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ANOMALOUS SLOW DIFFUSION FROM
PERPETUAL HOMOGENIZATION
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This paper is concerned with the asymptotic behavior of solutions of
stochastic differential equations dyt = dωt − ∇V (yt ) dt , y0 = 0. When
d = 1 and V is not periodic but obtained as a superposition of an infinite
number of periodic potentials with geometrically increasing periods [V (x) =∑∞

k=0 Uk(x/Rk), where Uk are smooth functions of period 1, Uk(0) = 0, and
Rk grows exponentially fast with k] we can show that yt has an anomalous
slow behavior and we obtain quantitative estimates on the anomaly using and
developing the tools of homogenization. Pointwise estimates are based on a
new analytical inequality for subharmonic functions. When d ≥ 1 and V is
periodic, quantitative estimates are obtained on the heat kernel of yt , showing
the rate at which homogenization takes place. The latter result proves Davies’
conjecture and is based on a quantitative estimate for the Laplace transform
of martingales that can be used to obtain similar results for periodic elliptic
generators.

1. Introduction. It is now well known that natural Brownian motions on
various disordered or complex structures are anomalously slow.

These mechanisms of the slow diffusion for instance are well understood for
very regular strictly self-similar fractals. The archetypical specific example of a
deep problem being the one solved in Barlow and Bass (1999) on the Sierpinski
carpet [which is infinitely ramified, a codeword for hard to understand rigorously:
for a survey on diffusions on fractals we refer to Barlow (1998), for an alternative
approach to Osada (1995) and for the random Sierpinski carpet to Hambly,
Kumagai, Kusuoka and Zhou (1998)]. It appears that the main feature is the
existence of an infinite number of scales of obstacle (with proper size) for the
diffusion.

It is our object to show that one can implement the common idea that this last
feature (infinitely many scales) is the key to the possibility of anomalous diffusion,
in a general context using the tools of homogenization.

The strategy of the proof might appear paradoxical: it is not a priori very sen-
sible to try to prove that the diffusion is anomalous by the use of homogenization
theory which is a vast mathematical machine destined to prove an opposite result,
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that is, a central limit theorem and thus normal diffusion. But it will be shown that
when the homogenization process is not finished, an anomalous behavior whose
characteristics are controlled by homogenization theory might appear.

This paper will focus on the subdiffusive behavior in dimension one (Sec-
tion 2.1), which will allow the introduction of a concept of differentiation between
spatial scales that can be applied to a more general framework.

The proof of the anomaly of the exit times is based on a new quantitative
analytical inequality for subharmonic functions (Section 2.3) that is linked with
stability properties of elliptic divergence form operators.

The extension of those results to higher dimensions has been done in Ben Arous
and Owhadi (2001) and to the super-diffusive case in Ben Arous and Owhadi
(2002) and Owhadi (2001b).

The control of the anomalous heat kernel tail is based on sharp quantitative
estimates for the Laplace transform of a martingale. These estimates allow us to put
into evidence the rate at which homogenization takes place on the behavior of the
heat kernel of an elliptic generator in any dimension (Section 2.2). The quantitative
control of the heat kernel in homogenization theory outside any asymptotic regime
has been recognized as difficult and important Norris (1997). For instance, this
problem is at the center of Davies’ conjecture emphasized as “well beyond existing
results” [Davies (1993)]. With Theorem 2.8 we give a proof of that conjecture in
any dimension for elliptic operators with only bounded coefficients.

1.1. History. The idea of associating homogenization (or renormalization) on
large number of scales with the anomaly of a physical system has already been
applied from an heuristic point of view to several physical models.

Maybe one of the oldest of such applications is to differential effective medium
theories which was first proposed by Bruggeman to calculate the conductivity
of a two-component composite structure formed by successive substitutions
[Bruggerman (1935) and Garland and Tanner (1977)] and generalized in Norris
(1985) to materials with more than two phases. For instance this theory has been
applied to compute the anomalous electrical and acoustic properties of fluid-
saturated sedimentary rocks [Sen, Scala and Cohen (1981)]. More recently this
problem has been analyzed from a rigorous point of view in Avellaneda (1987),
Kozlov (1995), Allaire and Briane (1996) and Jikov and Kozlov (1999).

The heuristic application of this idea to prove the anomalous behavior of
diffusion seems to have been done only for the super-diffusive case that is to say for
a diffusion evolving among a large number of divergence-free drifts. Maybe this
is explained by the strong motivation to explore convective transports in turbulent
flows which are known to be characterized by a large number of scales of eddies.
The first observation was empirical: in Richardson (1926) Richardson empirically
conjectured that the diffusion coefficient Dλ in turbulent air depends on the scale
length λ of the measurement. More recently physicists and mathematicians have
started to investigate on the super-diffusive phenomenon (from both heuristic and
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rigorous points of view) using the tools of homogenization or renormalization
(the first cousin of multi-scale homogenization): we refer to Avellaneda and
Majda (1990), Glimm and Zhang (1992), Avellaneda (1996), Bhattacharya (1999),
Fannjiang and Papanicolaou (1994) and Fannjiang and Komorowski (2000).

1.2. The model. Let us consider in dimension one a Brownian motion with a
drift given by the gradient of a potential V , that is, the solution of the stochastic
differential equation:

dyt = dωt − ∇V (yt ) dt, y0 = 0.(1)

The multi-scale potential V is given by a sum of infinitely many periodic functions
with (geometrically) increasing periods:

V =
∞∑

n=0

Un

(
x

Rn

)
.(2)

In this formula we have two important ingredients: the potentials Uk and the
scale parameters Rk . We will now describe the hypothesis we make on these two
items of our model.

1. Hypotheses on the potentials Uk . We will assume that

Uk ∈ C∞(T),(3)

Uk(0) = 0.(4)

Here C∞(Td) denotes the space of smooth functions on the torus T := R \ Z.
We will also assume that the first derivate of the Uk are uniformly bounded, that
is,

K1 := sup
k∈N

sup
x �=y

|Uk(x) − Uk(y)|/|x − y| < ∞.(5)

We will also need the notation

K0 := sup
k∈N

Osc(Uk),(6)

where the oscillation of Uk is given by Osc(U) := supU − infU . We write
D(Uk) for the effective diffusivities associated with the potentials Uk : if zt is
the solution of dzt = dωt − ∇Uk(zt ) dt , it is well known [Olla (1994)] that
as ε ↓ 0, εzt/ε2 converges in law toward a Brownian motion with covariance
matrix D(Uk) given by

D(Un) =
(∫

T

e2Un(x) dx

∫
T

e−2Un(x) dx

)−1

.(7)

We also assume that the effective diffusivity matrices of the Uk’s are uniformly
bounded away from 0 and 1.

λmin = inf
n∈N

D(Un) > 0 and λmax = sup
n∈N

D(Un) < 1.(8)
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2. Hypotheses on the scale parameters Rk . Rk is a spatial scale parameter growing
exponentially fast with k, more precisely we will assume that R0 = r0 = 1
and that the ratios between scales defined by (we write N∗ the set of integers
different from 0)

rk = Rk/Rk−1 ∈ N
∗(9)

for k ≥ 1, are integers uniformly bounded away from 1 and ∞: we will denote
by

ρmin := inf
k∈N∗ rk and ρmax := sup

k∈N∗
rk(10)

and assume that

ρmin ≥ 2 and ρmax < ∞.(11)

Since ‖∇V ‖∞ < ∞, it is well known that the solution of (1) exists; is unique
up to sets of measure 0 with respect to the Wiener measure and is a strong Markov
continuous Feller process.

REMARK 1.1. Note that if ∀n,Un ∈ {W1, . . . ,Wp}, the (Wi) being noncon-
stant, then the conditions (8) and (5) are trivially satisfied.

2. Main results.

2.1. Subdiffusive behavior. Our first objective is to show that the solution
of (1) is abnormally slow and the asymptotic subdiffusivity will be characterized
in three ways:

• as an anomalous behavior of the expectation of τ (0, r) (the exit time from a ball
of radius r , for r → ∞, i.e., E0[τ (0, r)] ∼ r2+ν );

• as an anomalous behavior of the variance at time t , that is, E0[y2
t ] ∼ t1−ν as

t → ∞;
• as an anomalous (non-Gaussian) behavior of the tail of the transition probability

of the process.

More precisely there exists a constant ρ0(K0,K1, λmax) such that:

THEOREM 2.1. If ρmin > ρ0 and τ (0, r) is the exit time associated with the
solution of (1) then there exists a constant C1 depending on K0,K1 such that

E0[τ (0, r)] = r2+ν1(r)+ε(r),(12)

where ε(r) → 0 as r → ∞ and

0 < − ln λmax

ln ρmax
− C1

ρmin lnρmax
≤ ν1(r) ≤ − ln λmin

ln ρmin
+ C1

ρmin lnρmin
.(13)
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THEOREM 2.2. If ρmin > ρ0 and yt is a solution of (1) then there exists a
constant C2 depending on K0,K1 and a time t0 depending on K1, ρmin, ρmax, λmax
such that, for t > t0,

E[y2
t ] = t1−ν2(t)/2,(14)

where

0 < − ln λmax

ln ρmax
− C2

ln ρmin lnρmax
≤ ν2(t) ≤ − ln λmin

ln ρmin
+ C2

(ln ρmin)2
.(15)

THEOREM 2.3. If ρmin > ρ0 and yt is a solution of (1) then there exist
constants C5 depending on K0,K1,R2; C3 on K0,K1, ρmin; C4,C6 and C7 on
K0,K1 such that if t, h > 0 and

t

h
≥ C5 and

h2

t
≥ C3

(
t

h

)(ln λmax)/(2 lnρmax)+C4/(lnρmin)
2

,(16)

then

lnP[|yt | ≥ h] ≤ −C6
h2

t

(
t

h

)ν3

(17)

with

ν3 = − ln λmax

ln ρmax
− C7

ln ρmin ln ρmax
> 0.(18)

REMARK 2.4. The second condition in (16) is really needed since the leading
exponent associated with (t/h) is ( lnλmax

2 lnρmax
), that is, half the one associated to ν3.

This condition corresponds to a frontier with a heat kernel diagonal regime.

2.1.1. Description of the proofs. Before discussing the results further we
want to describe the proof. A perpetual homogenization process takes place over
the infinite number of scales 0, . . . , n, . . . . The idea is to distinguish, when one
tries to estimate (12), (14) or (17), the smaller scales which have already been
homogenized (0, . . . , nef called effective scales), the bigger scales which have not
had a visible influence on the diffusion (ndri, . . . ,∞ called drift scales because
they will be replaced by a constant drift in the proof) and some intermediate
scales that manifest their particular shapes in the behavior of the diffusion (nef +
1, . . . , ndri − 1 = nef + nper called perturbation scales because they will enter in
the proof as a perturbation of the homogenization process over the smaller scales).
To estimate (12) for instance, if one considers the periodic approximation of the
potential

V n
0 (x) =

n∑
k=0

Uk(x/Rk),(19)
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the corresponding process y
(n)
t will have an asymptotic (homogenized) variance

[Olla (1994)]:

D(V n
0 ) =

(∫
T

e2V n
0 (Rnx) dx

∫
T

e−2V n
0 (Rnx) dx

)−1

.(20)

The variance D(U0) is smaller than 1 and because of the geometric growth of
the periods Rn and a minimal separation between them (i.e., ρmin > ρ0), D(V n

0 )

decreases exponentially fast in n.
By homogenization theory, yn

t is characterized by a mixing length ξm(V n
0 ) ∼ Rn

such that if one writes τn as its associated exit times, then for r > ξm(V n
0 ),

E0[τn(0, r)] ∼ r2

D(V n
0 )

.(21)

Writing nef(r) = sup{n :Rn ≤ r} one proves that E0[τ (0, r)] ∼ E0[τnef(r)(0, r)]
by showing the stability of E0[τ (0, r)] under the influence of V ∞

nef(r)+1 =∑∞
k=nef(r)+1 Uk(x/Rk). This control is based on a new analytical inequality which

shall be described in the sequel and allows us to obtain that

E0
[
τnef(r)(0, r)

]
e
−6 Oscr (V

∞
nef(r)+1)

≤ E0[τ (0, r)] ≤ E0
[
τnef(r)(0, r)

]
e

6 Oscr (V
∞
nef(r)+1)

.

(22)

In these inequalities, Oscr (V
∞
nef(r)+1) stands for supB(0,r) V

∞
nef(r)+1 −

infB(0,r) V
∞
nef(r)+1 and is controlled by

Oscr

(
V ∞

nef(r)+1
) ≤ Osc

(
Unef(r)+1

) + ∥∥∇V ∞
nef(r)+2

∥∥∞r,

that is, nef(r)+ 1 acts as a perturbation scale and nef(r)+ 2, . . . ,∞ as drift scales.
From this,

E0[τ (0, r)] ∼ r2

D(V
nef(r)
0 )

.(23)

Thus, if

− lim inf
r→∞

1

ln r
ln D

(
V

nef(r)
0

)
> 0

one has subdiffusivity, in the sense as defined above.
The proof of (14) follows similar lines by the introduction mixing times τm(V n

0 )

and visibility times τv(V
∞
p ) [such that for τm(V n

0 ) < t < τv(V
∞
p ); V ∞

p does
not have a real influence on the behavior of the diffusion yt and V n

0 has
been homogenized]. Then choosing nef(t) = sup{n : τm(V n

0 ) ≤ t} one obtains the
following.



ANOMALOUS SLOW DIFFUSION FROM PERPETUAL HOMOGENIZATION 1941

PROPOSITION 2.5. Letting ν2(t) be the function associated with (14), one
has, for t > tK1,ρmin,ρmax,λmax ,

νef(t)

(
1 − CK1

ln ρmin

)
≤ ν2(t) ≤ νef(t)

(
1 + CK1

ln ρmin

)
,(24)

νef(t) = ln(1/λef(t))

ln ρef(t)
with ρ

nef
ef = Rnef and λ

nef+1
ef = D(V

nef
0 ).(25)

This proposition shows that this separation between scales is more than a
conceptual tool: it does reflect the underlying phenomenon. Indeed the anomalous
function ν2(t) is given in the first order in 1/(lnρmin) by the number of
effective scales by E[y2

t ] ∼ tD(V
nef
0 ), and in this approximation ν2(t) ∼ νef(t)

where νef(t) corresponds to a medium in which the ratios rn and the effective
diffusivities D(Un) have been replaced by their geometric mean over the
nef + 1 effective scales. The origin of the constant CK1/(lnρmin) in (24) is
the perturbation scales. More precisely, one has to fix the drift scales by
ndri(t) = inf{n : τv(V

∞
n ) ≥ t}, and in general there is a gap between nef(t) and

ndri(t), the scales Un situated in this gap manifest their particular shape in the
behavior of ν2(t) and since no hypothesis have been made on those shapes one has
to take into account their influence as a perturbation.

One may notice that in many papers on diffusions on fractals [see, e.g., Barlow
(1998), Section 3] obtaining estimates on hitting times is essentially the key to the
whole problem and the same is true here: this strategy has been adapted in Ben
Arous and Owhadi (2001). In this paper we have chosen to not use this strategy in
order to put an emphasis on the role played by the never-ending homogenization
process taking place on these diffusions on fractals. Indeed one might wonder why
the estimates of the behavior of Brownian motion on fractals are of the form

E[y2
t ] ∼ t2/dw,(26)

E[τ (0, r)] ∼ rdw,(27)

ln p(t, x, y) ∼ −
( |x − y|dw

t

)1/(dw−1)

.(28)

One explanation is given here by the number of effective scales hidden in the
estimates (26)–(28). Let us assume the model to be self similar [for all k, rk = ρ

and Uk = U , D(Uk) = λ]. In Table 1 we have summarized formulae giving
(in the first approximation in 1/ lnρ) the number of effective scales and the
formulae linking them with those anomalous estimates (appearing in the proof,
the influence of the perturbation scales will be neglected). This gives three values
of dw corresponding to (26)–(28) and the interesting point is to compare them.

Let us observe that the multi-scale homogenization technique gives back
the right forms for the mean squared displacement, the exit times and the
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TABLE 1

E0[y2
t ] E0[τ(0,y)] lnP0[yt ≥ h]

nef
ln t

2 lnρ

ln r

lnρ

ln(t/h)

ln(ρ/λ1/2)

Heuristic tλnef
r2

λnef
− h2

tλnef

Anomaly t2/dw,1 rdw,2 −
(

hdw,3

t

)1/(dw,3−1)

dw,i
2

1 + lnλ/(2 lnρ)
2 − lnλ

lnρ
1 + 1

1 + lnλ/(lnρ − (1/2) ln λ)

transition probability densities; they are explained by the number of scales which
homogenization can be considered as complete associated with each observation.
Moreover dw,1, dw,2 and dw,3 are equal up to the first-order approximation
in 1/ lnρ; nevertheless, they are not equal and this is not surprising. Indeed
when ρ is small the second-order term in 1/(ln ρ)2 cannot be neglected since the
perturbation scales becomes more and more dominant [and the influence of the
perturbation scales is of the order of 1/(lnρ)2].

2.1.2. Strong overlap between the spatial scales. The anomaly is based on a
minimal separation between spatial scales, that is, ρmin > ρ0 and one might wonder
what happens below this boundary. The answer will be given for a self similar case,
that is, V is said to be self similar if for all n, Un = U and ρmin = ρmax = ρ.

THEOREM 2.6. If the potential V in (1) is self similar then, for all ρ ≥ 2,

E0[τ (0, r)] = r2+ν(r)(29)

with

ν(r) = Pρ(2U) + Pρ(−2U)

lnρ
+ ε(r)(30)

with ε(r) → 0 as r → ∞.

Here Pρ is the topological pressure associated with the shift operator sρ :x ∈
T → ρx ∈ T [see (129) for its definition].

Using the convexity properties of the topological pressure one has Pρ(2U) +
Pρ(−2U) ≥ 0 and the following proposition.

PROPOSITION 2.7. Pρ(2U) + Pρ(−2U) = 0 if and only if

lim
n→∞

∥∥∥∥∥1

n

n−1∑
k=0

(
U(ρkx) −

∫
Td

U(x) dx

)∥∥∥∥∥∞
= 0.(31)
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From this one deduces that for the simple example U(x) = sin(x) − sin(81x),
E[τ (0, r)] is anomalous (subdiffusive ∼ r2+ν with ν > 0) for ρ ∈ {2} ∪
{4, . . . ,26} ∪ {28, . . . ,80} ∪ {82, . . . ,+∞} and normal (∼ r2) for ρ = 3,27,81.

Thus if U is not a constant function, there exists ρ0(K0,K1,D(U)) such that
for ρ > ρ0, yt has a clear anomalous behavior (E0[τ (0, r)] ∼ r2+ν with ν > 0)
but in the interval (1, ρ0] both cases are possible: yt may show a normal or an
anomalous behavior according to the value of the ratio between scales ρ and the
regions of normal behavior (characterized by Proposition 2.7) might be separated
by regions of anomalous behavior.

What creates this phenomenon is a strong overlap or interaction between scales:
that is, why the region (1, ρ0) will be called “overlapping ratios,” that is, in this
region the fluctuation of V at a size ξ > 0 is not represented by a single Un(x/Rn)

but by several ones and to characterize the behavior of yt in that region one
must introduce additional parameters describing the shapes of the fluctuations Un,
elsewhere a normal or a subdiffusive behavior are both possible.

2.2. Davies’ conjecture and quantitative estimates on rate of convergence
toward the limit process in homogenization. The proof of Theorem 2.3 has
not been described yet. The strategy is still to distinguish effective, perturbation
and drift scales nevertheless it is not obvious to determine how many scales
have been homogenized in the estimation of P0(yt ≥ h). The answer is directly
linked with the rate at which the transition probability densities associated with a
periodic elliptic operator do pass from a large deviation behavior to a homogenized
behavior.

Consider for instance in any dimension d ≥ 1, U ∈ L∞(Td) and the Dirichlet
form

E(f, f ) = 1

2

∫
Rd

|∇f (x)|2 e−2U(x)∫
Td e−2U(z) dz

dx, f ∈ D[E ] = H 1(Rd).(32)

Write p(t, x, y) its associated heat kernel with respect to

mU(dx) = e−2U(x)∫
Td e−2U(z) dz

dx(33)

the invariant measure associated to (32). Note that when U is smooth the associated
operator can be written L = 1/2� − ∇U∇ and it is well known that:

• Large deviation regime: for |x − y| � t the paths of the diffusion concentrate
on the geodesics and

ln p(t, x, y) ∼ −|x − y|2
2t

.(34)
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• Heat kernel diagonal regime: for |x − y|2 � t , the behavior is fixed by the
diagonal of the heat kernel and

p(t, x, y) ∼ C0(x)

td/2
.(35)

Davies conjectured that [we refer to Davies (1993); he considers periodic operators
of divergence form nevertheless the idea remains unchanged] that p(t, x, y) should
have a homogenized behavior (ln p(t, x, y) ∼ −(x − y)D(U)−1(x − y)/(2t)) for
t large enough.

Norris (1997) has shown that the homogenized behavior of the heat ker-
nel p(t, x, y) corresponding to a periodic operator on the torus Td (dimension d

side 1) starts at least for t ln t � |x − y|2 (with |x − y|2 � t); in this paper it will
be shown that it starts for t � |x − y| in any dimension.

This allows to complete the picture describing the behavior of p(t, x, y):

• Homogenization regime: for 1 � |x − y| � t and |x − y|2 � t , homogenization
takes place and

lnp(t, x, y) ∼ −|x − y|2
D−1(U)

/(2t)(36)

with

|x − y|2
D−1(U)

:= t (x − y)D(U)−1(x − y).(37)

More precisely we will prove the following:

THEOREM 2.8. Consider p(t, x, y) the heat kernel associated with the
Dirichlet form (32) with respect to the measure mU . Then there exist constants
C,C2 depending only on d and Osc(U) such that for

C|x − y| < t, C
√

t < |x − y|, C < |x − y|,(38)

one has

p(t, x, y) ≤ 1

(2πt)d/2(det(D(U)))1/2
exp

(−(1 − E)|y − x|2
D−1(U)

/(2t)
)
,(39)

p(t, x, y) ≥ 1

(2πt)d/2(det(D(U)))1/2 exp
(−(1 + E)|y − x|2

D−1(U)
/(2t)

)
,(40)

with

E(t, x, y) := C2

( |x − y|
t

+
√

t

|x − y|
)

≤ 1

10
.(41)

Theorem 2.8 proves Davies’ conjecture, moreover E(t, x, y) acts as a quantita-
tive error term putting into evidence the rate at which homogenization takes place
for the heat kernel, and it also acts as the inverse of a distance from the domains
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associated with the large deviation regime and the heat kernel diagonal regime. Ob-
serve that all the constants do depend only on d and Osc(U). It is straightforward
to extend those estimates to any periodic elliptic operator. They can be likened to
results obtained by Dembo (1996) for discrete martingales with bounded jumps
based on moderate deviations techniques.

2.2.1. A note on the proof of Theorem 2.3. Those estimates basically say that
the homogenized behavior of the heat kernel associated with a periodic medium of
period R starts for t > R|x − y|. Thus in the proof of Theorem 2.3 the number of
the smaller scales that can be considered as homogenized is fixed by nef(t/h) =
supn{Rn ≤ t/h}, which [assume D(Un) = λ and Rn = ρn for simplification] leads
to an anomaly of the form

lnP(yt ≥ h) ≤ −C
h2

tλnef(t/h)

∼ −C
h2

t

(
t

h

)−(lnλ)/(lnρ)

∼ −C

( |x − y|dw

t

)1/(dw−1)
(42)

with dw ∼ 2 − ln λ
ln ρ

. Equation (42) suggests that the origin of the anomalous shape
of the heat kernel for the reflected Brownian motion on the Sierpinski carpet can be
explained by the formula linking the number of effective scales and the ratio t/h.

The first condition in (16) can be translated into “homogenization has started
on at least the first scale” and the second one into “the heat kernel associated
with (1) is far from its diagonal regime” (one can have h2/t � 1 before reaching
that regime; this is explained by the slow down of the diffusion).

2.2.2. A quantitative inequality for exponential martingales. The core of the
proofs of Theorems 2.3 and 2.8 is an inequality giving a quantitative estimate for
the Laplace transform of a martingale:

Consider Mt a continuous square integrable Ft adapted martingale such that
M0 = 0 and for λ ∈ R, E[eλMt ] < ∞. Assume that there exists a function
f : R+ → R

+ such that for all t2 > t1 ≥ 0 one has, a.s.,

E

[∫ t2

t1

d〈M,M〉s
∣∣Ft1

]
≤

∫ t2−t1

0
f (s) ds(43)

with f (s) = f1 for s < t0 and f (s) = f2 for s ≥ t0 with t0 > 0 and 0 < f2 < f1.

THEOREM 2.9. Let Mt be the martingale described above.

1. For all 0 < |λ| < (2e(f1 − f2)t0)
−1/2 one has

E[exp(λMt)] ≤ e3(1−1/g(λ)) exp
(

g(λ)

2
λ2f2t

)
(44)

with g(λ) = 1
1−λ2(f1−f2)t0e

that verifies 1 ≤ g ≤ 2.
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2. For all 0 < ν < (2e(f1 − f2)t0)
−1 one has

E[exp(ν〈M,M〉t )] ≤ exp(νf2t)
exp(νt0(f1 − f2))

((f1 − f2)νt0)2
.(45)

This theorem uses the knowledge on the conditional behavior of the quadratic
variation of a martingale to upper bound its Laplace transform, and it is well known
that a quantitative control on the Laplace transform leads to a quantitative control
on the heat kernel tail. The condition λ small enough marks the boundary between
the large deviation regime and the homogenization regime. A direct application of
the key theorem is the following result.

COROLLARY 2.10. Let Mt be the martingale given in Theorem 2.9.

Write C1 = (2e(f1 − f2)t0)
1/2/f2. For r = C1x

t
< 1 one has

P(Mt ≥ x) ≤ e3/2r2
exp

(
−(1 − r2)

x2

2f2t

)
.(46)

This corollary gives a quantitative control on the tail of the law of Mt from the
asymptotic behavior of its conditional brackets.

2.3. An analytical inequality for subharmonic functions. The stability prop-
erty (22) is based on the following analytical inequality:

THEOREM 2.11. Let 
 be an open bounded subset of R, d = 1, for
λ ∈ C∞(
) such that λ > 0 on 
 and φ,ψ ∈ C2(
) null on ∂
 and both
subharmonic with respect to the operator −∇(λ∇), one has∫



λ(x)|∇φ(x) · ∇ψ(x)|dx ≤ 3

∫



λ(x)∇φ(x) · ∇ψ(x)dx.(47)

The constant 3 in this theorem is the optimal one. We believe that this inequality
might also be true in higher dimensions, that is, we have the following conjecture.

CONJECTURE 2.12. For 
 ⊂ Rdan open subset with smooth boundary, there
exist a constant Cd,
 depending only on the dimension of the space and the open
set such that for λ ∈ C∞(
) such that λ > 0 on 
 and φ,ψ ∈ C2(
) null on ∂


and both subharmonic with respect to the operator −∇(λ∇), one has∫



λ(x)|∇φ(x) · ∇ψ(x)|dx ≤ Cd,


∫



λ(x)∇φ(x) · ∇ψ(x)dx.(48)

This conjecture is equivalent to the stability of the Green functions of divergence
form elliptic operators under a deformation. More precisely write Gλ the Green
function associated with −∇(λ∇) with Dirichlet conditions on ∂
.
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PROPOSITION 2.13. Conjecture 2.12 is true with the constant Cd,
 if and
only if for all λ,µ bounded and strictly positive on 
,(

sup



max
(

µ

λ
,
λ

µ

))−Cd,


≤ Gµ(x, y)

Gλ(x, y)
≤

(
sup



max
(

µ

λ
,
λ

µ

))Cd,


.(49)

REMARK 2.14. It would be interesting to prove this proposition since
it allows to obtain sharp quantitative estimates on the comparison of elliptic
operators with non-Laplacian principal part. By Proposition 2.13 it is easy to check
that Conjecture 2.12 implies the Harnack inequality. One might think that one
would be able to obtain (49) using Aronson’s estimates and keeping track of the
dependence of the constants in the Harnack inequality, but this is not the case since
Harnack inequality is an isotropic inequality and 49 compares in an optimal way
Green functions of operators which can be strongly anisotropic.

Let us recall that the Harnack inequality associated with the operator L = −∇λ∇
says that for all L-harmonic functions u in B(0, r) one has

sup
x∈B(0,r/2)

u(x) ≤ CL inf
x∈B(0,r/2)

,

where the optimal constant CL grows toward infinity as supλ/ infλ → ∞ whereas
the constant associated with Conjecture 2.12 is independent of λ. That is why the
Harnack inequality strategy, which has already been used to obtain quantitative
results for the comparison with the Laplace operator [we refer to Stampacchia
(1965), Ancona (1997), Grüter and Widman (1982) and Pinchover (1989)] allows
us to obtain

Gλ(x, y)

G0(x, y)
≤ CH(50)

but with a constant CH exploding like Cd exp(Cd(supλ/ infλ)Cd ).

REMARK 2.15. Since the conjecture is true in dimension one with Cd,
 = 3
(this constant is an homotopy invariant), it is through Proposition 2.13 that one
obtains stability property (22).

REMARK 2.16. It is easy to deduce from Theorem 2.11 that if 
 is a bounded
open subset of Rd and φ,ψ are both convex or both concave functions on 
 and
null on ∂
, then∫



|∇xφ(x) · ∇xψ(x)|dx ≤ 3

∫



∇xφ(x) · ∇xψ(x) dx.(51)

REMARK 2.17. Conjecture 2.12 (Theorem 2.11 when d = 1) has an interest-
ing signification (and consequences) in the framework of electrostatic theory, we
refer to Chapter 13 of Owhadi (2001a).
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2.4. Remark: fast separation between scales. The feature that distinguishes a
strong slow behavior from a weak one is the rate at which spatial scales do separate.
Indeed one can follow the proofs given above, changing the condition ρmax < ∞
into Rn = Rn−1[ρnα

/Rn−1] ( ρ,α > 1) and λmax = λmin = λ < 1 to obtain:

• A weak slow behavior of the exit times

C1r
2eg(r) ≤ E0[τ (0, r)] ≤ C2r

2eg(r)(52)

with g(r) = (ln r)1/α(ln 1/λ)(lnρ)−1/α .
• A weak slow behavior of the mean squared displacement

C1te
−f (t) ≤ E0[y2

t ] ≤ C2te
−f (t)(53)

with f (t) = (ln t)1/α(ln 1/λ)(2 lnρ)−1/α(1 + ε(t)).
• A weak slow behavior of the heat kernel tail: for h > 0, C1 < t/h < C2h

P[yt ≥ h] ≤ C3e
−C4(h

2/t)k(t/h)(54)

with k(x) = λ−(x/(lnρ))1/α(1+ε(x)).

And as α ↓ 1, the behavior of the solution of (1) passes from weakly anomalous to
strongly anomalous.

3. Proofs.

3.1. Davies’ conjecture and quantitative estimates on rate of convergence
toward the limit process in homogenization.

3.1.1. Quantitative control of the Laplace transform of a martingale: Theo-
rem 2.9. The core of the proof of the anomalous heat kernel tail (Theorem 2.3)
and the quantitative estimates on the heat kernel associated with an elliptic operator
(Theorem 2.8) is Theorem 2.9 that will be proven in this section.

Let Mt be the martingale described in Theorem 2.9. Let q > 1. Using the Hölder

inequality and Itô’s formula it is easy to obtain that, with hq = q2

2(q−1)
,

E[exp(λMt)] ≤ E
[
exp(hqλ2〈M,M〉t )]1/q

.(55)

Thus the quantitative control of the Laplace transform of the martingale shall
follow from this control on its bracket.

Write µ = t
t0

([µ] shall stand for the integer part of µ). Using the Hölder
inequality and the control (43), one obtains, for 1 < z < ∞,

E[exp(hqλ2〈M,M〉t )]1/q

≤ E
[
exp

(
zhqλ

2〈M,M〉[µ]t0
)]1/(zq) exp

(
(hq/q)λ2(t − [µ]t0)f1

)
.

(56)
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Then by taking the limit z ↓ 1, one easily obtains that

E[exp(hqλ2〈M,M〉t )]1/q

≤ E
[
exp

(
hqλ2〈M,M〉[µ]t0

)]1/q exp
(
(hq/q)λ2(t − [µ]t0)f1

)
.

(57)

Write a = f2/f1. We will need the following lemma:

LEMMA 3.1. Let Mt be the martingale described in Theorem 2.9 and η > 0;
for a = f2/f1 and µ = t/t0 one has

E[exp(η〈M,M〉t )] ≤ 1 +
+∞∑
n=1

(ηf1t0)
n

n!
∑

0≤m≤n∧µ

(µ − m)nCm
n (a − 1)m.(58)

PROOF. By the Taylor expansion of the exponent one obtains

exp(η〈M,M〉t ) = 1 +
+∞∑
n=1

ηnWn(59)

with Wn = ∫
1(0 < t1 < · · · < tn < t) d〈M,M〉t1 · · ·d〈M,M〉tn . Using the con-

trol (43) on the conditional brackets of the martingale it is easy to obtain by induc-
tion on the integrand and the Markov property that

E[Wn] ≤
∫
ui>0

1(0 < u1 + · · · + un < t)f (u1) · · ·f (un) du1 · · · dun.

Combining this with (59), and using the fact that f (s) ≤ f1g(s/t0) with g(z) =
1(z < 1) + a1(z ≥ 1), one obtains that

E[exp(η〈M,M〉t )] ≤ 1 +
+∞∑
n=1

(ηf1t0)
nGn(60)

with Gn = ∫
zi>0 1(0 < z1 + · · · + zn < µ)

∏n
k=1(1(zk < 1) + a1(zk ≥ 1)) dz1

· · · dzn. Developing the product in Gn one obtains by integration, induction and
straightforward combinatorial computation that

Gn = 1

n!
∑

0≤m≤µ∧n

Cm
n (µ − m)n(a − 1)m.

Which leads to (58) by inequality (60). �

Using Lemma 3.1 one obtains

E
[
exp

(
hqλ

2〈M,M〉[µ]t0
)]

≤
+∞∑
n=0

(hqλ2f1t0)
n

n!
∑

0≤m≤n∧[µ]
([µ] − m)nCm

n (a − 1)m.
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Changing the order of summation, one obtains

E
[
exp

(
hqλ

2〈M,M〉[µ]t0
)]

≤ exp(hqλ2f1t0[µ]) ∑
0≤m≤[µ]

([µ] − m)m(hq(a − 1)λ2f1t0)
m

m! .
(61)

Now we will need the following lemma:

LEMMA 3.2. For −1/e < y < 0,

∑
0≤m≤[µ]

([µ] − m)mym

m! ≤ exp(y[µ])
y2 .(62)

PROOF. Put −1/e < x < 0 and write, for n ∈ N,

In = ∑
0≤m≤n

xm

m! (n − m)m.

It will be shown here that ∀p ∈ N∗, ∀n ∈ N,

In ≤ (
up(x)

)−n(1 − up exp(xup)
)−1(63)

where up the increasing sequence defined by u0 = 0 and up+1 = exp(−xup) and
converging to y0 the smallest positive solution of y exp(xy) = 1.

Inequality (62) is then obtained for up(y) = u2(y) = exp(−y) and using
exp(−y) − 1 ≥ −y and −1/e < y < 0.

Write y1 = inf{y > 0 :y exp(|x|y) = 1} (note that 0 < y1 < 1) and consider for
−y1 < y < y1 the function

f :y → (
1 − y exp(xy)

)−1
.

By Taylor’s expansion, for y ∈ (−y1, y1), f (y) = ∑+∞
n=0 yn ∑+∞

m=0
(nxy)m

m! and since∑
0≤n,m≤+∞ yn (n|x|y)m

m! = 1
1−y exp(|x|y)

< ∞ with a normal convergence of the
series, the order of the limits can be changed, which leads to

f (y) =
+∞∑
m=0

(nxy)m

m!
+∞∑
n=0

nmyn =
+∞∑
m=0

xm

m!
+∞∑
n=m

(n − m)myn

=
+∞∑
n=0

yn
n∑

m=0

(n − m)m
xm

m! =
+∞∑
n=0

ynIn.

It follows that ∀n ∈ N, In = f (n)(0)
n! . Now, for −1/e < x < 0, the constant y0 =

inf{y > 0 :y exp(xy) = 1} does exist and ∀y ∈] −y1, y0[,∀n,f (n)(y) ≥ 0 (thus
In ≥ 0).
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Thus from the classical theorem of Taylor’s expansion, the series
∑+∞

n=0 yn f (n)(0)
n!

converges toward f for y ∈] −y1, y0[ and in that interval

∞∑
n=0

ynIn = (
1 − y exp(xy)

)−1

from which one deduces that ∀y ∈]0, y0[,∀n ∈ N, In ≤ y−n(1 − y exp(xy))−1.
On the other hand, if one considers the sequence u0 = 0, up+1 = exp(−xup),

then it is an exercise to show that up is increasing and will converge toward y0,
which leads to (63). �

Applying (62) to (61) with y = hq(a − 1)λ2f1t0 one obtains that, for 0 < |λ| <

(ehq(f1 − f2)t0)
−1/2, one has

E
[
exp

(
hqλ

2〈M,M〉[µ]t0
)]1/q

≤ exp
(

hq

q
λ2f2t0[µ]

)(
hq(1 − a)λ2f1t0

)−2/q
.

(64)

Writing ν = λ2hq and combining (64) with (57), one obtains inequality (45) of
Theorem 2.9.

Combining (64) with (57) and (55) one obtains inequality (44) of Theorem 2.9
by choosing q = (λ2(f1 − f2)t0e)

−1 (q > 2 under the condition imposed on λ).

3.1.2. Upper bound estimate (39) of Theorem 2.8. Theorem 2.9 can be used
to give quantitative estimates on any operator as soon as a cell problem is well
defined. Consider yt as a diffusion on Rd that may be decomposed for t > 0 as

yt = x + χ(t) + Mt(65)

where χ(t) is a uniformly (in t) bounded random vector process (‖χ‖∞ ≤ Cχ )
and Mt is a continuous square integrable Ft adapted martingale such that M0 = 0.

Assume that for all l ∈ Rd with |l| = 1 there exists a function f : R+ → R+
such that for all t2 > t1 ≥ 0 one has, a.s.,

E

[∫ t2

t1

d〈M · l,M · l〉s
∣∣Ft1

]
≤

∫ t2−t1

0
f (s) ds(66)

with f (s) = f1 for s < t0 and f (s) = t lDl < f1 for s ≥ t0 with t0 > 0 where D is
a positive definite symmetric matrix.

Assume that the diffusion yt has symmetric Markovian probability densities
p(t, x, y) with respect to the measure m(dy) such that, for all x, y ∈ Rd and t > 0,

p(t, x, y) ≤ C2

td/2(67)
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and for δ > 0,

Px(|yt − x| ≥ δ) ≤ C3e
−C4δ

2/t(68)

where C2,C3,C4 are constants.

THEOREM 3.3. Let yt be the diffusion described above. Then with k1 =
30(e(f1 − λmin(D))t0)

1/2/λmin(D) and k2 = 30 + 10dλmax(D)(1 + C4),

k1|x − y| < t, k2 <
|x − y|√

t
, |x − y| > 4Cχ,(69)

one has

p(t, x, y) ≤ E1

td/2 exp
(
−(1 − E)

|y − x|2
D−1

2t

)
(70)

with E1 = C2(5(λmin(D)C4)
−1 + 2dC3) and E = 3((

k1|x−y|
t

)2 +
√

t
|x−y|) ≤ 1

10 .

PROOF. The estimate on the heat kernel p(t, x, y) will follow from the chain
rule and decomposing it the probability of moving away from x to “a well chosen
set containing y in the time tq” and its complement. More precisely, writing
ey−x := (y − x)/|y − x| and Aδ = {z ∈ Rd : (z − x) · ey−x ≥ (1 − δ)|x − y|},
using (67) one obtains that, for t > 0, x, y ∈ Rd and 0 < q < 1,

p(t, x, y) =
∫
Aδ

p(tq, x, z)p
(
t (1 − q), z, y

)
m(dz)

+
∫
Ac

δ

p(tq, x, z)p
(
t (1 − q), z, y

)
m(dz)

≤ C2

td/2

[
1

(1 − q)d/2 Px

(
ytq · ey−x ≥ |x − y|(1 − δ)

)

+ 1

qd/2
Py

(|yt(1−q)| ≥ δ|x − y|)].

(71)

Let us choose δ = exp(−|x −y|(dD(ex−y)
√

t)−1) and q = 1 −2D(ex−y)C4δ [we
will use the notation D(l) := t lDl].

For |x − y|/√t > max(dD(ex−y) ln(4D(ex−y)C4),3dD(ex−y)) (which basi-
cally says that the heat kernel is far from its diagonal behavior) one has δ < 1

10
and 1

2 < q < 1. Using the Aronson type estimate (68) one controls the second term
in (71):

Py

(|yt(1−q)| ≥ δ|x − y|) ≤ C3 exp
(
− |x − y|2

2D(ex−y)t

)
.(72)
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By properties (65), (66) and Corollary 2.10, one controls the first term in (71):
for r < 1 with r = C1ρ

qt
, ρ = |x − y|(1 − δ) − Cχ and C1 = (2e(f1 −

D(ex−y))t0)
1/2/D(ex−y), one has

Px

(
ytq · ey−x ≥ |x − y|(1 − δ)

) ≤ e(3/2)r2
exp

(
−(1 − r2)

ρ2

2D(ex−y)tq

)
.(73)

Combining (73), (72), (71) and using the value of q and δ given above, one easily
obtains estimate (70) of Theorem 3.3 under Conditions (69). �

Now Theorem 2.8 is a straightforward application of Theorem 3.3 and a trivial
adaptation of the constants appearing in Theorem 3.3. Consider p(t, x, y) the
heat kernel associated with the Dirichlet form (32). Since p(t, x, y) is continuous
in L∞(Td) norm with respect to U [we refer to Chen, Qian, Hu and Zheng (1998)
whose result can easily be adapted to our case] and C∞(Td) is dense in L∞(Td)

with respect to that norm, one can assume U to be smooth and the general result
follows by observing that the estimates in Theorem 3.3 depend only on Osc(U).

By definition yt has symmetric probability densities with respect to the
measure mU and the following Aronson-type upper bound is available [Seignourel
(1998)]:

p(t, x, y)e−2U(y) ≤ Ce(4+d)Osc(U) 1

td/2 exp
(
−|x − y|2

4t

)
.(74)

It follows that conditions (67) and (68) are satisfied with constants C2,C3 and C4
depending only on d and Osc(U). Now write χl the solution of the associated cell
problem: for l ∈ S

d , LUχl = −l∇U with χ(0) = 0.
Using Stampacchia [(1965), Theorem 5.4, Chapter 5] on elliptic equations with

discontinuous coefficients [see also Stampacchia (1966)] and using the periodicity
of χ and observing that χl(x) = l · x − Fl(x) where Fl is harmonic with respect
to LU , one easily obtains that

Cχ = ‖χl‖∞ ≤ Cd exp
(
(3d + 2)Osc(U)

)
.(75)

From Itô’s formula one has l · yt = x + χl(yt ) − χl(x) + ∫ t
0 (l − ∇χl) dωs , which

corresponds to the decomposition given in (65). The martingale can be written
l · Mt = ∫ t

0 (l − ∇χl) dωs and its bracket is equal to 〈l · M, l · M〉t = ∫ t
0 |l −

∇χl(ys)|2 ds. It is easy to obtain from Theorem 3.9 of Gilbarg and Trudinger
(1983) that

f1 = ‖∇χl‖∞ ≤ Cd

(
1 + ‖∇U‖∞

)
exp

(
(3d + 2)Osc(U)

)
< ∞.(76)

Writing φl the periodic solution of the ergodicity problem LU = |l∇χl|2 −
t lD(U)l, φl(0) = 0, and observing that φl = F 2

l − t lD(U)lψl where LUψl = 1
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it is easy to obtain from (75), Theorem 5.4, Chapter 5 of Stampacchia (1965) and
the periodicity of φl that

Cφ = ‖φl‖∞ ≤ Cd exp
(
(9d + 4)Osc(U)

)
.(77)

Since, from Itô’s formula

Ex[〈l · M, l · M〉t ] = E[φ(yt ) − φ(x)] + t t lD(U)l,(78)

the martingale satisfies the conditions of Theorem 3.3 with f2 = t lD(U)l

and t0 = Cφ/(f1 − λmin(D)). Now one can use Theorem 3.3 to obtain a
quantitative control on the heat kernel. It is important to note that all the constants
appearing in that theorem only depend on d and Osc(U) except maybe k1 =
30(e(f1 − λmin(D))t0)

1/2/λmin(D) in which f1 appears. This is where the trick
operates, indeed (f1 − λmin(D))t0 = Cφ which is a constant depending only on
Osc(U) and d . Thus in reality all the constants only depend on the dimension and
on Osc(U), which proves the upper bound in Theorem 2.8.

3.1.3. Lower bound estimate (40) of Theorem 2.8. Let yt the diffusion
associated with the Dirichlet form (32). As has been done in Section 3.1.2 one can
prove estimate (40) assuming that U is smooth and the general case will follow by
the continuity of the heat kernel with respect to U in L∞(Td) norm.

First, we will need the following estimate.

PROPOSITION 3.4. For l ∈ Sd , λ > k5,d,Osc(U) and k6,d,Osc(U)λ < t one has

P
[
yU
t · l ≥ λ

] ≥ 1

4
√

2π

∫ ∞
X

e−z2/2 dz(79)

with X = λ√
t lD(U)lt

(1 + F) and F = k7,d,Osc(U)

λ
+ k8,d,Osc(U)

√
λ
t

≤ 1
10 .

PROOF. For l ∈ Sd , let Fl,χl, φl be the functions introduced in Section 3.1.2.
Write Ft the filtration associated with Brownian motion appearing in the SDE
solved by yt . Fl(yt ) is a (P,Ft )-continuous local martingale vanishing at 0 such
that (by Itô calculus)

〈Fl,Fl〉t = tD(l) + φl(yt ) + Mt(80)

with Mt = − ∫ t
0 ∇φl(ys) dωs . Since 〈Fl,Fl〉∞ = ∞ a.s. by the Dambis, Dubins–

Schwarz representation theorem, Bt = Fl(yTt ) is a (FTt )-Brownian motion with
Fl(yt ) = B〈Fl,Fl〉t and

Tt = inf{s : 〈Fl,Fl〉s > t}.(81)

The idea of the proof is then to show that the probability of yt to move away from 0
behaves like the probability of a BM of variance D(l) to move away. To achieve
this it will be sufficient to show that Mt becomes negligible in front of tD(l) using
Corollary 2.10 to control P(Mt ≥ x). More precisely we will use the following
lemma.



ANOMALOUS SLOW DIFFUSION FROM PERPETUAL HOMOGENIZATION 1955

LEMMA 3.5. For

λ > 0, ν > ‖φl‖∞, µ > 0, λ + ‖χl‖∞ + µ ≤ C2µ

√
D(l)tν−1,(82)

one has

P[yt · l ≥ λ] ≥ 1
2P

[
BD(l)t ≥ λ + ‖χl‖∞ + µ

] − P[|Mt | ≥ ν − ‖φl‖∞].(83)

PROOF. Let λ > 0 from the representation theorem P[Fl(yt ) ≥ λ] =
P[BD(l)t + Et ≥ λ] with Et = B〈Fl,Fl〉t − BD(l)t . It follows that, for µ > 0,

P[Fl(yt ) ≥ λ] ≥ P
[
BD(l)t ≥ λ + µ

] − P[|Et | > µ].(84)

It follows from (80) that, for ν > 0, P[|Et | ≥ µ] ≤ P[|φ(yt) + Mt | ≥ ν] +
P[sup|z|<ν |BD(l)t+z − BD(l)t | ≥ µ], from which one deduces

P[|Et | ≥ µ] ≤ P[|Mt | ≥ ν − ‖φl‖∞] + 2P[|Bν | > µ].(85)

Combining (84) and (85) one obtains that ν > ‖φl‖∞:

P[yt · l ≥ λ] ≥ P
[
BD(l)t ≥ λ + ‖χl‖∞ + µ

] − 4P

[
BD(l)t ≥ µ

√
D(l)t

ν

]
− P[|Mt |

≥ ν − ‖φl‖∞],
which leads to (83) under the last condition in (82). �

Now let us show the following.

LEMMA 3.6. For CMx < t one has

P(Mt ≥ x) ≤ 3 exp
(
− x2

f2t

)
(86)

where f2 and CM depend only on d and Osc(U).

PROOF. Write G(x) = 1
2φ2

l − ‖φl‖∞φl . Since

LUG(x) = |∇φl|2 − (‖φl‖∞ − φl)
(|∇Fl|2 − D(l)

)
one obtains from Itô’s formula that

E[〈M,M〉t] ≤ 2‖φl‖∞E

[∫ t

0
|∇Fl |2(ys) ds + D(l)t

]
+ ‖G‖∞

≤ 2‖φl‖∞
(‖φl‖∞ + 2D(l)t

) + 2‖φl‖2∞.

(87)

Thus Mt satisfies the conditions of Corollary 2.10 with f2 = 4‖φl‖∞D(l), f1 =
|∇φl|2∞ and t0 = 4‖φl‖2∞/(f1 − f2), which leads to (86) by observing that
((f1 − f2)t0)

1/2/f2 is upper bounded by a constant depending only on Osc(U)

and d . �
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It follows from equation (83) that under the additional conditions

CM(ν − ‖φl‖∞) < t and λ + ‖χl‖∞ + µ < C3(ν − ‖φl‖∞)(88)

[where C3 depends only on d and Osc(U)], one has

P[yt · l ≥ λ] ≥ 1
4P

[
BD(l)t ≥ λ + ‖χl‖∞ + µ

]
.(89)

Choosing ν = ‖φl‖∞ + 2/C3(λ + ‖χl‖∞ + µ) and

µ = 4(λ + ‖χl‖∞)3/2(C2
√

D(l)C3t
)−1

for λ > ‖χl‖∞ and t > C4(d,Osc(U))λ, conditions (82) and (88) are satisfied and

µ < C5
(
d,Osc(U)

)
λ

√
λ

t
≤ λ

10
,(90)

and it follows from (89) that

P[yt · l ≥ λ] ≥ 1

4
P

[
BD(l)t ≥ λ

(
1 + C5

√
λ

t

)
+ ‖χl‖∞

]
,(91)

which proves Proposition 3.4. �

Now let t > 0, x, y ∈ Rd and p(t, x, y) be the heat kernel associated with the
Dirichlet form (32). Using the chain rule one obtains that, for 0 < q < 1 and δ > 0,

p(t, x, y) ≥ Cd,Osc(U)Px

(
ytq ∈ B

(
y, δ

√
t
))

inf
z∈B(y,δ

√
t)

p
(
(1 − q)t, z, y

)
.(92)

It follows by Aronson’s estimates that

p(t, x, y) ≥ Cd,Osc(U)Px

(
ytq ∈ B

(
y, δ

√
t
))

× (
t (1 − q)

)−d/2 exp
(−Cd,Osc(U),2δ

2/(1 − q)
)
.

(93)

Now for l ∈ Rd let us define the probability measure P̄x as

dP̄x

dPx

= el·yt

Ex[el·yt ] .(94)

Henceforth we can assume x := 0 and we will fix

l := D(U)−1y/(qt)(95)

and assume

|l| ≤ 1.(96)

Writing Ēx as the expectation associated with P̄x , one has

P0
(
ytq ∈ B

(
y, δ

√
t
))

= Ē0
[
e−l·ytq 1ytq∈B(y,δ

√
t)

]
E0

[
el·ytq

]
≥ e−yD(U)−1y/(qt)−Cd,Osc(U),3|y|δ/(qt1/2)

P̄0
[
ytq ∈ B

(
y, δ

√
t
)]

E0
[
el·ytq

]
.

(97)
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Now it is trivial to check that the generator of yt with respect to Ēx is

L̄ = �/2 − ∇U∇ + l · ∇.(98)

Let us write p̄ the heat kernel associated with that generator. It is trivial to obtain
from (95), (96) and Theorem 1.4 of Norris (1997) that for z ∈ B(y, δ

√
t ) one has

p̄(tq,0, z) ≥ Cd,Osc(U),4(qt)−d/2 exp
(−Cd,Osc(U),5δ

2/q
)
.(99)

It follows that

P̄0
[
ytq ∈ B

(
y, δ

√
t
)] ≥ Cd,Osc(U),6δ

dq−d/2 exp
(−Cd,Osc(U),5δ

2/q
)
.(100)

Moreover, for λ > 0,

E0
[
el·ytq

] ≥ P0[l · ytq ≥ λ]eλ,(101)

and choosing λ = lD−1(U)ltq one easily obtains from Proposition 3.4 that there
exist constants C1,C2,C3 depending on d and Osc(U) such that for |y| > C1 and
C2|y| < tq one has

E0
[
el·ytq

] ≥ exp
(

yD−1(U)y

2tq
(1 − F)

)
(102)

with

F := C3
(
qt/y2 + |y|/(qt)

)
.(103)

Now let us choose

q := 1 − exp(−|x − y|t−1/2)(104)

and

δ := (1 − q)1/2.(105)

With these values for q and δ and combining (102) with (97) and (93) one obtains
that, for |y − x| > C7,d,Osc(U) and C8,d,Osc(U)|y − x| < t ,

pt(x, y) ≥ C9,d,Osc(U)t
−d/2 exp

(−(1 − F2)|x − y|2
D−1(U)

/(2t)
)

(106)

with

F2 := C10,d,Osc(U)

(
t/|x − y|2 + |y − x|/(t)).(107)

It is then easy to deduce the lower bound of Theorem 2.8 by an appropriate shift
of the constants.
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3.2. An analytical inequality for subharmonic functions.

3.2.1. The inequality: Theorem 2.11. There is no loss of generality by assum-
ing 
 to be the segment (0,1). We will give a geometrical proof Theorem 2.11
explaining why we expect the existence of an homotopy invariant constant Cd,


in Conjecture 2.12. The Theorem 2.11 is proven if the inequality (47) is true
when φ and ψ are Green functions Gλ(x, z) of −∇(λ∇) with Dirichlet condition
on ∂(0,1).

Let (x, y) ∈ (0,1)2, x < y. Write 
1 = {z ∈ 
 :∇zG(x, z)∇zG(y, z) < 0}.
Inequality (47) is true if

−
∫

1

∇zG(x, z)λ(z)∇zG(y, z) dz ≤
∫



∇zG(x, z)λ(z)∇zG(y, z) dz.(108)

Write Ax = {z ∈ 
 :G(x, z) > G(x, y)} and Ay = {z ∈ 
 :G(y, z) > G(x, y)}.
Integrating by parts one obtains∫

Ax

∇zG(x, z)λ(z)∇zG(y, z) dz = 0 =
∫
Ay

∇zG(x, z)λ(z)∇zG(y, z) dz.(109)

Now the one-dimensional specificity shall be used. Since G(x, z) is increasing
from 0 to x and decreasing from x to 1, it follows that 
1 = (x, y) and (Ax/
1)∩
(Ay/
1) = ∅. Combining this with (109) one obtains (108), which proves the
theorem. Let us note that a simple computation shows that the constant 3 is sharp.

3.2.2. Equivalence with the stability of the Green functions: Proposition 2.13.

Write, for ε ∈ [0,1], λε(x) = eU(x)+εT (x). Write ψε for the solution of
−∇(λε∇ψε) = g with Dirichlet condition on 
 and g ∈ C∞(
), g > 0.

Assume Conjecture 2.12 to be true, then Proposition 2.13 is proven if

e−Cd,
‖T ‖∞ ≤
∥∥∥∥ψ1

ψ0

∥∥∥∥∞
≤ eCd,
‖T ‖∞ .(110)

One obtains by differentiation (writing Lλε = −∇λε∇) Lλε∂εψε = −L∂ελεψε ,
which leads, by integration by parts, to

∂εψε = −
∫



∇yGλε(x, y)λε(y)∇yGλε(y, z)T (y)gε(z) dy dz.(111)

Using Conjecture 2.12,

|∂εψε| ≤ ‖T ‖∞
∫



∣∣∇yGλε(x, y)λε(y)∇yGλε(y, z)
∣∣gε(z) dy dz

≤ ‖T ‖∞Cd,
ψε.
(112)

And integrating ∂ε lnψε ≤ ‖T ‖∞Cd,
 one obtains the upper bound in (110) (the
lower bound being proven in a similar way).
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Conversely, if conjecture 2.12 is false one can find δ > 0 x, z ∈ 
2 and g being
a smooth approximation of a Dirac around z such that, if

T (y) = −Sign
(∇yGλε(x, y)λε(y)∇yGλε(y, z)

)
,

one has

∂ε ln ψε(x) > ‖T ‖∞(1 + δ)Cd,
,(113)

which leads to a contradiction of (49).

3.3. Subdiffusive behavior.

3.3.1. Exit times: Theorems 2.1, 2.6 and Proposition 2.7. For r > 1, write the
number of effective scales

nef(r) = sup{n ≥ 0 :Rn ≤ r}.(114)

First let us prove that the exit time from B(0, r) is controlled by the homogeniza-
tion on those first nef(r) scales:

LEMMA 3.7.

r2

D(V
nef
0 )

1

Cτ

≤ E0[τ (0, r)] ≤ r2

D(V
nef
0 )

Cτ(115)

with Cτ = 4e6(K0+K1/(ρmin−1)).

PROOF. Write EU , the expectation with respect to the law of probability
associated with the generator 1

2�−∇U∇ . By Theorem 2.11 and Proposition 2.13,
one obtains that

e
−6 Oscr (V

∞
nef(r)+1) ≤ E0[τ (0, r)]/E

V
nef(r)
0

0 [τ (0, r)] ≤ e
6 Oscr (V

∞
nef(r)+1)

.(116)

Bounding Unef+1(x) by Osc(Un) ≤ K0, and for k ≥ nef + 2, Uk(x) by
‖∇Uk‖∞|x| ≤ K1|x|/Rk one obtains that, for x ∈ B(0, r),∣∣V ∞

nef(r)+1(x)
∣∣ ≤ K0 + K1/(ρmin − 1).(117)

Writing pef corresponds to the maximum number of periods of the scale nef
included in the segment [0, r]: pef(r) = sup{p ≥ 1 :pRnef(r) ≤ r}, one obtains

E
V

nef(r)
0

0

[
τ
(
0,pef(r)Rnef(r)

)]
≤ E

V
nef(r)
0

0 [τ (0, r)] ≤ E
V

nef(r)
0

0

[
τ
(
0,

(
pef(r) + 1

)
Rnef(r)

)]
.

(118)

Using E
V

nef(r)
0

0 [τ (0, kRnef(r))] = (kRnef(r))
2/D(V

nef(r)
0 ) and (116)–(118) one ob-

tains (115). �

We will need the following mixing lemma.
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LEMMA 3.8. Let (g, f ) ∈ C1(Td
1)2 and R ∈ N∗:∣∣∣∣

∫
Td

g(x)f (Rx)dx −
∫

Td
g(x) dx

∫
Td

f (x) dx

∣∣∣∣ ≤ ‖∇g‖∞/R

∫
Td

|f |dx.

PROOF. The proof follows trivially from the following equation:∫
Td

g(x)f (Rx)dx −
∫

Td
g(x) dx

∫
Td

f (x) dx

=
∫
y∈[0,1]d ,x∈Td

f (Rx + y)
(
g(x + y/R) − g(x)

)
.

(119)

�

From Lemma (3.8) we will deduce a quantitative estimate on the multi-scale
effective diffusivities:

LEMMA 3.9.(
λmine

−4K1/ρmin
)n ≤ D(V n−1) ≤ (

λmaxe
4K1/ρmin

)n
.(120)

PROOF. The proof of (120) is based on the following functional mixing
estimate (obtained from Lemma 3.8): for U,W ∈ C1(T) and R ∈ N∗ one has

e−‖∇W‖∞/R ≤
∫

T

eU(Rx)+W(x) dx

/(∫
T

eU(x) dx

∫
T

eW(x) dx

)

≤ e‖∇W‖∞/R.

(121)

Then by the explicit formula (20) and a straightforward induction on n, one obtains
that [using (5)]

n−1∏
k=0

(
e4K1/rk

∫
T

e2Uk(x) dx

∫
T

e−2Uk(x) dx

)−1

≤ D(V n−1
0 ),(122)

D(V n−1
0 ) ≤

n−1∏
k=0

(
e−4K1/rk

∫
T

e2Uk(x) dx

∫
T

e−2Uk(x) dx

)−1

,(123)

which leads to (120) by (8) and (10). �

Combining (120) with (115), (114) and (10), one obtains Theorem 2.1.
When the medium is self-similar, we will need the following lemma:

LEMMA 3.10.

lim
n→∞−1

n
ln

(
D(V n−1)

) = Pρ(2U) + Pρ(−2U).(124)
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PROOF. The limit (124) is a direct consequence of the following theorem that
is an application of the theory of level-3 large deviations [we refer to Ellis (1985)
for a sufficient reminder].

THEOREM 3.11. Let U ∈ Cα(Td) (the Hölder continuous with exponent
α > 0). Let R ∈ N, R ≥ 2. Then

lim
n→∞

1

n
ln

∫
Td

exp

(
n−1∑
k=0

U(Rkx)

)
dx = PR(U).(125)

We have written PR as the pressure associated with the scaling shift induced
by R on the torus. For R ∈ N\{0,1} one can see the torus as a shift space equipped
with the transformation sR:

sR : Td → T
d

x =
∞∑

k=1

xk

Rk
→ Rx =

∞∑
k=1

xk+1

Rk

(126)

where for each k, xk is a vector in B = {0,1, . . . ,R − 1}d and for each i ∈
{1, . . . , d}, ∑∞

k=1
xk
i

Rk is the expression of xi in base R (xk
i ∈ {0, . . . ,R − 1}).

Give B with the discrete topology and BN∗
with the product topology. Write µ

the probability measure on B affecting identical weight 1/Rd to each element of B

and write Pµ the associated product measure on BN∗
.

With respect to the probability space (BN
∗
,B(BN

∗
),Pµ) the coordinate

representation process x = (x1, . . . , xp, . . . ) is a sequence of i.i.d. random
variables distributed by µ. When x is seen as an element of the torus T

d then
the probability measure induced by µ on the torus is the Lebesgue measure.

Define the empirical measure En associated with the process x by

En(x, ·) = 1

n

n−1∑
k=0

δsk
R cycle(x,n),(127)

where cycle(x, n) is the periodic point in BN∗
obtained by repeating (x1, . . . , xn)

periodically. For each x, En(x, ·) is an element of the space M(BN∗
) of measures

on BN∗
and invariant by the shift sR .

Then by Theorem 9.1.1 of Ellis (1985), {Q(3)
n }, the Pη distribution on M(BN

∗
)

of the empirical process {En} has a large deviation property with speed n and
entropy function I

(3)
µ .

Recall that for P ∈ M(BN∗
), I

(3)
µ (P ) = ∫

BN∗ I
(2)
µ (P̃ ) dP where P̃ denotes the

marginal distribution of x1 associated with P and I
(2)
µ is the relative entropy of P̃

with respect to µ: I
(2)
µ (η) = ∫

B ln dη
dµ

dµ.
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Choosing U ∈ C(Td), the Hölder continuous with exponent α, one deduces
from the large deviation property of {Q(3)

n } and Varadhan’s theorem that

lim
n→∞

1

n
ln

∫
Td

exp
(
nEn(x,U)

)
dx = PR(U),(128)

where PR(U) is the pressure of U . Recall that

PR(U) = sup
P∈MsR

(BN∗
)

{∫
U dP − I (3)

µ (P )

}
,(129)

where MsR(BN∗
) is the space of measures on BN∗

invariant by the shift sR .
Since U is Hölder continuous,∣∣∣∣∣nEn(x,U) −

n−1∑
k=0

U(Rkx)

∣∣∣∣∣
≤

n−1∑
k=0

(
Cd

Rn−k

)α

C(d,α)

∞∑
k=0

1

Rkα
≤ C(d,α,R) < ∞,

(130)

and one obtains Theorem 3.11 from (130) and (128) �

Combining (124) with (115) and (114), one obtains Theorem 2.6.
Now let us prove Proposition 2.7. The basic properties of the pressure can be

found in Keller (1998) Theorem 4.1.10. [note that the definition of the pressure
given here differs from the standard one of the topological pressure by a constant
that is d ln R, here PR(0) = 0]. Let us remind that PR is a convex function
on the space of upper semicontinuous functions on the torus to (−∞,∞) thus
PR(U) + PR(−U) ≥ 0.

We will recall the strict convexity of the topological pressure on a well-defined
equivalence space: with sR is associated a scaling operator SR acting on the
periodic continuous functions on Td :

SR :C(Td) → C(Td),(
x → f (x)

) → (
x → f (sRx) = f (Rx)

)
.

(131)

Write ISR
(Td) the closed subspace of C(Td) generated by the elements V − Sk

RV

with V ∈ C(Td) and k ∈ N. Write [U ] the equivalence class of U , then by
Proposition 4.7 of Ruelle (1978), the function

PR :C(Td)
/
ISR

(Td) → (−∞,+∞),

[U ] → PR(U)
(132)

is well defined on the set of equivalence classes induced by ISR
(Td) on C(Td).

Moreover, it is strictly convex on the subset{
[U ] ∈ C(Td)

/
ISR

(Td) :
∫

Td
U(x) dx = 0

}
.(133)
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We will now prove Proposition 2.7, since for c ∈ R, P (U + c) = P (U) + c, it is
sufficient to assume

∫
Td U(x) dx = 0 and show that

PR(2U) + PR(−2U) = 0 ⇐⇒ lim
n→∞

1

n

∥∥∥∥∥
n−1∑
k=0

SRkU

∥∥∥∥∥∞
= 0.(134)

(⇐): This implication is easy since

0 ≤ PR(2U) + PR(−2U) ≤ lim
n→∞

4

n

∥∥∥∥∥
n−1∑
k=0

SRkU

∥∥∥∥∥∞
.(135)

(⇒): Assume PR(2U) + PR(−2U) = 0, then let ε > 0. Then by the strict
convexity of the pressure as described above there exist W1, . . . ,Wk ∈ C(Td) and
m1, . . . ,mk ∈ N \ {0,1}, λ1, . . . , λk ∈ R such that W = ∑k

p=1 λp(Wp − SRmp Wp)

and ‖U − W‖∞ ≤ ε. Since
∑n−1

p=0 SRpW remains bounded it follows that

lim
n→∞

1

n

∥∥∥∥∥
n−1∑
k=0

SRkU

∥∥∥∥∥∞
≤ ε,(136)

which leads to the proof.

3.3.2. Mean squared displacement: Proposition 2.5 Theorem 2.2. Let yt be
the solution of (1). Write

nflu(t) = sup{n ∈ N :R2
n ≤ t};(137)

nflu shall be the number of fluctuating scales that have an influence on the mean
squared displacement at the time t (the effective scales plus the perturbation
scales). Choose the number of perturbation scales to be

nper = inf
{
n ∈ N :R2

nflu−ne
14nK0104 ≤ tD

(
V

nflu
0

)}
.(138)

We will now prove the following proposition:

PROPOSITION 3.12. For ρmin > 10e30K1 and t > R9, nper is well defined and

C1e
−8nperK0D

(
V

nflu
0

)
t ≤ E[y2

t ] ≤ C2e
8nperK0D

(
V

nflu
0

)
t.(139)

PROOF. The proof of (139) is based on analytical inequalities that allow us
to control the stability of the homogenization process on the smaller scales under
the perturbation of larger ones. More precisely we will first work on an abstract
decomposition of V given by (2) into effective scales U , perturbation scales P and
drift scales T : V = U +P +T with (U,P,T ) ∈ C∞(T 1

RU
)×C∞(T 1

RW
)×C∞(R),

RU,RW ∈ N \ {0,1}, RW/RU = RP ∈ N∗ and W = U + P shall correspond to
fluctuating scales.
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Write χW as the solution of the cell problem associated with LW [LWχW =
−∇W , χW(0) = 0] and FW(x) = x − χW(x). Since FW is harmonic with
respect to LW = LV + ∇T ∇, one obtains by Itô’s formula that FW(yt ) =∫ t

0 ∇FW(ys) dωs − ∫ t
0 ∇T ∇FW(ys) ds from which one obtains that

(1
2 − t‖∇T ‖2∞

)
E

[∫ t

0
|∇FW(ys)|2 ds

]

≤ E[F 2
W(yt )] ≤ 2(1 + t‖∇T ‖2∞)E

[∫ t

0
|∇FW(ys)|2 ds

]
.

(140)

Write χP as the solution of the cell problem associated with LP and FP = x−χP .
We will show the following:

LEMMA 3.13. FW = FP − HU with

e−4 Osc(P )x2 ≤ (
FP (x)

)2 ≤ e4 Osc(P )x2(141)

and

‖HU‖∞ ≤ 2(1 + 4‖∇P ‖∞)e2 Osc(P )RW/RP .(142)

PROOF. Inequality (141) is a direct consequence of the explicit formula
FP (x) = RW

∫ x
0 e2P(y) dy/

∫ RW

0 e2P(y) dy. Inequality (142) follows from the
explicit formula

HU(x) = RW

( ∫ x
0 e2P(y) dy∫ RW

0 e2P(y) dy
−

∫ x
0 e2(P (y)+U(y)) dy∫ RW

0 e2(P (y)+U(y)) dy

)

noting that the period of P and U are RW and RW/RP and Lemma 3.8. �

The long time behavior of E[∫ t
0 |∇FW(ys)|2 ds] is a perturbation of D(W)t as

shown in the following lemma:

LEMMA 3.14. If

RP > 16e4 Osc(P )(‖∇P ‖∞ + ‖∇T ‖∞)e2‖∇T ‖∞/RP ,

then for t > 0,

−(R2
W/R2

P )
(
e10 Osc(P )/R2

P

)
100e4‖∇T ‖∞/RP + 1

6e−4 Osc(P )D(W)t

≤ E

[∫ t

0
|∇FW |2(ys) ds

](143)

and

E

[∫ t

0
|∇FW |2(ys) ds

]
≤ 6e4 Osc(P )D(W)t + (R2

W/R2
P )

(
e10 Osc(P )/R2

P

)
900e4‖∇T ‖∞/RP .

(144)
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PROOF. For the proofs of (143) and (144) by scaling one can assume that
RW = 1 and RU = 1/RP . Write for ζ > 0

φζ = 2
∫ x

0

e2V (y)∫ 1
0 e2W(y) dy

[∫ y

0

e2(P−T )(z)∫ 1
0 e2P(z) dz

dz − ζ

∫ y

0

e−2(P+T )(z)∫ 1
0 e−2P(z) dz

dz

]
dy.(145)

Using Lemma 3.8 to separate the scales in (145), it is an easy exercise to obtain
that if RP > 16e4 Osc(P )(‖∇P ‖∞ + ‖∇T ‖∞)e2‖∇T ‖∞/RP then:

• for ζ = 6e4 Osc(P ) one has supR φζ ≤ 900 e10 Osc(P )

R2 e4‖∇T ‖∞/R;

• for ζ = 1
6e−4 Osc(P ) one has infR φζ ≥ −100 e10 Osc(P )

R2 e4‖∇T ‖∞/R .

Observing that LV φζ = |l − χW
l |2 − ζD(W) one deduces (143) and (144) by

applying Itô’s formula. �

Combining (140), (141), (143) and (144) and choosing U = V
nflu−nper
0 , P =

V
nflu
nflu−nper+1, T = V ∞

nflu+1 (RW = Rnflu , RP = Rnflu/Rnflu−nper ) and nflu as defined

in (137), one obtains that, for ρmin > CK1,K0 ,

D
(
V

nflu
0

)
te−8nperK0/24 − R2

nflu−nper
500e6nperK0 ≤ E[y2

t ],(146)

E[y2
t ] ≤ (

D
(
V

nflu
0

)
t + R2

nflu−nper

)
e8nperK0 500,(147)

which leads to (139) by the choice (138) for nper. �

By the uniform control of the ratios (10) one obtains quantitative estimates on
the number of fluctuating and perturbation scales (137) and (138); combining them
with the control (139) and the exponential speed of convergence of the multi-
scale effective diffusivities toward zero (120), one obtains Proposition 2.5 and
Theorem 2.2.

3.3.3. Heat kernel tail: Theorem 2.3. As was done for the mean squared dis-
placement, the proof of Theorem 2.3 shall follow from an abstract decomposition
of the potential V . More precisely, let RW ∈ N \ {0,1}, (W,T ) ∈ C∞(T 1

RW
) ×

C∞(R), (‖∇T ‖∞ < ∞) and write V = W + T and yt the diffusion associated
with LV . It has been shown in the proof of Proposition 3.12 that by decompos-
ing W into U +P where U is of period RW/RP ∈ N, one has, for all t > 0 and all
x ∈ Rd ,

Ex

[∫ t

0
|∇FW |2(ys) ds

]
≤ ζ2D(W)t + R2

W

R2
P

C
φ
2 ,(148)

where the constants C
φ
2 , ζ2 are those given by equation (144). We will now show

that from the control (148) (and ‖χW‖∞ ≤ RW that is given by the explicit formula
of the solution of the cell problem) one can deduce the following lemma:
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LEMMA 3.15. For

RW ≤ h/2,(149)

‖∇T ‖∞23(ζ2D(W)
)1/2 ≤ (h/t) ≤

(
RP

/(
RW

√
C

φ
2

))
ζ2D(W)(150)

and (
RP

/(
RW

√
C

φ
2

))
ζ2D(W)e−h2/(211ζ2D(W)t) ≤ (h/t),(151)

one has

P[yt ≥ h] ≤ Ce−h2/(29ζ2D(W)t).(152)

PROOF. The proof of (152) is based on a control of the Laplace transform
of yt ; more precisely it is well known that for λ > 0 and h > 0 one has
P[yt ≥ h] ≤ E[eλ(yt−h)]. Observing that yt = χW(yt )+∫ t

0 ∇FW(ys) dωs −∫ t
0 ∇T ·

∇FW(ys) ds and using ‖χW‖∞ ≤ RW one deduces by the Cauchy–Schwarz
inequality that

P[yt ≥ h] ≤ eλ(RW−h)
E
[
e2λ

∫ t
0 ∇FW(ys) dωs

]1/2

× E

[
e2

√
t‖∇T ‖∞λ(

∫ t
0 |∇FW

l (ys)|2 ds)1/2
]1/2

.
(153)

If X is a positive bounded random variable, µ′ > 0 and λ′ > 0, it is easy to show
by integrating by parts over dP(X ≥ x) and using P(X ≥ x) ≤ E[exp(λ′(X − x))]
that

E
[
exp

(
µ′√X

)] ≤ 1 + µ′ exp
(

(µ′)2

4λ′
)√

π

λ′ E[exp(λ′X)].

Applying this inequality to (153) with X = ∫ t
0 |∇FW

l (ys)|2 ds, λ′ = 8λ2 and

µ′ = 2λ
√

t‖∇T ‖∞ and observing by Itô’s formula that E[e2λ
∫ t

0 ∇FW
l (ys) dωs ] ≤

E[e8λ2 ∫ t
0 |∇FW

l (ys)|2 ds]1/2 one obtains

P[yt ≥ h] ≤ Ceλ(RW −h)e‖∇T ‖2∞t/4
E
[
e8λ2 ∫ t

0 |∇FW(ys)|2 ds
]
.

Now observe that
∫ t

0 ∇FW
l (ys) dωs satisfies the conditions of Theorem 2.9 with

f2 = ζ2D(W), and t0(f1 − f2) = R2
W

R2
P

C
φ
2 . It follows that for

8λ2 ≤ (R2
P )

/(
2eR2

WC
φ
2

)
(154)

one has

E
[
e8λ2 ∫ t

0 |∇FW (ys)|2 ds
] ≤ CR4

P

(
e8λ2ζ2D(W)t

)/(
λ4(C

φ
2 )2R4

W

)
.
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Assuming RW < h/2 and choosing λ = h
32ζ2D(W)t

the condition on λ in (154) is
satisfied under the right inequality in (150) and one obtains

P[yt ≥ h] ≤ Ce−h2/(27ζ2D(W)t)e‖∇T ‖2∞t/4(R4
P (ζ2D(W)t)4)/(h4(C

φ
2 )2R4

W

)
.

From this the result (152) follows easily by assuming the left inequality in (150)
(which basically says that the influence of the drift scales ‖∇T ‖∞ is small in front
of the influence of the fluctuating scales) and condition (151). �

Now let us choose W = V
nflu
0 , P = V

nflu
nflu−nper+1, T = V ∞

nflu+1 (RW = Rnflu ,

RP = Rnflu/Rnflu−nper ) in Lemma 3.15. For p ∈ N∗ define the function

nper(p) = inf
{
n ∈ N : (Rp

/
Rp−n)e

−3nK0
(
D(V

p−1
0 )

)1/2 ≥ 29e5K1
}
.(155)

nper(p) corresponds to the number of perturbation scales among p fluctuating
scales. We will from now assume that ρmin ≥ 29e11K1 , which implies that nper
is well defined and 1 ≤ nper(p) ≤ p. Define

nflu(t/h) = inf
{
n ∈ N : 26(K1

/
Rn+1)e

2nper(n)K0
(
D(V n

0 )
)1/2 ≤ h/t

}
.(156)

nflu −nper corresponds to the number of fully homogenized scales given t/h. nflu is
well defined and greater than 1 under the following assumption that basically says
that homogenization has started on at least the first scale:

(R2/K1)e
2K02−6 ≤ t/h.(157)

By the definition of nflu the left inequality in (150) is satisfied. Using (156), the
right inequality in (150) is implied by the definition of nper. Inequality (149) is
satisfied if 2Rnflu ≤ h; by the definition of nflu this is implied by the following
inequality which basically says that the heat kernel behavior is far from its diagonal
regime:

h2/(D(
V

nflu
0

)1/2
t
) ≥ 2K1e

2K026e2nper(nflu)K0 .(158)

By the definition of nflu and nper, inequality (151) is satisfied by the following
inequality which also says that the heat kernel is far from its diagonal regime:

214e4(nper+1)K0 ln
[
Rnflu+1

] ≤ h2/(D(
V

nflu
0

)
t
)
.(159)

With this assumption, it follows by inequality (152) that

P[yt ≥ h] ≤ Ce−h2/(211e4nperK0D(V
nflu
0 )t).(160)

Using the control (120) on D(V
nflu
0 ), and (10) on the ratios, one obtains

Theorem 2.3. Condition (157) is translated into the first inequality in (16) and
conditions (158) and (159) into the second one.
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