Averaging vs Chaos in Turbulent Transport?

Houman Owhadi
owhadi@caltech. edu

CALTECH, Applied and Computational Mathematics, Control and Dynamical Systems.

The Model

PDE in \mathbb{R}^{d}

$$
\partial_{t} T+v . \nabla T=\kappa \Delta T
$$

$\kappa>0 . v \in\left(C\left(\mathbb{R}^{d}\right)\right)^{d}, \operatorname{div}(v)=0$.

The Model

PDE in \mathbb{R}^{d}

$$
\Gamma \in\left(C^{1}\left(R^{d}\right)\right)^{d \times d}, \Gamma_{i, j}=-\Gamma_{j, i} . v_{i}=\sum_{j=1}^{d} \partial_{j} \Gamma_{i, j} .
$$

Motivations: turbulent flows

M. Rutgers

The multi scale decomposition

$$
\Gamma:=\sum_{n=0}^{\infty} \gamma^{n} \quad E_{n}\left(\frac{x}{\rho^{n}}\right) .
$$

The multi scale decomposition

$\rho \in \mathbb{R}^{+, * ;}$

$$
2 \leq \rho<\infty
$$

The multi scale decomposition

$$
\Gamma:=\sum_{n=0}^{\infty} \gamma^{n} E_{n}\left(\frac{x}{\rho^{n}}\right)
$$

Eddies geometrical parameters

 $\mathbb{T}^{d}:=$ Torus of Dimension d and side 1.$\forall n, \quad E_{n} \in\left(C^{1}\left(\mathbb{T}^{d}\right)\right)^{d \times d} ; E_{n ; i, j}=-E_{n ; j, i} ; E_{n}(0)=0$.

$$
\sup _{n \in \mathbb{N}} \sup _{m, i, j \in\{1, \ldots, d\}}\left\|\partial_{m} E_{n ; i, j}\right\|_{\infty} \leq 1
$$

The multi scale decomposition

The Spectrum is not Kolmogorov

- $v(l)$ velocity of the eddies of size l
- $\mathcal{E}(k)$ The kinetic energy distribution in the Fourier modes
- Kolmogorov

$$
v(l) \sim l^{\frac{1}{3}} \quad \mathcal{E}(k) \sim k^{-\frac{5}{3}}
$$

- Our Model

$$
v(l) \sim l^{\frac{\ln \gamma}{\ln \rho}-1} \quad \mathcal{E}(k) \sim k^{1-2 \frac{\ln \gamma}{\ln \rho}}
$$

- Kolmogorov $\rightarrow \gamma=\rho^{\frac{4}{3}} \quad$ Our model $\gamma<\rho$

One scale.

Stream lines of the flow $\gamma^{n} E_{n}\left(\frac{x}{\rho^{n}}\right)$

${ }^{\rho^{n+1}}$ Two scales.
 ρ^{n}

Stream lines of $\gamma^{n} E_{n}\left(\frac{x}{\rho^{n}}\right)$ and $\gamma^{n+1} E_{n+1}\left(\frac{x}{\rho^{n+1}}\right)$.

$\underline{\rho^{n+1}}$ Two scales. ρ^{n}

Stream lines of $\gamma^{n} E_{n}\left(\frac{x}{\rho^{n}}\right) \quad+\gamma^{n+1} E_{n+1}\left(\frac{x}{\rho^{n+1}}\right)$.

ρ^{n+2}
 ${ }^{\rho^{n+1}} \quad$ Three scales.
 ρ^{n}

$\gamma^{n} E_{n}\left(\frac{x}{\rho^{n}}\right) \amalg \gamma^{n+1} E_{n+1}\left(\frac{x}{\rho^{n+1}}\right) \amalg \gamma^{n+2} E_{n+2}\left(\frac{x}{\rho^{n+2}}\right)$

$\gamma^{n} E_{n}\left(\frac{x}{\rho^{n}}\right) \square \gamma^{n+1} E_{n+1}\left(\frac{x}{\rho^{n+1}}\right) \square \gamma^{n+2} E_{n+2}\left(\frac{x}{\rho^{n+2}}\right)$
Modification of the ratio ρ
ρ^{n+2}

$$
\rho^{n+1}
$$

$\gamma^{n} E_{n}\left(\frac{x}{\rho^{n}}\right) \square \gamma^{n+1} E_{n+1}\left(\frac{x}{\rho^{n+1}}\right) \square \gamma^{n+2} E_{n+2}\left(\frac{x}{\rho^{n+2}}\right)$

Modification of the ratio ρ

The circulation rates γ^{k}

$\gamma^{n} E_{n}\left(\frac{x}{\rho^{n}}\right) \amalg \gamma^{n+1} E_{n+1}\left(\frac{x}{\rho^{n+1}}\right) \amalg \gamma^{n+2} E_{n+2}\left(\frac{x}{\rho^{n+2}}\right)$

The circulation rates γ^{k}

$\gamma^{n} E_{n}\left(\frac{x}{\rho^{n}}\right) \amalg \gamma^{n+1} E_{n+1}\left(\frac{x}{\rho^{n+1}}\right) \square \gamma^{n+2} E_{n+2}\left(\frac{x}{\rho^{n+2}}\right)$

E_{k} : Geometry of the eddies

$\gamma^{n} E_{n}\left(\frac{x}{\rho^{n}}\right) \amalg \gamma^{n+1} E_{n+1}\left(\frac{x}{\rho^{n+1}}\right) \amalg \gamma^{n+2} E_{n+2}\left(\frac{x}{\rho^{n+2}}\right)$

E_{k} : Geometry of the eddies

$\gamma^{n} E_{n}\left(\frac{x}{\rho^{n}}\right) \amalg \gamma^{n+1} E_{n+1}\left(\frac{x}{\rho^{n+1}}\right) \amalg \gamma^{n+2} E_{n+2}\left(\frac{x}{\rho^{n+2}}\right)$

A simple example of the multi-scale flow

$d=2$, for all n,

$$
E_{n}\left(x_{1}, x_{2}\right)=\left(\begin{array}{cc}
0 & h\left(x_{1}, x_{2}\right) \\
-h\left(x_{1}, x_{2}\right) & 0
\end{array}\right)
$$

with $h\left(x_{1}, x_{2}\right):=\cos \left(2 \pi x_{1}\right) \sin \left(2 \pi x_{2}\right)$

$$
h_{0}^{2}(x, y)=\sum_{k=0}^{2} \gamma^{k} h\left(\frac{x}{\rho^{k}}, \frac{y}{\rho^{k}}\right)
$$

with

$$
\begin{aligned}
& \rho=2.9, \\
& \gamma=1.25
\end{aligned}
$$

Another example

$$
h_{0}^{2}(x, y)=\sum_{k=0}^{2} \gamma^{k} h\left(\frac{x}{\rho^{k}}, \frac{y}{\rho^{k}}\right)
$$

with $\rho=3, \gamma=1.1$ and

$$
\begin{aligned}
h(x, y)= & 2 \sin (2 \pi x+3 \cos (2 \pi y-3 \sin (2 \pi x+1))) \\
& \sin (2 \pi y+3 \cos (2 \pi x-3 \sin (2 \pi y+1)))
\end{aligned}
$$

Another example

Motivations: turbulent flows

Two opposed descriptions?

- The transport is Superdiffusive, Highly mixing, self-averaging (Kolmogorov 41, Richardson 26, Obukhov 41)

Two opposed descriptions?

- High density gradients, coherent patterns, sensitive to the geometry of the flow, (Poincaré 08, Landau-Lifshitz 42-85, Ruelle-Takens 71)

Questions for our model

- The transport is
- Superdiffusive or not?
- Sensitive to the particular geometry of the flow or not?

Our results: outline

- We can define a parameter $\lambda^{-} \in \mathbb{R}^{+}$from the characteristics $\left(\gamma,\left(E_{n}\right)_{n \in \mathbb{N}}\right)$ of our model, \leftrightarrow inverse of a local Peclet (Reynolds) number
- if $\lambda^{-}>0 \rightarrow$ superdiffusive + highly mixing + self-averaging

Our results: outline

- We can define a parameter $\lambda^{-} \in \mathbb{R}^{+}$from the characteristics $\left(\gamma,\left(E_{n}\right)_{n \in \mathbb{N}}\right)$ of our model, \leftrightarrow inverse of a local Peclet (Reynolds) number
- if $\lambda^{-}>0 \rightarrow$ superdiffusive + highly mixing + self-averaging
- if $\lambda^{-}=0 \rightarrow$ self-averaging collapses, highly sensitive, high gradients

Results

SDE

$$
\left\{\begin{array}{l}
d y_{t}=\sqrt{2 \kappa} d \omega_{t}+v\left(y_{t}\right) d t \\
y_{0}=x
\end{array}\right.
$$

ω standard BM in \mathbb{R}^{d}.

Results

SDE

$$
\left\{\begin{array}{l}
d y_{t}=\sqrt{2 \kappa} d \omega_{t}+v\left(y_{t}\right) d t \\
y_{0}=x
\end{array}\right.
$$

ω standard BM in \mathbb{R}^{d}.
Exit Time

$$
\tau(r):=\inf \left\{t>0:\left|y_{t}\right| \geq r\right\}
$$

Initial Distribution

$$
m_{r}(d x):=\frac{d x}{\int_{B(0, r)} d x} 1_{B(0, r)}
$$

Initial Distribution

$$
m_{r}(d x):=\frac{d x}{\int_{B(0, r)} d x} 1_{B(0, r)}
$$

Mean Exit Time

$$
\mathbb{E}_{m_{r}}[\tau(r)]=\frac{1}{\operatorname{Vol}(B(0, r))} \int_{B(0, r)} \mathbb{E}_{x}[\tau(r)] d x
$$

One Point Fast Motion

Theorem If $\lambda^{-}>0$ then $\exists C\left(d, 1 / \lambda^{-}, 1 / \ln \gamma\right)<\infty$ such that for $\rho>C \gamma$ one has

$$
\limsup _{r \rightarrow \infty} \frac{1}{\ln r} \ln \left(\mathbb{E}_{m_{r}}[\tau(r)]\right)<2
$$

One Point Fast Motion

Theorem For $\lambda^{-}>0, \rho>C \gamma$ and $r>\rho$

$$
\mathbb{E}_{m_{r}}[\tau(r)]=r^{2-\nu(r)}
$$

$$
\nu(r)=\frac{\ln \gamma}{\ln \rho}(1+\epsilon(r))
$$

One Point Fast Motion

Theorem For $\lambda^{-}>0, \rho>C \gamma$ and $r>\rho$

$$
\mathbb{E}_{m_{r}}[\tau(r)]=r^{2-\nu(r)}
$$

$$
\begin{gathered}
\left.\nu(r)=\frac{\ln \gamma}{\ln \rho}(1+\epsilon(r))\right) \\
|\epsilon(r)| \leq 0.5 C \frac{\gamma}{\rho}<0.5
\end{gathered}
$$

One Point Fast Motion

Theorem For $\lambda^{-}>0, \rho>C \gamma$ and $r>\rho$

$$
\mathbb{E}_{m_{r}}[\tau(r)]=r^{2-\nu(r)}
$$

$$
\begin{gathered}
\nu(r)=\underbrace{\frac{\ln \gamma}{\ln \rho}(1+\epsilon(r))} \\
0<\frac{\ln \gamma}{\ln \rho}
\end{gathered}
$$

One Point Fast Motion

Theorem For $\lambda^{-}>0, \rho>C \gamma$ and $r>\rho$

$$
\mathbb{E}_{m_{r}}[\tau(r)]=r^{2-\nu(r)}
$$

$$
\nu(r)=\frac{\ln \gamma}{\ln \rho}(1+\epsilon(r))
$$

Shear flow models: Avellaneda-Majda (91), Glimm-Zhang (92), Gaudron (00), Komorowski-Fannjiang (01), Ben Arous-Owhadi (01).
Non shear flow, Kraichnan, Gaussian, annealed, one particle:
Piterbarg 97, Komorowski-Olla 02, Fannjiang 02

Fast Transport as an almost sure event

Fast transport event

$$
H(r):=\left\{\tau(r) \leq r^{2-\delta}\right\}
$$

with

$$
\delta=0.9 \frac{\ln \gamma}{\ln \rho}
$$

Fast Transport as an almost sure event

Fast transport event

$$
H(r):=\left\{\tau(r) \leq r^{2-\delta}\right\}
$$

with

$$
\delta=0.9 \frac{\ln \gamma}{\ln \rho}
$$

Observe that $\delta>0$

Fast Transport as an almost sure event

Fast transport event

$$
H(r):=\left\{\tau(r) \leq r^{2-\delta}\right\}
$$

with

$$
\delta=0.9 \frac{\ln \gamma}{\ln \rho}
$$

Theorem If $\lambda^{-}>0$ then for $\rho>C \gamma$ one has

$$
\lim _{r \rightarrow \infty} \mathbb{P}_{m_{r}}[H(r)]=1
$$

Super-Diffusive two-points motion

z_{t} second passive tracer

$$
d z_{t}=\sqrt{2 \kappa} d \bar{\omega}_{t}+v\left(z_{t}\right) d t .
$$

$\bar{\omega}_{t}$ standard BM independent of ω_{t}.

$$
\begin{aligned}
B(0, r, l):= & \left\{(y, z) \in \mathbb{R}^{d} \times \mathbb{R}^{d}:|y-z|<r\right. \\
& \text { and } \left.y^{2}+z^{2}<l^{2}\right\} \\
\tau(r, l):= & \inf \left\{t>0:\left(y_{t}, z_{t}\right) \notin B(0, r, l)\right\}
\end{aligned}
$$

Super-Diffusive two-points motion

$$
m_{r, l}(d y d z):=\frac{d y d z}{\int_{(y, z) \in B(0, r, l)} d y d z} 1_{B(0, r, l)}
$$

Theorem
If $\lambda^{-}>0$ then for $\rho>C \gamma$ one has

$$
\limsup _{r \rightarrow \infty} \lim _{l \rightarrow \infty} \frac{1}{\ln r} \ln \left(\mathbb{E}_{m_{r, l}}[\tau(r, l)]\right)<2
$$

$$
\lim _{l \rightarrow \infty} \mathbb{E}_{m_{r, l}}[\tau(r, l)]=r^{2-\nu(r)}
$$

Super-Diffusive two-points motion

$$
m_{r, l}(d y d z):=\frac{d y d z}{\int_{(y, z) \in B(0, r, l)} d y d z} 1_{B(0, r, l)}
$$

Theorem
If $\lambda^{-}>0$ then for $\rho>C \gamma$ one has

$$
\lim _{r \rightarrow \infty} \lim _{l \rightarrow \infty} \mathbb{P}_{m_{r, l}}\left\{\tau(r, l) \leq r^{2-\delta}\right\}=1
$$

Strong Self Averaging property of the flow

If $\lambda^{-}>0$

- The particular geometry of the eddies E_{n} has no influence on the transport

Strong Self Averaging property of the flow

If $\lambda^{-}>0$

- The particular geometry of the eddies E_{n} has no influence on the transport
- The transport depends only on the power law $\frac{\ln \gamma}{\ln \rho}$ of the velocity field.

What is λ^{-}?

- Renormalization procedure.

A reminder on homogenization

- $\mathcal{M}:=\{$ positive definite symmetric constant $d \times d$ matrices $\}$

A reminder on homogenization

- $\mathcal{M}:=\{$ positive definite symmetric constant $d \times d$ matrices $\}$
- $\mathcal{S}\left(\mathbb{T}^{d}\right):=\{$ skew symmetric $d \times d$ matrices with coefficients in $\left.L^{\infty}\left(\mathbb{T}^{d}\right)\right\}$.

A reminder on homogenization

- $\mathcal{M}:=\{$ positive definite symmetric constant $d \times d$ matrices $\}$
- $\mathcal{S}\left(\mathbb{T}^{d}\right):=\{$ skew symmetric $d \times d$ matrices with coefficients in $\left.L^{\infty}\left(\mathbb{T}^{d}\right)\right\}$.

$$
\text { Let }(a, E) \in \mathcal{M} \times \mathcal{S}\left(\mathbb{T}^{d}\right)
$$

A reminder on homogenization

Operator

$$
\left\{\begin{array}{l}
\operatorname{div}\left(a+E\left(\frac{x}{\epsilon}\right)\right) \nabla u_{\epsilon}(x)=f(x) \text { in } \Omega \\
u_{\epsilon}=0 \text { in } \partial \Omega
\end{array}\right.
$$

A reminder on homogenization

Operator

$$
\left\{\begin{array}{l}
\operatorname{div}\left(a+E\left(\frac{x}{\epsilon}\right)\right) \nabla u_{\epsilon}(x)=f(x) \text { in } \Omega \\
u_{\epsilon}=0 \text { in } \partial \Omega
\end{array}\right.
$$

then $\exists \sigma(a, E) \in \mathcal{M}$ such that as $\epsilon \downarrow 0$,

$$
u_{\epsilon} \longrightarrow u_{0}
$$

A reminder on homogenization

Operator

$$
\left\{\begin{array}{l}
\operatorname{div}\left(a+E\left(\frac{x}{\epsilon}\right)\right) \nabla u_{\epsilon}(x)=f(x) \text { in } \Omega \\
u_{\epsilon}=0 \text { in } \partial \Omega
\end{array}\right.
$$

then $\exists \sigma(a, E) \in \mathcal{M}$ such that as $\epsilon \downarrow 0$,

$$
\begin{gathered}
u_{\epsilon} \rightarrow u_{0} \\
\left\{\begin{array}{l}
\operatorname{div} \sigma(a, E) \nabla u_{0}=f \text { in } \Omega \\
u_{0}=0 \text { in } \partial \Omega
\end{array}\right.
\end{gathered}
$$

A reminder on homogenization

SDE

$$
d x_{t}=2^{\frac{1}{2}} a^{\frac{1}{2}} \cdot d \omega_{t}+\operatorname{div} E\left(x_{t}\right) d t
$$

A reminder on homogenization

SDE

$$
d x_{t}=2^{\frac{1}{2}} a^{\frac{1}{2}} \cdot d \omega_{t}+\operatorname{div} E\left(x_{t}\right) d t
$$

As $\in \downarrow 0$,

$$
\epsilon x_{t / \epsilon^{2}} \rightarrow B_{t}
$$

B_{t} Brownian Motion with covariance matrix $2 \sigma(a, E)$.

A reminder on homogenization

Literature.

- $2 \sigma(a, E)$: Effective diffusivity
- $\sigma(a, E)$: Effective conductivity - Eddy viscosity. Dispersion matrix.

A reminder on homogenization

Effective conductivity as a mapping

$$
\begin{aligned}
\sigma: \mathcal{M} \times \mathcal{S}\left(\mathbb{T}^{d}\right) & \rightarrow \mathcal{M} \\
(a, E) & \rightarrow \sigma(a, E)
\end{aligned}
$$

A reminder on homogenization

Effective conductivity as a mapping

$$
\begin{aligned}
\sigma: \mathcal{M} \times \mathcal{S}\left(\mathbb{T}^{d}\right) & \rightarrow \mathcal{M} \\
(a, E) & \rightarrow \sigma(a, E)
\end{aligned}
$$

for all $(a, E) \in \mathcal{M} \times \mathcal{S}\left(\mathbb{T}^{d}\right)$

$$
a \leq \sigma(a, E) \leq a+\int_{\mathbb{T}^{d}}{ }^{t} E(x) a^{-1} E(x) d x
$$

What is λ^{-}?

Renormalization sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$
For all $n \in \mathbb{N}, A_{n} \in \mathcal{M}$

$$
A_{0}=\frac{\kappa}{\gamma} I_{d} \quad \text { and } \quad A_{n+1}=\frac{1}{\gamma} \sigma\left(A_{n}, E_{n}\right)
$$

What is λ^{-}?

Renormalization sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$
For all $n \in \mathbb{N}, A_{n} \in \mathcal{M}$

$$
A_{0}=\frac{\kappa}{\gamma} I_{d} \quad \text { and } \quad A_{n+1}=\frac{1}{\gamma} \sigma\left(A_{n}, E_{n}\right)
$$

$\left(A_{n}\right)_{n \in \mathbb{N}}$ does not depend on ρ

What is λ^{-}?

Renormalization sequence $\left(A_{n}\right)_{n \in \mathbb{N}}$
For all $n \in \mathbb{N}, A_{n} \in \mathcal{M}$

$$
A_{0}=\frac{\kappa}{\gamma} I_{d} \quad \text { and } \quad A_{n+1}=\frac{1}{\gamma} \sigma\left(A_{n}, E_{n}\right)
$$

$\left(A_{n}\right)_{n \in \mathbb{N}}$ does not depend on ρ

$$
\lambda^{-}:=\liminf _{n \rightarrow \infty} \lambda_{\min }\left(A_{n}\right)
$$

Interpretation of A_{n}

$$
\Gamma^{n-1}(x):=\sum_{k=0}^{n-1} \gamma^{k} E_{k}\left(\frac{x}{\rho^{k}}\right)
$$

Interpretation of A_{n}

$$
\Gamma^{n-1}(x):=\sum_{k=0}^{n-1} \gamma^{k} E_{k}\left(\frac{x}{\rho^{k}}\right)
$$

Assume $\rho \in \mathbb{N}$. Then Γ^{n-1} periodic.

$$
\operatorname{div}\left(\kappa I_{d}+\Gamma^{n-1}\right) \nabla \xrightarrow{\text { Homogen }} \operatorname{div} \sigma\left(\kappa I_{d}, \Gamma^{n-1}\right) \nabla
$$

Interpretation of A_{n}

$$
\Gamma^{n-1}(x):=\sum_{k=0}^{n-1} \gamma^{k} E_{k}\left(\frac{x}{\rho^{k}}\right)
$$

Assume $\rho \in \mathbb{N}$. Then Γ^{n-1} periodic.

$$
\operatorname{div}\left(\kappa I_{d}+\Gamma^{n-1}\right) \nabla \xrightarrow{\text { Homogen }} \operatorname{div} \sigma\left(\kappa I_{d}, \Gamma^{n-1}\right) \nabla
$$

$$
\lim _{\rho \rightarrow \infty} \sigma\left(\kappa I_{d}, \Gamma^{n-1}\right)=\gamma^{n} A_{n}
$$

Interpretation of A_{n}

Magnitude of the velocity vector field at scale n :

$$
V_{n} \sim \frac{\gamma^{n}}{\rho^{n}}
$$

Interpretation of A_{n}

Magnitude of the velocity vector field at scale n :

$$
V_{n} \sim \frac{\gamma^{n}}{\rho^{n}}
$$

Local Peclet tensor

$$
\mathrm{Pe}^{n}:=V_{n} \rho^{n}\left(\lim _{\rho \rightarrow \infty} \sigma\left(\kappa I_{d}, \Gamma^{n-1}\right)\right)^{-1}
$$

Interpretation of A_{n}

Magnitude of the velocity vector field at scale n :

$$
V_{n} \sim \frac{\gamma^{n}}{\rho^{n}}
$$

Local Reynolds tensor

$$
\operatorname{Re}^{n}:=V_{n} \rho^{n}\left(\lim _{\rho \rightarrow \infty} \sigma\left(\kappa I_{d}, \Gamma^{n-1}\right)\right)^{-1}
$$

Interpretation of A_{n}

Magnitude of the velocity vector field at scale n :

$$
V_{n} \sim \frac{\gamma^{n}}{\rho^{n}}
$$

Local Reynolds tensor

$$
\begin{gathered}
\operatorname{Re}^{n}:=V_{n} \rho^{n}\left(\lim _{\rho \rightarrow \infty} \sigma\left(\kappa I_{d}, \Gamma^{n-1}\right)\right)^{-1} \\
A_{n}=\left(\mathbf{P e}^{n}\right)^{-1}=\left(\mathbf{R e}^{n}\right)^{-1}
\end{gathered}
$$

When is $\lambda^{-}>0$?

$$
\lambda^{+}:=\limsup _{n \rightarrow \infty} \lambda_{\max }\left(A_{n}\right)
$$

$$
\mu:=\limsup _{n \rightarrow \infty} \frac{\lambda_{\max }\left(A_{n}\right)}{\lambda_{\min }\left(A_{n}\right)}
$$

When is $\lambda^{-}>0$?

$$
\lambda^{+}:=\limsup _{n \rightarrow \infty} \lambda_{\max }\left(A_{n}\right)
$$

$$
\mu:=\limsup _{n \rightarrow \infty} \frac{\lambda_{\max }\left(A_{n}\right)}{\lambda_{\min }\left(A_{n}\right)}
$$

Theorem

$$
\lambda^{+} \leq \frac{C_{d}}{\lambda^{-}} \quad \text { and } \quad \mu \leq \frac{C_{d}}{\left(\lambda^{-}\right)^{2}}
$$

When is $\lambda^{-}>0$?

$$
\lambda^{+}:=\limsup _{n \rightarrow \infty} \lambda_{\max }\left(A_{n}\right)
$$

$$
\mu:=\limsup _{n \rightarrow \infty} \frac{\lambda_{\max }\left(A_{n}\right)}{\lambda_{\min }\left(A_{n}\right)}
$$

Theorem

$$
\lambda^{+} \leq \frac{C_{d}}{\lambda^{-}} \quad \text { and } \quad \mu \leq \frac{C_{d}}{\left(\lambda^{-}\right)^{2}}
$$

$$
\lambda^{-}>0 \Rightarrow \lambda^{+}<\infty \text { and } \mu<\infty
$$

When is $\lambda^{-}>0$?

for $\zeta>0$

$$
V(\zeta):=\liminf _{n \rightarrow \infty} \frac{\lambda_{\min }\left(\sigma\left(\zeta I_{d}, E_{n}\right)\right)}{\zeta}
$$

When is $\lambda^{-}>0$?

for $\zeta>0$

$$
V(\zeta):=\liminf _{n \rightarrow \infty} \frac{\lambda_{\min }\left(\sigma\left(\zeta I_{d}, E_{n}\right)\right)}{\zeta}
$$

V is decreasing and $V \geq 1$ thus

$$
V(0):=\lim _{\zeta \downarrow 0} V(\zeta)
$$

is well defined.

When is $\lambda^{-}>0$?

for $\zeta>0$

$$
V(\zeta):=\liminf _{n \rightarrow \infty} \frac{\lambda_{\min }\left(\sigma\left(\zeta I_{d}, E_{n}\right)\right)}{\zeta}
$$

Theorem If $\mu<\infty$ and $\gamma<V(0)$ then $\lambda^{-}>0$ and

$$
C_{1} \leq \lambda^{-} \lambda^{+} \leq C_{2}
$$

Idea of the Proof.

- Ball $B(0, r)$

Idea of the Proof.

- Ball $B(0, r)$
- We want to compute $\mathbb{E}[\tau(0, r)]$

Idea of the Proof.

- Ball $B(0, r)$
- We want to compute $\mathbb{E}[\tau(0, r)]$
- Main feature of the flow: Infinite number of scales $0,1, \ldots, \infty$

Separation between scales.

- Scale $n(r)=[\ln r / \ln \rho]$

$$
\rho^{n(r)} \leq r<\rho^{n(r)+1}
$$

Separation between scales.

- Scale $n(r)=[\ln r / \ln \rho]$

$$
\rho^{n(r)} \leq r<\rho^{n(r)+1}
$$

- Small scales
$0, \ldots, n(r)-1$

Separation between scales.

- Scale $n(r)=[\ln r / \ln \rho]$

$$
\rho^{n(r)} \leq r<\rho^{n(r)+1}
$$

- Small scales
$0, \ldots, n(r)-1$
- Intermediate scales
$n(r), n(r)+1$

Separation between scales.

- Scale $n(r)=[\ln r / \ln \rho]$

$$
\rho^{n(r)} \leq r<\rho^{n(r)+1}
$$

- Small scales
$0, \ldots, n(r)-1$
- Intermediate scales $n(r), n(r)+1$
- Large scales
$n(r)+2, \ldots, \infty$

All Scales.

- Medium with infinite number of scales $0,1, \ldots, \infty$.

All Scales.

- Medium with infinite number of scales $0,1, \ldots, \infty$.
- Transport of a drop of dye ?

Transport by Large Scales

- Large scales

Transport by Large Scales

- Large scales
- Their influence on the transport of the drop of dye is

Transport by Large Scales

- Large scales
- Their influence on the transport of the drop of dye is negligible

Transport by Small Scales

- Small Scales
\rightarrow homogenized.

Transport by Small Scales

- Transport = Diffusion with Effective diffusivity

$$
\sigma\left(\kappa I_{d}, \Gamma^{n(r)}\right) \sim \gamma^{n(r)} A_{n(r)}
$$

- Exit Time:

$$
\tau_{D}(0, r) \sim \frac{r^{2}}{\gamma^{n(r)} \lambda\left(A_{n(r)}\right)}
$$

Transport by Small Scales

- Transport by mixing, density gradients smoothed.

Transport by Intermediate Scales

- Intermediate Scales: not homogenized, not negligible.

Transport by Intermediate Scales

- Transport by convection through particular geometry.
- Exit time

$$
\tau_{C}(0, r) \sim \frac{r}{V_{n(r)}} \sim \frac{r^{2}}{\gamma^{n(r)}}
$$

Transport by Intermediate Scales

- Transport by advection, density gradients increased.

If $\lambda^{-}>0$

Local Peclet number

$$
\operatorname{Pe}(r):=\frac{\tau_{C}(r)}{\tau_{D}(r)} \sim\left(\lambda\left(A_{n(r)}\right)\right)^{-1}
$$

If $\lambda^{-}>0$

Local Peclet number

$$
\operatorname{Pe}(r):=\frac{\tau_{C}(r)}{\tau_{D}(r)} \sim\left(\lambda\left(A_{n(r)}\right)\right)^{-1}
$$

$\lambda^{-}>0 \Rightarrow \mathrm{Pe}(r)<\infty \Rightarrow$ At every scale r, advection (irregularities, high gradients) is compensated by averaging (smoothing, dissipating).

If $\lambda^{-}>0$

Local Peclet number

$$
\operatorname{Pe}(r):=\frac{\tau_{C}(r)}{\tau_{D}(r)} \sim\left(\lambda\left(A_{n(r)}\right)\right)^{-1}
$$

$\lambda^{-}>0 \Rightarrow \operatorname{Pe}(r)<\infty \Rightarrow$ influence of the intermediate scales on the transport comparable to the influence of the small scales.

$$
\tau(0, r) \sim \tau_{D}(0, r) \sim \frac{r^{2}}{\gamma^{n(r)}}
$$

If $\lambda^{-}>0$

Local Peclet number

$$
\operatorname{Pe}(r):=\frac{\tau_{C}(r)}{\tau_{D}(r)} \sim\left(\lambda\left(A_{n(r)}\right)\right)^{-1}
$$

$$
n(r) \sim \frac{\ln r}{\ln \rho}
$$

$$
\tau(0, r) \sim \frac{r^{2}}{\gamma^{n(r)}} \sim r^{2-\nu}
$$

with $\nu=\frac{\ln \gamma}{\ln \rho}>0$.

If $\lambda^{-}=0$

$$
\text { If } \lambda^{-}=0
$$

As $r \rightarrow \infty$
$\operatorname{Pe}(r) \rightarrow \infty$

If $\lambda^{-}=0$

As $r \rightarrow \infty$

$$
\operatorname{Pe}(r) \rightarrow \infty
$$

- At every scale transport dominated by advection.

If $\lambda^{-}=0$

As $r \rightarrow \infty$

$$
\operatorname{Pe}(r) \rightarrow \infty
$$

- At every scale transport dominated by advection.
- Collapse of the self-averaging property of the flow towards chaos.

If $\lambda^{-}=0$

As $r \rightarrow \infty$

$$
\operatorname{Pe}(r) \rightarrow \infty
$$

- At every scale transport dominated by advection.
- Collapse of the self-averaging property of the flow towards chaos.
- The particular geometry of the eddies can not be neglected even if ρ is large.

Self-Similar Case

Definition
A_{n} is self-similar and isotropic iff

- $\forall n \in \mathbb{N}, E_{n}=E ;$

Self-Similar Case

Definition
A_{n} is self-similar and isotropic iff

- $\forall n \in \mathbb{N}, E_{n}=E$;
- $\forall \zeta>0, \sigma\left(\zeta I_{d}, E\right)=\lambda(\zeta) I_{d}$.

Self-Similar Case

Definition
A_{n} is self-similar and isotropic iff

- $\forall n \in \mathbb{N}, E_{n}=E$;
- $\forall \zeta>0, \sigma\left(\zeta I_{d}, E\right)=\lambda(\zeta) I_{d}$.

If A_{n} is self-similar then it is a low order dynamical system.

$$
A_{n+1}=\frac{1}{\gamma} \sigma\left(A_{n}, E\right)
$$

Self-Similar Case

Definition A_{n} is self-similar and isotropic iff

- $\forall n \in \mathbb{N}, E_{n}=E$;
- $\forall \zeta>0, \sigma\left(\zeta I_{d}, E\right)=\lambda(\zeta) I_{d}$.

$$
V(0):=\lim _{\zeta, 0} \frac{\lambda_{\min }\left(\sigma\left(\zeta I_{d}, E\right)\right)}{\zeta}
$$

Self-Similar Case

Theorem If A_{n} is self-similar and isotropic then

- If $\gamma<V(0)$ then $\lambda^{-}>0$ and $\lim _{n \rightarrow \infty} A_{n}=\zeta_{0} I_{d}$ where ζ_{0} is the unique solution of $V\left(\zeta_{0}\right)=\gamma$.

Self-Similar Case

Theorem If A_{n} is self-similar and isotropic then

- If $\gamma<V(0)$ then $\lambda^{-}>0$ and
$\lim _{n \rightarrow \infty} A_{n}=\zeta_{0} I_{d}$ where ζ_{0} is the unique solution of $V\left(\zeta_{0}\right)=\gamma$.
- If $\gamma=V(0)$ and $(V(0)-V(x)) x^{-p}$ admits a non ero limit as $x \downarrow 0$ with $p>0$ then $\lambda^{-}=0$ and $\lim _{n \rightarrow \infty} \frac{\ln \lambda\left(A_{n}\right)}{\ln n}=-\frac{1}{p}$.

Self-Similar Case

Theorem If A_{n} is self-similar and isotropic then

- If $\gamma<V(0)$ then $\lambda^{-}>0$ and $\lim _{n \rightarrow \infty} A_{n}=\zeta_{0} I_{d}$ where ζ_{0} is the unique solution of $V\left(\zeta_{0}\right)=\gamma$.
- If $\gamma=V(0)$ and $(V(0)-V(x)) x^{-p}$ admits a non ero limit as $x \downarrow 0$ with $p>0$ then $\lambda^{-}=0$ and $\lim _{n \rightarrow \infty} \frac{\ln \lambda\left(A_{n}\right)}{\ln n}=-\frac{1}{p}$.
- If $\gamma>V(0)$ then $\lambda^{-}=0$ and
$\lim _{n \rightarrow \infty} \frac{1}{n} \ln \lambda\left(A_{n}\right)=\ln \left(\frac{V(0)}{\gamma}\right)$

Bifurcation

- Flow self similar and isotropic. for all n, $E_{n}=E$.
- Shape of the eddy E over a period.
- $1<V(0)<\infty$.

Bifurcation

- $\gamma<V(0)$
- $\lambda^{-}>0$
- The flow is self averaging

Bifurcation

- $\gamma \geq V(0)$
- $\lambda^{-}=0$
- The self averaging property collapses.

$\lambda^{-}=0$, proof of the collapse

Assume A_{n} to be self-similar and isotropic. Spatial scales $\rho^{n} \rightarrow R_{n}$

$$
\begin{aligned}
\Gamma(x)= & \sum_{n=0}^{\infty} \gamma^{n} E\left(\frac{x}{R_{n}}\right) \\
\rho_{\min } & :=\inf _{n \in \mathbb{N}} \frac{R_{n+1}}{R_{n}} \\
2 & \leq \rho_{\min }
\end{aligned}
$$

$\lambda^{-}=0$, proof of the collapse

For $y \in[0,1]^{d}$

$$
\sigma(n, y):=\sigma\left(\kappa I_{d}, \Gamma^{n-1}+\gamma^{n} E\left(y+\frac{x}{R_{n}}\right)\right)
$$

$\lambda^{-}=0$, proof of the collapse

$$
\sigma(n, y):=\sigma\left(\kappa I_{d}, \Gamma^{n-1}+\gamma^{n} E\left(y+\frac{x}{R_{n}}\right)\right)
$$

- Averaging paradigm \Rightarrow Relative translation by y has little influence on $\sigma(n, y)$
- for all y,

$$
\lim _{\rho_{\min } \rightarrow \infty} \sigma(n, y)=\lim _{\rho_{\min } \rightarrow \infty} \sigma(n, 0)
$$

$\lambda^{-}=0$, proof of the collapse

$$
\begin{aligned}
& \sigma(n, y):=\sigma\left(\kappa I_{d}, \Gamma^{n-1}+\gamma^{n} E\left(y+\frac{x}{R_{n}}\right)\right) \\
& \sigma(n, y, \rho):=\lim _{\frac{R_{1}}{R_{0}}, \ldots, \frac{R_{n-1}}{R_{n-2} \rightarrow \infty ; \frac{R_{n}}{R_{n}-1}=\rho}} \sigma(n, y)
\end{aligned}
$$

$\lambda^{-}=0$, proof of the collapse

$$
\begin{gathered}
\sigma(n, y):=\sigma\left(\kappa I_{d}, \Gamma^{n-1}+\gamma^{n} E\left(y+\frac{x}{R_{n}}\right)\right) \\
\sigma(n, y, \rho):=\lim _{\frac{R_{1}}{R_{0}}, \ldots, \frac{R_{n-1}}{R_{n-2}} \rightarrow \infty ; \frac{R_{n}}{R_{n-1}}=\rho} \sigma(n, y) \\
\sigma(n, y, \rho)=\gamma^{n-1} \sigma\left(A_{n-1}, E(\rho x)+\gamma E(x+y)\right)
\end{gathered}
$$

$\lambda^{-}=0$, proof of the collapse

$$
\begin{aligned}
& \sigma(n, y):=\sigma\left(\kappa I_{d}, \Gamma^{n-1}+\gamma^{n} E\left(y+\frac{x}{R_{n}}\right)\right) \\
& \sigma(n, y, \rho):=\lim _{\frac{R_{1}, \ldots, \ldots, n-1}{R_{0}} \cdots, \cdots ; \frac{R_{n}}{R_{n-2}} \lim _{n-1}^{R_{n-1}}=\rho} \sigma(n, y)
\end{aligned}
$$

$$
\sigma(n, y, \rho)=\gamma^{n-1} \sigma\left(A_{n-1}, E(\rho x)+\gamma E(x+y)\right)
$$

If $\lambda^{-}>0$ then $l \in\left(R^{d}\right)^{*}$ and $y \in[0,1]^{d}$,

$$
\limsup _{n \rightarrow \infty} \frac{{ }^{t} l \sigma(n, y, \rho) l}{{ }^{t} l \sigma(n, 0, \rho) l}<1+C_{d}\left(\rho \lambda^{-}\right)^{-\frac{1}{2}} .
$$

$\lambda^{-}=0$, proof of the collapse

$$
\begin{gathered}
\sigma(n, y):=\sigma\left(\kappa I_{d}, \Gamma^{n-1}+\gamma^{n} E\left(y+\frac{x}{R_{n}}\right)\right) \\
\sigma(n, y, \rho):=\lim _{\frac{R_{1}}{R_{0}}, \ldots, \frac{R_{n-1}}{R_{n-2}} \rightarrow \infty ; \frac{R_{n}}{R_{n-1}}=\rho} \sigma(n, y) \\
\sigma(n, y, \rho)=\gamma^{n-1} \sigma\left(A_{n-1}, E(\rho x)+\gamma E(x+y)\right)
\end{gathered}
$$

If $\lambda^{-}=0$ then for any $\rho>1$ there exists E and $y \in[0,1]^{d}$ such that for any $l \in\left(R^{d}\right)^{*}$,

$$
\lim _{n \rightarrow \infty} \frac{{ }^{t} l \sigma(n, y, \rho) l}{{ }^{t} l \sigma(n, 0, \rho) l}=\infty .
$$

Two scale flows

$$
\begin{aligned}
& S_{\rho} E(x)=E(\rho x) \\
& \Theta_{y} E(x)=E(x-y) \\
& \text { As } \zeta \downarrow 0 \\
& \sigma\left(\zeta I_{d}, S_{\rho} E+E\right) \sim C_{1} \zeta I_{d} .
\end{aligned}
$$

Two scale flows

$$
\begin{aligned}
& S_{\rho} E(x)=E(\rho x) \\
& \Theta_{y} E(x)=E(x-y) \\
& \text { As } \zeta \downarrow 0 \\
& \sigma\left(\zeta I_{d}, S_{\rho} E+\Theta_{y} E\right) \sim C_{2} \zeta^{\frac{1}{2}} I_{d}
\end{aligned}
$$

On the nature of Turbulence.

The flow at scale r is laminar. Viscosity κ, velocity $V(r)=V_{0}$.

On the nature of Turbulence.

A small perturbation is introduced.

On the nature of Turbulence.

Diffusion

$+$

Convection
$\tau_{D}(r)$: exit time of the perturbation by diffusion $\tau_{C}(r)$: exit time of the perturbation by convection

On the nature of Turbulence.

On the nature of Turbulence.

If $\tau_{D}(r)<\tau_{C}(r)$ the perturbation exits by diffusion and is smoothed before going out of $B(0, r)$.

On the nature of Turbulence.

\Rightarrow the laminar flow is stable at the scale r

On the nature of Turbulence.

$$
\tau_{D}(r)<\tau_{C}(r) \Leftrightarrow \frac{r^{2}}{\kappa}<\frac{r}{V_{0}} \Leftrightarrow \mathbf{R e}=\frac{r V_{0}}{\kappa}<1
$$

On the nature of Turbulence.

If $\tau_{D}(r)>\tau_{C}(r)$ the perturbation exits by convection and propagates.

On the nature of Turbulence.

\Rightarrow The flow is unstable at the scale r and fluctuates and this scale.

On the nature of Turbulence.

$$
\tau_{D}(r)>\tau_{C}(r) \Leftrightarrow \frac{r^{2}}{\kappa}>\frac{r}{V_{0}} \Leftrightarrow \mathbf{R e}=\frac{r V_{0}}{\kappa}>1
$$

On the nature of Turbulence.

Let's look at the flow at the scale r / ρ

On the nature of Turbulence.

The flow is laminar at this scale r / ρ with velocity
$V(r / \rho)=V_{0} / \gamma$

On the nature of Turbulence.

A small perturbation is introduced at the scale r / ρ

On the nature of Turbulence.

This self similar process is iterated, until the dissipation scale l is reached.

On the nature of Turbulence.

At the dissipation scale $l, \tau_{C}(l) \sim \tau_{D}(l)$

On the nature of Turbulence.

$$
\sigma(r) \sim r V(r)
$$

The multi-scale structure creates an effective viscosity $\sigma(r) \sim r V(r)$

On the nature of Turbulence.

$$
\begin{aligned}
& \sigma(r) \sim r V(r) \\
& \tau_{C}(r) \sim r / V(r) \\
& \tau_{D}(r) \sim r^{2} / \sigma(r)
\end{aligned}
$$

The multi-scale structure stabilizes the flow since $\sigma(r) \sim r V(r) \Rightarrow \tau_{D}(r) \sim \tau_{C}(r)$

On the nature of Turbulence.

$$
V(x)=V_{0}(x / r)^{\alpha}
$$

We write $\gamma=\rho^{1+\alpha}$

On the nature of Turbulence.

$$
\begin{array}{r}
V(x)=V_{0}(x / r)^{\alpha} \\
\epsilon(x) \sim \frac{(V(x))^{3}}{x}
\end{array}
$$

Kolmogorov $\alpha=1 / 3$

The energy dissipation $\epsilon(x)$ at scale x is
$\sigma(x)\left(\frac{V(x)}{x}\right)^{2} \sim \frac{(V(x))^{3}}{x}$

On the nature of Turbulence.

$$
\begin{array}{r}
V(x)=V_{0}(x / r)^{\alpha} \\
\epsilon(x) \sim \frac{(V(x))^{3}}{x}
\end{array}
$$

Kolmogorov $\alpha=1 / 3$

If $\alpha>1 / 3$ the larger eddies are dissipated before the smaller ones

On the nature of Turbulence.

$$
\begin{gathered}
V(x)=V_{0}(x / r)^{\alpha} \\
\quad \epsilon(x) \sim \frac{(V(x))^{3}}{x} \\
\text { Kolmogorov } \alpha=1 / 3
\end{gathered}
$$

If $\alpha<1 / 3$ the smaller eddies are dissipated before the larger ones

On the nature of Turbulence.

$$
\begin{aligned}
V(x) & =V_{0}(x / r)^{\alpha} \\
\epsilon(x) & \sim \frac{(V(x))^{3}}{x}
\end{aligned}
$$

Kolmogorov $\alpha=1 / 3$

The relation $\sigma(x) \sim x V(x)$ is at the core of the Kolmogorov law

On the nature of Turbulence.

$$
\begin{aligned}
V(x) & =V_{0}(x / r)^{\alpha} \\
\epsilon(x) & \sim \frac{(V(x))^{3}}{x}
\end{aligned}
$$

Kolmogorov $\alpha=1 / 3$

In the anisotropic case, the relation
$\lambda_{\max }(\sigma(x)) \lambda_{\min }(\sigma(x)) \sim x^{2}(V(x))^{2}$ restores the isotropy of the flow.

On the nature of Turbulence.

$$
\begin{array}{r}
V(x)=V_{0}(x / r)^{\alpha} \\
\epsilon(x) \sim \frac{(V(x))^{3}}{x}
\end{array}
$$

Kolmogorov $\alpha=1 / 3$

At the dissipation scale, $\tau_{C}(l) \sim \tau_{D}(l) \Leftrightarrow$
$l / V(l) \sim l^{2} / \kappa$
$\Leftrightarrow r / l \sim\left(\frac{V_{0} r}{\kappa}\right)^{\frac{3}{4}}$

On the nature of Turbulence.

$$
\begin{gathered}
V(x)=V_{0}(x / r)^{\alpha} \\
\qquad \epsilon(x) \sim \frac{(V(x))^{3}}{x} \\
\text { Kolmogorov } \alpha=1 / 3
\end{gathered}
$$

intermittency at the smaller scales

