Averaging vs Chaos in Turbulent Transport?

Houman Owhadi

owhadi@caltech.edu

CALTECH, Applied and Computational Mathematics, Control and Dynamical Systems.

The Model

PDE in \mathbb{R}^d

$$\partial_t T + v \cdot \nabla T = \kappa \Delta T$$

 $\kappa > 0. v \in (C(\mathbb{R}^d))^d$, $\operatorname{div}(v) = 0.$

Averaging vs Chaos in Turbulent Transport? – p. 2/6

The Model

PDE in \mathbb{R}^d

$$\begin{split} \partial_t T + \underbrace{v} \cdot \nabla T &= \kappa \Delta T \\ \kappa > 0. \ v \in (C(\mathbb{R}^d))^d, \ \operatorname{div}(v) = 0. \\ \end{split}$$

 $\Gamma \in (C^1(\mathbb{R}^d))^{d \times d}, \ \Gamma_{i,j} = -\Gamma_{j,i}, \ v_i = \sum_{j=1}^d \partial_j \Gamma_{i,j}.$

Motivations: turbulent flows

M. Rutgers

$$\Gamma := \sum_{n=0}^{\infty} \gamma^n \quad E_n \ (\frac{x}{\rho^n}).$$

Averaging vs Chaos in Turbulent Transport? - p. 4/

$$\Gamma := \sum_{n=0}^{\infty} \gamma^n \left(\underbrace{E_n}_{\rho^n} \right) \left(\frac{x}{\rho^n} \right).$$

Eddies geometrical parameters $\mathbb{T}^d :=$ Torus of Dimension d and side 1. $\forall n, E_n \in (C^1(\mathbb{T}^d))^{d \times d}; E_{n;i,j} = -E_{n;j,i}; E_n(0) = 0.$

$$\sup_{n \in \mathbb{N}} \sup_{m, i, j \in \{1, \dots, d\}} \|\partial_m E_{n; i, j}\|_{\infty} \le 1$$

Averaging vs Chaos in Turbulent Transport? - p. 4/

$$\Gamma := \sum_{n=0}^{\infty} (\gamma^n) E_n (\frac{x}{\rho^n}).$$

Circulation rates

 $\gamma \in \mathbb{R}^{+,*}$;

The Spectrum is not Kolmogorov

- v(l) velocity of the eddies of size l
- $\mathcal{E}(k)$ The kinetic energy distribution in the Fourier modes
- Kolmogorov

$$v(l) \sim l^{\frac{1}{3}} \qquad \mathcal{E}(k) \sim k^{-\frac{5}{3}}$$

Our Model

$$v(l) \sim l^{\frac{\ln \gamma}{\ln \rho} - 1} \qquad \mathcal{E}(k) \sim k^{1 - 2\frac{\ln \gamma}{\ln \rho}}$$

• Kolmogorov $ightarrow \gamma =
ho^{\frac{4}{3}}$

Averaging vs Chaos in Turbulent Transport? -

Our model $\gamma < \rho$

One scale.

Stream lines of the flow $\gamma^n E_n(\frac{x}{\rho^n})$

Averaging vs Chaos in Turbulent Transport? - p. 6/6

Stream lines of $\gamma^n E_n(\frac{x}{\rho^n})$ and $\gamma^{n+1} E_{n+1}(\frac{x}{\rho^{n+1}})$.

Stream lines of $\gamma^n E_n(\frac{x}{\rho^n})$ + $\gamma^{n+1} E_{n+1}(\frac{x}{\rho^{n+1}})$.

 $\gamma^{n} E_{n}(\frac{x}{\rho^{n}}) + \gamma^{n+1} E_{n+1}(\frac{x}{\rho^{n+1}}) + \gamma^{n+2} E_{n+2}(\frac{x}{\rho^{n+2}})$

 ρ^{n+2} o^{n+1} sum

 $\frac{\gamma^{n}E_{n}\left(\frac{x}{\rho^{n}}\right)}{\text{H}}\gamma^{n+1}E_{n+1}\left(\frac{x}{\rho^{n+1}}\right)} + \frac{\gamma^{n+2}E_{n+2}\left(\frac{x}{\rho^{n+2}}\right)}{\text{Modification of the ratio }\rho}$

 ρ^{n+2} o^{n+1} sum

 $\frac{\gamma^{n}E_{n}\left(\frac{x}{\rho^{n}}\right)}{\text{Modification of the ratio }\rho} + \frac{\gamma^{n+2}E_{n+2}\left(\frac{x}{\rho^{n+2}}\right)}{\gamma^{n+2}E_{n+2}\left(\frac{x}{\rho^{n+2}}\right)}$

The circulation rates γ^k

 $\gamma^{n} \overline{E_{n}(\frac{x}{\rho^{n}})} + \gamma^{n+1} \overline{E_{n+1}(\frac{x}{\rho^{n+1}})} + \gamma^{n+2} \overline{E_{n+2}(\frac{x}{\rho^{n+2}})}$

Averaging vs Chaos in Turbulent Transport? - p. 12/

The circulation rates γ^k

 $\gamma^{n} E_{n}(\frac{x}{\rho^{n}}) + \gamma^{n+1} E_{n+1}(\frac{x}{\rho^{n+1}}) + \gamma^{n+2} E_{n+2}(\frac{x}{\rho^{n+2}})$

Averaging vs Chaos in Turbulent Transport? - p. 13/

E_k : Geometry of the eddies

 $\gamma^{n} E_{n}\left(\frac{x}{\rho^{n}}\right) + \gamma^{n+1} E_{n+1}\left(\frac{x}{\rho^{n+1}}\right) + \gamma^{n+2} E_{n+2}\left(\frac{x}{\rho^{n+2}}\right)$

Averaging vs Chaos in Turbulent Transport? - p. 14/

E_k : Geometry of the eddies

 $\gamma^n E_n\left(\frac{x}{\rho^n}\right)$ + $\gamma^{n+1} E_{n+1}\left(\frac{x}{\rho^{n+1}}\right)$ + $\gamma^{n+2} E_{n+2}\left(\frac{x}{\rho^{n+2}}\right)$

Averaging vs Chaos in Turbulent Transport? - p. 15/

A simple example of the multi-scale flow

d=2, for all n,

$$E_n(x_1, x_2) = \begin{pmatrix} 0 & h(x_1, x_2) \\ -h(x_1, x_2) & 0 \end{pmatrix}$$

with $h(x_1, x_2) := \cos(2\pi x_1) \sin(2\pi x_2)$

 $h_0^2(x,y) = \sum_{k=0}^2 \gamma^k h(\frac{x}{\rho^k}, \frac{y}{\rho^k})$

with

 $\begin{array}{l} \rho=2.9\text{,}\\ \gamma=1.25 \end{array}$

Averaging vs Chaos in Turbulent Transport? – p. 17/6

Another example

$$h_0^2(x,y) = \sum_{k=0}^2 \gamma^k h(\frac{x}{\rho^k}, \frac{y}{\rho^k})$$

with $\rho = 3$, $\gamma = 1.1$ and

 $h(x, y) = 2\sin(2\pi x + 3\cos(2\pi y - 3\sin(2\pi x + 1)))$ $\sin(2\pi y + 3\cos(2\pi x - 3\sin(2\pi y + 1)))$

Another example

Motivations: turbulent flows

Two opposed descriptions?

 The transport is Superdiffusive, Highly mixing, self-averaging (Kolmogorov 41, Richardson 26, Obukhov 41)

Two opposed descriptions?

 High density gradients, coherent patterns, sensitive to the geometry of the flow, (Poincaré 08, Landau-Lifshitz 42-85, Ruelle-Takens 71)

Questions for our model

- The transport is
- Superdiffusive or not?
- Sensitive to the particular geometry of the flow or not?

Our results: outline

- We can define a parameter λ[−] ∈ ℝ⁺ from the characteristics (γ, (E_n)_{n∈ℕ}) of our model, ↔ inverse of a local Peclet (Reynolds) number
- if $\lambda^- > 0 \to \text{superdiffusive}$ + highly mixing + self-averaging

Our results: outline

- We can define a parameter λ[−] ∈ ℝ⁺ from the characteristics (γ, (E_n)_{n∈ℕ}) of our model, ↔ inverse of a local Peclet (Reynolds) number
- if $\lambda^- > 0 \rightarrow$ superdiffusive + highly mixing + self-averaging
- if $\lambda^- = 0 \rightarrow$ self-averaging collapses, highly sensitive, high gradients

Results

$$\begin{cases} dy_t = \sqrt{2\kappa} d\omega_t + v(y_t) dt \\ y_0 = x \end{cases}$$

 ω standard BM in \mathbb{R}^d .

SDE

Results

$$\begin{cases} dy_t = \sqrt{2\kappa} d\omega_t + v(y_t) dt \\ y_0 = x \end{cases}$$

ω standard BM in \mathbb{R}^d . Exit Time

SDE

$$\tau(r) := \inf\{t > 0 : |y_t| \ge r\}$$

Averaging vs Chaos in Turbulent Transport? – p. 23/6

Initial Distribution

$$m_r(dx) := \frac{dx}{\int_{B(0,r)} dx} 1_{B(0,r)}$$

Initial Distribution

$$m_r(dx) := \frac{dx}{\int_{B(0,r)} dx} \mathbf{1}_{B(0,r)}$$

Mean Exit Time

$$\mathbb{E}_{m_r}[\tau(r)] = \frac{1}{\operatorname{Vol}(B(0,r))} \int_{B(0,r)} \mathbb{E}_x[\tau(r)] dx$$

Averaging vs Chaos in Turbulent Transport? - p. 24/

One Point Fast Motion

Theorem If $\lambda^- > 0$ then $\exists C(d, 1/\lambda^-, 1/\ln \gamma) < \infty$ such that for $\rho > C\gamma$ one has

$$\left|\limsup_{r\to\infty}\frac{1}{\ln r}\ln\left(\mathbb{E}_{m_r}[\tau(r)]\right)<2\right|$$

One Point Fast Motion

Theorem For $\lambda^- > 0$, $\rho > C\gamma$ and $r > \rho$

$$\mathbb{E}_{m_r}[\tau(r)] = r^{2-\nu(r)}$$

$$\nu(r) = \frac{\ln \gamma}{\ln \rho} (1 + \epsilon(r))$$

One Point Fast Motion

Theorem For $\lambda^- > 0$, $\rho > C\gamma$ and $r > \rho$

$$\mathbb{E}_{m_r}[\tau(r)] = r^{2-\nu(r)}$$

One Point Fast Motion

Theorem For $\lambda^- > 0$, $\rho > C\gamma$ and $r > \rho$

$$\mathbb{E}_{m_r}[\tau(r)] = r^{2-\nu(r)}$$

One Point Fast Motion

Theorem For $\lambda^- > \overline{0}$, $\rho > C\gamma$ and $r > \rho$

$$\mathbb{E}_{m_r}[\tau(r)] = r^{2-\nu(r)}$$

$$\nu(r) = \frac{\ln \gamma}{\ln \rho} (1 + \epsilon(r))$$

Shear flow models: Avellaneda-Majda (91), Glimm-Zhang (92), Gaudron (00), Komorowski-Fannjiang (01), Ben Arous-Owhadi (01). Non shear flow, Kraichnan, Gaussian, annealed, one particle: Piterbarg 97, Komorowski-Olla 02, Fannjiang 02

Fast Transport as an almost sure event

Fast transport event

$$H(r) := \left\{ \tau(r) \le r^{2-\delta} \right\}$$

with

$$\delta = 0.9 \frac{\ln \gamma}{\ln \rho}$$

Fast Transport as an almost sure event

Fast transport event

$$H(r) := \left\{ \tau(r) \le r^{2-\delta} \right\}$$

with

$$\delta = 0.9 \frac{\ln \gamma}{\ln \rho}$$

Observe that $\delta > 0$

Fast Transport as an almost sure event

Fast transport event

$$H(r) := \left\{ \tau(r) \le r^{2-\delta} \right\}$$

with

$$\delta = 0.9 \frac{\ln \gamma}{\ln \rho}$$

Theorem If $\lambda^- > 0$ then for $\rho > C\gamma$ one has

$$\lim_{r \to \infty} \mathbb{P}_{m_r} \big[H(r) \big] = 1$$

Super-Diffusive two-points motion

 z_t second passive tracer

$$dz_t = \sqrt{2\kappa} \, d\bar{\omega}_t + v(z_t) \, dt.$$

 $\bar{\omega}_t$ standard BM independent of ω_t .

$$\begin{split} B(0,r,l) := & \{(y,z) \in \mathbb{R}^d \times \mathbb{R}^d \, : \, |y-z| < r \\ & \text{and} \quad y^2 + z^2 < l^2 \} \end{split}$$

 $\tau(r,l) := \inf\{t > 0 : (y_t, z_t) \notin B(0, r, l)\}$

Super-Diffusive two-points motion

$$m_{r,l}(dy\,dz) := \frac{dy\,dz}{\int_{(y,z)\in B(0,r,l)} dy\,dz} \mathbf{1}_{B(0,r,l)}.$$

Theorem If $\lambda^- > 0$ then for $\rho > C\gamma$ one has

$$\limsup_{r \to \infty} \lim_{l \to \infty} \frac{1}{\ln r} \ln \left(\mathbb{E}_{m_{r,l}} [\tau(r, l)] \right) < 2$$

$$\lim_{l \to \infty} \mathbb{E}_{m_{r,l}} \left[\tau(r, l) \right] = r^{2 - \nu(r)}$$

Super-Diffusive two-points motion

$$m_{r,l}(dy\,dz) := \frac{dy\,dz}{\int_{(y,z)\in B(0,r,l)} dy\,dz} \mathbf{1}_{B(0,r,l)}.$$

Theorem If $\lambda^- > 0$ then for $\rho > C\gamma$ one has

$$\lim_{r \to \infty} \lim_{l \to \infty} \mathbb{P}_{m_{r,l}} \{ \tau(r,l) \le r^{2-\delta} \} = 1$$

Strong Self Averaging property of the flow

$\text{If }\lambda^->0$

• The particular geometry of the eddies E_n has no influence on the transport

Strong Self Averaging property of the flow

$\text{If }\lambda^->0$

- The particular geometry of the eddies E_n has no influence on the transport
- The transport depends only on the power law $\frac{\ln\gamma}{\ln\rho}$ of the velocity field.

• Renormalization procedure.

M := {positive definite symmetric constant *d* × *d* matrices}

- *M* := {positive definite symmetric constant d × d matrices}
- S(T^d) := {skew symmetric d × d matrices with coefficients in L[∞](T^d)}.

- *M* := {positive definite symmetric constant *d* × *d* matrices}
- S(T^d) := {skew symmetric d × d matrices with coefficients in L[∞](T^d)}.

Let $(a, E) \in \mathcal{M} \times \mathcal{S}(\mathbb{T}^d)$

Operator

$$\begin{cases} \operatorname{div} \left(a + E(\frac{x}{\epsilon}) \right) \nabla u_{\epsilon}(x) = f(x) & \text{in } \Omega \\ u_{\epsilon} = 0 & \text{in } \partial \Omega \end{cases}$$

Operator

$$\begin{cases} \operatorname{div} \left(a + E(\frac{x}{\epsilon}) \right) \nabla u_{\epsilon}(x) = f(x) & \text{in } \Omega \\ u_{\epsilon} = 0 & \text{in } \partial \Omega \end{cases}$$

then $\exists \sigma(a, E) \in \mathcal{M}$ such that as $\epsilon \downarrow 0$,

$$u_{\epsilon} \rightarrow u_0$$

Operator

$$\begin{cases} \operatorname{div} \left(a + E(\frac{x}{\epsilon}) \right) \nabla u_{\epsilon}(x) = f(x) & \text{in } \Omega \\ u_{\epsilon} = 0 & \text{in } \partial \Omega \end{cases}$$

then $\exists \sigma(a, E) \in \mathcal{M}$ such that as $\epsilon \downarrow 0$,

$$u_{\epsilon} \rightarrow u_0$$

 $\begin{cases} \operatorname{div} \boldsymbol{\sigma}(a, E) \nabla u_0 = f & \text{in } \Omega \\ u_0 = 0 & \text{in } \partial \Omega \end{cases}$

Averaging vs Chaos in Turbulent Transport? – p. 31/6

SDE

 $dx_t = 2^{\frac{1}{2}} a^{\frac{1}{2}} d\omega_t + \operatorname{div} E(x_t) dt,$

$$dx_t = 2^{\frac{1}{2}} a^{\frac{1}{2}} d\omega_t + \operatorname{div} E(x_t) dt,$$

As $\epsilon \downarrow 0$,

SDE

$$\epsilon x_{t/\epsilon^2} \to B_t$$

 B_t Brownian Motion with covariance matrix $2\sigma(a, E)$.

Literature.

- $2\sigma(a, E)$: Effective diffusivity
- $\sigma(a, E)$: Effective conductivity Eddy viscosity. Dispersion matrix.

Effective conductivity as a mapping

$$\sigma : \mathcal{M} \times \mathcal{S}(\mathbb{T}^d) \to \mathcal{M}$$
$$(a, E) \to \sigma(a, E)$$

Effective conductivity as a mapping

$$\sigma : \mathcal{M} \times \mathcal{S}(\mathbb{T}^d) \to \mathcal{M}$$
$$(a, E) \to \sigma(a, E)$$

for all $(a, E) \in \mathcal{M} \times \mathcal{S}(\mathbb{T}^d)$

$$a \le \sigma(a, E) \le a + \int_{\mathbb{T}^d} {}^t E(x) a^{-1} E(x) dx$$

Renormalization sequence $(A_n)_{n \in \mathbb{N}}$ For all $n \in \mathbb{N}$, $A_n \in \mathcal{M}$

$$egin{array}{ccc} A_0 = rac{\kappa}{\gamma} I_d & ext{and} & A_{n+1} = rac{1}{\gamma} \sigma(A_n, E_n) \end{array}$$

Renormalization sequence $(A_n)_{n \in \mathbb{N}}$ For all $n \in \mathbb{N}$, $A_n \in \mathcal{M}$

$$A_0 = rac{\kappa}{\gamma} I_d$$
 and $A_{n+1} = rac{1}{\gamma} \sigma(A_n, E_n)$

 $(A_n)_{n\in\mathbb{N}}$ does not depend on ρ

Renormalization sequence $(A_n)_{n \in \mathbb{N}}$ For all $n \in \mathbb{N}$, $A_n \in \mathcal{M}$

$$A_0 = rac{\kappa}{\gamma} I_d$$
 and $A_{n+1} = rac{1}{\gamma} \sigma(A_n, E_n)$

 $(A_n)_{n\in\mathbb{N}}$ does not depend on ρ

$$\lambda^{-} := \liminf_{n \to \infty} \lambda_{\min}(A_n)$$

$$\Gamma^{n-1}(x) := \sum_{k=0}^{n-1} \gamma^k E_k(\frac{x}{\rho^k})$$

$$\Gamma^{n-1}(x) := \sum_{k=0}^{n-1} \gamma^k E_k(\frac{x}{\rho^k})$$

Assume $\rho \in \mathbb{N}$. Then Γ^{n-1} periodic.

 $\operatorname{div}(\kappa I_d + \Gamma^{n-1}) \nabla \xrightarrow{Homogen} \operatorname{div} \sigma(\kappa I_d, \Gamma^{n-1}) \nabla$

$$\Gamma^{n-1}(x) := \sum_{k=0}^{n-1} \gamma^k E_k(\frac{x}{\rho^k})$$

Assume $\rho \in \mathbb{N}$. Then Γ^{n-1} periodic.

 $\operatorname{div}(\kappa I_d + \Gamma^{n-1}) \nabla \xrightarrow{Homogen} \operatorname{div} \sigma(\kappa I_d, \Gamma^{n-1}) \nabla$

$$\lim_{\rho \to \infty} \sigma(\kappa I_d, \Gamma^{n-1}) = \gamma^n A_n$$

Averaging vs Chaos in Turbulent Transport? – p. 36/

Magnitude of the velocity vector field at scale n:

 $V_n \sim \frac{\gamma^n}{\rho^n}$

Magnitude of the velocity vector field at scale n:

$$V_n \sim \frac{\gamma^n}{\rho^n}$$

Local Peclet tensor

$$\mathbf{Pe}^{n} := V_{n} \rho^{n} \big(\lim_{\rho \to \infty} \sigma(\kappa I_{d}, \Gamma^{n-1}) \big)^{-1}$$

Magnitude of the velocity vector field at scale *n*:

$$V_n \sim \frac{\gamma^n}{\rho^n}$$

Local Reynolds tensor

$$\mathbf{Re}^{n} := V_{n} \rho^{n} \left(\lim_{\rho \to \infty} \sigma(\kappa I_{d}, \Gamma^{n-1}) \right)^{-1}$$

Magnitude of the velocity vector field at scale *n*:

$$V_n \sim \frac{\gamma^n}{\rho^n}$$

Local Reynolds tensor

$$\mathbf{Re}^{n} := V_{n} \rho^{n} \big(\lim_{\rho \to \infty} \sigma(\kappa I_{d}, \Gamma^{n-1}) \big)^{-1}$$

$$A_n = (\mathbf{P}\mathbf{e}^n)^{-1} = (\mathbf{R}\mathbf{e}^n)^{-1}$$

$$\lambda^+ := \limsup_{n \to \infty} \lambda_{\max}(A_n)$$

$$\mu := \limsup_{n \to \infty} \frac{\lambda_{\max}(A_n)}{\lambda_{\min}(A_n)}$$

$$\lambda^+ := \limsup_{n \to \infty} \lambda_{\max}(A_n)$$

$$\mu := \limsup_{n \to \infty} \frac{\lambda_{\max}(A_n)}{\lambda_{\min}(A_n)}$$

Theorem

$$\lambda^+ \leq rac{C_d}{\lambda^-} \quad ext{and} \quad \mu \leq rac{C_d}{(\lambda^-)^2}$$

$$\lambda^+ := \limsup_{n \to \infty} \lambda_{\max}(A_n)$$

$$\mu := \limsup_{n \to \infty} \frac{\lambda_{\max}(A_n)}{\lambda_{\min}(A_n)}$$

Theorem

$$egin{array}{ccc} \lambda^+ \leq rac{C_d}{\lambda^-} & ext{and} & \mu \leq rac{C_d}{(\lambda^-)^2} \end{array} \end{array}$$

 $\lambda^- > 0 \Rightarrow \lambda^+ < \infty$ and $\mu < \infty$

for $\zeta > 0$

$$V(\zeta) := \liminf_{n \to \infty} \frac{\lambda_{\min}(\sigma(\zeta I_d, E_n))}{\zeta}$$
When is $\lambda^- > 0$?

for $\zeta > 0$

$$V(\zeta) := \liminf_{n \to \infty} \frac{\lambda_{\min}(\sigma(\zeta I_d, E_n))}{\zeta}$$

V is decreasing and $V \ge 1$ thus

$$V(0) := \lim_{\zeta \downarrow 0} V(\zeta)$$

is well defined.

When is $\lambda^- > 0$?

for $\zeta > 0$

$$V(\zeta) := \liminf_{n \to \infty} \frac{\lambda_{\min}(\sigma(\zeta I_d, E_n))}{\zeta}$$

Theorem If $\mu < \infty$ and $\gamma < V(0)$ then $\lambda^- > 0$ and

$$C_1 \le \lambda^- \lambda^+ \le C_2.$$

Idea of the Proof.

• Ball B(0,r)

Idea of the Proof.

- Ball B(0,r)
- We want to compute $\mathbb{E}[\tau(0,r)]$

Idea of the Proof.

- Ball B(0,r)
- We want to compute $\mathbb{E}[\tau(0,r)]$

• Main feature of the flow: Infinite number of scales $0, 1, \ldots, \infty$

• Scale $n(r) = [\ln r / \ln \rho]$

 $\rho^{n(r)} \le r < \rho^{n(r)+1}$

• Scale $n(r) = [\ln r / \ln \rho]$

• Small scales $0, \ldots, n(r) - 1$

• Scale $n(r) = [\ln r / \ln \rho]$

- Small scales $0, \ldots, n(r) 1$
- Intermediate scales n(r), n(r) + 1

• Scale $n(r) = [\ln r / \ln \rho]$

- Small scales $0, \ldots, n(r) 1$
- Intermediate scales n(r), n(r) + 1

• Large scales $n(r) + 2, \dots, \infty$

All Scales.

• Medium with infinite number of scales $0, 1, \ldots, \infty$.

All Scales.

- Medium with infinite number of scales $0, 1, \ldots, \infty$.
- Transport of a drop of dye ?

Transport by Large Scales

Large scales

Averaging vs Chaos in Turbulent Transport? – p. 42/

Transport by Large Scales

Large scales

 Their influence on the transport of the drop of dye is

Transport by Large Scales

Large scales

 Their influence on the transport of the drop of dye is negligible

Transport by Small Scales

• Small Scales \rightarrow homogenized.

Averaging vs Chaos in Turbulent Transport? – p. 43/6

Transport by Small Scales

 Transport = Diffusion with Effective diffusivity

 $\sigma(\kappa I_d, \Gamma^{n(r)}) \sim \gamma^{n(r)} A_{n(r)}$

• Exit Time:

$$au_D(0,r) \sim rac{r^2}{\gamma^{n(r)}\lambda(A_{n(r)})}$$

Transport by Small Scales

 Transport by mixing, density gradients smoothed.

Transport by Intermediate Scales

 Intermediate Scales: not homogenized, not negligible.

Averaging vs Chaos in Turbulent Transport? - p. 44/

Transport by Intermediate Scales

- Transport by convection through particular geometry.
- Exit time

Transport by Intermediate Scales

 Transport by advection, density gradients increased.

Averaging vs Chaos in Turbulent Transport? – p. 44/

Local Peclet number

$$\mathbf{Pe}(r) := \frac{\tau_C(r)}{\tau_D(r)} \sim \left(\lambda(A_{n(r)})\right)^{-1}$$

Local Peclet number

$$\mathbf{Pe}(r) := \frac{\tau_C(r)}{\tau_D(r)} \sim \left(\lambda(A_{n(r)})\right)^{-1}$$

 $\lambda^- > 0 \Rightarrow \mathbf{Pe}(r) < \infty \Rightarrow \text{At every scale } r$, advection (irregularities, high gradients) is compensated by averaging (smoothing, dissipating).

Local Peclet number

$$\mathbf{Pe}(r) := \frac{\tau_C(r)}{\tau_D(r)} \sim \left(\lambda(A_{n(r)})\right)^{-1}$$

 $\lambda^- > 0 \Rightarrow \mathbf{Pe}(r) < \infty \Rightarrow$ influence of the intermediate scales on the transport comparable to the influence of the small scales.

$$au(0,r) \sim au_D(0,r) \sim rac{r^2}{\gamma^{n(r)}}$$

Local Peclet number

$$\mathbf{Pe}(r) := \frac{\tau_C(r)}{\tau_D(r)} \sim \left(\lambda(A_{n(r)})\right)^{-1}$$

$$\tau(0,r) \sim \frac{r^2}{\gamma^{n(r)}} \sim r^{2-\nu}$$

with
$$\nu = \frac{\ln \gamma}{\ln \rho} > 0$$

As $r \to \infty$

 $\mathbf{Pe}(r) \to \infty$

$\overline{\mathrm{If}\,\lambda^{-}}=0$

As $r \to \infty$

 $\mathbf{Pe}(r) \to \infty$

At every scale transport dominated by advection.

As $r \to \infty$

 $\mathbf{Pe}(r) \to \infty$

- At every scale transport dominated by advection.
- Collapse of the self-averaging property of the flow towards chaos.

As $r \to \infty$

 $\mathbf{Pe}(r) \to \infty$

- At every scale transport dominated by advection.
- Collapse of the self-averaging property of the flow towards chaos.
- The particular geometry of the eddies can not be neglected even if ρ is large.

Definition A_n is self-similar and isotropic iff

• $orall n \in \mathbb{N}$, $E_n = E$; .

Definition A_n is self-similar and isotropic iff

•
$$\forall n \in \mathbb{N}, E_n = E$$
 ;

•
$$\forall \zeta > 0$$
, $\sigma(\zeta I_d, E) = \lambda(\zeta) I_d$.

Definition

 A_n is self-similar and isotropic iff

•
$$\forall n \in \mathbb{N}, E_n = E$$
 ;

•
$$\forall \zeta > 0$$
, $\sigma(\zeta I_d, E) = \lambda(\zeta) I_d$.

If A_n is self-similar then it is a low order dynamical system.

$$A_{n+1} = \frac{1}{\gamma}\sigma(A_n, E)$$

Definition A_n is self-similar and isotropic iff

•
$$\forall n \in \mathbb{N}, E_n = E$$
 ;

• $\forall \zeta > 0$, $\sigma(\zeta I_d, E) = \lambda(\zeta) I_d$.

$$V(0) := \lim_{\zeta \downarrow 0} \frac{\lambda_{\min}(\sigma(\zeta I_d, E))}{\zeta}$$

Theorem If A_n is self-similar and isotropic then

• If
$$\gamma < V(0)$$
 then $\lambda^- > 0$ and
 $\lim_{n\to\infty} A_n = \zeta_0 I_d$ where ζ_0 is the unique solution of $V(\zeta_0) = \gamma$.

Theorem If A_n is self-similar and isotropic then

• If
$$\gamma < V(0)$$
 then $\lambda^- > 0$ and
 $\lim_{n \to \infty} A_n = \zeta_0 I_d$ where ζ_0 is the unique solution of $V(\zeta_0) = \gamma$.

• If $\gamma = V(0)$ and $(V(0) - V(x))x^{-p}$ admits a non ero limit as $x \downarrow 0$ with p > 0 then $\lambda^{-} = 0$ and $\lim_{n\to\infty} \frac{\ln \lambda(A_n)}{\ln n} = -\frac{1}{p}$.

Theorem If A_n is self-similar and isotropic then

- If $\gamma < V(0)$ then $\lambda^- > 0$ and $\lim_{n \to \infty} A_n = \zeta_0 I_d$ where ζ_0 is the unique solution of $V(\zeta_0) = \gamma$.
- If $\gamma = V(0)$ and $(V(0) V(x))x^{-p}$ admits a non ero limit as $x \downarrow 0$ with p > 0 then $\lambda^{-} = 0$ and $\lim_{n \to \infty} \frac{\ln \lambda(A_n)}{\ln n} = -\frac{1}{p}$.
- If $\gamma > V(0)$ then $\lambda^- = 0$ and $\lim_{n \to \infty} \frac{1}{n} \ln \lambda(A_n) = \ln \left(\frac{V(0)}{\gamma}\right)$
Bifurcation

- Flow self similar and isotropic. for all n, $E_n = E$.
- Shape of the eddy *E* over a period.
- $1 < V(0) < \infty$.

Bifurcation

- $\gamma < V(0)$
- $\lambda^- > 0$
- The flow is self averaging

Bifurcation

- $\gamma \ge V(0)$
- $\lambda^- = 0$

• The self averaging property collapses.

Assume A_n to be self-similar and isotropic. Spatial scales $\rho^n \to R_n$

$$\Gamma(x) = \sum_{n=0}^{\infty} \gamma^n E(\frac{x}{R_n})$$

$$\rho_{\min} := \inf_{n \in \mathbb{N}} \frac{R_{n+1}}{R_n}$$

 $2 \leq \rho_{\min}$

For $y \in [0,1]^d$

$$\sigma(n, y) := \sigma(\kappa I_d, \Gamma^{n-1} + \gamma^n E(y + \frac{x}{R_n}))$$

$$\sigma(n, y) := \sigma(\kappa I_d, \Gamma^{n-1} + \gamma^n E(y + \frac{x}{R_n}))$$

- Averaging paradigm \Rightarrow Relative translation by y has little influence on $\sigma(n, y)$
- for all y,

$$\lim_{\rho_{\min} \to \infty} \sigma(n, y) = \lim_{\rho_{\min} \to \infty} \sigma(n, 0)$$

$$\sigma(n, y) := \sigma(\kappa I_d, \Gamma^{n-1} + \gamma^n E(y + \frac{x}{R_n}))$$

$$\sigma(n, y, \rho) := \lim_{\frac{R_1}{R_0}, \dots, \frac{R_{n-1}}{R_{n-2}} \to \infty; \frac{R_n}{R_{n-1}} = \rho} \sigma(n, y)$$

$$\sigma(n, y) := \sigma(\kappa I_d, \Gamma^{n-1} + \gamma^n E(y + \frac{x}{R_n}))$$

$$\sigma(n, y, \rho) := \lim_{\frac{R_1}{R_0}, \dots, \frac{R_{n-1}}{R_{n-2}} \to \infty; \frac{R_n}{R_{n-1}} = \rho} \sigma(n, y)$$

 $\sigma(n, y, \rho) = \gamma^{n-1} \sigma(A_{n-1}, E(\rho x) + \gamma E(x+y))$

$$\sigma(n, y) := \sigma(\kappa I_d, \Gamma^{n-1} + \gamma^n E(y + \frac{x}{R_n}))$$

$$\sigma(n, y, \rho) := \lim_{\frac{R_1}{R_0}, \dots, \frac{R_{n-1}}{R_{n-2}} \to \infty; \frac{R_n}{R_{n-1}} = \rho} \sigma(n, y)$$

 $\sigma(n, y, \rho) = \gamma^{n-1} \sigma(A_{n-1}, E(\rho x) + \gamma E(x+y))$ If $\lambda^- > 0$ then $l \in (R^d)^*$ and $y \in [0, 1]^d$,

$$\limsup_{n \to \infty} \frac{{}^{t} l \sigma(n, y, \rho) l}{{}^{t} l \sigma(n, 0, \rho) l} < 1 + C_d(\rho \lambda^{-})^{-\frac{1}{2}}$$

$$\sigma(n, y) := \sigma(\kappa I_d, \Gamma^{n-1} + \gamma^n E(y + \frac{x}{R_n}))$$

$$\sigma(n, y, \rho) := \lim_{\frac{R_1}{R_0}, \dots, \frac{R_{n-1}}{R_{n-2}} \to \infty; \frac{R_n}{R_{n-1}} = \rho} \sigma(n, y)$$

 $\sigma(n, y, \rho) = \gamma^{n-1} \sigma(A_{n-1}, E(\rho x) + \gamma E(x+y))$ If $\lambda^- = 0$ then for any $\rho > 1$ there exists E and $y \in [0, 1]^d$ such that for any $l \in (R^d)^*$,

$$\lim_{n \to \infty} \frac{{}^{t} l \sigma(n, y, \rho) l}{{}^{t} l \sigma(n, 0, \rho) l} = \infty.$$

Two scale flows

 $S_{\rho}E(x) = E(\rho x)$ $\Theta_y E(x) = E(x - y)$ As $\zeta \downarrow 0$

 $\sigma(\zeta I_d, S_\rho E + E) \sim C_1 \zeta I_d.$

Two scale flows

$$S_{\rho}E(x) = E(\rho x)$$

$$\Theta_{y}E(x) = E(x - y)$$

As $\zeta \downarrow 0$

 $\sigma(\zeta I_d, S_\rho E + \Theta_y E) \sim C_2 \zeta^{\frac{1}{2}} I_d$

The flow at scale r is laminar. Viscosity κ , velocity $V(r) = V_0$.

A small perturbation is introduced.

Averaging vs Chaos in Turbulent Transport? - p. 53/

 $\tau_D(r)$: exit time of the perturbation by diffusion $\tau_C(r)$: exit time of the perturbation by convection

Averaging vs Chaos in Turbulent Transport? – p. 54/

If $\tau_D(r) < \tau_C(r)$ the perturbation exits by diffusion and is smoothed before going out of B(0, r).

\Rightarrow the laminar flow is stable at the scale r

$$\tau_D(r) < \tau_C(r) \Leftrightarrow \frac{r^2}{\kappa} < \frac{r}{V_0} \Leftrightarrow \mathbf{Re} = \frac{rV_0}{\kappa} < 1$$

Averaging vs Chaos in Turbulent Transport? - p. 55/

If $\tau_D(r) > \tau_C(r)$ the perturbation exits by convection and propagates.

 \Rightarrow The flow is unstable at the scale r and fluctuates and this scale.

$$\tau_D(r) > \tau_C(r) \Leftrightarrow \frac{r^2}{\kappa} > \frac{r}{V_0} \Leftrightarrow \mathbf{Re} = \frac{rV_0}{\kappa} > 1$$

Averaging vs Chaos in Turbulent Transport? – p. 56/

change of scale

Let's look at the flow at the scale r/ρ

The flow is laminar at this scale r/ρ with velocity $V(r/\rho) = V_0/\gamma$

change of scale

A small perturbation is introduced at the scale r/ρ

change of scale

This self similar process is iterated, until the dissipation scale l is reached.

At the dissipation scale l , $au_C(l) \sim au_D(l)$

Averaging vs Chaos in Turbulent Transport? - p. 59/

 $\sigma(r) \sim rV(r)$

The multi-scale structure creates an effective viscosity $\sigma(r) \sim rV(r)$

Averaging vs Chaos in Turbulent Transport? – p. 60/

 $\sigma(r) \sim rV(r)$ $\tau_C(r) \sim r/V(r)$ $au_D(r) \sim r^2 / \sigma(r)$

The multi-scale structure stabilizes the flow since $\sigma(r) \sim rV(r) \Rightarrow \tau_D(r) \sim \tau_C(r)$

 $V(x) = V_0 \overline{(x/r)^{\alpha}}$

We write $\gamma = \rho^{1+\alpha}$

Averaging vs Chaos in Turbulent Transport? – p. 61/0

$$V(x) = V_0 (x/r)^{\alpha}$$
$$\epsilon(x) \sim \frac{(V(x))^3}{x}$$

Kolmogorov $\alpha = 1/3$

The energy dissipation $\epsilon(x)$ at scale x is $\sigma(x)(\frac{V(x)}{x})^2 \sim \frac{(V(x))^3}{x}$

$$V(x) = V_0 (x/r)^{\alpha}$$
$$\epsilon(x) \sim \frac{(V(x))^3}{x}$$

Kolmogorov $\alpha = 1/3$

If $\alpha > 1/3$ the larger eddies are dissipated before the smaller ones

$$V(x) = V_0 (x/r)^{\alpha}$$
$$\epsilon(x) \sim \frac{(V(x))^3}{x}$$

Kolmogorov $\alpha = 1/3$

If $\alpha < 1/3$ the smaller eddies are dissipated before the larger ones

$$V(x) = V_0 (x/r)^{\alpha}$$
$$\epsilon(x) \sim \frac{(V(x))^3}{x}$$

Kolmogorov $\alpha = 1/3$

The relation $\sigma(x) \sim x V(x)$ is at the core of the Kolmogorov law

$$V(x) = V_0 (x/r)^{\alpha}$$
$$\epsilon(x) \sim \frac{(V(x))^3}{x}$$

Kolmogorov $\alpha = 1/3$

In the anisotropic case, the relation $\lambda_{\max}(\sigma(x))\lambda_{\min}(\sigma(x)) \sim x^2(V(x))^2$ restores the isotropy of the flow.

Averaging vs Chaos in Turbulent Transport? - p. 61/

$$V(x) = V_0 (x/r)^{\alpha}$$
$$\epsilon(x) \sim \frac{(V(x))^3}{x}$$

Kolmogorov $\alpha = 1/3$

At the dissipation scale, $\tau_C(l) \sim \tau_D(l) \Leftrightarrow l/V(l) \sim l^2/\kappa$ $\Leftrightarrow r/l \sim (\frac{V_0 r}{\kappa})^{\frac{3}{4}}$

Averaging vs Chaos in Turbulent Transport? – p. 61/6
On the nature of Turbulence.

$$V(x) = V_0 (x/r)^{\alpha}$$
$$\epsilon(x) \sim \frac{(V(x))^3}{x}$$

Kolmogorov $\alpha = 1/3$

intermittency at the smaller scales