)
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Write m = k + p, then

Gn =
1
n!

∑
0≤m≤μ∧n

(μ−m)n
∑

0≤p≤m
apCpnC

m−p
n−p (−1)(m− p)

But

CpnC
m−p
n−p =

n!
p!(m− p)!(n −m)!

= Cmn C
p
m

Thus

Gn =
1
n!

∑
0≤m≤μ∧n

Cmn (μ−m)n
∑

0≤p≤m
apCpm(−1)(m+ p)

=
1
n!

∑
0≤m≤μ∧n

Cmn (μ−m)n(a− 1)m

In short, is has been obtained that

E[exp(λMt)] ≤
[
1 +

+∞∑
n=1

(hqλ2f1t0)n

n!

∑
0≤m≤n∧μ

(μ−m)nCmn (a− 1)m
] 1

q

12.1.2 A combinatorial lemma

The following lemma is quite technical and will be useful to exploit the previous one

Lemma 12.1.2. Put −1
e < x < 0

Write for n ∈ N,

In =
∑

0≤m≤n

xm

m!
(n−m)m

Write up the sequence defined by u0 = 0 and up+1 = exp(−xup)
Then up is increasing and converges to y0 the smallest positive solution of y exp(xy) = 1 and ∀p ∈
N
∗, ∀n ∈ N

In ≤
( 1
up(x)

)n 1
1− up exp(xup)

Proof. Write

y1 = inf
{
y > 0 : y exp(|x|y) = 1

}
(notice that 0 < y1 < 1) and consider for −y1 < y < y1 the function

f : y → 1
1− y exp(xy)

Observe that for y ∈ (−y1, y1)

f(y) =
+∞∑
n=0

(y exp(xy))n

=
+∞∑
n=0

yn
+∞∑
m=0

(nxy)m

m!
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and since

∑
0≤n,m≤+∞

yn
(n|x|y)m
m!

=
1

1− y exp(|x|y) <∞

with a normal convergence of the series, the order of the limits can be changed. So

f(y) =
+∞∑
m=0

(nxy)m

m!

+∞∑
n=0

nmyn

=
+∞∑
m=0

xm

m!

+∞∑
n=m

(n−m)myn

=
+∞∑
n=0

yn
n∑

m=0

(n −m)m
xm

m!

=
+∞∑
n=0

ynIn

and deduce that ∀n ∈ N, In = f(n)(0)
n! Now, consider the function

g : y → y exp(xy)
R → R

Observe that,

g′(y) = exp(xy)[1 + xy]

g′(y) = 0 ⇔ y = −1
x

= y2

Thus, g is increasing from −∞ to y2 then decreasing and g(y2) = − exp(−1)
x Thus, if −1

e < x < 0;
then y0 = inf

{
y > 0 : g(y) = 1

}
does exist.

Moreover ∀y ∈]− y1, y0[, ∀n, f (n)(y) ≥ 0
Deduce from the classical theorem of Taylor expansion that the series

∑+∞
n=0 y

n f
(n)(0)
n! converges

towards f for y ∈]− y1, y0[
So for y ∈]− y1, y0[

∞∑
n=0

ynIn =
1

1− y exp(xy)

and this sum is finite for y ∈]0, y0[
Deduce that ∀y ∈]0, y0[ ∀n ∈ N In =

(
1
y

)n 1
1−y exp(xy)

On the other hand if one consider the sequence u0 = 0, up+1 = exp(−xup) then it is an exercise to
show that up is increasing and will converge towards y0

So ∀p ∈ N
∗, ∀n ∈ N

In ≤
( 1
up(x)

)n 1
1− up exp(xup)
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12.1.2.i The main theorem: sharp control of the Laplace transform

Theorem 12.1.1. Consider Mt a continuous square integrable Ft adapted martingale such that
M0 = 0 and for λ, t > 0, E[eλMt ] <∞.
Assume that there exists a function f : R

+ → R
+ such that for all t2 > t1 ≥ 0 one has a.s.

E[

t2∫
t1

d < M,M >s |Ft1 ] ≤
t2−t1∫
0

f(s)ds

With f(s) = f1 for s < t0 and f(s) = f2 for s ≥ t0 with t0 > 0 and 0 < f2 < f1.
Then

1. for all

0 < |λ| < 1(
2e(f1 − f2)t0

) 1
2

(12.4)

one has

E[exp(λMt)] ≤ e3(1−1/g(λ)) exp(
g(λ)

2
λ2f2t) (12.5)

with g(λ) = 1
1−λ2(f1−f2)t0e

which verify 1 ≤ g ≤ 2

2. for all

0 < ν <
1

2e(f1 − f2)t0
(12.6)

one has

E[exp(ν < M,M >t)] ≤ exp(νf2t)
exp

(
νt0(f1 − f2)

)
((f1 − f2)νt0)2

(12.7)

observe that g → 1 when λ→ 0 so the control is very sharp.

Proof. Write a = f2
f1

, μ = t
t0

and hq = q2

2(q−1)

According to the lemma 12.1.1 by the Hölder inequality for v > 1 and 1/v + 1/ṽ = 1

E[exp(λMt)] ≤ E[exp(hqλ2 < M,M >t)]
1
q

≤ E[exp
(
hqλ

2(< M,M >[μ]t0 +
∫ t

[μ]t0

d < M,M >s)
)
]
1
q

≤ E[exp(hqvλ2 < M,M >[μ]t0)]
1

qv E[exp
(
hq ṽλ

2

∫ t

[μ]t0

d < M,M >s
)
]

1
qṽ

Now

E[exp
(
ṽhqλ

2

∫ t

[μ]t0

d < M,M >s
)
] ≤ exp

(
ṽhqλ

2(t− [μ]t0)f1

)
and make v → 1 to obtain

E[exp(λMt)] ≤ E[exp(hqλ2 < M,M >[μ]t0)]
1
q exp

(hq
q
λ2(t− [μ]t0)f1

)
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And by the lemma 12.1.1

E[exp(hqλ2 < M,M >[μ]t0)] ≤
+∞∑
n=0

(hqλ2f1t0)n

n!

∑
0≤m≤n∧[μ]

([μ]−m)nCmn (a− 1)m

Thus

E[exp(hqλ2 < M,M >[μ]t0)] ≤
[μ]∑
m=0

([μ]−m)m

m!
(a− 1)m

∑
m≤n

(hqλ2f1t0)n

(n −m)!
([μ]−m)n−m

≤ exp(hqλ2f1t0[μ])
∑

0≤m≤[μ]

([μ]−m)m(hq(a− 1)λ2f1t0)m

m!
([μ]−m)n−m

But according to the lemma 12.1.2 for

−1
e
< hq(a− 1)λ2f1t0 < 0 ⇔ 0 < |λ| < 1(

ehq(f1 − f2)t0
) 1

2

one has ∑
0≤m≤[μ]

([μ]−m)m(hq(a− 1)λ2f1t0)m

m!
([μ]−m)n−m ≤ (

1
up(y)

)μ
1

1− up(y) exp(yup(y))

With y = hq(a− 1)λ2f1t0 and up(x) = u2(x) = exp(−x)
Then by using exp(−y)− 1 ≥ −y and −1

e < y < 0

∑
0≤m≤[μ]

([μ]−m)mym

m!
([μ]−m)n−m ≤ exp(y[μ])

1− exp
(
y(exp(−y)− 1)

)
≤ exp(y[μ])

1− exp
(− y2)

)
≤ exp(y[μ])

y2

So

E[exp(hqλ2 < M,M >[μ]t0)] ≤ exp(hqλ2f1t0[μ])
exp(hq(a− 1)λ2f1t0[μ])

(hq(a− 1)λ2f1t0)2

and

E[exp(hqλ2 < M,M >[μ]t0)]
1
q ≤

exp(hq

q λ
2f2t0[μ])

(hq(1− a)λ2f1t0)
2
q

Thus

E[exp(λMt)] ≤
exp(hq

q λ
2f2t0[μ])

(hq(1− a)λ2f1t0)
2
q

exp
(hq
q
λ2(t− [μ]t0)f1

)

and

E[exp(λMt)] ≤
exp(hq

q λ
2f2t)

(hq(f1 − f2)λ2t0)
2
q

exp
(hq
q
λ2t0(

t

t0
− [μ])(f1 − f2)

)

≤
exp(hq

q λ
2f2t)

(hq(f1 − f2)λ2t0)
2
q

exp
(hq
q
λ2t0(f1 − f2)

)
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Thus it has been obtained that for all q > 1 and all

0 < |λ| < 1(
e q2

2(q−1)(f1 − f2)t0
) 1

2

(12.8)

one has

E[exp(λMt)] ≤
exp( q

2(q−1)λ
2f2t)

( q2

2(q−1) (f1 − f2)λ2t0)
2
q

exp
( q

2(q − 1)
λ2t0(f1 − f2)

)
(12.9)

Now if

0 < |λ| < 1(
2e(f1 − f2)t0

) 1
2

(12.10)

chose

q =
1

λ2(f1 − f2)t0e
(12.11)

then by a straightforward computation q > 2 and the inequality 12.8 is satisfied. It follows after an
easy computation that

E[exp(λMt)] ≤ e3(1−1/g(λ)) exp(
g(λ)

2
λ2f2t) (12.12)

with g(λ) = 1
1−λ2(f1−f2)t0e which verify 1 ≤ g ≤ 2.

Now consider

0 < ν <
1

2e(f1 − f2)t0
(12.13)

for q > 1 chose λ so that ν = λ2hq.
Observe also that the inequality 12.8 is satisfied, thus

E[exp(hqλ2 < M,M >t)]
1
q ≤

exp(hq

q λ
2f2t)

(hq(f1 − f2)λ2t0)
2
q

exp
(hq
q
λ2t0(f1 − f2)

)

From which one deduces that

E[exp(ν < M,M >t)] ≤ exp(νf2t)
((f1 − f2)νt0)2

exp
(
νt0(f1 − f2)

)
Which proves the theorem.

12.1.3 Application to bound from above the tail estimate of a martingale

Corollary 12.1.1. Let Mt be the martingale given in theorem 12.1.1.
Write C1 =

(
2e(f1 − f2)t0

) 1
2 /f2. Then for

r =
C1x

t
< 1 (12.14)

one has

P(Mt ≥ x) ≤ e
3
2
r2 exp

(− (1− r2)
x2

2f2t

)
(12.15)
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Note that 0 < g1(r) ≤ 1 and that g1 converges towards 1 with the speed r2 as r → 0, so this
upper bound gives an estimate the speed of convergence towards equilibrium of the behavior of
the martingale. Note that the homogenization behavior starts when r < 1 and converges towards
equilibrium as x/t→ 0 with the speed given above.

Proof. For λ > 0 and x > 0

P(Mt ≥ x) ≤ E[exp(λ(Mt − x))] (12.16)

Thus according to the theorem 12.1.1, for

0 < |λ| < 1(
2e(f1 − f2)t0

) 1
2

(12.17)

one has

P(Mt ≥ x) ≤ e3(1−1/g(λ)) exp(
g(λ)

2
λ2f2t− λx) (12.18)

where g is given in 12.1.1.
Now choose λ = x/(f2t) and write r = C1x/t with C1 =

(
2e(f1 − f2)t0

) 1
2/f2. Then it follows that

for

r =
C1x

t
< 1 (12.19)

one has

P(Mt ≥ x) ≤ e
3
2
r2 exp

(− g1(r)
x2

2f2t

)
(12.20)

with

g1(r) = 1− r2

2− r2
(12.21)

12.1.4 Application to the upper bound estimate of the transition probability densities
of a diffusion

Consider yt is a diffusion on R
d such that for t > 0

yt = x+ χ(t) +Mt (12.22)

where χ(t) is a uniformly (in t) bounded random vector process (‖χ‖∞ ≤ Cχ) and Mt is a continuous
square integrable Ft adapted martingale such that M0 = 0 and for λ, t > 0, E[eλMt ] <∞.
Assume also that there exists a function f : R

+ → R
+ such that for all l ∈ R

d with |l| = 1 for all
t2 > t1 ≥ 0 one has a.s.

E[

t2∫
t1

d < M.l,M.l >s |Ft1 ] ≤
t2−t1∫
0

f(s)ds

With f(s) = f1 for s < t0 and f(s) = tlDl < f1 for s ≥ t0 with t0 > 0 and 0 < f2 < f1.
where D is a positive definite symmetric matrix.
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Assume also that the diffusion yt has symmetric Markovian probability densities p(t, x, y) with respect
to the measure m(dy) such that for all x, y ∈ R

d and t > 0

p(t, x, y) ≤ C2

t
d
2

(12.23)

and for δ > 0

Px(|yt − x| ≥ δ) ≤ C3e
−C4

δ2

t (12.24)

where C2, C3, C4 are constants.

Theorem 12.1.2. Assume that yt is the diffusion described above. Then with k1 =
(
2e(f1 −

λmin(D))t0
) 1

2/λmin(D) and k2 = 30 + 10dλmax(D)(1 + C4)

20k1|x− y| < t, k2 <
|x− y|√

t
, |x− y| > 4Cχ (12.25)

one has

p(t, x, y) ≤ E1

t
d
2

exp
(− (1− E)

|y − x− 2Cχ|2
2D(ey−x)t

)
(12.26)

with

E1 = C2(
e3/2

2λmin(D)C4
+ 2dC3) (12.27)

and

E = 8(
k1|x− y|

t
)2 + 2

√
t

|x− y| ≤
1
10

(12.28)

Remark 12.1.1. Note that E → 0 as |x−y|
t +

√
t

|x−y| → 0, this gives an estimate on the rate of con-
vergence towards equilibrium. The exact homogenized behavior appears in the asymptotic regime
|x− y|/t→ 0 and |x− y|2/t→∞.
It is interesting to note that the homogenization regime begins as soon as the time t is of order of
the distance x− y (which must be at least of the order of Cχ).
The condition k2

√
t < |x − y| is a natural one in the sense that if it says that the behavior of the

diffusion is not too close to the center of the Gaussian, however with 20k1|x − y| < t the large de-
viation regime is replaced by a homogenized regime. Note also that if one is only interested in the
behavior of the diffusion in the direction y − x all that is needed is that χ.ey−x is upper bounded (χ
may have a greater generality than the solution of the cell problem).

Proof. Observe that for t > 0, x, y ∈ R
d and 0 < q < 1

p(t, x, y) =
∫
Rd

p(tq, x, z)p(t(1 − q), z, y)m(dz) (12.29)

So for Aδ = {z ∈ R
d : (z − x).ey−x ≥ (1 − δ)|x − y|} (where ey−x is the unit vector in the direction

y − x)

p(t, x, y) =
∫
Aδ

p(tq, x, z)p(t(1 − q), z, y)m(dz)

+
∫
Ac

δ

p(tq, x, z)p(t(1 − q), z, y)m(dz)

≤ C2

t
d
2

[ 1

(1− q)
d
2

Px(ytq.ey−x ≥ |x− y|(1− δ))

+
1

q
d
2

Py(|yt(1−q)| ≥ δ|x− y|)
]

(12.30)
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Now by the corollary 12.1.1, for r < 1 with r = C1ρ
qt , ρ = |x − y|(1 − δ) − Cχ, and C1 =

(
2e(f1 −

D(ex−y))t0
) 1

2 /D(ex−y) one has

Px(ytq.ey−x ≥ |x− y|(1− δ))) ≤ e
3
2
r2 exp

(− (1− r2)
ρ2

2D(ex−y)tq
)

(12.31)

Then choose

δ = exp(− |x− y|
dD(ex−y)

√
t
) (12.32)

write C5 = dD(ex−y) ln(4D(ex−y)C4) and assume that
|x− y|/√t > max(C5, 3dD(ex−y)) then one has δ < 1/10 and one can put

1− q = 2DC4δ <
1
2

(12.33)

this equation associated to 12.24 imply

Py(|yt(1−q)| ≥ δ|x− y|) ≤ C3 exp(− |x− y|2
2D(ex−y)t

) (12.34)

Moreover equations 12.32 and 12.33 imply

1

(1− q)
d
2

≤ 1
(2D(ex−y)C4)

exp
(− |x− y|2

2D(ex−y)t

√
t

|x− y|
)

(12.35)

Note also that for |x− y| > 4Cχ

ρ ≤ (|x− y| − 2Cχ)(1 − δ) (12.36)

Observe that

r =
C1ρ

qt
≤ 2C1|x− y|

t
(12.37)

Thus for 2C1|x− y|/t < 1 one has by the equations 12.30, 12.31, 12.34 and 12.35

p(t, x, y) ≤ E1

t
d
2

exp
(− (1− E2)

|y − x− 2Cχ|2
2D(ey−x)t

)
(12.38)

with

E1 = C2(
e3/2

2λmin(D)C4
+ 2dC3) (12.39)

and

E2 = 8(C1
|x− y|
t

)2 +
√
t

|x− y| + 2exp(− |x− y|
d
√
tλmax(D)

) (12.40)

and the result follows after a simple computation
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12.1.5 Application to homogenization in periodic media

The theorem 12.1.2 can be used to give estimates on the rate of convergence to equilibrium of a
diffusion in a periodic media as soon as a cell problem is well defined.
As an example, it will be applied here to obtain estimates on the rate of convergence towards
equilibrium of periodic potential form diffusions.

dyt = dωt −∇U(yt)dt (12.41)

where U ∈ C1(T d1 ) (U(0) = 0)

Corollary 12.1.2. Consider p(t, x, y) the transition density probabilities of the diffusion 12.41 with
respect to the measure mU . then for

20k1|x− y| < t, k2 <
|x− y|√

t
, |x− y| > 4Cχ (12.42)

one has

p(t, x, y) ≤ E1

t
d
2

exp
(− (1− E)

|y − x− 2Cχ|2
2D(ey−x)t

)
(12.43)

where k1, k2, Cχ, E1 are constants depending only on d and Osc(U). Moreover

E = 8(
k1|x− y|

t
)2 + 2

√
t

|x− y| ≤
1
10

(12.44)

Remark 12.1.2. Since the constants appearing in this corollary doesn’t depend on ‖∇U‖∞ but only
on Osc(U) it is an easy task to extend this result to case where U is only bounded (left to the reader,
see for instance the theorem 1.2 of [CQHZ98]).
Note also that this control gives the rate of convergence towards equilibrium for the upper bound
and allows to complete the image associated to the different regimes:

1. Large deviation regime: for |x − y| >> t the paths of the diffusion concentrate on the
geodesics and

ln p(t, x, y) ∼ −|x− y|2
2t

(12.45)

2. Homogenization regime: for 1 << |x − y| << t and |x − y|2 >> t, homogenization takes
place and

p(t, x, y) ∼ 1

t
d
2

exp(− |x− y|2
2D(ey−x)t

) (12.46)

3. Heat kernel diagonal regime: for |x− y|2 << t, the behavior is fixed by the diagonal of the
heat kernel and

p(t, x, y) ∼ C0(x)

t
d
2

(12.47)

Note that |x− y| << 1 and |x− y| << t imply |x− y|2 << t thus all the regimes are here.

Remark 12.1.3. Note also that one can consider a wider class of periodic diffusions such as the one
5.131 considered by J.R. Norris, combine the theorem 12.1.2 to the generalized Aronson type estimates
obtained by J.R. Norris [Nor97] (see subsection 5.3.2) in order to obtain estimates on the rate of
convergence towards equilibrium of the diffusions associated to those operators. This application is
left to the reader.
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Proof. Indeed this diffusion has symmetric probability densities with respect to the measure mU

(defined in 5.1) and the following Aronson type upper bound is available (see 3.28).

pt(x, y)e−2U(y) ≥ e−Z
1

t
d
2

exp
(− Z

|x− y|2
t

)
(12.48)

with

Z = Ce10(4+d) Osc(U) (12.49)

it follows directly that the conditions 12.23 and 12.24 are satisfied with constants C2, C3, C4 depending
only on d and Osc(U). Now write χl the solution of the cell problem 5.4 associated to this diffusion,
it follows that for l ∈ R

d (|l| = 1)

l.yt = x+ χl(yt)− χl(x) +
∫ t

0
(l −∇χl)dωs (12.50)

which is the form given in 12.22 (by the theorem B.2.1, ‖χl‖∞ ≤ Cχ <∞ where Cχ does only depend
on d and Osc(U)). The martingale is

l.Mt =
∫ t

0
(l −∇χl)dωs (12.51)

Its bracket is equal to

< l.M, l.M >t=
∫ t

0
|l −∇χl(ys)|2ds (12.52)

and since U ∈ C1(T d1 ), according to theorem B.2.1

‖l −∇χl‖2
∞ = f1 <∞ (12.53)

where f1 is a constant depending only on d,Osc(U) and ‖∇U‖∞. Moreover consider φ the solution
of the ergodicity equation B.39. Since ‖φ‖∞ is bounded by a constant Cφ depending only on d and
OscU (see theorem B.2.2) it follows from the Ito formula

E[< l.M, l.M >t] = E
[
φ(yt)− φ(x)

]
+ ttlD(U)l (12.54)

thus the martingale satisfies the conditions of the theorem 12.1.2 with

f2 = tlD(U)l (12.55)

and

t0 =
Cφ

f1 − λmin(D)
(12.56)

Now one can use the theorem 12.1.2 to obtain a sharp control on the heat kernel. It is very important
to note that all the constants appearing in that theorem only depend and d and Osc(U) except may

be k1 =
(
2e(f1−λmin(D))t0

) 1
2/λmin(D) in which f1 appears. This is where the trick operates, indeed

(f1 − λmin(D))t0 = Cφ which is a constant depending only on Osc(U) and d. Thus in reality all the
constants only depends on the dimension and on Osc(U). which proves the corollary
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12.2 Lower bound: Sharp estimate of the rate of convergence towards the
asymptotic process

Consider the diffusion yt on R
d associated to the generator (U ∈ C∞(T d1 ))

L =
1
2
Δ−∇U.∇ (12.57)

Theorem 12.2.1. For l ∈ S
d, λ > C6(d,Osc(U)) and

C7(d,Osc(U))λ < t (12.58)

one has

P[yt.l ≥ λ] ≥ 1
4
√

2π

∫ ∞

X
e−z

2/2dz (12.59)

with

X =
λ√

tlD(U)lt
(1 + E) (12.60)

and

E =
C8(d,Osc(U))

λ
+ C5(d,Osc(U))

√
λ

t
≤ 1

10
(12.61)

Remark 12.2.1. Observe that all the constants appearing above only depends on d and Osc(U), thus
it is easy to extend this result to the case when U is only bounded and periodic (left to the reader).

Note also that E → 0 as 1/λ +
√

λ
t → 0 giving the rate of convergence towards equilibrium. Note

also that one can consider a wider class of periodic diffusions such as the one 5.131 considered by
J.R. Norris (this extension is left to the reader)

Proof. write for (l ∈ S
d where S

d is the sphere of R
d of center 0 and radius 1)

Fl(x) = l.x− χl(x) (12.62)

where χl is the solution of the cell problem B.34 (χl(0) = 0) and write φl the solution of the ergodicity
problem B.39 (φl(0) = 0).
Write (Ω,P,F ,Ft) the probability space associated to the diffusion yt (note that Ft can be chosen as
the filtration generated by the Brownian motion ωt appearing in the stochastic differential equation
associated to y).
Note that Fl(yt) is a (P,Ft)-continuous local martingale vanishing at 0 such that (Ito calculus)

< Fl, Fl >t= tD(l) + φl(yt) +Mt (12.63)

with Mt = − ∫ t
0 ∇φl(ys)dωs.

Now, since φl is bounded and Mt/t → 0 a.s. (see for instance [RY91], chapter V, exercise 1.16) it
follows that < Fl, Fl >∞= ∞ a.s.
Write

Tt = inf{s :< Fl, Fl >s> t} (12.64)

Now apply the Dambis, Dumbins-Schartz representation theorem (see for instance [RY91] theorem
1.6 of chapter V) to see that Bt = Fl(yTt) is a (FTt)-Brownian motion and Fl(yt) = B<Fl,Fl>t .
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Let λ > 0, observe that

P[Fl(yt) ≥ λ] = P[B<Fl,Fl>t ≥ λ]
= P[BD(l)t + Et ≥ λ]

(12.65)

with Et = B<Fl,Fl>t −BD(l)t. Thus after an easy computation, for μ > 0

P[Fl(yt) ≥ λ] ≥ P[BD(l)t ≥ λ+ μ]− P[{BD(l)t ≥ λ+ μ} ∩ {|Et| > μ}]
≥ P[BD(l)t ≥ λ+ μ]− P[|Et| > μ]

Now write Qt = φ(yt) +Mt, then for ν > 0,

P[|Et| ≥ μ] = P[{|Et| ≥ μ} ∩ {Qt ≥ ν}] + P[{|Et| ≥ μ} ∩ {Qt < ν}]
≤ P[|Qt| ≥ ν] + P[ sup

|z|<ν
|BD(l)t+z −BD(l)t| ≥ μ]

It follows that

P[|Et| ≥ μ] ≤ P[|Qt| ≥ ν] + 2P[|Bν | > μ]

Now observe that

P[|Qt| ≥ ν] ≤ P[|Mt| ≥ ν − ‖φl‖∞]

Finally for

ν > ‖φl‖∞ (12.66)

P[yt.l ≥ λ] ≥P[BD(l)t ≥ λ+ ‖χl‖∞ + μ]− 2P[|Bν | > μ]− P[|Mt| ≥ ν − ‖φl‖∞]
≥P[BD(l)t ≥ λ+ ‖χl‖∞ + μ]

− 4P[BD(l)t ≥ μ

√
D(l)t
ν

]− P[|Mt| ≥ ν − ‖φl‖∞]

Write

g(x) =
1√
2π

∫ ∞

x
e−x

2/2dx

and note that

g(x)
g(y)

≤ C1e
y2−x2/2

It follows that under the additional condition

λ+ ‖χl‖∞ + μ ≤ C2μ

√
D(l)t
ν

(12.67)

one has

P[yt.l ≥ λ] ≥ 1
2

P[BD(l)t ≥ λ+ ‖χl‖∞ + μ]− P[|Mt| ≥ ν − ‖φl‖∞] (12.68)

Now consider

< M,M >t=
∫ t

0
|∇φl|2(ys)ds
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Write Hl the periodic solution of (Hl(0) = 0)

(
1
2
Δ−∇U∇)Hl = |∇φl|2 −mU (|∇φl|2)

Observe that Mt satisfies the conditions of the corollary 12.1.1 with f2 = mU (|∇φl|2), f1 = |∇φl|2∞
and t0 = ‖Hl‖∞/(f1 − f2).
(Note that ‖Hl‖∞ ≤ Cde

Cd Osc(U), indeed see theorem B.2.2 and observe that since with G(x) =
1
2φ

2
l + ‖φl‖∞(F 2

l + ψl) one has LUG ≥ LUHl and G ≥ Hl over [0, 1]d) Observe also that (simple
integration by parts)

mU(|∇φl|2) ≤ 4‖φl‖∞D(l)

It follows from the theorem B.2.2 that f2 is bounded by a constant which depends only on d and
Osc(U), by shifting f1 one can take f2 equal to that constant, it won’t change the proof. Thus for
CMx < t one has

P(Mt ≥ x) ≤ 3 exp
(− x2

f2t

)
(12.69)

where CM is a constant depending only on d and Osc(U). It follows from the equation 12.68 that
under the additional conditions,

CM (ν − ‖φl‖∞) < t (12.70)

and

λ+ ‖χl‖∞ + μ < C3(ν − ‖φl‖∞) (12.71)

(where C3 depends only on d and Osc(U)) one has

P[yt.l ≥ λ] ≥ 1
4

P[BD(l)t ≥ λ+ ‖χl‖∞ + μ] (12.72)

Now choose

ν = ‖φl‖∞ +
2
C3

(λ+ ‖χl‖∞ + μ) (12.73)

with

μ = 2
λ+ ‖χl‖∞
C2

√
D(l)

√
4(λ+ ‖χl‖∞)

C3t
(12.74)

Then for λ > ‖χl‖∞ and t > C4(d,Osc(U))λ the conditions 12.70, 12.70 and 12.71 are satisfied and

μ < C5(d,Osc(U))λ

√
λ

t
≤ λ

10
(12.75)

and it follows from 12.72 that

P[yt.l ≥ λ] ≥ 1
4

P[BD(l)t ≥ λ(1 + C5

√
λ

t
) + ‖χl‖∞] (12.76)



13. SUB HARMONIC INEQUALITIES

13.1 General considerations

Let Ω be an open bounded subset of R
d with smooth boundary. Let M be a strictly coercive matrix

with smooth coefficients on Ω̄ (M ∈ I∞(Ω)): there exists ν > 0 such that for all ξ ∈ R
d, tξMξ ≥ νξ2.

Consider in Ω the operator

LM = −∇M∇ (13.1)

with Dirichlet conditions on ∂Ω.
Write GM (x, y) = GxM (y) the Green functions associated to LM :

LMGM (x, y) = δ(x − y) (13.2)

Physical Interpretation In this chapter a physical interpretation of each mathematical object in-
troduced will be given to help the intuition in terms of electrostatics. For a good introduction to
the subject see [LL90]. Ω represents a Dielectric cavity with conducting boundary ∂Ω on which the
electrostatic potential is imposed to be equal to 0. The dielectric constant is a measure of how well
electromagnetic waves couple with the material. The relative dielectric constant has a real part that
is the permittivity of the material, and an imaginary part called the loss factor. Since this section
focus only on electrostatics, only the real part will be considered. Moreover this section focus on
anisotropic inhomogeneous dielectric materials, thus the permittivity is a second order tensor, here
it is the matrix M . In a real material the permittivity tensor reflects an equilibrium condition in an
electrostatic field of the molecular dipoles composing the material, thus it is obtained by the second
order partial derivatives of a thermodynamic function Mij ∝ ∂i∂jF̃ associated to the free energy,
which imposes the symmetry of M . Thus in all the physical interpretations given here in terms of
electrostatics, M will be assumed to be symmetric.
Consider in this cavity an electrostatic potential φ and a density of charges g, its associated electro-
static field is given by −∇φ and the electrostatic displacement by −M∇φ. Then the equation

LMφ = g (13.3)

is the standard Poisson’s equation relating the electric displacement with the density of charges, (up
to the proportionality constant 4π). Moreover GM (x, y) is the electrostatic field created at the point
x by a punctual positive charge placed at the point y.

13.2 A sign inequality

13.2.1 Definitions and forms

13.2.1.i Extension of the notion of Dirichlet form

For φ,ψ ∈ H1
0 (Ω) and B ∈ B(Ω) a Borel subset of Ω consider the following form

E : (H1
0 (Ω))2 × B(Ω) −→ R

φ,ψ,B −→
∫
B
∇φ(x)M(x)∇ψ(x) dx

(13.4)
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Observe that E(φ,ψ,B) is bilinear in φ and ψ, it is symmetric if M is symmetric. Moreover for fixed
φ and ψ it is a finite signed measure in B, thus it is natural to extend the argument B appearing in
E to the space L∞(Ω) of measurable bounded functions on Ω.

E : (H1
0 (Ω))2 × L∞(Ω) −→ R

φ,ψ, h −→
∫

Ω
∇φ(x)M(x)∇ψ(x)h(x) dx

(13.5)

Physical interpretation E(φ,ψ,Ω) has a good physical interpretation in the sense that it represents
the energy of interaction between the charges LMφ and LMψ, that is to say if one consider the cavity
filled with charges LMφ and one adds the charges LMψ, the total energy of the system will increase
by the energy of the system LMψ plus the energy of interaction E(φ,ψ,Ω) between those two family
of charges.
This is clear, however if one wants to give a physical interpretation to E(φ,ψ,B) for B ∈ B(Ω) then
one is lead to introduce the concept of the localization of the energy. This concept will be discussed
here in a formal way but it should be handled with caution if one wants to give it an experimental
physical meaning.
Indeed, according to R. P. Feynman ([Fey79] page 142) ”asking where the electrostatic energy is
localized is an interesting question but not necessary”, however ” ... it is natural to say that the
electrostatic energy is localized in the space, where an electrostatic field can be found because one
knows that when charges are accelerated they radiate an electrical field (see for instance the notion
of the Poynting’s vector)”. Now observe that the energy associated to the system of charges LMφ is
equal to

1
2

∫
Ω
φ(x)LMφ(x) dx =

1
2

∫
Ω

t∇φM∇φdx (13.6)

In this formula the first member is the standard formula for the definition of the electrostatic energy,
the second member is interpreted (in a formal way) by saying that the energy has the density

t∇φM∇φ/2 (13.7)

with respect to the Lebesgue measure. However Feynman concludes by observing that since the
electrostatic energy of a single particle is infinite ”the idea of locating the energy in the field is in-
compatible with the assumption of existence of punctual charges. One way out of the difficult would
be to say that elementary charges, such as an electron, are not points but are really small distribution
of charge. Alternatively, we could say that there is something wrong in our theory of electricity at
very small distances, or with the idea of the local conservation of the energy. There are difficulties
with either point of view. These difficulties have never been overcome; there exists to this day.”

According to Landau-Lifchitz (see [LL90] page 13) the second member in the equation 13.6 is more
a formal condition than a physical one.
According to J.D. Jackson ([Jac62] page 22) the expression 13.7 for energy density ”is intuitively
reasonable, since regions of high fields must contain considerable energy”.
According to G. Goudet (author of a classical treaty on electricity: [Gou67] page 157) the expres-
sion 13.7 ”is more than a mathematical identity because modern theories show that the energy is
localized in the space where the electrostatic field is acting ... an electrical charge placed at a point
of this space is submitted to a force; actual science is based on the negation of the idea of action at
distance: one should admit that this force is due to the very action of the electrostatic field, even
if the dielectric is the void. The space where an electrostatic field does exist is modified, and does
posses an energy, which can be taken from where it is localized.”.
According to Mason and Weaver ([MW29] page 266), ”it is more sensible to inquire about the lo-
cation of energy than to declare that the beauty of a painting is distributed over the canvas in a
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specified manner.”
According to J. A. Stratton ([Str41] page 110) ”it may be questioned whether the term ”energy
density” has any physical significance ... it is difficult to either justify or disprove such a hypothesis”.

Because of these difficulties the physical interpretation in terms of energy localization should be
taken on a formal point of view and with lots of caution: for B ∈ B(Ω), E(φ,ψ,B) is the electrostatic
interaction energy contained in the region B between the system of charges LMφ and LMψ.

13.2.2 The energy fluctuation form

For φ,ψ ∈ H1
0 (Ω) consider the following form

V : (H1
0 (Ω))2 −→ R+

φ,ψ −→
∫

Ω

∣∣∇φ(x)M(x)∇ψ(x)
∣∣ dx (13.8)

Observe that for φ ∈ H1
0 (Ω), V(φ, φ) = E(φ, φ,Ω) but V(φ,ψ) is not linear in φ or ψ, V is symmetric

if M is symmetric. Observe also that V is sub additive in its arguments.

Physical interpretation Imagine that one adds to a system of positive charges LMφ, an other
distribution of positive charges LMψ. The energy of interaction is E(φ,ψ,Ω) is positive because one
has to work to add charges of the same sign, however the energy interaction density 13.7 is negative
in a region Ω0 and positive in the region Ω/Ω0, since adding positive charges to positive only increase
the total energy, it is natural to interpret −E(φ,ψ,Ω0) as an energy that has been displaced in Ω.
Then V(φ,ψ) is equal to ”energy imported + 2× energy displaced”.

13.2.3 The polarization form

For φ,ψ ∈ H1
0 (Ω)×H2

0 (Ω) consider the following form

P : H1
0 (Ω)×H2

0 (Ω)× B(Ω) −→ R

φ,ψ,B −→
∫
B
φ(x)

(∇M(x)∇ψ(x)
)
dx+

∫
B
∇φ(x)M(x)∇ψ(x) dx

(13.9)

Observe that P(φ,ψ,B) is bilinear in φ and ψ and is a finite signed measure in B. Note also that
P(φ,ψ,Ω) = E(φ,ψ,Ω) and

P(φ,ψ,B) = −P(φ,ψ,Bc) (13.10)

Write C2
D(Ω) for the space of C2 functions on Ω null on the boundary ∂Ω (D for Dirichlet condition).

Observe that if B is an open subset of Ω with smooth boundary then by the Green formula for
φ,ψ ∈ C2

D(Ω)

P(φ,ψ,B) =
∫
∂B

(
next.M.∇ψ)φdσB (13.11)

where next is the exterior unit vector normal to the surface ∂B at the point x and dσB is the Lebesgue
surface measure associated to ∂B.

13.2.4 The polarization measure

Write R(Ω) the set of open subsets of Ω with smooth boundary.
For B ∈ R(Ω) and ψ ∈ C2

D(Ω) and consider the following application

σp : C2
D(Ω)×R(Ω) −→M(Ω̄)

ψ,B −→
(
f →

∫
∂B

(
next.M.∇ψ)f dσB) (13.12)
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The measure

σp(ψ,B) =
(
next.M.∇ψ) dσB (13.13)

is a finite measure with support ∂B called to the polarization measure of the subset B generated by
the potential ψ.
Write Ex(b) the equipotentials of GM (x, y)

Ex(b) = {z ∈ Ω : G(x, z) = b} (13.14)

and Bx(b) the regions delimited by those equipotentials:

Bx(b) = {z ∈ Ω : G(x, z) ≥ b} (13.15)

Observe that if B is the set Bx(b) then for x ∈ int(Bx(b)), σp(GxM (.), Bx(b)) is, up to a multiplicative
constant, the harmonic measure associated to the generator −LM and the boundary Ex(b). In
particular, σp(GxM (.),Ω) is the harmonic measure associated to the point x and the process generated
by −LM and killed while exiting Ω.
For a finite measure signed measure μ on Ω write χ = GMμ the weak solution of LMχ = μ with
Dirichlet condition on ∂Ω. Observe that

E(φ,GMσp(ψ,B),Ω) = P(φ,ψ,B) (13.16)

Physical interpretation In the presence of a potential field ψ, let’s isolate (in our mind) a dielectric
portion B ∈ R(Ω) of the cavity Ω, then the electrical action of the polarized dielectric volume B
plus the free charges inside it is the same as a superficial distribution of charges corresponding to
the polarization measure σp(ψ,B). Now ”fix” this distribution of charges and ”forget” the initial
potential field ψ, then P(φ,ψ,B) represents the energy of interaction of the potential field φ with the
abstract superficial distribution of charges σp(ψ,B) induced by ψ (if M has a discontinuity at the
boundary of ∂B then this superficial distribution of charges can be observed). −σp(ψ,Ω) represents
the density of charges induced on the conducting boundary ∂Ω.

13.2.5 Definition of some conditions

The operator LM is said to verify the condition 13.2.1 if and only if the following condition is true.

Condition 13.2.1. There exists CV > 1 such that for all φ,ψ ∈ C2
D(Ω) Sub harmonic with respect

to LM (LMφ ≥ 0 and LMφ ≥ 0)

V(φ,ψ) ≤ CVE(φ,ψ,Ω) (13.17)

Define also the following conditions

Condition 13.2.2. There exists CV > 1 such that for all φ,ψ ∈ C2
D(Ω) super harmonic with respect

to LM (LMφ ≤ 0 and LMφ ≤ 0)

V(φ,ψ) ≤ CVE(φ,ψ,Ω) (13.18)

Condition 13.2.3. There exists CV > 1 such that for all x, y ∈ Ω, x �= y∫
Ω

∣∣∇zGM (z, x)M∇zGM (z, y)
∣∣ dz ≤ CVGM (y, x) (13.19)

Condition 13.2.4. There exists CV > 1 such that for all φ,ψ ∈ C2
D(Ω)

V(φ,ψ) ≤ CVE
(
GM

∣∣LMφ∣∣, GM ∣∣LMψ∣∣,Ω) (13.20)
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Condition 13.2.5. There exists CV > 1 such that for all φ,ψ ∈ C2
D(Ω) Sub harmonic with respect

to LM and all B ∈ B(Ω)

−E(φ,ψ,B) ≤ CV − 1
2

E(φ,ψ,Ω) (13.21)

This condition says that the energy that has been displaced is always less than (CV − 1)/2 times
the energy that has been imported.

Condition 13.2.6. There exists CV > 1 such that for all φ,ψ ∈ C2
D(Ω) Sub harmonic with respect

to LM and all B ∈ B(Ω)

E(φ,ψ,B) ≤ CV + 1
2

E(φ,ψ,Ω) (13.22)

Condition 13.2.7. There exists CV > 1 such that for all φ,ψ ∈ C2
D(Ω) Sub harmonic with respect

to LM and all h ∈ L∞(Ω)

E(φ,ψ, h) ≤ CV‖h‖∞E(φ,ψ,Ω) (13.23)

Condition 13.2.8. There exists CV > 1 such that for all φ,ψ ∈ C2
D(Ω) Sub harmonic with respect

to LM and all h ∈ L∞(Ω) such that

1 ≤ h ≤ CV + 1
CV − 1

(13.24)

one has

E(φ,ψ, h) ≥ 0 (13.25)

Condition 13.2.9. There exists CP ≥ 1 such that for all φ,ψ ∈ C2
D(Ω) Sub harmonic with respect

to LM , and all B ∈ B(Ω) one has

P(φ,ψ,B) ≤ CPE(φ,ψ,Ω) (13.26)

This condition says that the energy of interaction of LMφ with the superficial polarization charges
σP(ψ,B) is always less than CP times the energy of interaction of LMφ with the electrostatic potential
ψ which is at the origin of the superficial distribution of charges.

Condition 13.2.10. There exists CP ≥ 1 such that for all ψ ∈ C2
D(Ω) Sub harmonic with respect

to LM , and all B ∈ R(Ω), for all x ∈ Ω (except for a subset of 0 Lebesgue measure)

GMσp(ψ,B)(x) ≤ CPψ(x) (13.27)

This condition says that the potential field GMσp(ψ,B) created by the superficial polarization
measure σp(ψ,B) is always less or equal to CP times the electrostatic potential ψ which is at the
origin of the superficial distribution of charges.

Theorem 13.2.1. The conditions 13.2.1, 13.2.2, 13.2.3, 13.2.4, 13.2.5, 13.2.6, 13.2.7 and 13.2.8
are equivalent with the same constant CV . Moreover if the condition 13.2.1 is true for M it is also
true for tM .

Proof. The equivalence between 13.2.1 and 13.2.2 is trivial.
13.2.1 ⇒ 13.2.4: Decompose LMφ into its negative part (LMφ)− and positive part (LMφ)+, do the
same with ψ to obtain (using the sub additivity condition of V)

V(φ,ψ) ≤V(GM (LMφ)+, GM (LMψ)+) + V(GM (LMφ)−, GM (LMψ)−)
+ V(GM (LMφ)+, GM (LMψ)−) + V(GM (LMφ)−, GM (LMψ)+)
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Then use 13.2.1 and 13.2.2 to obtain

1
CV

V(φ,ψ) ≤E(GM (LMφ)+, GM (LMψ)+,Ω
)

+ E(GM (LMφ)−, GM (LMψ)−,Ω
)

− E(GM (LMφ)+, GM (LMψ)−,Ω
)− E(GM (LMφ)−, GM (LMψ)+,Ω

)

13.2.4 ⇒ 13.2.1 is trivial.
13.2.1 ⇔ 13.2.5 ⇔ 13.2.6: Fix φ and ψ, decompose Ω in Ω+ which is the region where ∇φ∇ψ > 0
and Ω− which is the region where ∇φ∇ψ ≤ 0. Observe that

V(φ,ψ) = E(φ,ψ,Ω+)− E(φ,ψ,Ω−)

this directly leads to the proof.
13.2.1⇐ 13.2.3: Let φ,ψ ∈ C2

D(Ω), Sub harmonic. Observe that

V(φ,ψ) ≤
∫

Ω3

LMφ(x)
∣∣∇zGM (z, x)M∇zGM (z, y)

∣∣LMψ(y) dz dy dx

≤
∫

Ω2

LMφ(x)GM (y, x)LMψ(y) dy dx

≤
∫

Ω
φ(y)LMψ(y) dy

(13.28)

which implies condition 13.2.1.
13.2.6⇒ 13.2.3: Fix a, b ∈ Ω2, a �= b. Choose for ε > 0, gε, fε ∈ C∞(Ω) such that gε, fε > ε and as
ε ↓ 0, gε(z) and fε(z) weakly converge to δ(a− z) and δ(b− z).
Then by the condition 13.2.6, for ε, ε′ > 0, and B ∈ B(Ω)∫

(z,x,y)∈B×Ω2

gε(x)∇zGM (z, x)M∇zGM (z, y)fε′(y) dz dx dy

≤ CV + 1
2

∫
(z,x,y)∈Ω3

gε(x)∇zGM (z, x)M∇zGM (z, y)fε′(y) dz dx dy
(13.29)

Then let ε′ ↓ 0, next ε ↓ 0 to obtain∫
z∈B

∇zGM (z, a)M∇zGM (z, b) dz ≤ CV + 1
2

GM (b, a) (13.30)

which leads to the proof since B is arbitrary.
13.2.1 ⇔ 13.2.7: straightforward computation.
13.2.1 ⇔ 13.2.8: Fix φ and ψ, decompose Ω in Ω+ and Ω− and use 13.2.5 and 13.2.6.
Finally it is straightforward to see that the validity of these conditions for the matrix M is equivalent
to their validity for the transposed matrix tM by observing that ∇φM∇ψ = ∇ψtM∇φ
Theorem 13.2.2. The condition 13.2.1 implies 13.2.9 with the constant

CP =
CV + 1

2
(13.31)

If M is symmetric then 13.2.9 implies 13.2.10 with the same constant CP .
The condition 13.2.9 implies 13.2.1 with the constant

CV = 2CP + 1 (13.32)

If M is symmetric then 13.2.10 implies 13.2.1 with the constant above.
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Remark 13.2.1. Note that if M is symmetric then 13.2.10 implies all the conditions from 13.2.1 to
13.2.9. Moreover if CP = 1 then the formula 13.32 gives CV = 3. However the formula 13.31 with
CV = 3 gives CP = 2, thus either a better proof can be found, either the condition 13.2.10 with an
optimal constant CP reflects a stronger phenomenon than the sign inequality 13.2.1 with an optimal
constant CV .

Proof. 13.2.1 ⇒ 13.2.9 ⇒ 13.2.10 : Fix φ and ψ in C2
D(Ω) and B ∈ B(Ω), observe that by the Green

Formula

P(φ,ψ,B) = E(φ,ψ,B) +
∫
B
φ
(∇M∇ψ) dx (13.33)

Using the equivalence of 13.2.1 with 13.2.6 and observing that the second term in the above equation
is negative if φ and ψ are Sub harmonic, this proves that 13.2.1 implies 13.2.9 with CP = (CV +1)/2.
13.2.9 ⇒ 13.2.10 Now if B belongs to R(Ω), observe that∫

∂B
φ(x)dσp(ψ,B) = P(φ,ψ,B) (13.34)

thus for all φ ∈ C2
D(Ω), Sub harmonic (assume M to be symmetric)∫

Ω
LMφ(x)GMσp(ψ,B) dx = P(φ,ψ,B)

≤ CP
∫

Ω
ψ(x)LMφ(x) dx

(13.35)

then choose for LMφ a positive approximation of the identity to obtain that 13.2.9 implies 13.2.10
with the same constant CP . 13.2.9 ⇒ 13.2.1: this is straightforward by the identity 13.33 and the
equivalence of 13.2.1 with 13.2.6.
13.2.10 ⇒ 13.2.1: Choose φ and ψ smooth and Sub harmonic with Dirichlet condition on ∂Ω.
Decompose Ω in

Ω+
λ = {x ∈ Ω : ∇φ.M.∇ψ > λ}

and

Ω−
λ = {x ∈ Ω : ∇φ.M.∇ψ ≤ λ}

Let ε > 0. By Sard’s theorem one can find |λ| < ε such that ∂Ω+
λ has a smooth boundary. Then by

the equation 13.35 and the condition 13.2.10 if M is symmetric

P(φ,ψ,Ω+
λ ) ≤ CPE(φ,ψ,Ω) (13.36)

it follows by making ε converge towards 0, by the identity 13.33 that

E(φ,ψ,Ω+
0 ) ≤ (CP + 1)E(φ,ψ,Ω) (13.37)

this proves the condition 13.2.6 with CV = 2CP + 1 which ends the proof by the equivalence with
13.2.1. (if φ and ψ are only C2 regularize LMφ and LMψ and take the image of those regularizations
by GM to obtain the proof)
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13.3 General Sub harmonic inequalities

13.3.1 The energy stress form

For φ,ψ ∈ H1
0 (Ω) consider the following form

S : (H1
0 (Ω))2 −→ R+

φ,ψ −→
∫

Ω
‖∇φ(x)‖‖M(x)∇ψ(x)‖ dx (13.38)

Observe that for φ ∈ H1
0 (Ω),

E(φ, φ,Ω) ≤ S(φ, φ) (13.39)

and E(φ, φ,Ω) = S(φ, φ) if M is isotropic (a multiple of the identity matrix). Moreover S(φ,ψ) is
not linear in φ or ψ, S is symmetric if M is isotropic (a multiple of the identity matrix). Observe
also that S is sub additive in its arguments.

13.3.2 The permittivity left deformation energy form

For φ,ψ ∈ H1
0 (Ω) consider the following form

D : (H1
0 (Ω))2 × (C∞(Ω̄))d×d −→ R

φ,ψ,N −→
∫

Ω
∇φ(x)N(x)M(x)∇ψ(x) dx

(13.40)

Where (C∞(Ω̄))d×d is the set of smooth d× d matrices on Ω̄. Observe that

D(φ,ψ, Id) = E(φ,ψ,Ω) (13.41)

and

D(φ,ψ,N) ≤ ‖N‖∞S(φ,ψ) (13.42)

where

‖N‖∞ = sup
x,ν,ξ∈Ω×S2

tξN(x)ν (13.43)

It is also important and easy to observe that

S(φ,ψ) = sup
N∈(C∞(Ω̄))d×d, N �=0

1
‖N‖∞D(φ,ψ,N) (13.44)

So the energy stress form corresponds to the supremum of the permittivity left energy deformation
taken on the unit sphere in the space of smooth matrices.
Observe also that D is linear in all its arguments and for Q smooth and coercive.

DM (φ,ψ,QM−1) = EQ(φ,ψ,Ω) (13.45)

13.3.3 Some conditions

Condition 13.3.1. There exists CS > 1 such that for all φ,ψ ∈ C2
D(Ω) Sub harmonic with respect

to LM (LMφ ≥ 0 and LMφ ≥ 0)

S(φ,ψ) ≤ CSE(φ,ψ,Ω) (13.46)
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Condition 13.3.2. M is symmetric and there exists CS > 1 such that if x→ {e1(x), . . . , ed(x)} is a
map from Ω to an orthonormal basis of R

d diagonalizing M at the point x then for all φ,ψ ∈ C2
D(Ω)

Sub harmonic with respect to LM , for all (i, j) ∈ {1, . . . , d}2

∫
Ω
λ(M)ei(x)

∣∣∂ejφ(x)∂eiψ(x)
∣∣ dx ≤ CS,2E(φ,ψ,Ω) (13.47)

Where λ(M)ei(x) is the eigenvalue corresponding to the eigenvector ei of M at the point x.

Condition 13.3.3. M is isotropic (M = m(x)Id) and there exists CS,3 > 1 such that for all φ,ψ ∈
C2
D(Ω) Sub harmonic with respect to LM , for all (i, j) ∈ {1, . . . , d}2

∫
Ω
m(x)

∣∣∂jφ(x)∂iψ(x)
∣∣ dx ≤ CS,3E(φ,ψ,Ω) (13.48)

Condition 13.3.4. There exists a constant CS > 1 such that for all φ,ψ ∈ C2
D(Ω) Sub harmonic

with respect to LM , for all N ∈ (C∞(Ω̄))d×d.

D(φ,ψ,N) ≤ CS‖N‖∞E(φ,ψ,Ω) (13.49)

Condition 13.3.5. There exists a constant CS > 1 such that for all x, y ∈ Ω, x �= y,

S(GM (., x), GM (., y)) ≤ CSGM (y, x) (13.50)

and for all N ∈ (C∞(Ω̄))d×d.

D(GM (., x), GM (., y), N) ≤ CS‖N‖∞GM (y, x) (13.51)

Theorem 13.3.1. The condition 13.3.1 implies the condition 13.2.1 with CV = CS.
If M is symmetric, the condition 13.3.1 implies the condition 13.3.2 with CS,2 = dCS .
The condition 13.3.2 implies the condition 13.3.1 with CS = d2CS,2.
If M is isotropic then the condition 13.3.1 implies the condition 13.3.3 with CS,3 = dCS .
The condition 13.3.3 implies the condition 13.3.1 with CS = d2CS,3.
The conditions 13.3.1, 13.3.4 and 13.3.5 are equivalent with the same constant CS.

Proof. 13.3.1 ⇒ 13.2.1 is trivial.
13.3.1 ⇒ 13.3.2: Assume M to be symmetric. Observe that at the point x

‖∇φ(x)‖‖M∇ψ(x)‖ ≥ 1
d

∑
i,j

λ(M)ei(x)
∣∣∂ejφ(x)∂eiψ(x)

∣∣ (13.52)

which leads to the proof.
13.3.2 ⇒ 13.3.1: Observe that at the point x

‖∇φ(x)‖‖M∇ψ(x)‖ ≤
∑
i,j

λ(M)ei(x)
∣∣∂ejφ(x)∂eiψ(x)

∣∣ (13.53)

which leads to the proof.
The equivalence between 13.3.1 and 13.3.3 when M is isotropic is now trivial.
The equivalence between 13.3.1 and 13.3.4 is a direct consequence of the equations 13.42 and 13.44.
The proof of the equivalence between 13.3.4 and 13.3.5 is similar to the proof of the equivalence
between 13.2.3 and 13.2.1 in the theorem 13.2.1.
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13.4 Local stability and Sub harmonic inequalities

13.4.1 Smooth admissible perturbation

Write I∞(Ω) the space of strictly coercitive d× d matrices with coefficients in C∞(Ω̄). Let ε→ Mε

(0 ≤ ε ≤ 1) be a smooth application from [0, 1] to I∞(Ω) (smooth in the sense that ∂εMε exists and
is a C∞, d× d matrix on Ω̄).
Let ε→ gε be a smooth map from [0, 1] to C∞(Ω̄), g ≥ 0 (smooth in the sense that ∂εg exists and is
an element of C∞(Ω̄)).
For ε ∈ [0, 1] write ψε be the solution of

LMεψε = gε (13.54)

with Dirichlet condition on ∂Ω.
Observe that

LMε

∂

∂ε
ψε = ∂εgε − L∂εMεψε (13.55)

The family (Mε, gε, ψε) is called a smooth admissible perturbation of the operator LM0 and the
following equation is available:

∂

∂ε
ψε(x) = GMε

(
∂εgε − L∂εMεψε

)
(x)

= GMε∂εgε(x)−
∫

Ω
∇yGMε(x, y)∂εMε(y)∇yGMε(y, z)gε(z) dy dz

(13.56)

The perturbation is called symmetric if M0 is symmetric and for all ε, Mε remains symmetric.

13.4.1.i Left perturbation

Let ε0 > 0, consider for ε ∈ [0, ε0], ε → NL
ε a bounded (in the sense that the coefficients of Nε are

uniformly bounded in the L∞ norm) smooth map from [0, ε0] to (C∞(Ω̄))d×d the set of smooth d× d
matrices.
Assume that for ε ∈ [0, ε0], Mε is the solution of{

dMε
dε = NL

ε Mε

M0 ∈ I∞(Ω)
(13.57)

and remains in I∞(Ω) for ε ∈ [0, ε0] (which is always true since NL
ε remains bounded). Then

NL
ε = (∂εMε)M−1

ε (13.58)

is called the left perturbation of the operator LM0 and the following equation is available

∂

∂ε
ψε(x) = GMε∂εgε(x)−

∫
Ω
∇yGMε(x, y)N

L
ε (y)Mε(y)∇yGMε(y, z)gε(z) dy dz (13.59)

13.4.1.ii Right perturbation

Let ε0 > 0, consider for ε ∈ [0, ε0], ε → NR
ε a bounded smooth map from [0, ε0] to (C∞(Ω̄))d×d the

set of smooth d× d matrices.
Assume that for ε ∈ [0, ε0], Mε is the solution of{

dMε
dε = NL

ε Mε

M0 ∈ I∞(Ω)
(13.60)
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and remains in I∞(Ω) for ε ∈ [0, ε0]. Then

NR
ε = (∂εMε)M−1

ε (13.61)

is called the right perturbation of the operator LM0 and the following equation is available

∂

∂ε
ψε(x) = GMε∂εgε(x)−

∫
Ω
∇yGMε(x, y)Mε(y)NR

ε (y)∇yGMε(y, z)gε(z) dy dz (13.62)

13.4.1.iii Isotropic perturbation

Let ε0 > 0, consider for ε ∈ [0, ε0], ε→ nε a bounded smooth map from [0, ε0] to C∞(Ω̄).
Assume that for ε ∈ [0, ε0], Mε is the solution of{

dMε
dε = nεMε

M0 ∈ I∞(Ω)
(13.63)

and remains in I∞(Ω) for ε ∈ [0, ε0]. Then

nε = (∂εMε)M−1
ε (13.64)

is called the isotropic perturbation of the operator LM0 and the following equation is available

∂

∂ε
ψε(x) = GMε∂εgε(x)−

∫
Ω
nε(y)∇yGMε(x, y)Mε(y)∇yGMε(y, z)gε(z) dy dz (13.65)

13.4.2 Operator perturbation and maximal stress vortex

For M ∈ I∞(Ω), write

CV(M) = sup
x,∈Ω,x �=y

V(GM (., x), GM (., y))
GM (y, x)

(13.66)

The permittivity isotropic deformation constant CV(M) is the optimal constant appearing in the
condition 13.2.1 (by the equivalence with 13.2.3), it might be infinite.
Define also

CS(M) = sup
x,∈Ω,x �=y

S(GM (., x), GM (., y))
GM (y, x)

(13.67)

The permittivity anisotropic deformation constant CS(M) is the optimal constant appearing in the
condition 13.3.1 (by the equivalence with 13.3.5), it might be infinite.

13.4.2.i Integration along maximal stress vortices

Theorem 13.4.1. Let (Mε, gε, ψε)ε∈[0,1] be a smooth admissible isotropic symmetric perturbation of
the operator LM0, write nε its isotropic perturbation. Assume that gε(x) = g0(x) > 0 (gε(x) does not
depend on ε) then

e−
∫ 1
0 CV (Mε)‖nε‖∞ dε ≤ ψ1(x)

ψ0(x)
≤ e

∫ 1
0 CV (Mε)‖nε‖∞ dε (13.68)

Proof. By using the equation 13.65 the symmetry ofMε and the definition of the permittivity isotropic
deformation constant it follows that:

∂

∂ε
ψε(x) ≤ ‖nε‖∞CV(Mε)ψε(x)

≥ −‖nε‖∞CV(Mε)ψε(x)
(13.69)

An the proof follows by the positivity of ψε and a simple integration.
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Corollary 13.4.1. Let (Mε)ε∈[0,1] be a smooth admissible isotropic symmetric perturbation of the
operator LM0, write nε its isotropic perturbation. Then for all x, y ∈ Ω, x �= y

e−
∫ 1
0 CV (Mε)‖nε‖∞ dε ≤ GM1(x, y)

GM0(x, y)
≤ e

∫ 1
0 CV (Mε)‖nε‖∞ dε (13.70)

Proof. Straightforward since the previous theorem is valid for all g > 0.

Theorem 13.4.2. Let (Mε, gε, ψε)ε∈[0,1] be a smooth admissible anisotropic symmetric perturbation
of the operator LM0, write Nε its left perturbation. Assume that gε = g0 > 0 then

e−
∫ 1
0 CS(Mε)‖Nε‖∞ dε ≤ ψ1(x)

ψ0(x)
≤ e

∫ 1
0 CS(Mε)‖Nε‖∞ dε (13.71)

Proof. By using the equation 13.59 the symmetry of Mε and the definition of the permittivity
anisotropic deformation constant it follows that:

∂

∂ε
ψε(x) ≤ ‖Nε‖∞CS(Mε)ψε(x)

≥ −‖Nε‖∞CS(Mε)ψε(x)
(13.72)

An the proof follows by the positivity of ψε and a simple integration.

Corollary 13.4.2. Let (Mε)ε∈[0,1] be a smooth admissible anisotropic symmetric perturbation of the
operator LM0, write Nε its anisotropic perturbation. Then for all x, y ∈ Ω, x �= y

e−
∫ 1
0
CS(Mε)‖Nε‖∞ dε ≤ GM1(x, y)

GM0(x, y)
≤ e

∫ 1
0
CS(Mε)‖Nε‖∞ dε (13.73)

Proof. Straightforward since the previous theorem is valid for all g > 0.

13.4.2.ii Deformation Vortex

Let M0 ∈ I∞(Ω). Write S
(
(C∞(Ω̄))d×d

)
the elements N ∈ (C∞(Ω̄))d×d such that ‖N‖∞ = 1.

Consider for ε > 0 the solution of

dMε

dε
= NMε (13.74)

with initial condition M0. Note that

Mε = eεNM0 (13.75)

With this definition of Mε, consider the deformation operator

D : C(Ω̄)× S
(
(C∞(Ω̄))d×d

) −→ C2
D(Ω)

g,N −→ ∂
(
GMεg

)
∂ε

(13.76)

D(., N) is called the deformation vortex of the operator LM0 in the stress direction N . If N is
isotropic, the vortex is said to be isotropic.

Theorem 13.4.3. For M0 ∈ I∞(Ω), M0 symmetric

CV(M0) = sup
n∈S(C∞(Ω̄)),g∈C(Ω̄),g>0,x∈Ω

D(g, nId)(x)(
GM0g

)
(x)

(13.77)

and with Mε = eεnId

CV(M0) = sup
n∈S(C∞(Ω̄)),x,y∈Ω,x �=y

∣∣∣ d
dε

ln
(
GMε(x, y)

)∣∣∣ (13.78)
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Remark 13.4.1. This theorem is important because it says that the stability of the operator LM0

under a small isotropic perturbation dMε = dε nM is completely and exactly reflected in the permit-
tivity deformation constant CV(M).
In other words, consider a dielectric material with permittivity M and a fixed distribution of charges
g, this distribution of charges creates an electrostatic potential field ψ by the equation LMψ = g,
now one can wonder how much ψ will be perturbed under a small isotropic perturbation of M , then
the sharp upper bound to the question ”how much” is completely reflected in the constant CV(M).
Note that if CV(M0) = ∞, with the material associated dielectric constant M0 one can find bounded
distribution of charges 0 ≤ g ≤ 1 and small perturbations of the permittivity tensor dMε = dε nM
producing a deformation of the potential electrostatic field GM0(g) without a priori bound.
Note also that if supM∈I∞(Ω) CV(M) = ∞ (M symmetric in the supremum) then one can find dielec-
tric materials reacting to the perturbation of its dielectric constants by a very strong deformation of
the potential electrostatic field (without a priori bound).

Proof. Straightforward by using the equation 13.65 the symmetry of Mε and the definition of the
permittivity isotropic deformation constant.

Theorem 13.4.4. For M0 ∈ I∞(Ω), M0 symmetric

CS(M0) = sup
N∈S

(
(C∞(Ω))d×d

)
,g∈C(Ω̄),g>0,x∈Ω

D(g,N)(x)(
GM0g

)
(x)

(13.79)

and with Mε = eεNId

CS(M0) = sup
N∈S

(
(C∞(Ω))d×d

)
,x,y∈Ω,x �=y

∣∣∣ d
dε

ln
(
GMε(x, y)

)∣∣∣ (13.80)

Remark 13.4.2. This theorem is also important because it says that the stability of the operator
LM0 under a small anisotropic perturbation dMε = dεNM is completely and exactly reflected in the
permittivity anisotropic deformation constant CS(M).
In other words, consider a dielectric material with permittivity M and a fixed distribution of charges
g, this distribution of charges creates an electrostatic potential field ψ by the equation LMψ = g, now
one can wonder how much ψ will be perturbed under a small anisotropic perturbation of M , then
the sharp upper bound to the question ”how much” is completely reflected in the constant CS(M).
Note that if CS(M0) = ∞, with the material associated dielectric constant M0 one can find bounded
distribution of charges 0 ≤ g ≤ 1 and small perturbations of the permittivity tensor dMε = dεNM
producing a deformation of the potential electrostatic field GM0(g) without a priori bound.
Note also that if supM∈I∞(Ω) CS(M) = ∞ (M symmetric in the supremum) then one can find
dielectric materials reacting to the anisotropic perturbation of its dielectric constants by a very
strong deformation of the potential electrostatic field (without a priori bound).

Proof. Straightforward by using the equation 13.59 the symmetry of Mε and the definition of the
permittivity anisotropic deformation constant.

13.5 Strong Sub harmonic functions and sign inequality

13.5.1 Some tools

Lemma 13.5.1. For all M ∈ I∞(Ω), b > 0, x, y ∈ Ω, x �= y∫
GM (z,x)>b

∇zGM (z, x)M∇zGM (z, y) dz =
(
GM (y, x) − b

)
1
(
GM (y, x) > b

) (13.81)
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Proof. Write for x ∈ Ω, b > 0

Bt
x(b) = {z ∈ Ω : GM (z, x) > b} (13.82)

Observe that by Sard’s theorem complementary of the set S(Bt
x) of b ≥ 0 such that Bt

x(b) has a
smooth boundary is of Lebesgue measure 0.
N Now let x, y ∈ Ω, x �= y and choose b ∈ S(Bt

x) such that b �= GM (y, x). Observe that by the Green
formula ∫

Bt
x(b)

∇zGM (z, x)M∇zGM (z, y) dz =
∫
Bt

x(b)
GM (z, x)δ(z − y) dz

+ b

∫
∂Bt

x(b)
next.M∇zGM (z, y)dσ(z)

=
(
GM (y, x)− b

)
1(y ∈ Bt

x(b))

(13.83)

Now since the equation 13.83 is valid for all b ∈ S(Bt
x) which complementary is of 0, Lebesgue

measure and for x �= y, ∫
Ω
|∇zGM (z, x)M∇zGM (z, y)| dz <∞ (13.84)

it follows that for all c > 0∫
GM (z,x)>c

∇zGM (z, x)M∇zGM (z, y) dz =

lim
b↓c,b∈S(Bt

x)

∫
Bt

x(b)
∇zGM (z, x)M∇zGM (z, y) dz

(13.85)

which proves the result

13.5.2 Proof of the sign inequality in dimension one

Theorem 13.5.1. For d = 1, CV = CS and CV is a homotopy invariant: for all M ∈ I∞(Ω)

CV(M) = 3 (13.86)

Proof. There is no loss of generality by assuming that Ω is the segment (0, 1). Observe that GM (x, y)
is symmetric, moreover GM (x, z) is increasing from 0 to x and decreasing from x to 1. It follows that
for x, y ∈ Ω, ∇zGM (x, z)∇zGM (y, z) is negative in (x, y) and positive in (0, x) ∪ (y, 1). It follows
that

V(GM (x, .), GM (y, .)
)

= E(GM (x, .), GM (y, .), (0, x)
)

− E(GM (x, .), GM (y, .), (x, y)
)

+ E(GM (x, .), GM (y, .), (y, 1)
) (13.87)

but by the lemma 13.5.1,

E(GM (x, .), GM (y, .), GM (x, .) > GM (x, y)
)

= 0 (13.88)

But observe that

{z ∈ (0, 1) : GM (x, z) > GM (x, y)} = (x, y) +Ax (13.89)

where Ax is a subset of (0, x) It follows that

E(GM (x, .), GM (y, .), (0, x)
) ≥ −E(GM (x, .), GM (y, .), (x, y)

)
(13.90)
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Similarly

E(GM (x, .), GM (y, .), (y, 1)
) ≥ −E(GM (x, .), GM (y, .), (x, y)

)
(13.91)

From the equations 13.87, 13.90, 13.91 and

GM (x, y) = E(GM (x, .), GM (y, .), (0, x)
)

+ E(GM (x, .), GM (y, .), (x, y)
)

+ E(GM (x, .), GM (y, .), (y, 1)
) (13.92)

it follows that

V(GM (x, .), GM (y, .)
) ≤ 3GM (x, y) (13.93)

which proves that CV(M) ≤ 3.
Now by computing the precise value of GM (x, y) (easy task left to the reader) one sees that CV (M)
is the optimal constant, moreover for all x, y ∈ (0, 1)

V(GM (x, .), GM (y, .)
)
< 3GM (x, y) (13.94)

and for x ↓ 0 and y ↑ 1

V(GM (x, .), GM (y, .)
)

GM (x, y)
→ 3 (13.95)

Remark 13.5.1. The proof given above is geometrical and explains why it is natural to expect that
CV(M) = 3 is also an homotopy invariant for all dimensions.

13.5.2.i Consequence on the Green functions

For d = 1, U ∈ C∞(Ω̄) write Ge−2(U) the Green function associated to M = e−2U with Dirichlet
conditions on ∂Ω.

Corollary 13.5.1. For d = 1 and U,P ∈ C∞(Ω̄) one has

e−6‖P‖∞ ≤ Ge−2(U+P )(x, y)
Ge−2(U)(x, y)

≤ e6‖P‖∞ (13.96)

Proof. This is a direct consequence of the theorem 13.5.1 and the corollary 13.4.1 by considering the
following isotropic deformation path: Mε = e2(U+εP ) for ε ∈ [0, 1].

13.5.2.ii Consequence on the exit times

For U ∈ C∞(Ω̄) write E
U the expectation associated to the diffusion generated by the operator and

τ its exit time from Ω.

LU =
1
2
Δ−∇U∇ (13.97)

Corollary 13.5.2. For U,P ∈ C∞(Ω̄), x ∈ Ω

e−4Osc(P ) ≤ E
U+P
x [τ ]
EUx [τ ]

≤ e4Osc(P ) (13.98)

Proof. This is a direct consequence of the corollary 13.5.1 by observing that

E
U
x [τ ] = 2

∫
Ω
Ge−2U (x, y)e−2U(y) dy (13.99)
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13.5.2.iii Geometric point of view

Corollary 13.5.3. For d = 1 and λ ∈ C∞([a, b]) (a < b and λ > 0) one has for all f, g ∈ C1([a, b])
such that λf and gλ are both increasing or decreasing functions.

∫
[a,b]

∣∣∣(f(x)− 1
λ(x)

∫
[a,b] f(y)dy∫
[a,b]

1
λ(y)dy

)
λ(x)

(
g(x) − 1

λ(x)

∫
[a,b] g(y)dy∫
[a,b]

1
λ(y)dy

)∣∣∣ dx
≤ 3

∫
[a,b]

(
f(x)− 1

λ(x)

∫
[a,b] f(y)dy∫
[a,b]

1
λ(y)dy

)
λ(x)

(
g(x) − 1

λ(x)

∫
[a,b] g(y)dy∫
[a,b]

1
λ(y)dy

)
dx

(13.100)

Proof. This is a direct consequence of the theorem 13.5.1. Indeed observe that for a ≤ x ≤ b and

φ(z) =
∫ z

a

(
f(x)− 1

λ(x)

∫
[a,b] f(y)dy∫
[a,b]

1
λ(y)dy

)
dx (13.101)

ψ(z) =
∫ z

a

(
g(x)− 1

λ(x)

∫
[a,b] g(y)dy∫
[a,b]

1
λ(y)dy

)
dx (13.102)

ψ and φ are both null on z = a and z = b, moreover, there are both Sub harmonic or both super
harmonic with respect to LM = −∇λ∇

13.5.3 Extension to dimension d ≥ 2

Theorem 13.5.2. Let φ,ψ ∈ C2
D(Ω), M ∈ I∞(Ω). Assume that there exists a Z : Ω → W a

diffeomorphism from Ω to a smooth bounded open set W of R
d such that F−1(∂W ) ⊂ ∂Ω and

(
DZ

Dx
)M(Z)t(

DZ

Dx
)
∣∣Dx
DZ

∣∣ = k(Z)Id (13.103)

such that for all i ∈ {1, . . . , d}, for all (Z1, . . . , Zi−1, Zi+1, . . . , Zd) ∈ R
d−1, φ,ψ (as functions of Zi)

are both Sub harmonic or super harmonic with respect to the operator
− ∂
∂Zi

(
k(Z) ∂

∂Zi

)
on Wi = {Zi ∈ R : Z ∈W} then

∫
Ω
|∇xφ(x)M(x)∇xψ(x)| dx ≤ 3

∫
Ω
∇xφ(x)M(x)∇xψ(x) dx (13.104)

Proof. Observe that for h ∈ C∞(Ω̄) one has,∫
Ω
h(x)∇xφ(x)M(x)∇xψ(x) dx =

∫
W
h(Z)k(Z)∇Zφ(Z)∇Zψ(Z) dZ (13.105)

with

k(Z)Id = (
DZ

Dx
)M(Z)t(

DZ

Dx
)
∣∣Dx
DZ

∣∣ (13.106)
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It follows from the theorem 13.5.1 the theorem 13.2.1 and the property 13.2.7 that

∫
W
h(Z)k(Z)∇Zφ(Z)∇Zψ(Z) dZ =

d∑
i=1

∫
Rd−1

dZ1 . . . dZi−1dZi+ 1 . . . dZd

∫
Zi∈Wi

h(Z)k(Z)
∂φ(Z)
∂Zi

∂ψ(Z)
∂Zi

dZi

≤
d∑
i=1

∫
Rd−1

dZ1 . . . dZi−1dZi+ 1 . . . dZd

3‖h‖∞
∫
Zi∈Wi

k(Z)
∂φ(Z)
∂Zi

∂ψ(Z)
∂Zi

dZi

≤
∫
W
k(Z)∇Zφ(Z)∇Zψ(Z) dZ

≤ 3‖h‖∞
∫

Ω
∇xφ(x)M(x)∇xψ(x) dx

(13.107)

Thus by the theorem 13.2.1∫
Ω
|∇xφ(x)M(x)∇xψ(x)| dx ≤ 3

∫
Ω
∇xφ(x)M(x)∇xψ(x) dx (13.108)

Let λ ∈ C∞(Ω̄) such that λ > 0 on Ω̄, then ψ ∈ C2
D(Ω) is said to be strongly Sub harmonic

(resp. strongly super harmonic) with respect to the operator −∇(λ∇) if for all x ∈ Ω, all e ∈ S
d

− ∂
∂e

(
λ(x) ∂∂eφ

) ≥ 0 (resp ≤ 0)

Theorem 13.5.3. For all ψ, φ ∈ C2
D(Ω) strongly Sub harmonic or super harmonic with respect to

the operator −∇(λ∇) one has∫
Ω
|∇xφ(x)λ(x)∇xψ(x)| dx ≤ 3

∫
Ω
∇xφ(x)λ(x)∇xψ(x) dx (13.109)

Proof. As for the theorem 13.5.2 it is a direct consequence of the theorem 13.5.1.

Corollary 13.5.4. Assume that φ,ψ are both convex or both concave and null on ∂Ω, then∫
Ω
|∇xφ(x).∇xψ(x)| dx ≤ 3

∫
Ω
∇xφ(x).∇xψ(x) dx (13.110)

13.5.4 Weak stability results

Theorem 13.5.4. Assume that M,Q are symmetric smooth coercive matrices on Ω̄ and d ≥ 1.
Assume M ≤ λQ with λ > 0, then for all f ∈ C0(Ω),∫

Ω
GQ(x, y)f(y)f(x) dx dy ≤ λ

∫
Ω
GM (x, y)f(y)f(x) dx dy (13.111)

Proof. Let f ∈ C0(Ω̄). Write ψM , ψQ the solutions of LMψM = f and LQψQ = f with Dirichlet
conditions on ∂Ω. Observe that ψM and ψQ are the unique minimizer of the following variational
formulae

IM (h, f) =
1
2
EM (h, h,Ω) −

∫
Ω
h(x)f(x) dx (13.112)
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IQ(h, f) =
1
2
EQ(h, h,Ω) −

∫
Ω
h(x)f(x) dx (13.113)

and at the minimum

IM (ψM , f) = −1
2

∫
Ω
ψM (x)f(x) dx (13.114)

IQ(ψQ, f) = −1
2

∫
Ω
ψQ(x)f(x) dx (13.115)

Moreover observe that

IM (h, f) ≤ λ

2
EQ(h, h,Ω) −

∫
Ω
h(x)f(x) dx

≤ λIQ(h,
f

λ
)

(13.116)

and the minimum of the right member in the equation 13.116 is reached at ψQ/λ. It follows that

−1
2

∫
Ω
ψM (x)f(x) dx ≤ − 1

2λ

∫
Ω
ψQ(x)f(x) (13.117)

thus ∫
Ω
ψQ(x)f(x) ≤ λ

∫
Ω
ψM (x)f(x) (13.118)

which proves the result
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A. ONE OBJECT - DIFFERENT FACES -ABSTRACT
CONNECTIONS

It had been known for a long time that there exist deep and close connections between the Dirichlet
integral, the Laplace Operator, the heat equation, and Brownian motion. With the notion of Dirichlet
forms, Beurling and Deny ([BD58], [BD59]) provided the proper axiomatic setting for exploring these
connections abstractly. In subsequent developments (Fukushima, Silverstein and others), Markovian
semigroups and probabilistic potential theory based on symmetric Markov processes played a promi-
nent role (see the monograph of M. Fukushima, Y. Oshima and M. Takeda [FOT94]). The analysis
of these connections is an active field of research [JKM+98]. Indeed Dirichlet forms play a prominent
role in various fields of mathematics, this is mainly due to the fact that they allow the development
of highly nontrivial extensions of classical theories under minimal regularity hypotheses.

In this chapter some abstract connections given in [FOT94] will be summed up.
Let H be an abstract real Hilbert space with inner product (., .)

A.1 Semigroup

A family {Pt, t > 0} of linear operators on H is called a semigroup (of symmetric operators) on H if
it satisfies the following conditions:

• each Pt is a symmetric operator with domain D(Pt) = H.

• semigroup property: PtPs = Pt+s, t, s > 0

• contraction property (Ptu, Ptu) ≤ (u, u), t > 0, u ∈ H
It is called strongly continuous if in addition

• for u ∈ H, limt→0(Ptu− u, Ptu− u) = 0

A.2 Resolvent

A family {Gα, α > 0} of linear operators on H is called a resolvent on H if it satisfies the following
conditions:

• each Gα is a symmetric operator with domain D(Gα) = H.

• resolvent equation: Gα −Gβ + (α− β)GαGβ = 0.

• contraction property (αGαu, αGαu) ≤ (u, u), α > 0, u ∈ H
It is called strongly continuous if in addition

• for u ∈ H, limα→+∞(αGαu, αGαu) = 0
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Given a strongly continuous semigroup {Pt, t > 0}, the strong limit of the Riemann sum

Gαu =
∫ ∞

0
e−αtPtudt (A.1)

determines a strongly continuous resolvent {Gα, α > 0} on H called the resolvent of the given
semigroup.
Given a strongly continuous resolvent {Gα, α > 0}, the limit

Ptu = lim
β→∞

∞∑
n=0

(tβ)n

n!
(βGβ)nu u ∈ H (A.2)

determines a strongly continuous semigroup {Pt, t > 0} on H called the semigroup of the given
resolvent.

The operations A.1 and A.2 are injective, inverse of each other and put into one to one corre-
spondences the family of strongly continuous semigroups with the family of strongly continuous
resolvents.

A.3 Generator

The generator L of a strongly continuous semigroup {Pt, t > 0} on H is an operator on H defined
by {

Lu = limt→0
Ptu−u
t

D(L) = {u ∈ H : Lu exists as a strong limit} (A.3)

Given a strongly continuous resolvent {Gα, α > 0} on H, for α > 0, Gα is invertible and the operator
defined by {

Lu = αu−G−1
α u

D(L) = Gα(H)
(A.4)

is independent of α > 0, called the generator of the resolvent {Gα, α > 0} and is a non-positive
definite self-adjoint operator. Moreover the generator A.3 of a strongly continuous semigroup on H
coincides with the generator A.4 of its resolvent A.1.
Let −L be an non-negative definite self-adjoint operator on H. Then

Pt = exp(tL), t > 0 (A.5)

Gα = (α− L)−1, α > 0 (A.6)

are a strongly continuous semigroup and a strongly continuous resolvent on H respectively.

The operations A.5 and A.3 are injective, inverse of each other and put into one to one corre-
spondences the family of strongly continuous semigroups with the family of non-negative definite
self-adjoint operators on H.

The operations A.6 and A.4 are injective, inverse of each other and put into one to one corre-
spondences the family of strongly continuous semigroups with the family of non-negative definite
self-adjoint operators on H.
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A.4 Symmetric forms and Dirichlet forms

E is called a symmetric form on H if it is a non-negative definite symmetric form on H, that is to
say if the following conditions are satisfied:

• E is defined on D[E ] × D[E ] with values in R, D[E ]being a dense linear subspace of H called
the domain of E .

• for a ∈ R and u, v,w ∈ D[E ]
E(u, v) = E(v, u), E(u+ v,w) = E(u,w) + E(v,w),
aE(u, v) = E(au, v), E(u, u) ≥ 0

For each α > 0 and a given symmetric form E on H,

Eα(u, v) = E(u, v) + α(u, v), u, v ∈ D[E ]
D[Eα] = D[E ]

(A.7)

defines a new symmetric form on H and a symmetric form E is said to be closed if

• un ∈ D[E ], limn,m→∞ E1(un − um, un − um) = 0
⇒ ∃u ∈ D[E ], limn→∞ E1(un − u, un − u) = 0

Let−L be a non-negative definite self-adjoint operator on H, write {Eλ} the spectral family associated
with −L. Then the expression{

D[E ] = D(
√−L) = {u ∈ H :

∫
[0,∞) λd(Eλu, u) <∞}

E(u, v) = (
√−Lu,√−Lv) =

∫
[0,∞) λd(Eλu, v)

(A.8)

defines a closed symmetric form on H.
Conversely, given a closed symmetric form E on H, there exists by the Riesz representation theorem
a unique element Gαu ∈ D[E ] such that

Eα(Gαu, v) = (u, v), ∀v ∈ D[E ] (A.9)

for each α > 0 and u ∈ H. The family {Gα, α > 0} defined in this way is a strongly continuous
resolvent and allows to associate to E a unique non-positive definite self-adjoint operator L on H.

The operations A.8 and A.9 are injective, inverse of each other and put into one to one correspon-
dence the family of closed symmetric forms on H and the family of non-positive definite self-adjoint
operators L on H.
Thus the family of closed symmetric forms on H is also into a one to one correspondence with the
family of strongly continuous semigroup and resolvent on H and the associated applications are given
by the following operations A.10 and A.11:
For any u ∈ H, (u−Ptu,u)

t is non-decreasing as t ↓ 0 and{
D[E ] = {u ∈ H : limt→0

(u−Ptu,u)
t <∞}

E(u, v) = limt→0
(u−Ptu,v)

t u, v ∈ D[E ]
(A.10)

For any u ∈ H, β(u− βGβu, u) is non-decreasing as t ↑ ∞ and{
D[E ] = {u ∈ H : limβ→∞ β(u− βGβu, u) <∞}
E(u, v) = limβ→∞ β(u− βGβu, v) u, v ∈ D[E ]

(A.11)
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If H is the L2-space L2(X,m) associated to a σ-finite measure space (X,B,m); consisting of square
integrable m-measurable extended real valued functions on X and endowed with the inner product

(u, v) =
∫
X
u(x)v(x)dm(x), u, v ∈ L2(X,m) (A.12)

then a closed symmetric form E on L2(X,m) is called Markovian if the unit contraction operates on
E ; that is to say

• u ∈ D[E ], v = (0 ∨ u) ∧ 1 ⇒ v ∈ D[E ] and E(v, v) ≤ E(u, u)

A closed, Markovian symmetric form is called a Dirichlet form. Then the couple (E ,D[E ]) is called
a Dirichlet space relative to L2(X,m).
To say that a closed symmetric form is Markovian is equivalent to say that its associated semigroup
Pt or resolvent Gα are Markovian, a linear operator S on L2(X,m) with D(S) = L2(X,m) being
called Markovian if u ∈ L2(X,m) and 0 ≤ u ≤ 1 m-a.e.imply 0 ≤ Su ≤ 1 m-a.e.

A.5 Symmetric Markov Process - Hunt Process - Diffusion and Dirichlet Space

Let X be a locally compact separable metric space and m be an everywhere dense positive Radon
measure on X. A Markov process (see [FOT94] for a definition) M on (X,B(X)) is called m-
symmetric if the transition function pt of M is m-symmetric in the sense that for all non-negative
measurable functions u and v.∫

X
u(x)(ptv)(x)m(dx) =

∫
X

(ptu)(x)v(x)m(dx) (A.13)

A Hunt process (for a definition see [FOT94] page 314) is a special Markov process that possesses
useful properties such as the right continuity of sample paths, the quasi left continuity and the strong
Markov property.
A Hunt process on X is called a diffusion if for every x ∈ X, Px a.s., Xt is continuous in t until it
reaches its cemetery state.
The transition function {pt, t > 0} of a m-symmetric Hunt process M on X uniquely determines
a strongly continuous Markovian semigroup {Pt, t > 0} on L2(X,m) and thus uniquely a Dirichlet
space (E ,D[E ]) on L2(X,m).
A symmetric form E is said to be regular if and only if

• D[E ]∩C0(X) is dense in D[E ] with E1 norm and dense in C0(X) (the set of continuous functions
on X with compact support) with uniform norm.

Conversely, given a regular Dirichlet form E on L2(X,m), there exists an m-symmetric Hunt process
M on (X,B(X)) whose Dirichlet form is the given one E . This Hunt process is unique (up to an
equivalence) in the sense that if two m-symmetric Hunt processes have a common regular Dirichlet
space on L2(X,M) then they possess a common properly exceptional set outside which their transi-
tion functions coincide. Moreover this Hunt process is equivalent to an m-symmetric diffusion if and
only if its associated Dirichlet form E possesses the local property that is to say if

• u, v ∈ D[E ], Supp[u] and Supp[v] are disjoint compact sets
⇒ E(u, v) = 0



B. ANALYTICAL TOOLS

B.1 Sharp estimates from the theory of elliptic operators

This section introduce some sharp estimates from the theory of divergence form and non divergence
form elliptic operators. For a good introduction to the subject see the books of M. Giaquinta [Gia83],
[Gia93]; D. Gilbarg and N.S. Trudinger [GT83]; D. Kinderlehrer and G. Stampacchia [KS80] and al-
though the course of G. Stampacchia on elliptic equations with discontinuous coefficients [Sta66] was
published in 1966, it is still interesting and contains powerful and beautiful proofs.

B.1.1 Divergence form operator with bounded coefficients

Throughout this subsection, the operator (considered in the weak sense) on which the results will be
given is

L = ∇(A∇) (B.1)

defined on some open set Ω ⊂ R
d (for d ≥ 3) with smooth boundary ∂Ω. A is a d × d matrix with

bounded coefficients in L∞(Ω) such that for all ξ ∈ R
d.

λ|ξ|2 ≤ tξAξ (B.2)

and for all i, j

|Aij | ≤M (B.3)

for some positive constant 0 < λ,M <∞.
Here a theorem concerning elliptic equation with discontinuous coefficient from G. Stampacchia is
presented. Its proof in a more general form can be found in [Sta66], chapter 5, theorem 5.4 (see also
[Sta65])
The explicit dependence of the constants in M and λ have been obtained by following the proof of
G. Stampacchia [Sta66]

B.1.1.i Sharp estimates of the L∞ norm

Let p > d ≥ 3
For 1 ≤ i ≤ d let fi ∈ Lp(Ω)
if χ ∈ H1

loc(Ω) is a local (weak) solution of the equation

∇(A∇χ) = −
d∑
i=1

∂ifi (B.4)

where A is coercive B.2 and bounded B.3 then χ is in L∞(Ω) and if x0 ∈ Ω and R > 0
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Theorem B.1.1. The solution of B.4 verify the following inequality (in the essential supremum
sense with Ω(x0, R) = Ω ∩B(x0, R))

max
Ω(x0,

R
2

)
|χ| ≤K

[{ 1
Rd

∫
Ω(x0,R)

‖χ‖2
} 1

2

+
d∑
i=1

‖fi‖Lp(Ω(x0,R))
R1− d

p

λ

] (B.5)

with

K = Cd(
M

λ
)

3d
2 (B.6)

B.1.2 A short reminder on Laplace operator

Let Ω ⊂ Rd be a bounded open set with smooth boundary and χ ∈ C2(Ω) the solution of

Δχ = f (B.7)

with f bounded.

B.1.2.i Gradient estimates for Poisson’s equation

Write ρx = dist(x, ∂Ω) and ρxy = min(ρx, ρy) where dist is the Euclidean distance. Then the following
theorem is proven in [GT83] (theorem 3.9, page 41)

Theorem B.1.2. The solution of Poisson’s equation B.7 verify the following gradient estimates

sup
x∈Ω

ρx|∇χ(x)| ≤ Cd
[
sup
Ω
|χ|+ sup

Ω
ρ2
x|f(x)|] (B.8)

and for all x, y ∈ Ω, x �= y

ρ2
xy

|∇χ(x)−∇χ(y)|
|x− y| ≤ Cd

[
sup
Ω
|χ|+ sup

Ω
ρ2
x|f(x)|][1 + | ln ρxy

|x− y| |
]

(B.9)

It is interesting to notice that this theorem is essentially sharp and the estimate B.9 cannot be
improved without further continuity assumptions on f ([GT83] page 41).

B.1.2.ii Estimates of the Hölder continuity of the second derivates of the solution of the
Poisson equation

Assume that the second member f in B.7 is uniformly Hölder continuous with exponent α that is to
say [f ]α,Ω <∞ with

[f ]α,Ω = sup
x,y∈Ω

x �=y

|f(x)− f(y)|
|x− y|α , 0 < α ≤ 1 (B.10)

Define also the following norms to control χ

|g|0,α,Ω = sup
Ω
|g| + (diam Ω)α[g]α,Ω (B.11)

|g|2,α,Ω = sup
Ω
|g|+ (diam Ω) sup

Ω,i
|∂ig|+ (diam Ω)2 sup

Ω,i,j
|∂i∂jg|

+ (diam Ω)2+α sup
i,j

[∂i∂jg]α,Ω
(B.12)

Then it is proven in [GT83] (theorem 4.6, page 60) that the second derivates of the solution χ of B.7
are uniformly Hölder continuous with exponent α and the following estimate is available.
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Theorem B.1.3. Let χ be the solution of B.7. Let x0 ∈ Ω and R > 0 such that B2 = B(x0, 2R) ⊂ Ω,
write B1 = B(x0, R) then

|χ|2,α,B1 ≤ C(d, α)
(|χ|0,B2 +R2|f |0,α,B2

)
(B.13)

B.1.3 Application to a particular case

Let χ ∈ C2(Ω) such that |∇χ| is bounded, be the solution of(1
2
Δ + b∇)χ = g (B.14)

where g and b are continuous and bounded.

B.1.3.i Control of the gradient

Lemma B.1.1. Let χ be the solution of B.14 and assume that x0 ∈ Ω is such that |∇χ(x0)| =
‖∇χ‖∞. Then for ρ < min( 1

Cd‖b‖∞ ,dist(x0, ∂Ω))

|∇χ|∞ ≤ Cd

[supB(x0,ρ)

ρ
|χ|+ ρ sup

B(x0,ρ)
|g|
]

(B.15)

Proof. Observe that

Δχ = 2(g − b∇χ) (B.16)

Since ρ < dist(x0,Ω) an application of the control B.8 in theorem B.1.2 to the ball B(x0, ρ) gives

ρ|∇χ(x0)| ≤ Cd
[

sup
B(x0,ρ)

|χ|+ ρ2(‖g‖∞ + ‖b‖∞‖∇χ‖∞)
]

(B.17)

Thus for ρ < 1/(Cd‖b‖∞)

‖∇χ‖∞ ≤ supB(x0,ρ) |χ|+ ρ2 supB(x0,ρ) |g|
ρ− Cd‖b‖∞ρ2

(B.18)

Thus for ρ < 1/(2Cd‖b‖∞)

|∇χ|∞ ≤ 2Cd
[supB(x0,ρ)

ρ
|χ|+ ρ sup

B(x0,ρ)
|g|
]

(B.19)

B.1.3.ii Hölder continuity of the gradient

In the sequel it is shown that a bound on the L∞ norm of b and g leads to a control on the Hölder
continuity of the gradient of χ for all exponents α ∈ [0, 1).

Lemma B.1.2. Let χ be the solution of B.14 and R > 0 such that 2R < dist(x0,Ω). Then for
α ∈ [0, 1) and x, y ∈ B(x0, R), x �= y

R2 |∇χ(x)−∇χ(y)|
|x− y|α ≤C(d, α)

[
sup

B(x0,2R)
|χ|+R2 sup

B(x0,2R)
(|g| + |b||∇χ|)]

· [1 +R1−α] (B.20)

Proof. Since 2R < dist(x0,Ω) an application of the control B.9 in theorem B.1.2 to the ball B(x0, 2R)
gives for x, y ∈ B(x0, R), x �= y and f = 2(g − b.∇χ)

R2 |∇χ(x)−∇χ(y)|
|x− y| ≤ Cd

[
sup

B(x0,2R)
|χ|+R2 sup

B(x0,2R)
|f(x)|][3 + | ln 2R

|x− y| |
]

(B.21)

which leads to the proof.



B. Analytical Tools 276

B.1.3.iii Application to linear harmonic functions in periodic medium

Let F ∈ C2(R2) such that be the solution of

(1
2
Δ + b∇)F = 0 (B.22)

where b is continuous and periodic on R
d of period T d1 . Assume also that

F (x) = l.x− χl(x) (B.23)

where χl ∈ C2(T d1 ) and l ∈ R
d is such that |l| = 1.

Lemma B.1.3. Let l.x− χl(x) be the solution of B.22 then

‖∇χl‖∞ ≤ Cd
[
1 + ‖b‖∞‖χl‖∞

]
(B.24)

and for all α ∈ [0, 1), x, y ∈ R
d

|∇χl(x)−∇χl(y)|
|x− y|α ≤ C(d, α)(1 + ‖χl‖∞)(1 + ‖b‖∞)2 (B.25)

and if b ∈ C1(T d1 ) for all i, j ∈ {1, . . . , d}

‖∂i∂jχl‖∞ ≤ Cd(1 + ‖χl‖∞)(1 + ‖b‖∞)3(1 + ‖ sup
k
∂kb‖∞) (B.26)

Proof. By the lemma B.1.1

‖∇F‖∞ ≤ Cd
[
1 + ‖b‖∞‖χl‖∞

]
(B.27)

which leads to

‖∇χl‖∞ ≤ Cd
[
1 + ‖b‖∞‖χl‖∞

]
(B.28)

Thus by the lemma B.1.2 for all x, y ∈ R
2, x �= y

|∇F (x)−∇F (y)|
|x− y|α ≤ C(d, α)

[
1 + ‖χl‖∞ + ‖b‖∞(1 + ‖b‖∞‖χl‖∞)

]
≤ C(d, α)(1 + ‖χl‖∞)(1 + ‖b‖∞)2

(B.29)

which leads to

|∇χl(x)−∇χl(y)|
|x− y|α ≤ C(d, α)(1 + ‖χl‖∞)(1 + ‖b‖∞)2 (B.30)

Assume that b ∈ C1(T d1 ) (b Hölder continuous is sufficient) then by the theorem B.1.3 for all i, j ∈
{1, . . . , d}

‖∂i∂jχl‖∞ ≤ C(d, 1/2)
(
1 + ‖χl‖∞ + ‖ sup

k
∂kb‖∞‖∇F‖∞ + ‖b‖∞|∇F |0,1/2

)
(B.31)

which leads to

‖∂i∂jχl‖∞ ≤ Cd(1 + ‖χl‖∞)(1 + ‖b‖∞)3(1 + ‖ sup
k
∂kb‖∞) (B.32)
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B.2 Application to the Cell problem

B.2.1 Potential Diffusion

Let d ≥ 3, U ∈ C∞(T d1 ) and LU be the operator

LU =
1
2
Δ−∇U.∇ (B.33)

B.2.1.i Control of the Cell problem

Let χl ∈ C∞(T d1 ) be the solution of the cell problem

LUχl = −l.∇U (B.34)

with χl(0) = 0, l ∈ R
d, |l| = 1, then the following theorem gives a control on this solution.

Theorem B.2.1. The solution of the above cell problem satisfies the following inequalities:

1.

‖χl‖∞ ≤ Cd exp
(
(3d+ 2)Osc(U)

)
(B.35)

2.

‖∇χl‖∞ ≤ Cd(1 + ‖∇U‖∞) exp
(
(3d+ 2)Osc(U)

)
(B.36)

3. for all α ∈ [0, 1), x, y ∈ R
d

|∇χl(x)−∇χl(y)|
|x− y|α ≤ C(d, α)(1 + ‖∇U‖∞)2 exp

(
(3d+ 2)Osc(U)

)
(B.37)

4. for all i, j ∈ {1, . . . , d}

‖∂i∂jχl‖∞ ≤ Cd(1 + ‖∇U‖∞)3(1 + ‖ sup
kp

∂k∂pU‖∞) exp
(
(3d + 2)Osc(U)

)
(B.38)

Remark B.2.1. For d = 1, this theorem is trivial, for d = 2, consider U(x1, x2) as a function on T 3
1

to obtain the same results (just change in all the constants d by d+ 1).

Proof. χl satisfies

∇( exp(−2U)∇χl
)

= l.∇ exp(−2U)

then by the theorem B.1.1 for x0 ∈ [0, 1]d

max
B(x0,

1
2
)
|χl| ≤ Cd exp(3Osc(U)d)

[( ∫
B(x0,1)

|χl|2
) 1

2 + |l| exp(2Osc(U))
]

Now by periodicity ∫
B(x0,1)

|χl|2dx ≤
∫
T d
1

|χl|2dx

and by the Poincaré inequality ∫
T d
1

|χl|2dx ≤ Cd

∫
T d
1

|∇χl|2dx
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thus (see 5.1 for the definition of the measure mU )∫
B(x0,1)

|χl|2dx ≤ Cd exp(2Osc(U))
∫
T d
1

|∇χl|2mU (dx)

And since ∫
T d
1

|l −∇χl|2mU (dx) = l2 −
∫
T d
1

|∇χl|2mU (dx)

one has ∫
T d
1

|∇χl|2mU (dx) ≤ l2

and the bound on ‖χl‖∞ is proven. Now the controls on ∇χl and ∂i∂jχl are a direct consequence of
the lemma B.1.3 by noticing that l.x− χl(x) is harmonic with respect to LU .

B.2.1.ii Control of the ergodicity

Let φl ∈ C∞(T d1 ) be the solution of

LUφl = |l −∇χl|2 −
∫
T d
1

|l −∇χl|2mU(dx) (B.39)

with l ∈ R
d, |l| = 1, φl(0) = 0. Remember that φl reflects the speed at which the diffusion associated

to LU converges towards its homogenized behavior, that’s why in the following theorem a control on
φl will be given.

Theorem B.2.2. Let φl be the above solution of B.39. Then

1.

‖φl‖∞ ≤ Cd exp
(
(9d + 4)Osc(U)

)
(B.40)

‖∇φl‖∞ ≤ Cd exp
(
(9d + 4)Osc(U)

)
(1 + ‖∇U‖∞) (B.41)

Remark B.2.2. For d = 1, this theorem is trivial, for d = 2, consider U(x1, x2) as a function on T 3
1

to obtain the same results (just change in all the constants d by d+ 1).

Proof. Write

Fl = l.x− χl

Since

LU (F 2
l ) = |l −∇χl|2

if one writes ψl = F 2
l − φl then

∇( exp(−2U)∇ψl
)

= 2exp(−2U)
∫
T d
1

|l −∇χl|2mU (dx)

Thus by the theorem B.1.1 for x0 ∈ [0, 1]d

max
B(x0,

1
2
)
|ψ(x)| ≤Cd exp

(
3Osc(U)d

)[( ∫
B(x0,1)

|ψl|2dx
) 1

2

+ exp(2Osc(U))
∫
T d
1

|l −∇χl|2mU (dx)
]



B. Analytical Tools 279

But

( ∫
B(x0,1)

ψ2dx
) 1

2 ≤ C
[( ∫

B(x0,1)
φ2dx

) 1
2 +

( ∫
B(x0,1)

F 4
l dx

) 1
2

]

and

( ∫
B(x0,1)

F 4
l dx

) 1
2 ≤ C

( ∫
B(x0,1)

((l.x)4 + |χl|4)dx
) 1

2

≤ Cd(l2 + ‖χl‖2
∞)

≤ Cd l
2 exp

(
(6d + 4)Osc(U)

)
where in the last inequality the theorem B.2.1 has been used Moreover, by periodicity∫

B(x0,1)
φ2dx ≤

∫
T d
1

φ2dx

and by the Poincaré inequality ∫
T d
1

φ2dx ≤ Cd

∫
T d
1

|∇φ|2dx

but

1
2

∫
T d
1

|∇φ|2mU(dx) = −
∫
T d
1

φlLUφlmU (dx)

= −
∫
T d
1

φl
(|l −∇χl|2 −

∫
T d
1

|l −∇χl|2mU (dy)
)
mU(dx)

≤ 2‖φl‖∞
∫
T d
1

|l −∇χl|2mU (dy)

And since

‖φl‖∞ ≤ max
x∈[0,1]d

|Fl(x)|2 + max
x0∈[0,1]d

|ψl(x)|

one obtains

‖φl‖∞ ≤ Cd l
2 exp

(
(9d+ 4)Osc(U)

)
+ Cd|l| exp

(
3dOsc(U)

)‖φl‖ 1
2∞

and since ⎧⎪⎨
⎪⎩
x2 ≤ a+ bx

x ≥ 0
a, b > 0

⇒ x ≤ −b+
√
b2 + 4a
2

⇒ x2 ≤ (b2 + 4a)

One obtains

‖φl‖∞ ≤ Cd exp
(
(9d + 4)Osc(U)

)|l|2

Then the bound B.41 results from an application of the lemma B.1.1 and an optimization on the
choice of ρ.
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B.2.2 Scaling Behavior

Let U ∈ C∞(T d1 ), l ∈ R
d

and χl ∈ C∞(T d1 ) and φl ∈ C∞(T d1 ) be the solutions of B.34 and B.39 For R > 0 write

V (x) = U(
x

R
)

χl,R(x) = Rχl(
x

R
)

φl,R(x) = R2φl(
x

R
)

Then by a straightforward computation

Lemma B.2.1.

(
1
2
Δ−∇V.∇)χl,R = −l.∇V

(
1
2
Δ−∇V.∇)φl,R = |l −∇χl,R|2 −

∫
T d
1

|l −∇χl,R|2mU (dx)



C. PROBABILISTIC TOOLS

C.1 Thermodynamics and mixing tools

The purpose of this section is to apply the thermodynamic formalism and the theory of level 3-large
deviations to a particular case. For an introduction to the subject see [Rue78], [Ell85] and [Kel98].
The main result is the following theorem

Theorem C.1.1. Let V ∈ Cα(T d1 ) (Hölder continuous with exponent α > 0). Let R ∈ N. Then

lim
n→∞

1
n

ln
∫
T d
1

exp
( n−1∑
k=0

V (Rkx))dx = PR(V ) (C.1)

Where PR is the pressure associated to the scaling shift induced by R on the torus, it will be
studied and characterized below.
One of the useful property of this pressure, is given in the following theorem

Theorem C.1.2. Let V ∈ C(T d1 ), and PR the pressure associated to the shift induced by R ∈ N.
Then

P(V ) + P(−V ) ≥ 0 (C.2)

and

P(V ) + P(−V ) = 0 ⇔ [
V −

∫
T d
1

V
] ∈ ISR

(T d1 ) (C.3)

Where ISR
(T d1 ) is the closed subspace of C(T d1 ) generated by the elements U(x) − U(Rkx) with

U ∈ C(T d1 ) and k ∈ N (defined in subsection C.1.2).

C.1.1 Level-3 Large Deviation

Let R ∈ N/0, 1 and define the shift operator sR acting the torus T d1 by

sR : T d1 −→ T d1

x −→ Rx
(C.4)

To sR is associated a scaling operator SR acting on the periodic continuous functions on T d1

SR : C(T d1 ) −→ C(T d1 )(
x→ f(x)

) −→ (
x→ f(sRx) = f(Rx)

) (C.5)

Thus one can see the torus as a shift space equipped with the transformation sR

sR : T d1 −→ T d1

x =
∞∑
k=1

xk

Rk
−→ Rx =

∞∑
k=1

xk+1

Rk
(C.6)
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where for each k, xk is a vector in B = {0, 1, . . . , R− 1}d and for each i ∈ {1, . . . , d} ∑∞
k=1

xk
i

Rk is the
expression of xi in base R (xki ∈ {0, . . . , R− 1})
Gift B with the discrete topology and BN

∗
with the product topology. Write ν the probability

measure on B affecting identical weight 1/Rd to each element of B and write Pν the associated
product measure on BN

∗
.

Then, with respect to the probability space
(
BN∗

,B(BN∗
),Pν

)
the coordinate representation process

x = (x1, . . . , xp, . . . ) is a sequence of i.i.d. random variables distributed by ν. When x is seen as
an element of the torus T d1 then the probability measure induced by ν on the torus is the Lebesgue
measure.
Now define the empirical measure En associated to the process x by

En(x, .) =
1
n

n−1∑
k=0

δsk
R cycle(x,n) (C.7)

where cycle(x, n) is the periodic point in BN
∗

obtained by repeating (x1, . . . , xn) periodically. For
each x, En(x, .) is an element of the space M(BN∗

) of measures on BN∗
and invariant by the shift

sR.
Then {Q(3)

n }, the Pν distribution on M(BN∗
) of the empirical process {En} have a large deviation

property (see for instance [Ell85], theorem 9.1.1) with speed n and entropy function I
(3)
ν such that

for P ∈M(BN∗
)

I(3)
ν =

∫
BN∗

I(2)
ν (P̃ )dP (C.8)

where P̃ denotes the marginal distribution of x1 associated to P and I
(2)
ν is the relative entropy of

P̃ with respect to ν

I(2)
ν (μ) =

∫
B

ln
dμ

dν
dμ (C.9)

Now chose V ∈ C(T d1 ), Hölder continuous with exponent α. Since {Q(3)
n } have a large deviation

property by Varadhan’s theorem

lim
n→∞

1
n

ln
∫
T d
1

exp
(
nEn(x, V )

)
dx = PR(V ) (C.10)

Where PR(V ) is the pressure of V and is given by the following variational formula:

PR(V ) = sup
P∈MsR

(BN∗ )

{
∫
V dP − I(3)

ν (P )} (C.11)

where MsR
(BN

∗
) is the space of measures on BN

∗
invariant by the shift sR.

Now since V is Hölder continuous

|nEn(x, V )−
n−1∑
k=0

V (Rkx)| ≤
n−1∑
k=0

(
Cd
Rn−k

)α

≤ C(d, α)
∞∑
k=0

1
Rkα

≤ C(d, α,R) <∞
(C.12)

It follows from C.10 that

lim
n→∞

1
n

ln
∫
T d
1

exp
( n−1∑
k=0

V (Rkx))dx = PR(V ) (C.13)
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C.1.2 A reminder on the Pressure

C.1.2.i Basic Properties

The following basic properties of the pressure can be found in [Kel98] theorem 4.1.10. (except the
first one, note that the definition of the pressure given here differs from the standard one of the
topological pressure by a constant which is d lnR)

• PR(0) = 0

• PR is a convex function on the space of upper semi continuous functions on the torus to [−∞,∞)

• PR is isotonic: U ≤ V ⇒ PR(U) ≤ PR(V )

• For U and V upper semi-continuous |PR(U + V )− PR(U)| ≤ ‖V ‖∞
• For U upper semi-continuous, V continuous on the torus and k ∈ N

PR(U + SkRV − V ) = PR(U) (C.14)

and hence PR(U + SkRV ) = PR(U + V )

C.1.2.ii Strict convexity of the pressure

Write ISR
(T d1 ) the closed subspace of C(T d1 ) generated by the elements V − SkRV with V ∈ C(T d1 )

and k ∈ N. Write [U ] the equivalence class of U , then by the proposition 4.7 of [Rue78] the function

PR : C(T d1 )/ISR
(T d1 ) −→ [−∞,+∞)
[U ] −→ PR(U)

(C.15)

is well defined on the set of equivalence classes induced by ISR
(T d1 ) on C(T d1 ). Moreover it is strictly

convex on the subset

{[U ] ∈ C(T d1 )/ISR
(T d1 ) :

∫
T d
1

U(x)dx = 0} (C.16)

In other words, for U, V ∈ C(T d1 )

W ∈ ISR
(T d1 ) ⇒ PR(U +W ) = PR(U) (C.17)

And for 0 < t < 1

tPR(U) + (1− t)PR(V ) =PR(tU + (1− t)V )

⇔
[
U − V −

∫
T d
1

(U − V )
]
∈ ISR

(T d1 )
(C.18)

C.1.3 Gibbs measure

Let U ∈ Cα(T d1 ) (α > 0) then U induces a regular local energy function and there exists a unique
shift-invariant ergodic measure μU minimizing the variational formulation C.11 of the pressure P(U)
(see corollary 5.3.2 of [Kel98]). This measure is called equilibrium state and is a Gibbs measure (see
[Kel98] chapter 5).
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C.1.4 A functional mixing property

In the subsection a technical functional mixing lemma will be introduced,it is quite simple but will
proves efficient and useful when it will be combined to a cohomological framework to deduce sharp
estimates on the effective diffusivities in a multi-scale medium.
First define the translation operator θy (y ∈ R

d) acting the torus T d1 by

θy : T d1 −→ T d1

x −→ x+ y
(C.19)

To θy is associated a translation operator Θy acting on the space of continuous periodic functions.

Θy : C(T d1 ) −→ C(T d1 )(
x→ f(x)

) −→ (
x→ f(θyx) = f(x+ y)

) (C.20)

Then the following link the mixing property of the scaling operator SR with the translation operator
Θ

Lemma C.1.1. Let (g, f) ∈ (
C(T d1

)2 and R ∈ N
∗ Then∫

T d
1

g(x)SRf(x)dx =
∫
T d
1

g(x)dx
∫
T d
1

f(x)dx

+
∫∫ (

T d
1

)2
ΘySRf(z)

(
Θ y

R
g(z) − g(z))

)
dy dz

(C.21)

Proof. By a straightforward computation∫∫ (
T d
1

)2
f(Rz + y)

(
g(z +

y

R
)− g(z))

)
dy dz

=
∫
y∈T d

1

dy

∫
z∈T d

1

f(Rz + y)g(z +
y

R
)dz

−
∫
z∈[0,1]d

g(z)dz
∫
y∈T d

1

f(Rz + y)dy

=
∫
T d
1

g(x)f(Rx)dx−
∫
T d
1

g(x)dx
∫
T d
1

f(x)dx

In the last equality the periodicity of the functions has been used. Thus∫
T d
1

g(x)f(Rx)dx =
∫
T d
1

g(x)dx
∫
T d
1

f(x)dx

+
∫∫ (

T d
1

)2
f(Rz + y)

(
g(z +

y

R
)− g(z))

)
dy dz

From this lemma, the following corollary directly follows.

Corollary C.1.1. Let (g, f) ∈ (
C1(T d1

)2 and R ∈ N
∗ Then for α ∈ (0, 1]

∣∣∣ ∫
T d
1

g(x)SRf(x)dx−
∫
T d
1

g(x)dx
∫
T d
1

f(x)dx
∣∣∣ ≤ ‖g‖α

Rα

∫
T d
1

∣∣f ∣∣dx (C.22)

with ‖g‖α = supx �=y |g(x) − g(y)|/|x − y|α
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Corollary C.1.2. Let g, f, V, T ∈ C1(T d1 and R ∈ N
∗ Then for α ∈ (0, 1] and U = SRV + T

mU (g(SRf)) =mV (f)mT (g)

+
mV (|f |)
Rα

e2Osc(T )(4‖g‖∞‖∇T‖∞ + ‖g‖α)
(C.23)

Proof. Observe that

mU (g(SRf)) = mV (f)mT (g)

∫
T d
1
e−2V dx

∫
T d
1
e−2Tdx∫

T d
1
e−2Udx

+
I1
Rα

with

I1 ≤ mV (|f |)‖ge−2T ‖α
∫
T d
1
e−2V dx∫

T d
1
e−2Udx

but it follows from the corollary C.1.1 that

∣∣∣
∫
T d
1
e−2V dx

∫
T d
1
e−2Tdx∫

T d
1
e−2Udx

− 1
∣∣∣

≤ 2
R
‖∇T‖∞e2Osc(T )

(C.24)

observe also that

‖ge−2T ‖α ≤ e−2 inf T (‖g‖α + 2‖∇T‖∞‖g‖∞)

it follows that

mU (g(SRf)) = mV (f)mT (g) +
mV (|f |)
Rα

e2 Osc(T )(4‖g‖∞‖∇T‖∞ + ‖g‖α)

Corollary C.1.3. Let f, g ∈ C∞(T 1
1 ) and φ ∈ C∞(R) such that f, g, φ > 0. Let R ∈ N

∗.

∣∣∫ x0 g(y)f(Ry)φ(y)dy∫ 1
0 g(y)f(Ry)dy

−
∫ x
0 g(y)φ(y)dy∫ 1

0 g(y)dy
∫ 1
0 f(y)dy

∣∣ ≤ I

R
(C.25)

with

I =

∫ x
0 g(y)φ(y)dy∫ 1

0 g(y)dy
2
‖∇g‖∞
inf g

+
2
R

( sup
y∈[x−1/R,x]

φ(y))
supφ
inf φ

+ 2
‖∇g‖∞
inf g

[Rx]−1∑
k=0

sup
y∈[0,1]

φ(
k

R
+
y

R
) + ‖∇g‖∞

[Rx]−1∑
k=0

sup
y∈[0,1]

|∇φ(
k

R
+
y

R
)|

Proof. Let x ∈ R, observe that

∫ x

0
g(y)f(Ry)φ(y)dy =

∫ [xR]
R

0
g(y)f(Ry)φ(y)dy +

∫ x

[xR]
R

g(y)f(Ry)φ(y)dy

But

∫ [xR]
R

0
g(y)f(Ry)φ(y)dy =

[xR]
R

∫ 1

0
f(Rz)g(z)φ(z)dz



C. Probabilistic Tools 286

Note also that, by the corollary C.1.1

∣∣ 1∫ 1
0 g(y)f(Ry)dy

− 1∫ 1
0 g(y)dy

∫ 1
0 f(y)dy

∣∣ ≤ 1
R

2‖∇g‖∞∫ 1
0 g(y)f(Ry)dy

∫ 1
0 g(y)dy

It follows by the corollary C.1.1 after some straightforward computation that

∣∣∫ x0 g(y)f(Ry)φ(y)dy∫ 1
0 g(y)f(Ry)dy

−
∫ x
0 g(y)φ(y)dy∫ 1

0 g(y)dy
∫ 1
0 f(y)dy

∣∣ ≤ I

R

with

I =

∫ x
0 g(y)φ(y)dy∫ 1

0 g(y)dy
2
‖∇g‖∞
inf g

+
2
R

( sup
y∈[x−1/R,x]

φ(y))
supφ
inf φ

+ 2
‖∇g‖∞
inf g

[Rx]−1∑
k=0

sup
y∈[0,1]

φ(
k

R
+
y

R
) + ‖∇g‖∞

[Rx]−1∑
k=0

sup
y∈[0,1]

|∇φ(
k

R
+
y

R
)|

Corollary C.1.4. Let f, g ∈ C∞(T 1
1 ). Let R ∈ N

∗.

∣∣ ∫ x

0
g(y)f(Ry)dy −

∫ x

0
g(y)dy

∫ 1

0
f(y)dy

∣∣ ≤ I

R
(C.26)

with

I = ‖f‖∞(2‖g‖∞ + |x|‖∇g‖∞)

Proof. Let x ∈ R, observe that

∫ x

0
g(y)f(Ry)dy =

∫ [xR]
R

0
g(y)f(Ry)dy +

∫ x

[xR]
R

g(y)f(Ry)dy

But
∫ [xR]

R

0
g(y)f(Ry)dy =

[xR]
R

∫ 1

0
f(Rz)g(z)dz

Then the result follows by the corollary C.1.1 after some straightforward computation.

C.2 Smooth pre-fractal measure

In the section the notion of smooth pre-fractal measure will be introduced and analyzed (this name
is given according the name ”Sierpinski pre-Carpet” introduced by H. Osada). It will constitute the
medium on which the sub-diffusions will take place, this medium will also be called a smooth periodic
pre-fractal.

C.2.1 Definitions

Definition C.2.1. A smooth pre-fractal measure is a collection {(rn, Un)n∈N} where for each n,
rn ∈ N/{0, 1} and Un ∈ C∞(T d1 ) such that Un(0) = 0 and

K1 = sup
n∈N

‖∇Un‖∞ <∞ (C.27)

Which implies that K0 = supn Osc(Un) <∞
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Write ρmin = minn≥1 rn and ρmax = sup rn ≤ ∞.
A smooth pre-fractal measure will be written SPFM(ρmin, ρmax,K1).
It induces a potential of order −p (where p ∈ N)

U−p(x) =
∞∑
n=0

Un(
Rpx

Rn
) (C.28)

(where Rn =
∏n
k=0 rk) which is a well defined function in C∞(Rd).

• A SPFM will be said ”with bounded ratio” if ρmax <∞.

• A SPFM will be said self-similar if for all n, rn = ρ and Un = U0 ∈ C∞(T d1 ).

C.2.2 Properties of the measures induced by a SPFM

C.2.2.i Mixing properties

It is natural to associate the potential of order −p induced by a SPFM with the measure on R
d:

mU−p =
e−2U−p(x)dx∫

T d
1
e−2U−p,0(x)dx

(C.29)

where for k ∈ Z, k ≥ −p

U−p,k =
k+p∑
n=0

Un(
Rpx

Rn
) (C.30)

Now by the Corollary C.1.1 and by a simple induction one obtains easily the following proposition.

Proposition C.2.1.

∫
T d
1

e−2U−p,0(x)dx ≤
∫
T d
1

e−2U0(x)dx

p∏
k=1

[ ∫
T d
1

e−2Uk(x)dx(1 +
2K1e

2K0

rk
)
]

(C.31)

and for ρmin > 2K1e
2K0

∫
T d
1

e−2U−p,0(x)dx ≥
∫
T d
1

e−2U0(x)dx

p∏
k=1

[ ∫
T d
1

e−2Uk(x)dx(1 − 2K1e
2K0

rk
)
]

(C.32)

C.2.2.ii Growth rate

It is then interesting to investigate on the growth rate of this measure. More precisely

Definition C.2.2. The Growth rate at infinity of a measure μ on R
d is the segment [d∞f,min(μ), d∞f,max(μ)]

where

d∞f,min(μ) = lim inf
r→∞

μ(B(0, r))
ln r

(C.33)

d∞f,max(μ) = lim sup
r→∞

μ(B(0, r))
ln r

(C.34)
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Now it is easy to see that the growth rate at infinity of mU−p is independent of the order −p
thus it will be sufficient to investigate the growth rate at infinity of mU0 . Now by a straightforward
computation for r ≥ 10

lnm0
U(B(0, r))
ln r

= d+
ln
∫
T d
1

exp(−2U−n(r),0(x))dx

ln r
+
C(d,K1, ρmin)

ln r
(C.35)

where

n(r) = sup{n ∈ N : Rn ≤ r} (C.36)

It follows that

d∞f,min(m
0
U ) = d+ lim inf

r→∞
ln
∫
T d
1

exp(−2U−n(r),0(x))dx

ρ(r)n(r)
(C.37)

d∞f,min(m
0
U ) = d+ lim sup

r→∞

ln
∫
T d
1

exp(−2U−n(r),0(x))dx

ρ(r)n(r)
(C.38)

where

ρ(r) =
ln r
n(r)

(C.39)

is the geometric mean ratio between scales at the length r.
It follows immediately that ρ(r) →∞ imply d∞f,max(m

0
U ) = d∞f,min(m

0
U ) = d.

Moreover by the proposition C.2.1,

d∞f,min(m
0
U ) ≥ d+ lim inf

r→∞

∑n(r)
k=1 ln

[ ∫
T d
1
e−2Uk(x)dx

]
n(r)ρ(r)

+
ln(1− 2K1e2K0

ρmin
)

ρ(r)
(C.40)

and if ρmin > 2K1e
2K0

d∞f,max(m
0
U ) ≥ d+ lim inf

r→∞

∑n(r)
k=1 ln

[ ∫
T d
1
e−2Uk(x)dx

]
n(r)ρ(r)

+
ln(1 + 2K1e2K0

ρmin
)

ρ(r)
(C.41)

Growth rate at infinity of the measure associated to a self-similar SPFM From the equations
C.37 and C.38 and the theorem C.1.1 it follows that for a self-similar SPFM.

d∞f,max(m
0
U ) = d∞f,min(m

0
U ) = d∞f (m0

U ) = d+
P(−2U0)

ρ
(C.42)

Note that this definition of growth rate at infinity dimension is not invariant under a translation of
U0 (indeed under a translation by Θy, U0 should be modified to x → U0(x + y) − U0(y) so that U0

is well defined). It is interesting to note that the value of d∞f (m0
U ) is fixed by the necessity of e−2U0

to be a well defined density measure but it can be greater than the dimension of the space.
Thus d∞f (m0

U ) is not translation invariant and one can have d∞f (m0
U ) > d (be careful if you try to

link it with a sort of Hausdorff fractal dimension of the pre-fractal).
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C.2.3 Growth rate at 0

One might think, well this definition of df that gives back a value that can be greater than d is
unsatisfactory, and may be by looking at the growth rate at 0 of the torus one might obtain a better
characterization, this is the object of this subsection.
The natural way to define a growth rate at 0 is to consider the measure mU−p,0 on the torus T d1 ,
observe that this measures are invariant if one add to each Un a different constant cn, then define
the growth rate at 0 at the point x by the segment [d0

f,x,min, d
0
f,x,max] by for 0 < α < 1

d0
f,x = lim

p→∞

− ln
(
mU−p,0

(
B(x, 1

R[pα]
)
))

lnR[pα]
(C.43)

Proposition C.2.2. d0
f,x does not depend on 0 < α < 1 and

d0
f,x,min = d+ lim inf

r→∞
ln
∫
T d
1
e−2

(
U−n(r),0(y)−U−n(r),0(x)

)
dy

ρ(r)n(r)
(C.44)

d0
f,x,max = d+ lim sup

r→∞

ln
∫
T d
1
e−2

(
U−n(r),0(y)−U−n(r),0(x)

)
dy

ρ(r)n(r)
(C.45)

Proof. Easy to check.

This proposition says that the growth rate at 0 at the point 0 is the same that the growth rate at
infinity at the point 0, moreover it depends on the point x and d0

f,x,max can be greater than d. Thus
the growth rate at 0 does suffer from the same pathology.

C.2.4 From a SPFM to a fractal measure

The purpose of this subsection is to investigate on the following problem: how to build a fractal
measure on the torus from a given smooth pre fractal measure.

C.2.4.i Completion of a self similar SPFM

If the SPFM is self similar the problem is easy and there are basically two ways: The first one is to
consider the sequence (mU−p,0)p∈N of probability measures on the torus T d1 , where

mU−p,0 =
e−2U−p,0(x)dx∫
T d
1
e−2U−p,0(x)dx

(C.46)

Since the torus is compact this sequence of measures in tight and one can extract a subsequence
converging to a measure on the torus and call fractal measure the limit.
The second one is to consider the sequence (mU−p,+∞)p∈N of probability measures on the cube R

d,
where

mU−p,+∞ =
e−2U−p,+∞(x)dx∫
T d
1
e−2U−p,0(x)dx

(C.47)

This sequence of measures in tight and one can extract a subsequence converging to a measure on
the each compact subset of R

d and call fractal measure the limit.
Unicity problems will be studied in a sequel work.
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C.2.4.ii Completion of a non self similar SPFM

In this case the problem is more serious because it requires an a priori choice. Indeed the first way
would be to consider the sequence mU−p,0 on the torus, this sequence is tight and one can call fractal
measure the limits of converging subsequences. It is easy to see that with this method the limits
are not unique because the scale of order 0 is always changing. The same pathology happens if on
consider the sequence of probability measures mU−p,∞ on the unit cube [0, 1]d

The alternative way to avoid this pathology would be to complete the non self similar SPFM by
smaller scales (U−k)k∈N∗ (U−k ∈ C∞(T d1 )) and (r−k)k∈N∗ , (r−k)k∈N∗ . Then write

1
R−k

= r−1 . . . r−k (C.48)

and

V −m,p =
p∑

k=−m
Uk(

x

Rk
) (C.49)

then consider the measure

mV −p,0 =
e−2V −p,0(x)dx∫
T d
1
e−2V −p,0(x)dx

(C.50)

on the torus T d1 or the measure

mV −p,+∞ =
e−2V −p,+∞(x)dx∫
T d
1
e−2V −p,0(x)dx

(C.51)

on Rd. With theses choices the obstacle of order 0, −1, . . . ,−k does not change for p ≥ k, as usual
one can extract subsequences and call fractal measure the limit measure. The unicity problem is
postponed to a sequel work.

C.3 Control induced by the linearity of harmonic functions

C.3.1 Quasi-harmonic functions

C.3.1.i Perturbation of the mean squared displacement

Let U, T ∈ C∞(Rd) be smooth potentials with bounded gradient. Write V = U + T and yt the
diffusion associated to the generator LV .

Lemma C.3.1. Assume that FU is smooth and harmonic with respect to LU and ∇FU is bounded.
Then

E[F 2
U (yt)] ≤ 2E[

∫ t

0
|∇FU (ys)|2ds]et‖∇T‖2∞ (C.52)

Proof. Observe that LV FU = −∇T∇FU . It follows by the Ito formula that

E[F 2
U (yt)] = E[

∫ t

0
|∇FU (ys)|2ds]− 2E[

∫ t

0
(FU∇T∇FU)(ys)ds]

≤ E[
∫ t

0
|∇FU (ys)|2ds] + 2‖∇T‖∞

[ ∫ t

0
E[F 2

U (ys)]ds
] 1

2
[ ∫ t

0

E[|∇FU (ys)|2]ds
] 1

2

≤ 2E[
∫ t

0
|∇FU (ys)|2ds] + ‖∇T‖2

∞E[
∫ t

0
F 2
U (ys)ds]
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It follows by Gronwall lemma that

E[F 2
U (yt)] ≤ 2E[

∫ t

0
|∇FU (ys)|2ds]et‖∇T‖2∞

Lemma C.3.2. Under the assumptions of the lemma C.3.1, for t > 0

E[F 2
U (yt)] ≥ (

1
2
− t‖∇T‖2

∞)E[
∫ t

0
|∇FU (ys)|2ds] (C.53)

Proof. Observe that

FU (yt) =
∫ t

0
∇FU (ys)dωs −

∫ t

0
∇T∇FU (ys)ds

It follows that

E[F 2
U (yt)] ≥ 1

2
E[
( ∫ t

0
∇FU (ys)dωs

)2]− t‖∇T‖2
∞E[

∫ t

0
|∇FU (ys)|2ds]

≥ (
1
2
− t‖∇T‖2

∞)E[
∫ t

0
|∇FU (ys)|2ds]

Which finishes the proof

C.3.1.ii Control induced by the linearity of harmonic functions and the quadradicity of ergodic
functions

Let W ∈ C∞(T dRW
) of period RW ∈ N/0, 1. Let T ∈ C∞(Rd) with bounded gradient and write

V = W + T and yt the potential diffusion associated to LV . Assume that for l ∈ S
d there exists

χUl , χ
P
l ∈ C∞(T dRW

),
Cχ1 , C

χ
2 , C

U , Cφ1 , C
φ
2 , ζ1, ζ2, RP > 0 such that

χWl = χUl + χPl (C.54)

and

Cχ1 x
2 ≤

d∑
i=1

(xi − χPei
)2 ≤ Cχ2 x

2 (C.55)

‖χUl ‖∞ ≤ RW
RP

CU (C.56)

and for all t > 0

d∑
i=1

E[
∫ t

0
|∇FWei

|2(ys)ds] ≤ ζ2λmax

(
D(W )

)
t+

R2
W

R2
P

Cφ2 (C.57)

d∑
i=1

E[
∫ t

0
|∇FWei

|2(ys)ds] ≥ ζ1λmax

(
D(W )

)
t− R2

W

R2
P

Cφ1 (C.58)

then
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Lemma C.3.3. Under the assumptions C.54, C.55, C.56, C.57 and C.58 for t > 0

E[y2
t ] ≤

2d
Cχ1

(RW
RP

CU
)2 +

4
Cχ1

et‖∇T‖
2∞
(
ζ2λmax

(
D(W )

)
t+

R2
W

R2
P

Cφ2

)
(C.59)

and for 2t‖∇T‖2∞ < 1

E[y2
t ] ≥

1
2Cχ2

(
1
2
− t‖∇T‖2

∞)
(
ζ1λmax

(
D(W )

)
t− R2

W

R2
P

Cφ1

)
− d

Cχ2

(RW
RP

CU
)2 (C.60)

Proof. Upper bound: by the lemma C.3.1, for t > 0

d∑
i=1

E[|FWei
|2(yt)] ≤ 2

(
ζ2λmax

(
D(W )

)
t+

R2
W

R2
P

Cφ2

)
et‖∇T‖

2∞ (C.61)

Now by the assumptions C.54, C.55 and C.56:

d∑
i=1

E[|FWei
|2] =

d∑
i=1

(
xi − χPei

− χUei

)2

≥
d∑
i=1

(1
2
(
xi − χPei

)2 − ‖χU‖2
ei

)

≥ Cχ1
2
x2 − d

(RW
RP

CU
)2

Thus

E[y2
t ] ≤

2d
Cχ1

(RW
RP

CU
)2 +

4
Cχ1

et‖∇T‖
2∞
(
ζ2λmax

(
D(W )

)
t+

R2
W

R2
P

Cφ2

)
(C.62)

Lower bound: by the lemma C.3.2

d∑
i=1

E[|FWei
|2(yt)] ≥ (

1
2
− t‖∇T‖2

∞)
(
ζ1λmax

(
D(W )

)
t− R2

W

R2
P

Cφ1

)
(C.63)

Now by the assumptions C.54, C.55 and C.56:

d∑
i=1

E[|FWei
|2] =

d∑
i=1

(
xi − χPei

− χUei

)2

≤
d∑
i=1

2
((
xi − χPei

)2 + ‖χU‖2
ei

)

≤ 2Cχ2 x
2 + 2d

(RW
RP

CU
)2

It follows that

E[y2
t ] ≥

1
2Cχ2

(
1
2
− t‖∇T‖2

∞)
(
ζ1λmax

(
D(W )

)
t− R2

W

R2
P

Cφ1

)
− d

Cχ2

(RW
RP

CU
)2 (C.64)
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C.4 Control induced on the upper bound of the transition probability densities

Lemma C.4.1. Let X be a positive bounded random variable, μ > 0 and λ > 0
Then

E[exp(μ
√
X)] ≤ 1 + μ exp(

μ2

4λ
)
√
π

λ
E[exp(λX)]

Proof. Observe that

E[exp(μ
√
X)] =

∫ ∞

0
exp(μ

√
x)dP(X ≥ x)

= [exp(μx)P(X ≥ x)]+∞
0 +

∫ +∞

0
μ

exp(μ
√
x)

2
√
x

P(X ≥ x)dx

≤ 1 +
∫ +∞

0
μ

exp(μ
√
x)

2
√
x

E[exp(λ(X − x))]dx

≤ 1 + E[exp(λX)]
∫ +∞

0
μ exp(μy − λy2)dy

But

exp(μy − λy2) = exp
(− (

√
λy − μ

2
√
λ

)2
)
exp(

μ2

4λ
)

So ∫ +∞

0
exp(μy − λy2) ≤

∫ +∞

−∞
exp(−λy2)

≤ exp(
μ2

4λ
)
√
π

λ

Which proves the lemma

C.4.1 A General Lemma

Let W ∈ C∞(T dRW
) of period RW ∈ N/0, 1. Let T ∈ C∞(Rd) with bounded gradient and write V =

W + T and yt the potential diffusion associated to LV . Assume that there exists Cφ2 , ζ2, RP > 0, Cχ

such that for l ∈ S
d and for all t > 0 and all x ∈ R

d

Ex[
∫ t

0
|∇FWl |2(ys)ds] ≤ ζ2

tlD(W )lt+
R2
W

R2
P

Cφ2 (C.65)

‖χWl ‖∞ ≤ CχRW (C.66)

Lemma C.4.2. Assume that

CχRW ≤ h/2 (C.67)

‖∇T‖∞23
(
ζt2lD(W )l

) 1
2 ≤ h

t
≤ RP

RW

√
Cφ2

ζ2
tlD(W )l (C.68)

and

RP

RW

√
Cφ2

ζ2
tlD(W )le

− h2

211ζ2
tlD(W )lt ≤ h

t
(C.69)

then

P[l.yt ≥ h] ≤ Ce
− h2

29ζ2
tlD(W )lt (C.70)
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Proof. Let l ∈ Sd and λ > 0, then for h > 0

P[l.yt ≥ h] ≤ E[eλ(l.yt−h)]

Observe that

l.yt = χWl (yt) +
∫ t

0
∇FWl (ys)dωs −

∫ t

0
∇T.∇FWl (ys)ds

It follows by the Cauchy Schwartz inequality that

P[l.yt ≥ h] ≤ eλ(CχRW −h)
E[e2λ

∫ t
0 ∇FW

l (ys)dωs ]
1
2 E[e2

√
t‖∇T‖∞λ

( ∫ t
0 |∇FW

l (ys)|2ds
) 1

2

]
1
2

Now by the lemma C.4.1 with X =
∫ t
0 |∇FWl (ys)|2ds, λ′ = 8λ2 and μ′ = 2λ

√
t‖∇T‖∞ it follows that

E[e2
√
t‖∇T‖∞λ

( ∫ t
0
|∇FW

l (ys)|2ds
) 1

2

] ≤ 1 + ‖∇T‖∞
√
tπ

2
e‖∇T‖

2∞t/8
E[e8λ

2
∫ t
0
|∇FW

l (ys)|2ds]

Observe also that as in the proof of the lemma 12.1.1

E[e2λ
∫ t
0
∇FW

l (ys)dωs ] ≤ E[e8λ
2
∫ t
0
|∇FW

l (ys)|2ds]
1
2

It follows that

P[l.yt ≥ h] ≤ Ceλ(CχRW −h)e‖∇T‖
2∞t/4

E[e8λ
2
∫ t
0
|∇FW

l (ys)|2ds]

Now observe that
∫ t
0 ∇FWl (ys)dωs satisfies the conditions of the theorem 12.1.1 with f2 = ζ2

tlD(W )l,

and t0(f1 − f2) = R2
W

R2
P
Cφ2 . It follows that for

8λ2 ≤ R2
P

2eR2
WC

φ
2

(C.71)

E[e8λ
2
∫ t
0
|∇FW

l (ys)|2ds] ≤ CR4
P

e8λ
2ζ2tlD(W )lt

λ4(Cφ2 )2R4
W

and

P[l.yt ≥ h] ≤ Ceλ(CχRW −h)e‖∇T‖
2∞t/4R4

P

e8λ
2ζ2tlD(W )lt

λ4(Cφ2 )2R4
W

assume CχRW < h/2 and choose

λ =
h

32ζ2tlD(W )lt

for

h ≤ RP

RW

√
Cφ2

ζ2
tlD(W )lt (C.72)

the condition C.71 is satisfied and it follows that

P[l.yt ≥ h] ≤ Ce
− h2

27ζ2
tlD(W )lt e‖∇T‖

2∞t/4R
4
P (ζ2tlD(W )lt)4

h4(Cφ2 )2R4
W
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assume now that

‖∇T‖2
∞t ≤

h2

26ζ2tlD(W )lt
(C.73)

it follows that

P[l.yt ≥ h] ≤ Ce
− h2

28ζ2
tlD(W )lt

R4
P (ζ2tlD(W )lt)4

h4(Cφ2 )2R4
W

and under the condition

R2
P (ζ2tlD(W )lt)

R2
WC

φ
2

≤ h2

ζ2tlD(W )lt
e

h2

210ζ2
tlD(W )lt

which is implied by

RP

RW

√
Cφ2

ζ2
tlD(W )le

− h2

211ζ2
tlD(W )lt ≤ h

t
(C.74)

it follows that

P[l.yt ≥ h] ≤ Ce
− h2

29ζ2
tlD(W )lt
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[Tar79] L. Tartar. Compensated compactness and applications to partial differential equations.
In Nonlinear analysis and mechanics: Herriot-Watt symposium IV. Pitman Press,
London, 1979.

[Tom98] Isao Tomita. Anomalous diffusion in a one-dimensional disordered system with random
noise. Physics Letters A, 249:501–504, 1998.

[Tor91] S. Torquato. Random heterogeneous media: Microstructure and improved bounds on
effective properties. Appl. Mech. Rev., 44:37–76, 1991.

[TS99a] M. A. J. Taylor and S. C. Singh. Composition and material properties of magma
chambers from effective medium theory. Technical report, Bullard Laboratories, Dept.
of Earth Sciences, University of Cambridge, 1999.

[TS99b] M. A. J. Taylor and S. C. Singh. Tomoves project progress report - from velocities to
melt. Technical report, Bullard Laboratories, Dept. of Earth Sciences, University of
Cambridge, 1999.

[TuS91] Turbulence and stochastic processes: Kolmogorov’s ideas 50 years on. The Royal Soci-
ety, 1991.

[Var91] N. Varopoulos. Analysis and geometry on groups. In Proceedings of the International
Congress of Mathematicians, Kyoto (1990), volume II, pages 951–957. Springer, 1991.
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