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The Model

PDE in R
d

∂tT + v .∇T = κ∆T

κ > 0. v ∈ (C(Rd))d, div(v) = 0.
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The Model

PDE in R
d

∂tT + v .∇T = κ∆T

κ > 0. v ∈ (C(Rd))d, div(v) = 0.
The stream Matrix

v = div(Γ)

Γ ∈ (C1(Rd))d×d, Γi,j = −Γj,i. vi =
∑d

j=1 ∂jΓi,j.
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Motivations: turbulent flows

M. Rutgers
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The multi scale decomposition

Γ :=
∞
∑

n=0

γn En (
x

ρn
).
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The multi scale decomposition

Γ :=
∞
∑

n=0

γn En (
x

ρn
).

Spatial scale
ρ ∈ R

+,∗;
2 ≤ ρ < ∞
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The multi scale decomposition

Γ :=
∞
∑

n=0

γn En (
x

ρn
).

Eddies geometrical parameters
T

d := Torus of Dimension d and side 1.
∀n, En ∈ (C1(Td))d×d; En;i,j = −En;j,i; En(0) = 0.

sup
n∈N

sup
m,i,j∈{1,...,d}

‖∂mEn;i,j‖∞ ≤ 1
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The multi scale decomposition

Γ :=
∞
∑

n=0

γn En (
x

ρn
).

Circulation rates
γ ∈ R

+,∗;
1 < γ < ρ
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The Spectrum is not Kolmogorov

• v(l) velocity of the eddies of size l

• E(k) The kinetic energy distribution in the
Fourier modes

• Kolmogorov

v(l) ∼ l
1

3 E(k) ∼ k− 5

3

• Our Model

v(l) ∼ l
ln γ
ln ρ

−1 E(k) ∼ k1−2 ln γ
ln ρ

• Kolmogorov → γ = ρ
4

3 Our model γ < ρ
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One scale.
ρn

Stream lines of the flow γnEn(
x
ρn )
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Two scales.
ρn

ρn+1

Stream lines of γnEn(
x
ρn ) and γn+1En+1(

x
ρn+1 ).
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Two scales.

sum

ρn

ρn+1

Stream lines of γnEn(
x
ρn ) + γn+1En+1(

x
ρn+1 ).
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Three scales.

sum

ρn

ρn+1

ρn+2

γnEn(
x
ρn ) + γn+1En+1(

x
ρn+1 ) + γn+2En+2(

x
ρn+2 )
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sum

ρn

ρn+1

ρn+2

γnEn(
x
ρn ) + γn+1En+1(

x
ρn+1 ) + γn+2En+2(

x
ρn+2 )

Modification of the ratio ρ
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sum

ρn

ρn+1

ρn+2

γnEn(
x
ρn ) + γn+1En+1(

x
ρn+1 ) + γn+2En+2(

x
ρn+2 )

Modification of the ratio ρ

Averaging vs Chaos in Turbulent Transport? – p. 11/61



The circulation ratesγk

sum

γn

ρn

γnEn(
x
ρn ) + γn+1En+1(

x
ρn+1 ) + γn+2En+2(

x
ρn+2 )
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The circulation ratesγk

sum

γn

ρn

γnEn(
x
ρn ) + γn+1En+1(

x
ρn+1 ) + γn+2En+2(

x
ρn+2 )
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Ek: Geometry of the eddies

sum

γnEn(
x
ρn ) + γn+1En+1(

x
ρn+1 ) + γn+2En+2(

x
ρn+2 )
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Ek: Geometry of the eddies

sum

γnEn(
x
ρn ) + γn+1En+1(

x
ρn+1 ) + γn+2En+2(

x
ρn+2 )
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A simple example of the
multi-scale flow

d = 2, for all n,

En(x1, x2) =

(

0 h(x1, x2)

−h(x1, x2) 0

)

with h(x1, x2) := cos(2πx1) sin(2πx2)
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h2
0(x, y) =

∑2
k=0 γkh( x

ρk ,
y
ρk)

with
ρ = 2.9,
γ = 1.25
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Another example

h2
0(x, y) =

2
∑

k=0

γkh(
x

ρk
,

y

ρk
)

with ρ = 3, γ = 1.1 and

h(x, y) =2 sin(2πx + 3 cos(2πy − 3 sin(2πx + 1)))

sin(2πy + 3 cos(2πx − 3 sin(2πy + 1)))
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Another example
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Motivations: turbulent flows
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Two opposed descriptions?

• The transport is Superdiffusive, Highly
mixing, self-averaging (Kolmogorov 41, Richardson 26,

Obukhov 41)
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Two opposed descriptions?

• High density gradients, coherent patterns,
sensitive to the geometry of the flow, (Poincaré

08, Landau-Lifshitz 42-85, Ruelle-Takens 71)
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Questions for our model

• The transport is
• Superdiffusive or not?
• Sensitive to the particular geometry of the

flow or not?
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Our results: outline

• We can define a parameter λ− ∈ R
+ from the

characteristics
(

γ, (En)n∈N

)

of our model, ↔
inverse of a local Peclet (Reynolds) number

• if λ− > 0 → superdiffusive + highly mixing +
self-averaging
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Our results: outline

• We can define a parameter λ− ∈ R
+ from the

characteristics
(

γ, (En)n∈N

)

of our model, ↔
inverse of a local Peclet (Reynolds) number

• if λ− > 0 → superdiffusive + highly mixing +
self-averaging

• if λ− = 0 → self-averaging collapses, highly
sensitive, high gradients

Averaging vs Chaos in Turbulent Transport? – p. 22/61



Results

SDE
{

dyt =
√

2κdωt + v(yt)dt

y0 = x

ω standard BM in R
d.
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Results

SDE
{

dyt =
√

2κdωt + v(yt)dt

y0 = x

ω standard BM in R
d.

Exit Time

τ(r) := inf{t > 0 : |yt| ≥ r}
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Initial Distribution

mr(dx) :=
dx

∫

B(0,r) dx
1B(0,r)
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Initial Distribution

mr(dx) :=
dx

∫

B(0,r) dx
1B(0,r)

Mean Exit Time

Emr

[

τ(r)
]

=
1

Vol
(

B(0, r)
)

∫

B(0,r)

Ex

[

τ(r)
]

dx
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One Point Fast Motion

Theorem If λ− > 0 then ∃C(d, 1/λ−, 1/ ln γ) < ∞
such that for ρ > Cγ one has

lim sup
r→∞

1

ln r
ln
(

Emr

[

τ(r)
]

)

< 2
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One Point Fast Motion

Theorem For λ− > 0, ρ > Cγ and r > ρ

Emr

[

τ(r)
]

= r2−ν(r)

ν(r) =
ln γ

ln ρ

(

1 + ǫ(r)
)
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One Point Fast Motion

Theorem For λ− > 0, ρ > Cγ and r > ρ

Emr

[

τ(r)
]

= r2−ν(r)

ν(r) =
ln γ

ln ρ

(

1 + ǫ(r)
)

|ǫ(r)| ≤ 0.5C
γ

ρ
< 0.5
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One Point Fast Motion

Theorem For λ− > 0, ρ > Cγ and r > ρ

Emr

[

τ(r)
]

= r2−ν(r)

ν(r) = ln γ
ln ρ

(

1 + ǫ(r)
)

0 < ln γ
ln ρ
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One Point Fast Motion

Theorem For λ− > 0, ρ > Cγ and r > ρ

Emr

[

τ(r)
]

= r2−ν(r)

ν(r) =
ln γ

ln ρ

(

1 + ǫ(r)
)

Shear flow models: Avellaneda-Majda (91), Glimm-Zhang (92),
Gaudron (00), Komorowski-Fannjiang (01), Ben Arous-Owhadi (01).

Non shear flow, Kraichnan, Gaussian, annealed, one particle:

Piterbarg 97, Komorowski-Olla 02, Fannjiang 02

Averaging vs Chaos in Turbulent Transport? – p. 25/61



Fast Transport as an almost sure
event

Fast transport event

H(r) :=
{

τ(r) ≤ r2−δ
}

with

δ = 0.9
ln γ

ln ρ
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Fast Transport as an almost sure
event

Fast transport event

H(r) :=
{

τ(r) ≤ r2−δ
}

with

δ = 0.9
ln γ

ln ρ

Observe that δ > 0
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Fast Transport as an almost sure
event

Fast transport event

H(r) :=
{

τ(r) ≤ r2−δ
}

with

δ = 0.9
ln γ

ln ρ

Theorem If λ− > 0 then for ρ > Cγ one has

lim
r→∞

Pmr

[

H(r)
]

= 1
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Super-Diffusive two-points
motion

zt second passive tracer

dzt =
√

2κ dω̄t + v(zt) dt.

ω̄t standard BM independent of ωt.

B(0, r, l) :=
{

(y, z) ∈ R
d × R

d : |y − z| < r

and y2 + z2 < l2
}

τ(r, l) := inf{t > 0 : (yt, zt) /∈ B(0, r, l)}
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Super-Diffusive two-points
motion

mr,l(dy dz) :=
dy dz

∫

(y,z)∈B(0,r,l) dy dz
1B(0,r,l).

Theorem
If λ− > 0 then for ρ > Cγ one has

lim sup
r→∞

lim
l→∞

1

ln r
ln
(

Emr,l

[

τ(r, l)
]

)

< 2

lim
l→∞

Emr,l

[

τ(r, l)
]

= r2−ν(r)
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Super-Diffusive two-points
motion

mr,l(dy dz) :=
dy dz

∫

(y,z)∈B(0,r,l) dy dz
1B(0,r,l).

Theorem
If λ− > 0 then for ρ > Cγ one has

lim
r→∞

lim
l→∞

Pmr,l

{

τ(r, l) ≤ r2−δ
}

= 1
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Strong Self Averaging property of
the flow

If λ− > 0

• The particular geometry of the eddies En has
no influence on the transport
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Strong Self Averaging property of
the flow

If λ− > 0

• The particular geometry of the eddies En has
no influence on the transport

• The transport depends only on the power law
ln γ
ln ρ of the velocity field.
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What isλ− ?

• Renormalization procedure.
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A reminder on homogenization

• M := {positive definite symmetric constant
d × d matrices}
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A reminder on homogenization

• M := {positive definite symmetric constant
d × d matrices}

• S(Td) := {skew symmetric d× d matrices with
coefficients in L∞(Td)}.
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A reminder on homogenization

• M := {positive definite symmetric constant
d × d matrices}

• S(Td) := {skew symmetric d× d matrices with
coefficients in L∞(Td)}.

Let (a, E) ∈ M× S(Td)
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A reminder on homogenization

Operator
{

div (a + E(x
ǫ ))∇uǫ(x) = f(x) in Ω

uǫ = 0 in ∂Ω
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A reminder on homogenization

Operator
{

div (a + E(x
ǫ ))∇uǫ(x) = f(x) in Ω

uǫ = 0 in ∂Ω

then ∃σ(a, E) ∈ M such that as ǫ ↓ 0,

uǫ → u0
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A reminder on homogenization

Operator
{

div (a + E(x
ǫ ))∇uǫ(x) = f(x) in Ω

uǫ = 0 in ∂Ω

then ∃σ(a, E) ∈ M such that as ǫ ↓ 0,

uǫ → u0

{

div σ(a, E)∇u0 = f in Ω

u0 = 0 in ∂Ω
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A reminder on homogenization

SDE
dxt = 2

1

2a
1

2 .dωt + div E(xt) dt,
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A reminder on homogenization

SDE
dxt = 2

1

2a
1

2 .dωt + div E(xt) dt,

As ǫ ↓ 0,
ǫxt/ǫ2 → Bt

Bt Brownian Motion with covariance matrix
2σ(a, E).
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A reminder on homogenization

Literature.
• 2σ(a, E): Effective diffusivity

• σ(a, E): Effective conductivity - Eddy
viscosity. Dispersion matrix.
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A reminder on homogenization

Effective conductivity as a mapping

σ : M×S(Td) → M
(a, E) → σ(a, E)
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A reminder on homogenization

Effective conductivity as a mapping

σ : M×S(Td) → M
(a, E) → σ(a, E)

for all (a, E) ∈ M× S(Td)

a ≤ σ(a, E) ≤ a +

∫

Td

tE(x)a−1E(x) dx
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What isλ− ?

Renormalization sequence (An)n∈N

For all n ∈ N, An ∈ M

A0 =
κ

γ
Id and An+1 =

1

γ
σ(An, En)
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What isλ− ?

Renormalization sequence (An)n∈N

For all n ∈ N, An ∈ M

A0 =
κ

γ
Id and An+1 =

1

γ
σ(An, En)

(An)n∈N does not depend on ρ
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What isλ− ?

Renormalization sequence (An)n∈N

For all n ∈ N, An ∈ M

A0 =
κ

γ
Id and An+1 =

1

γ
σ(An, En)

(An)n∈N does not depend on ρ

λ− := lim inf
n→∞

λmin(An)
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Interpretation ofAn

Γn−1(x) :=
n−1
∑

k=0

γkEk(
x

ρk
)
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Interpretation ofAn

Γn−1(x) :=
n−1
∑

k=0

γkEk(
x

ρk
)

Assume ρ ∈ N. Then Γn−1 periodic.

div(κId + Γn−1)∇ Homogen−→ div σ(κId, Γ
n−1)∇
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Interpretation ofAn

Γn−1(x) :=
n−1
∑

k=0

γkEk(
x

ρk
)

Assume ρ ∈ N. Then Γn−1 periodic.

div(κId + Γn−1)∇ Homogen−→ div σ(κId, Γ
n−1)∇

lim
ρ→∞

σ(κId, Γ
n−1) = γnAn
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Interpretation ofAn

Magnitude of the velocity vector field at scale n:

Vn ∼ γn

ρn
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Interpretation ofAn

Magnitude of the velocity vector field at scale n:

Vn ∼ γn

ρn

Local Peclet tensor

Pe
n := Vnρ

n
(

lim
ρ→∞

σ(κId, Γ
n−1)

)−1

Averaging vs Chaos in Turbulent Transport? – p. 36/61



Interpretation ofAn

Magnitude of the velocity vector field at scale n:

Vn ∼ γn

ρn

Local Reynolds tensor

Re
n := Vnρ

n
(

lim
ρ→∞

σ(κId, Γ
n−1)

)−1
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Interpretation ofAn

Magnitude of the velocity vector field at scale n:

Vn ∼ γn

ρn

Local Reynolds tensor

Re
n := Vnρ

n
(

lim
ρ→∞

σ(κId, Γ
n−1)

)−1

An = (Pe
n)−1 = (Re

n)−1
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When isλ− > 0 ?

λ+ := lim sup
n→∞

λmax(An)

µ := lim sup
n→∞

λmax(An)

λmin(An)
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When isλ− > 0 ?

λ+ := lim sup
n→∞

λmax(An)

µ := lim sup
n→∞

λmax(An)

λmin(An)

Theorem

λ+ ≤ Cd

λ− and µ ≤ Cd

(λ−)2

Averaging vs Chaos in Turbulent Transport? – p. 37/61



When isλ− > 0 ?

λ+ := lim sup
n→∞

λmax(An)

µ := lim sup
n→∞

λmax(An)

λmin(An)

Theorem

λ+ ≤ Cd

λ− and µ ≤ Cd

(λ−)2

λ− > 0 ⇒ λ+ < ∞ and µ < ∞
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When isλ− > 0 ?

for ζ > 0

V (ζ) := lim inf
n→∞

λmin

(

σ(ζId, En)
)

ζ
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When isλ− > 0 ?

for ζ > 0

V (ζ) := lim inf
n→∞

λmin

(

σ(ζId, En)
)

ζ

V is decreasing and V ≥ 1 thus

V (0) := lim
ζ↓0

V (ζ)

is well defined.
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When isλ− > 0 ?

for ζ > 0

V (ζ) := lim inf
n→∞

λmin

(

σ(ζId, En)
)

ζ

Theorem If µ < ∞ and γ < V (0) then λ− > 0 and

C1 ≤ λ−λ+ ≤ C2.
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Idea of the Proof.

r

• Ball B(0, r)
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Idea of the Proof.

r

• Ball B(0, r)

• We want to compute
E[τ(0, r)]
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Idea of the Proof.

r

• Ball B(0, r)

• We want to compute
E[τ(0, r)]

• Main feature of the
flow: Infinite number of
scales 0, 1, . . . ,∞
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Separation between scales.

r

ρn(r)

ρn(r)+1

• Scale n(r) = [ln r/ ln ρ]

ρn(r) ≤ r < ρn(r)+1
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Separation between scales.

r

ρn(r)

ρn(r)+1

• Scale n(r) = [ln r/ ln ρ]

ρn(r) ≤ r < ρn(r)+1

• Small scales
0, . . . , n(r) − 1
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Separation between scales.

r

ρn(r)

ρn(r)+1

• Scale n(r) = [ln r/ ln ρ]

ρn(r) ≤ r < ρn(r)+1

• Small scales
0, . . . , n(r) − 1

• Intermediate scales
n(r), n(r) + 1
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Separation between scales.

r

ρn(r)

ρn(r)+1

• Scale n(r) = [ln r/ ln ρ]

ρn(r) ≤ r < ρn(r)+1

• Small scales
0, . . . , n(r) − 1

• Intermediate scales
n(r), n(r) + 1

• Large scales
n(r) + 2, . . . ,∞
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All Scales.

• Medium with infinite
number of scales
0, 1, . . . ,∞.
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All Scales.

• Medium with infinite
number of scales
0, 1, . . . ,∞.

• Transport of a drop of
dye ?
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Transport by Large Scales

• Large scales
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Transport by Large Scales

• Large scales
• Their influence on the

transport of the drop of
dye is
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Transport by Large Scales

• Large scales
• Their influence on the

transport of the drop of
dye is negligible
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Transport by Small Scales

• Small Scales
→ homogenized.
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Transport by Small Scales

• Transport = Diffusion
with Effective diffusivity

σ(κId, Γ
n(r)) ∼ γn(r)An(r)

• Exit Time:

τD(0, r) ∼ r2

γn(r)λ(An(r))

Averaging vs Chaos in Turbulent Transport? – p. 43/61



Transport by Small Scales

• Transport by mix-
ing, density gradients
smoothed.
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Transport by Intermediate Scales

• Intermediate Scales:
not homogenized, not
negligible.
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Transport by Intermediate Scales

• Transport by
convection through
particular geometry.

• Exit time

τC(0, r) ∼ r

Vn(r)
∼ r2

γn(r)
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Transport by Intermediate Scales

• Transport by advec-
tion, density gradients
increased.
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If λ− > 0

Local Peclet number

Pe(r) :=
τC(r)

τD(r)
∼
(

λ(An(r))
)−1
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If λ− > 0

Local Peclet number

Pe(r) :=
τC(r)

τD(r)
∼
(

λ(An(r))
)−1

λ− > 0 ⇒ Pe(r) < ∞ ⇒ At every scale r,
advection (irregularities, high gradients) is
compensated by averaging (smoothing,
dissipating).
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If λ− > 0

Local Peclet number

Pe(r) :=
τC(r)

τD(r)
∼
(

λ(An(r))
)−1

λ− > 0 ⇒ Pe(r) < ∞ ⇒ influence of the
intermediate scales on the transport comparable
to the influence of the small scales.

τ(0, r) ∼ τD(0, r) ∼ r2

γn(r)
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If λ− > 0

Local Peclet number

Pe(r) :=
τC(r)

τD(r)
∼
(

λ(An(r))
)−1

n(r) ∼ ln r
ln ρ .

τ(0, r) ∼ r2

γn(r)
∼ r2−ν

with ν = ln γ
ln ρ > 0.
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If λ− = 0
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If λ− = 0

As r → ∞
Pe(r) → ∞
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If λ− = 0

As r → ∞
Pe(r) → ∞

• At every scale transport dominated by
advection.
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If λ− = 0

As r → ∞
Pe(r) → ∞

• At every scale transport dominated by
advection.

• Collapse of the self-averaging property of the
flow towards chaos.
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If λ− = 0

As r → ∞
Pe(r) → ∞

• At every scale transport dominated by
advection.

• Collapse of the self-averaging property of the
flow towards chaos.

• The particular geometry of the eddies can not
be neglected even if ρ is large.
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Self-Similar Case

Definition
An is self-similar and isotropic iff

• ∀n ∈ N, En = E ; .
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Self-Similar Case

Definition
An is self-similar and isotropic iff

• ∀n ∈ N, En = E ;
• ∀ζ > 0, σ(ζId, E) = λ(ζ)Id.
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Self-Similar Case

Definition
An is self-similar and isotropic iff

• ∀n ∈ N, En = E ;
• ∀ζ > 0, σ(ζId, E) = λ(ζ)Id.

If An is self-similar then it is a low order
dynamical system.

An+1 =
1

γ
σ(An, E)
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Self-Similar Case

Definition
An is self-similar and isotropic iff

• ∀n ∈ N, En = E ;
• ∀ζ > 0, σ(ζId, E) = λ(ζ)Id.

V (0) := lim
ζ↓0

λmin

(

σ(ζId, E)
)

ζ
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Self-Similar Case

Theorem If An is self-similar and isotropic then

• If γ < V (0) then λ− > 0 and
limn→∞ An = ζ0Id where ζ0 is the unique
solution of V (ζ0) = γ.
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Self-Similar Case

Theorem If An is self-similar and isotropic then

• If γ < V (0) then λ− > 0 and
limn→∞ An = ζ0Id where ζ0 is the unique
solution of V (ζ0) = γ.

• If γ = V (0) and (V (0) − V (x))x−p admits a
non ero limit as x ↓ 0 with p > 0 then λ− = 0

and limn→∞
lnλ(An)

lnn = −1
p .
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Self-Similar Case

Theorem If An is self-similar and isotropic then

• If γ < V (0) then λ− > 0 and
limn→∞ An = ζ0Id where ζ0 is the unique
solution of V (ζ0) = γ.

• If γ = V (0) and (V (0) − V (x))x−p admits a
non ero limit as x ↓ 0 with p > 0 then λ− = 0

and limn→∞
lnλ(An)

lnn = −1
p .

• If γ > V (0) then λ− = 0 and

limn→∞
1
n ln λ(An) = ln

(V (0)
γ

)
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Bifurcation

• Flow self similar and
isotropic. for all n,
En = E.

• Shape of the eddy E
over a period.

• 1 < V (0) < ∞.

Averaging vs Chaos in Turbulent Transport? – p. 49/61



Bifurcation

• γ < V (0)

• λ− > 0

• The flow is self averag-
ing
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Bifurcation

• γ ≥ V (0)

• λ− = 0

• The self averaging
property collapses.
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λ− = 0, proof of the collapse

Assume An to be self-similar and isotropic.
Spatial scales ρn → Rn

Γ(x) =
∞
∑

n=0

γnE(
x

Rn
)

ρmin := inf
n∈N

Rn+1

Rn

2 ≤ ρmin
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λ− = 0, proof of the collapse

For y ∈ [0, 1]d

σ(n, y) := σ(κId, Γ
n−1 + γnE(y +

x

Rn
))
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λ− = 0, proof of the collapse

σ(n, y) := σ(κId, Γ
n−1 + γnE(y +

x

Rn
))

• Averaging paradigm ⇒ Relative translation by
y has little influence on σ(n, y)

• for all y,

lim
ρmin→∞

σ(n, y) = lim
ρmin→∞

σ(n, 0)
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λ− = 0, proof of the collapse

σ(n, y) := σ(κId, Γ
n−1 + γnE(y +

x

Rn
))

σ(n, y, ρ) := lim
R1
R0

,...,
Rn−1

Rn−2
→∞ ; Rn

Rn−1
=ρ

σ(n, y)
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λ− = 0, proof of the collapse

σ(n, y) := σ(κId, Γ
n−1 + γnE(y +

x

Rn
))

σ(n, y, ρ) := lim
R1
R0

,...,
Rn−1

Rn−2
→∞ ; Rn

Rn−1
=ρ

σ(n, y)

σ(n, y, ρ) = γn−1σ(An−1, E(ρx) + γE(x + y))
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λ− = 0, proof of the collapse

σ(n, y) := σ(κId, Γ
n−1 + γnE(y +

x

Rn
))

σ(n, y, ρ) := lim
R1
R0

,...,
Rn−1

Rn−2
→∞ ; Rn

Rn−1
=ρ

σ(n, y)

σ(n, y, ρ) = γn−1σ(An−1, E(ρx) + γE(x + y))

If λ− > 0 then l ∈ (Rd)∗ and y ∈ [0, 1]d,

lim sup
n→∞

tlσ(n, y, ρ)l
tlσ(n, 0, ρ)l

< 1 + Cd(ρλ−)−
1

2 .
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λ− = 0, proof of the collapse

σ(n, y) := σ(κId, Γ
n−1 + γnE(y +

x

Rn
))

σ(n, y, ρ) := lim
R1
R0

,...,
Rn−1

Rn−2
→∞ ; Rn

Rn−1
=ρ

σ(n, y)

σ(n, y, ρ) = γn−1σ(An−1, E(ρx) + γE(x + y))

If λ− = 0 then for any ρ > 1 there exists E and
y ∈ [0, 1]d such that for any l ∈ (Rd)∗,

lim
n→∞

tlσ(n, y, ρ)l
tlσ(n, 0, ρ)l

= ∞.
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Two scale flows

SρE(x) = E(ρx)
ΘyE(x) = E(x − y)
As ζ ↓ 0

σ(ζId, SρE + E) ∼ C1ζId.
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Two scale flows

SρE(x) = E(ρx)
ΘyE(x) = E(x − y)
As ζ ↓ 0

σ(ζId, SρE+ΘyE) ∼ C2ζ
1

2Id
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On the nature of Turbulence.

r

The flow at scale r is laminar.
Viscosity κ, velocity V (r) = V0.
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On the nature of Turbulence.

r

perturbation

r

A small perturbation is introduced.
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On the nature of Turbulence.

r

Transport

Diffusion

+

Convection

τD(r): exit time of the perturbation by diffusion
τC(r): exit time of the perturbation by convection
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On the nature of Turbulence.

r

Transport

Diffusion

+

Convection

τD(r) ∼ r2

κ

τC(r) ∼ r
V0
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On the nature of Turbulence.

r r

τD(r) < τC(r)

If τD(r) < τC(r) the perturbation exits by diffusion
and is smoothed before going out of B(0, r).
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On the nature of Turbulence.

r r

τD(r) < τC(r)

⇒ the laminar flow is stable at the scale r
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On the nature of Turbulence.

r r

τD(r) < τC(r)

τD(r) < τC(r) ⇔ r2

κ
<

r

V0
⇔ Re =

rV0

κ
< 1
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On the nature of Turbulence.

r r

τD(r) > τC(r)

If τD(r) > τC(r) the perturbation exits by
convection and propagates.
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On the nature of Turbulence.

r r

τD(r) > τC(r)

⇒ The flow is unstable at the scale r and
fluctuates and this scale.
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On the nature of Turbulence.

r r

τD(r) > τC(r)

τD(r) > τC(r) ⇔ r2

κ
>

r

V0
⇔ Re =

rV0

κ
> 1
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On the nature of Turbulence.

r/ρ r

change of scale

Let’s look at the flow at the scale r/ρ
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On the nature of Turbulence.

r/ρ r

change of scale

The flow is laminar at this scale r/ρ with velocity
V (r/ρ) = V0/γ
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On the nature of Turbulence.

r/ρ r

change of scale

A small perturbation is introduced at the scale
r/ρ
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On the nature of Turbulence.

r r

Iteration

This self similar process is iterated, until the
dissipation scale l is reached.
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On the nature of Turbulence.

r r

Iteration

At the dissipation scale l , τC(l) ∼ τD(l)
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On the nature of Turbulence.

r

σ(r) ∼ rV (r)

The multi-scale structure creates an effective
viscosity σ(r) ∼ rV (r)
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On the nature of Turbulence.

r

σ(r) ∼ rV (r)

τC(r) ∼ r/V (r)

τD(r) ∼ r2/σ(r)

The multi-scale structure stabilizes the flow
since σ(r) ∼ rV (r) ⇒ τD(r) ∼ τC(r)
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On the nature of Turbulence.

r

V (x) = V0(x/r)α

We write γ = ρ1+α
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On the nature of Turbulence.

r

V (x) = V0(x/r)α

ǫ(x) ∼ (V (x))3

x

Kolmogorov α = 1/3

The energy dissipation ǫ(x) at scale x is

σ(x)(V (x)
x )2 ∼ (V (x))3

x
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On the nature of Turbulence.

r

V (x) = V0(x/r)α

ǫ(x) ∼ (V (x))3

x

Kolmogorov α = 1/3

If α > 1/3 the larger eddies are dissipated before
the smaller ones
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On the nature of Turbulence.

r

V (x) = V0(x/r)α

ǫ(x) ∼ (V (x))3

x

Kolmogorov α = 1/3

If α < 1/3 the smaller eddies are dissipated
before the larger ones
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On the nature of Turbulence.

r

V (x) = V0(x/r)α

ǫ(x) ∼ (V (x))3

x

Kolmogorov α = 1/3

The relation σ(x) ∼ xV (x) is at the core of the
Kolmogorov law
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On the nature of Turbulence.

r

V (x) = V0(x/r)α

ǫ(x) ∼ (V (x))3

x

Kolmogorov α = 1/3

In the anisotropic case, the relation
λmax(σ(x))λmin(σ(x)) ∼ x2(V (x))2 restores the
isotropy of the flow.
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On the nature of Turbulence.

r

V (x) = V0(x/r)α

ǫ(x) ∼ (V (x))3

x

Kolmogorov α = 1/3

At the dissipation scale, τC(l) ∼ τD(l) ⇔
l/V (l) ∼ l2/κ

⇔ r/l ∼ (V0r
κ )

3

4
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On the nature of Turbulence.

r

V (x) = V0(x/r)α

ǫ(x) ∼ (V (x))3

x

Kolmogorov α = 1/3

intermittency at the smaller scales
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