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Abstract

The past century has seen a steady increase in the need of estimating and
predicting complex systems and making (possibly critical) decisions with limited
information. Although computers have made possible the numerical evaluation
of sophisticated statistical models, these models are still designed by humans
because there is currently no known recipe or algorithm for dividing the design
of a statistical model into a sequence of arithmetic operations. Indeed enabling
computers to think as humans, especially when faced with uncertainty, is
challenging in several major ways: (1) Finding optimal statistical models remains
to be formulated as a well-posed problem when information on the system of
interest is incomplete and comes in the form of a complex combination of sample
data, partial knowledge of constitutive relations and a limited description of the
distribution of input random variables. (2) The space of admissible scenarios
along with the space of relevant information, assumptions, and/or beliefs, tends
to be infinite dimensional, whereas calculus on a computer is necessarily
discrete and finite. With this purpose, this paper explores the foundations
of a rigorous framework for the scientific computation of optimal statistical
estimators/models and reviews their connections with decision theory, machine
learning, Bayesian inference, stochastic optimization, robust optimization, opti-
mal uncertainty quantification, and information-based complexity.

Keywords
Abraham Wald • Decision theory • Machine learning • Uncertainty quantifica-
tion • Game theory

1 Introduction

During the past century, the need to solve large complex problems in applications
such as fluid dynamics, neutron transport, or ballistic prediction drove the parallel
development of computers and numerical methods for solving ODEs and PDEs. It
is now clear that this development lead to a paradigm shift. Before: each new PDE
required the development of new theoretical methods and the employment of large
teams of mathematicians and physicists; in most cases, information on solutions was
only qualitative and based on general analytical bounds on fundamental solutions.
After: mathematical analysis and computer science worked in synergy to give birth
to robust numerical methods (such as finite element methods) capable of solving a
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large spectrum of PDEs without requiring the level of expertise of an A. L. Cauchy
or level of insight of a R. P. Feynman. This transformation can be traced back to
sophisticated calculations performed by arrays of human computers organized as
parallel clusters such as in the pioneering work of Lewis Fry Richardson [1, 90],
who in 1922 had a room full of clerks attempt to solve finite-difference equations
for the purposes of weather forecasting, and the 1947 paper by John Von Neumann
and Herman Goldstine on Numerical Inverting of Matrices of High Order [154].
Although Richardson’s predictions failed due to the use of unfiltered data/initial
conditions/equations and large time-steps not satisfying the CFL stability condition
[90], his vision was shared by Von Neumann [90] in his proposal of the Meteorology
Research Project to the US Navy in 1946, qualified by Platzman [120] as “perhaps
the most visionary prospectus for numerical weather prediction since the publication
of Richardsons book a quarter-century earlier.”

The past century has also seen a steady increase in the need of estimating and
predicting complex systems and making (possibly critical) decisions with limited
information. Although computers have made possible the numerical evaluation of
sophisticated statistical models, these models are still designed by humans through
the employment of multidisciplinary teams of physicists, computer scientists, and
statisticians. Contrary to the original human computers (such as the ones pioneered
by L. F. Richardson or overseen by R. P. Feynman at Los Alamos), these human
teams do not follow a specific algorithm (such as the one envisioned in Richardson’s
Forecast Factory where 64,000 human computers would have been working in
parallel and at high speed to compute world weather charts [90]) because there is
currently no known recipe or algorithm for dividing the design of a statistical model
into a sequence of arithmetic operations. Furthermore, while human computers were
given a specific PDE or ODE to solve, these human teams are not given a well-posed
problem with a well-defined notion of solution. As a consequence, different human
teams come up with different solutions to the design of the statistical model along
with different estimates on uncertainties.

Indeed enabling computers to think as humans, especially when faced with
uncertainty, is challenging in several major ways: (1) There is currently no known
recipe or algorithm for dividing the design of a statistical model into a sequence of
arithmetic operations. (2) Formulating the search for an optimal statistical estima-
tor/model as a well-posed problem is not obvious when information on the system
of interest is incomplete and comes in the form of a complex combination of sample
data, partial knowledge of constitutive relations, and a limited description of the
distribution of input random variables. (3) The space of admissible scenarios along
with the space of relevant information, assumptions, and/or beliefs tends to be infi-
nite dimensional, whereas calculus on a computer is necessarily discrete and finite.

The purpose of this paper is to explore the foundations of a rigorous/rational
framework for the scientific computation of optimal statistical estimators/models
for complex systems and review their connections with decision theory, machine
learning, Bayesian inference, stochastic optimization, robust optimization, optimal
uncertainty quantification, and information-based complexity, the most fundamental
of these being the simultaneous emphasis on computation and performance as in
machine learning initiated by Valiant [149].
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2 The UQ Problem Without Sample Data

2.1 C̆ebys̆ev, Markov, and Kreı̆n

Let us start with a simple warm-up problem.

Problem 1. Let A be the set of measures of probability on Œ0; 1� having mean less
than m 2 .0; 1/. Let �� be an unknown element of A and let a 2 .m; 1/. What is
��ŒX � a�?

Observe that given the limited information on ��, ��ŒX � a� could a priori be
any number in the interval

�L.A/;U.A/
�

obtained by computing the sup (inf) of
�ŒX � a� with respect to all possible candidates for ��, i.e.,

U.A/ WD sup
�2A

�ŒX � a� (1)

and

L.A/ WD inf
�2A �ŒX � a�

where

A WD ˚
� 2 M.Œ0; 1�/ j E�ŒX� � m

�

and M.Œ0; 1�/ is the set of Borel probability measures on Œ0; 1�. It is easy to observe
that the extremum of (1) can be achieved only when � is the weighted sum of a
Dirac mass at 0 and a Dirac mass at a. It follows that, although (1) is an infinite
dimensional optimization problem, it can be reduced to the simple one-dimensional
optimization problem obtained by letting p 2 Œ0; 1� denote the weight of the Dirac
mass at 1 and 1 � p the weight of the Dirac mass at 0: Maximize p subject to
ap D m, producing the Markov bound m

a
as solution.

Problems such as (1) can be traced back to C̆ebys̆ev [77, Pg. 4] “Given: length,
weight, position of the centroid and moment of inertia of a material rod with a
density varying from point to point. It is required to find the most accurate limits
for the weight of a certain segment of this rod.” According to Kreı̆n [77], although
C̆ebys̆ev did solve this problem, it was his student Markov who supplied the proof
in his thesis. See Kreı̆n [77] for an account of the history of this subject along with
substantial contributions by Kreı̆n.

2.2 Optimal Uncertainty Quantification

The generalization of the process described in Sect. 2.1 to complex systems
involving imperfectly known functions and measures is the point of view of optimal
uncertainty quantification (OUQ) [3, 69, 72, 96, 114, 142]. Instead of developing
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sophisticated mathematical solutions, the OUQ approach is to develop optimization
problems and reductions, so that their solution may be implemented on a computer,
as in Bertsimas and Popescu’s [15] convex optimization approach to C̆ebys̆ev
inequalities, and the Decision Analysis framework of Smith [133].

To present this generalization, for a topological space X , let F.X / be the space
of real-valued measurable functions and M.X / be the set of Borel probability
measures on X . Let A be an arbitrary subset of F.X / � M.X /, and let ˆWA ! R

be a function producing a quantity of interest.

Problem 2. Let .f �; ��/ be an unknown element of A. What is ˆ.f �; ��/?

Therefore, in the absence of sample data, in the context of this generalization, one is
interested in estimating ˆ.f �; ��/, where .f �; ��/ 2 F.X / � M.X / corresponds
to an unknown reality: the function f � represents a response function of interest, and
�� represents the probability distribution of the inputs of f �. If A represents all that
is known about .f �; ��/ (in the sense that .f �; ��/ 2 A and that any .f; �/ 2 A
could, a priori, be .f �; ��/ given the available information), then [114] shows that
the quantities

U.A/ WD sup
.f;�/2A

ˆ.f; �/ (2)

L.A/ WD inf
.f;�/2A ˆ.f; �/ (3)

determine the inequality

L.A/ � ˆ.f �; ��/ � U.A/; (4)

to be optimal given the available information .f �; ��/ 2 A as follows: It is simple to
see that the inequality (4) follows from the assumption that .f �; ��/ 2 A. Moreover,
for any " > 0, there exists a .f; �/ 2 A such that

U.A/ � " < ˆ.f; �/ � U.A/:

Consequently since all that is known about .f �; ��/ is that .f �; ��/ 2 A, it
follows that the upper bound ˆ.f �; ��/ � U.A/ is the best obtainable given that
information, and the lower bound is optimal in the same sense.

Although the OUQ optimization problems (2) and (3) are extremely large
and although some are computationally intractable, an important subclass enjoys
significant and practical finite-dimensional reduction properties [114]. First, by
[114, Cor. 4.4], although the optimization variables .f; �/ lie in a product space
of functions and probability measures, for OUQ problems governed by linear
inequality constraints on generalized moments, the search can be reduced to one
over probability measures that are products of finite convex combinations of Dirac
masses with explicit upper bounds on the number of Dirac masses.
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Furthermore, in the special case that all constraints are generalized moments of
functions of f , the dependency on the coordinate positions of the Dirac masses
is eliminated by observing that the search over admissible functions reduces to
a search over functions on an m-fold product of finite discrete spaces, and the
search over m-fold products of finite convex combinations of Dirac masses reduces
to a search over the products of probability measures on this m-fold product of
finite discrete spaces [114, Thm. 4.7]. Finally, by [114, Thm. 4.9], using the lattice
structure of the space of functions, the search over these functions can be reduced
to a search over a finite set.

Fundamental to this development is Winkler’s [169] generalization of the charac-
terization of the extreme points of compact (in the weak topology) sets of probability
measures constrained by a finite number of generalized moment inequalities defined
by continuous functions to non-compact sets of tight measures, in particular
probability measures on Borel subsets of Polish metric spaces, defined by Borel
measurable moment functions, along with his [168] development of Choquet theory
for weakly closed convex non-compact sets of tight measures. These results are
based on Kendall’s [71] equivalence between a linearly compact Choquet simplex
and a vector lattice and results of Dubins [31] concerning the extreme points of
affinely constrained convex sets in terms of the extreme points of the unconstrained
set. It is interesting to note that Winkler [169] uses Kendall’s result to derive a
strong sharpening of Dubins result [31]. Winkler’s results allow the extension of
existing optimization results over measures on compact metric spaces constrained
by continuous generalized moment functions to optimization over measures on
Borel subsets of Polish spaces constrained by Borel measurable moment functions.
For systems with symmetry, the Choquet theorem of Varadarajan [151] can be
used to show that the Dirac masses can be replaced by the ergodic measures in
these results. The inclusion of sets of functions along with sets of measures in the
optimization problems facilitates the application to systems with imprecisely known
response functions. In particular, a result of Ressel [121], providing conditions under
which the map .f; �/ ! f�� from function/measure pairs to the induced law is
Borel measurable, facilitates the extension of these techniques from sets of measures
to sets of random variables. In general, the inclusion of functions in the domain of
optimization requires the development of generalized programming techniques such
as generalized Benders decompositions described in Geoffrion [46]. Moreover, as
has been so successful in machine learning, it will be convenient to approximate
the space of measurable functions F.X / by some reproducing kernel Hilbert space
H.X / � F.X / producing an approximation H.X / � M.X / � F.X / � M.X / to
the full base space. Under the mild assumption that X is an analytic subset of a Pol-
ish space and H.X / possesses a measurable feature map, it has recently been shown
in [111] that H.X / is separable. Consequently, since all separable Hilbert spaces are
isomorphic with `2, it follows that the space `2 �M.X / is a universal representation
space for the approximation of F.X / � M.X /. Moreover, in that case, since X is
separable and metric, so is M.X / in the weak topology, and since H.X / is Polish,
it follows that the approximation space H.X / � M.X / is the product of a Polish
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space and a separable metric space. When furthermore X is Polish, it follows that
the approximation space is the product of Polish spaces and therefore Polish.

Example 1. A classic example is ˆ.f; �/ WD �Œf � a� where a is a safety margin.
In the certification context, one is interested in showing that ��Œf � � a� � ",
where " is a safety certification threshold (i.e., the maximum acceptable ��-
probability of the system f � exceeding the safety margin a). If U.A/ � ", then
the system associated with .f �; ��/ is safe even in the worst-case scenario (given
the information represented by A). If L.A/ > ", then the system associated with
.f �; ��/ is unsafe even in the best-case scenario (given the information represented
by A). If L.A/ � " < U.A/, then the safety of the system cannot be decided
(although one could declare the system to be unsafe due to lack of information).

2.3 Worst-Case Analysis

The proposed solutions to Problems 1 and 2 are particular instances of worst-case
analysis that, as noted by [135] and [127, p. 5], is an old concept that could be
summarized by the popular adage When in doubt, assume the worst! or:

The gods to-day stand friendly, that we may,
Lovers of peace, lead on our days to age
But, since the affairs of men rests still uncertain,
Lets reason with the worst that may befall.

Julius Caesar, Act 5, Scene 1
William Shakespeare (1564–1616)

As noted in [114], an example of worst-case analysis in seismic engineering
is that of Drenick’s critical excitation [30] which seeks to quantify the safety
of a structure to the worst earthquake given a constraint on its magnitude. The
combination of structural optimization (in various fields of engineering) to produce
an optimal design given the (deterministic) worst-case scenario has been referred
to as optimization and anti-optimization [35]. The main difference between OUQ
and anti-optimization lies in the fact that the former is based on an optimization
over (admissible) functions and measures .f; �/, while the latter only involves an
optimization over f . Because of its robustness, many engineers have adopted the
(deterministic) worst-case scenario approach to UQ [35, Chap. 10] when a high
reliability is required.

2.4 Stochastic and Robust Optimization

Robust control [176] and robust optimization [7, 14] have been founded upon the
worst-case approach to uncertainty. Recall that robust optimization describes opti-
mization involving uncertain parameters. While these uncertain parameters are mod-
eled as random variables (of known distribution) in stochastic programming [26],
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robust optimization only assumes that they are contained in known (ambiguity)
sets. Although, as noted in [35], probabilistic methods do not find appreciation
among theoreticians and practitioners alike because “probabilistic reliability studies
involve assumptions on the probability densities, whose knowledge regarding
relevant input quantities is central,” the deterministic worst-case approach (limited
to optimization problems over f ) is sometimes “too pessimistic to be practical”
[30, 35] because “it does not take into account the improbability that (possibly
independent or weakly correlated) random variables conspire to produce a failure
event” [114] (which constitutes one motivation for considering ambiguity sets
involving both measures and functions). Therefore OUQ and distributionally robust
optimization (DRO) [7, 14, 49, 53, 166, 174, 177] could be seen as middle ground
between the deterministic worst-case approach of robust optimization [7, 14]
and approaches of stochastic programming and chance-constrained optimization
[19, 24] by defining optimization objectives and constraints in terms of expected
values and probabilities with respect to imperfectly known distributions.

Although stochastic optimization has different objectives than OUQ and DRO,
many of its optimization results, such as those found in Birge and Wets [16], and
Ermoliev [36] and Gaivoronski, [44], are useful. In particular, the well-developed
subject of Edmundson and Madansky bounds such as Edmundson [34]; Madansky
[91,92]; Gassman and Ziemba [45]; Huang, Ziemba, and Ben-Tal [57]; Frauendorfer
[41]; Ben-Tal and Hochman [8]; Huang, Vertinsky, and Ziemba [56]; and Kall [67]
provide powerful results. Recently Hanasusanto, Roitch, Kuhn, and Wiesemann [53]
derive explicit conic reformulations for tractable problem classes and suggest effi-
ciently computable conservative approximations for intractable ones. In some cases,
e.g., Bertsimas and Popescu’s [15] and Han et al. [52], DRO/OUQ optimization
problems can be reduced to convex optimization.

2.5 C̆ebys̆ev Inequalities and Optimization Theory

As noted in [114], inequalities (4) can be seen as a generalization of C̆ebys̆ev
inequalities. The history of classical inequalities can be found in [70], and some
generalizations in [15] and [150]; in the latter works, the connection between
C̆ebys̆ev inequalities and optimization theory is developed based on the work of
Mulholland and Rogers [98], Godwin [48], Isii [60–62], Olkin and Pratt [106],
Marshall and Olkin [94], and the classical Markov–Krein theorem [70, pages 82
& 157], among others. We also refer to the field of majorization, as discussed in
Marshall and Olkin [95], the inequalities of Anderson [5], Hoeffding [54], Joe [64],
Bentkus et al. [12], Bentkus [10, 11], Pinelis [118, 119], and Boucheron, Lugosi,
and Massart [20]. Moreover, the solution of the resulting nonconvex optimization
problems benefit from duality theories for nonconvex optimization problems such
as Rockafellar [123] and the development of convex envelopes for them, as can be
found, for example, in Rikun [122] and Sherali [131].



Toward Machine Wald 9

3 The UQ Problem with Sample Data

3.1 From Game Theory to Decision Theory

To motivate the general formulation in the presence of sample data, consider another
simple warm-up problem.

Problem 3. Let A be the set of measures of probability on Œ0; 1� having mean less
than m 2 .0; 1/. Let �� be an unknown element of A and let a 2 .m; 1/. You
observe d WD .d1; : : : ; dn/, n i.i.d. samples from ��. What is the sharpest estimate
of ��ŒX � a�?

The only difference between Problems 3 and 1 lies in the availability of data sampled
from the underlying unknown distribution. Observe that, in presence of this sample
data, the notions of sharpest estimate or smallest interval of confidence are far
from being transparent and call for clear and precise definitions. Note also that if
the constraint E�� ŒX� � m is ignored, and the number n of sample data is large,
then one could use the central limit theorem or a concentration inequality (such
as Hoeffding’s inequality) to derive an interval of confidence for ��ŒX � a�. A
nontrivial question of practical importance is what to do when n is not large.

Writing ˆ.��/ WD ��ŒX � a� as the quantity of interest, observe that an
estimation of ˆ.��/ is a function (which will be written �) of the data d . Ideally
one would like to choose � so that the estimation error �.d/ � ˆ.��/ is as close
as possible to zero. Since d is random, a more robust notion of error is that of
a statistical error E�

�; ��/ defined by weighting the error with respect to a real
measurable positive loss function V WR ! R and the distribution of the data, i.e.,

E.�; ��/ WD Ed�.��/n

h
V

�
�.d/ � ˆ.��/

�i
(5)

Note that for V .x/ D x2, the statistical error E.�; ��/ defined in (5) is the mean
squared error with respect to the distribution of the data d of the estimation error.
For V .x/ D 1Œ�;1�.jxj/ defined for some � > 0, E.�; ��/ is the probability with
respect to the distribution of d that the estimation error is larger than � .

Now since �� is unknown, the statistical error E.�; ��/ of any � is also unknown.
However one can still identify the least upper bound on that statistical error through
a worst-case scenario with respect to all possible candidates for ��, i.e.,

sup
�2A

E.�; �/ : (6)

The sharpest estimator (possibly within a given class) is then naturally obtained as
the minimizer of (6) over all functions � of the data d within that class, i.e., as the
minimizer of
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inf
�

sup
�2A

E�
�; �/ : (7)

Observe that the optimal estimator is identified independently from the obser-
vation/realization of the data and if the minimum of (7) is not achieved then one
can still use a near-optimal � . Then, when the data is observed, the estimate of
the quantity of interest ˆ.��/ is then derived by evaluating the near-optimal �

on the data d . The notion of optimality described here is that of Wald’s statistical
decision theory [156–158, 160, 161], evidently influenced by Von Neumann’s game
theory [153, 155]. In Wald’s formulation [157], which cites both Von Neumann
[153] and Von Neumann and Morgenstern [155], the statistician finds himself in
an adversarial game played against the Universe in which he tries to minimize a risk
function E�

�; �/ with respect to � in a worst-case scenario with respect to what the
Universe’s choice of � could be.

3.2 The Optimization Approach to Statistics

The optimization approach to statistics is not new and this section will now
give a short, albeit incomplete, description of its development, primarily using
Lehmann’s account [87]. Accordingly, it began with Gauss and Laplace with the
nonparametric result referred to as the Gauss-Markov theorem, asserting that the
least squares estimates are the linear unbiased estimates with minimum variance.
Then, in Fisher’s fundamental paper [39], for parametric models, he proposes
the maximum likelihood estimator and claims (but does not prove) that such
estimators are consistent and asymptotically efficient. According to Lehmann, “the
situation is complex, but under suitable restrictions Fisher’s conjecture is essentially
correct : : :.” The Fisher’s maximum likelihood principle was first proposed on
intuitive grounds and then its optimality properties developed. However, according
to Lehmann [86, Pg. 1011], Pearson then asked Neyman “Why these tests rather than
any of the many other that could be proposed? This question resulted in Neyman and
Pearson’s 1928 papers [104] on the likelihood ratio method, which gives the same
answer as Fisher’s tests under normality assumptions. However, Neyman was not
satisfied. He agreed that the likelihood ratio principle was appealing but felt that it
was lacking a logically convincing justification. This then led to the publication of
Neyman and Pearson [105], containing their now famous Neyman–Pearson lemma,
which according to Lehmann [87], “In a certain sense this is the true start of
optimality theory.” In a major extension of the Neyman–Pearson work, Huber [58]
proves a robust version of the Neyman–Pearson lemma, in particular, providing an
optimality criteria defining the robust estimator, giving rise to a rigorous theory
of robust statistics based on optimality; see Huber’s Wald lecture [59]. Robustness
is particularly suited to the Wald framework since robustness considerations are
easily formulated with the proper choices of admissible functions and measures in
the Wald framework. Another example is Kiefer’s introduction of optimality into
experimental design, resulting in Kiefer’s 40 papers on Optimum Experimental
Designs [74].
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Not everyone was happy with “optimality” as a guiding principle. For example,
Lehmann [87] states that at a 1958 meeting of the Royal Statistical Society at which
Kiefer presented a survey talk [73] on Optimum Experimental Designs, Barnard
quotes Kiefer as saying of procedures proposed in a paper by Box and Wilson that
they “often [are] not even well-defined rules of operation.” Barnard’s reply:

in the field of practical human activity, rules of operation which are not well-defined may
be preferable to rules which are.

Wynn [173], in his introduction to a reprint of Kiefer’s paper, calls this “a clash of
statistical cultures.” Indeed, it is interesting to read the generally negative responses
to Kiefer’s article [73] and the remarkable rebuttal by Kiefer therein. Tukey had
other criticisms regarding “The tyranny of the best” in [147] and “The dangers of
optimization” in [148]. In the latter he writes:

Some [statisticians] seem to equate [optimization] to statistics an attitude which, if widely
adopted, is guaranteed to produce a dried-up, encysted field with little chance of real growth.

For an account of how the Exploratory Data Analysis approach of Tukey fits within
the Fisher/Neyman–Pearson debate, see Lehnard [88].

Let us also remark on the influence that Student – William Sealy Gosset – had
on both Fisher and Pearson. As presented in Lehmann’s [85] “‘Student’ and small-
sample theory,” quoting F. N. David [79]: “I think he [Gosset] was really the big
influence in statistics: : : He asked the questions and Pearson or Fisher put them into
statistical language and then Neyman came to work with the mathematics. But I
think most of it stems from Gosset.” The aim of Lehmann’s paper [85] is to consider
to what extent David’s conclusion is justified. Indeed, the claim is surprising since
Gosset is mainly known for only one contribution, that is, Student [141], with
the introduction of Student’s t-test and its analysis under the normal distribution.
According to Lehmann, “Today the pathbreaking nature of this paper is generally
recognized and has been widely commented upon, : : :.” Gosset’s primary concern in
communicating with both Fisher and Pearson was the robustness of the test to non-
normality. Lehmann concludes that “the main ideas leading to Pearson’s research
were indeed provided by Student.” See Lehmann [85] for the full account, including
Gosset’s relationship to the Fisher–Pearson debate, Pearson [116] for a statistical
biography of Gosset, and Fisher [40] for a eulogy. Consequently, modern statistics
appears to owe a lot to Gosset. Moreover, the reason for the pseudonym was a policy
by Gosset’s employer, the brewery Arthur Guinness, Sons, and Co., against work
done for the firm being made public. Allowing Gosset to publish under a pseudonym
was a concession that resulted in the birth of the statistician Student. Consequently,
the authors would like to take this opportunity to thank the Guinness Brewery for
its influence on statistics today, and for such a fine beer.

3.3 Abraham Wald

Following Neyman and Pearson’s breakthrough, a different approach to optimality
was introduced in Wald [156] and then developed in a sequence of papers
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culminating in Wald’s [161] book Statistical Decision Functions. Evidence of the
influence of Neyman on Wald can be found in the citation of Neyman [102] in the
introduction of Wald [156]. Brown [22] quotes the students of Neyman in 1966 from
[103]:

The concepts of confidence intervals and of the Neyman-Pearson theory have proved
immensely fruitful. A natural but far reaching extension of their scope can be found in
Abraham Wald’s theory of statistical decision functions. The elaboration and application of
the statistical tools related to these ideas has already occupied a generation of statisticians.
It continues to be the main lifestream of theoretical statistics.

Brown’s purpose was to address if the last sentence in the quote was still true in
2000.

Wolfowitz [170] describes the primary accomplishments of Wald’s statistical
decision theory as follows:

Wald’s greatest achievement was the theory of statistical decision functions, which includes
almost all problems which are the raison d’etre of statistics.

Leonard [89, Chp. 12] portrays Von Neumann’s return to game theory as “partly
an early reaction to upheaval and war.” However he adds that eventually Von
Neumann became personally involved in the war effort and “with that involvement
came a significant, unforeseeable moment in the history of game theory: this
new mathematics made its wartime entrance into the world, not as the abstract
theory of social order central to the book, but as a problem solving technique.”
Moreover, on pages 278–280, Leonard discusses the statistical research groups at
Berkeley, Columbia, and Princeton, in particular Wald at Columbia, and how the
effort to develop inspection and testing procedures leads Wald to the development
of sequential methods “apparently yielding significant economies in inspection
in the Navy,” leading to the publication of Wald and Wolfowitz’ [162] proof
of the optimality of the sequential probability ratio test and Wald’s book [159]
Sequential Analysis. Leonard’s claim essentially is that the war stimulated these
fine theoretical minds to pursue activities with real application value. In this regard,
it is relevant to note Mangel and Samaniego’s [93] stimulating description of Wald’s
work on aircraft survivability, along with the contemporary, albeit somewhat vague,
description of “How a Story from World War II shapes Facebook today” by Wilson
[167]. Indeed, in the problem of how to allocate armoring to the allied bombers
based on their condition upon return from their missions, it was discovered that
armoring where the previous planes had been hit was not improving their rate of
return. Wald’s ingenious insight was that these were the returning bombers not the
ones which had been shot down. So the places where the returning bombers were hit
are more likely to be the places where one does not need to add armoring. Evidently,
his rigorous and unconventional innovations to transform this intuition into a real
methodology saved many lives. Wolfowitz [170] states:

Wald not only posed his statistical problems clearly and precisely, but he posed them to
fit the practical problem and to accord with the decisions the statistician was called on to
make. This, in my opinion, was the key to his success-a high level of mathematical talent
of the most abstract sort, and a true feeling for, and insight into, practical problems. The
combination of the two in his person at such high levels was what gave him his outstanding
character.
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The section on Von Neumann and Remak (along with the Notes that follows it)
in Kurz and Salvadori [78] describes Wald and Von Neumann’s relations. Brown
[21] credits Wald as the creator of the minmax idea in statistics, evidently given
axiomatic justification by Gilboa and Schmeidler [47]. This certainly had something
to do with his friendship with Morgenstern and his relationship with Von Neumann,
who together authored the famous book [155], but this influence can be explicitly
seen in Wald’s [157] citation of Von Neumann [153] and Von Neumann and
Morgenstern [155] in his introduction [157] of the minmax idea in statistical
decision theory. Indeed, Wolfowitz states that:

: : : he was also spurred on by the connection between the newly announced results of [Von
Neumann and Morgenstern] [155] and his own theory, and by the general interest among
economists and others aroused by the theory of games.

Wolfowitz asserts that Wald’s work [156] Contributions to the Theory of Statistical
Estimation and Testing Hypotheses is “probably his most important paper” but
that it “went almost completely unnoticed,” possibly because “The use of Bayes
solutions was deterrent” and “Wald did not really emphasize that he was using
Bayes solutions only as a tool.” Moreover, although Wolfowitz considered Wald’s
Statistical Decision Functions [161] his greatest achievement, he also says:

The statistician who wants to apply the results of [161] to specific problems is likely to be
disappointed. Except for special problems, the complete classes are difficult to characterize
in a simple manner and have not yet been characterized. Satisfactory general methods
are not yet known for obtaining minimax solutions. If one is not always going to use a
minimax solution (to which.serious objections have been raised) or a solution satisfying
some given criterion, then the statistician should have the opportunity to choose from
among “representative” decision functions on the basis of their risk functions. These are
not available except for the simplest cases. It is clear that much remains to be done before
the use of decision functions becomes common. The theory provides a rational basis for
attacking almost any statistical problem, and, when some computational help is available
and one makes some reasonable compromises in the interest of computational feasibility,
one can obtain a practical answer to many problems which the classical theory is unable to
answer or answers in an unsatisfactory manner.

Wolfowitz [170], Morgenstern [97], and Hotelling [55] provide a description of
Wald’s impact at the time of his passing. The influence of Wald’s minimax paradigm
can also be observed on (1) decision making under severe uncertainty [134–136],
(2) stochastic programming [130] (minimax analysis of stochastic problems), (3)
minimax solutions of stochastic linear programming problems [175], (4) robust
convex optimization [9] (where one must find the best decision in view of the worst-
case parameter values within deterministic uncertainty sets), (4) econometrics [143],
and (5) Savage’s minimax regret model [128].

3.4 Generalization to Unknown Pairs of Functions and Measures
and to Arbitrary Sample Data

In practice, complex systems of interest may involve, both an imperfectly known
response function f � and an imperfectly known probability measure �� as illus-
trated in the following problem.
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Problem 4. Let A be a set of real functions and measures of probability on Œ0; 1�

such that .f; �/ 2 A if and only if E�ŒX� � m and supx2Œ0;1�

ˇ̌
g.x/ � f .x/

ˇ̌ �
0:1 where g is some given real function on Œ0; 1�. Let .f �; ��/ be an unknown
element of A and let a 2 R. Let .X1; : : : ; Xn/ be n i.i.d. samples from ��, you
observe .d1; : : : ; dn/ with di D �

Xi; f �.Xi/
�
. What is the “sharpest” estimate of

��
�
f .X/ � a

�
?

Problem 4 is an illustration of a situation in which the response function f � and
the probability measure �� are not directly observed and the sample data arrives
in the form of realizations of random variables, the distribution of which is related
to .f �; ��/. To simplify the current presentation, assume that this relation is, in
general, determined by a function of .f �; ��/ and use the following notation: D will
denote the observable space (i.e., the space in which the sample data d take values,
assumed to be a metrizable Suslin space) and d will denote the D-valued random
variable corresponding to the observed sample data. To represent the dependence of
the distribution of d on the unknown state .f �; ��/ 2 A, introduce a measurable
function

DWA ! M.D/; (8)

where M.D/ is given the Borel structure corresponding to the weak topology, to
define this relation. The idea is that D.f; �/ is the probability distribution of the
observed sample data d if .f �; ��/ D .f; �/, and for this reason it may be called
the data map (or, even more loosely, the observation operator). Now consider the
following problem.

Problem 5. Let A be a known subset of F.X / � M.X / as in Problem 2 and let
D be a known data map as in (8). Let ˆ be a known measurable semi-bounded
function mappingA ontoR. Let .f �; ��/ be an unknown element ofA. You observe
d 2 D sampled from the distribution D.f �; ��/. What is the sharpest estimation of
ˆ.f �; ��/?

3.5 Model Error and Optimal Models

As in Wald’s statistical decision theory [157], a natural notion of optimality can
be obtained by formulating Problem 5 as an adversarial game in which player A
chooses .f �; ��/ 2 A and player B (knowing A and D) chooses a function � of the
observed data d . As in (5) this notion of optimality requires the introduction of a
risk function:

E�
�; .f; �/

� WD Ed�D.f;�/

h
V

�
�.d/ � ˆ.f; �/

�i
(9)
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where V WR ! R is a real positive measurable loss function. As in (6) the least
upper bound on that statistical error E�

�; .f; �/
�

is obtained as through a worst-case
scenario with respect to all possible candidates for .f; �/ (player’s A choice), i.e.,

sup
.f;�/2A

E�
�; .f; �/

�
(10)

and an optimal estimator/model (possibly within a given class) is then naturally
obtained as the minimizer of (10) over all functions � of the data d in that class
(player’s B choice), i.e., as the minimizer of

inf
�

sup
.f;�/2A

E�
�; .f; �/

�
: (11)

Since in real applications true optimality will never be achieved, it is natural to gen-
eralize to considering near-minimizers of (11) as near-optimal models/estimators.

Remark 1. In situations where the data map is imperfectly known (e.g., when the
data d is corrupted by some noise of imperfectly known distribution), one has to
include a supremum over all possible candidates D 2 D in the calculation of the
least upper bound on the statistical error.

3.6 Mean Squared Error, Variance, and Bias

For .f; �/ 2 A write Vard�D.f;�/

�
�.d/

�
the variance of the random variable �.d/

when d is distributed according to D.f; �/, i.e.,

Vard�D.f;�/

�
�.d/

� WD Ed�D.f;�/

h�
�.d/

�2
i

�
h
Ed�D.f;�/

�
�.d/

�i2

The following equation, whose proof is straightforward, shows that for V .x/ D x2,
the least upper bound on the mean squared error of � is equal to the least upper
bound on the sum of the variance of � and the square of its bias:

sup
.f;�/2A

E�
�; .f; �/

� D sup
.f;�/2A

"

Vard�D.f;�/

�
�.d/

�C
�
Ed�D.f;�/

�
�.d/

��ˆ.f; �/
�2

#

Therefore, for V .x/ D x2, the bias/variance tradeoff is made explicit.

3.7 Optimal Interval of Confidence

Although E can a priori be defined to be any risk function, taking V .x/ D
1Œ�;1�.jxj/ (for some � > 0) in (5) allows for a transparent and objective
identification of optimal intervals of confidence. Indeed, writing,
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E�

�
�; .f; �// WD Pd�D.f;�/

hˇ
ˇ�.d/ � ˆ.f; �/

ˇ
ˇ � �

i

note that sup.f;�/2A E�

�
�; .f; �// is the least upper bound on the probability (with

respect to the distribution of d ) that the difference between the true value of the
quantity of interest ˆ.f �; ��/ and its estimated value �.d/ is larger than � . Let
� 2 Œ0; 1�. Define

�� WD inf
˚
� > 0 j inf

�
sup

.f;�/2A
E�

�
�; .f; �// � �

�
;

and observe that if �� is a minimizer of inf� sup.f;�/2A E��

�
�; .f; �/

�
then Œ��.d/ �

��; ��.d/ C ��� is the smallest interval of confidence (random interval obtained as a
function of the data) containing ˆ.f �; ��/ with probability at least 1 � �. Observe
also that this formulation is a natural extension of the OUQ formulation as described
in [114]. Indeed, in the absence of sample data, it is easy to show that �1 is the
midpoint of the optimal interval ŒL.A/;U.A/�.

Remark 2. We refer to [37, 38, 137] and in particular to Stein’s notorious paradox
[138] for the importance of a careful choice for loss function.

3.8 Ordering the Space of Experiments

A natural objective of UQ and statistics is the design of experiments, their
comparisons, and the identification of optimal ones. Introduced in Blackwell [17]
and Kiefer [73], with a more modern perspective in Le Cam [83] and Strasser [139],
here observe that (11), as a function of D, induces an order (transitive, total, but
not antisymmetric) on the space of data maps that has a natural experimental design
interpretation. More precisely if the data maps D1 and D2 are interpreted as the
distribution of the outcome of two possible experiments, and if the value of (11) is
smaller for D2 than D1, then D2 is a preferable experiment.

3.9 Mixing Models

Given estimators �1; : : : ; �n can one obtain a better estimator by mixing those
estimators? If V is convex (or quasi-convex), then the problem of finding an
˛ 2 Œ0; 1�n minimizing the statistical error of

Pn
iD1 ˛i �i under the constraintPn

iD1 ˛i D 1 is a finite-dimensional convex optimization problem in ˛. If estimators
are seen as models of reality, then this observation supports the idea that one
can obtain improved models by mixing them (with the goal of achieving minimal
statistical errors).
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4 The Complete Class Theorem and Bayesian Inference

4.1 The Bayesian Approach

The Bayesian answer to Problem 5 is to assume that .f �; ��/ is a sample from some
(prior) measure � on A and then condition the expectation of ˆ.f; �/ with respect
to the observation of the data, i.e., use

E.f;�/��;d�D.f;�/

�
ˆ.f; �/

ˇ̌
d

�
(12)

as the estimator �.d/. This requires giving A the structure of a measurable space
such that important quantities of interest such as .f; �/ ! �Œf .X/ � a� and
.f; �/ ! E�Œf � are measurable. This can be achieved using results of Ressel [121]
providing conditions under which the map .f; �/ ! f�� from function/measure
pairs to the induced law is Borel measurable. We will henceforth assume A to
be a Suslin space and proceed to construct the measure of probability � ˇ D of�
.f; �/; d

�
on A � D via a natural generalization of the Campbell measure and

Palm distribution associated with a random measure as described in [68]; see also
[25, Ch. 13] for a more current treatment. We refer to Sect. 6 of the appendix for the
details of the construction of the distribution � ˇD of

�
.f; �/; d

�
when .f; �/ � �

and d � D.f; �/, and of the marginal distribution � � D of � ˇ D on the data space
D, and the resulting regular conditional expectation (12). Consequently, the nested
expectation E.f;�/��;d�D.f;�/ appearing in (12) will from now on be rigorously
written as the expectation E..f;�/;d/��ˇD.

Statistical error when .f �; ��/ is random. When .f �; ��/ is a random realiza-
tion of ��, one may consider averaging the statistical error (9) with respect to ��

and introduce

E.�; ��/ WD E..f;�/;d/���ˇD

h
V

�
�.d/ � ˆ.f; �/

�i
(13)

When �� is an unknown element of a subset … of M.A/, the least upper bound
on the statistical error (13) given the available information is obtained by taking the
sup of (13) with respect to all possible candidates for ��, i.e.,

sup
�2…

E.�; �/ (14)

When A is Suslin and when .f �; ��/ is not a random sample from �� but simply an
unknown element of A, then a straightforward application of the reduction theorems
of [114] implies that when … D M.A/, then (14) is equal to (11), i.e.,

sup
.f;�/2A

E�
�; .f; �/

� D sup
�2M.A/

E.�; �/ (15)
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4.2 Relation Between Adversarial Model Error and Bayesian
Error

When ˆ has a second moment with respect to � , one can utilize the classical
variational description of conditional expectation as follows: Letting L2

� �D.D/

denote the space of (� � D a.e. equivalence classes of) real-valued measurable
functions on D that are square-integrable with respect to the measure � � D, one
has (see Sect. 6)

E�ˇD

�
ˆ

ˇ
ˇd

� WD arg min
h2L2

��D
.D/

E.f;�;d/��ˇD

h�
ˆ.f; �/ � h.d/

�2
i

:

In other words, if .f; �/ is sampled from the measure � , E�ˇD

�
ˆ.f; �/

ˇ
ˇd

�
is

the best mean-square approximation of ˆ.f; �/ in the space of square-integrable
functions of d . As with the regular conditional probabilities, the real-valued function
on D

��.d/ D E.f;�;D/��ˇD

�
ˆ.f; �/

ˇ
ˇD D d

�
; d 2 D (16)

is uniquely defined up to subsets of D of .� � D/-measure zero.
Using the orthogonal projection property of the conditional expectation, one

obtains that if V .x/ D x2, then for arbitrary � ,

E.�; �/ D E.�� ; �/ C Ed�� �D
h
�.d/ � ��.d/

i2
(17)

Therefore, if … � M.A/ is an admissible set of priors, then (17) implies that

inf
�

sup
�2…

E.�; �/ � sup
�2…

E.�� ; �/ :

In particular, when … D M.A/ (15) implies that

inf
�

sup
.f;�/2A

E.�; .f; �// � sup
�2M.A/

E.�� ; �/ : (18)

Therefore, the mean squared error of the best estimator assuming .f �; ��/ 2 A to
be unknown is bounded below by the largest mean squared error of the Bayesian
estimator obtained by assuming that .f �; ��/ is distributed according to some � 2
M.A/. In the next section, it will be shown that a complete class theorem can be
used to obtain that (18) is actually an equality. In that case, (18) can be used to
quantify the approximate optimality of an estimator by comparing the least upper
bound sup.f;�/2M.A/ E

�
�; .f; �/

�
on the error of that estimator with E.�� ; �/ for a

carefully chosen � .
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4.3 Complete Class Theorem

A fundamental question is whether (18) is an equality: is the adversarial error of the
best estimator equal to the non-adversarial error of the worst Bayesian estimator?
Is the best estimator Bayesian or an approximation thereof? A remarkable result
of decision theory [156–158, 160, 161] is the complete class theorem which states
(in the formulation of this paper) that if (1) the admissible measures � are absolutely
continuous with respect the Lebesgue measure, (2) the loss function V in the
definition of E�

�; .f; �/
�

is convex in � and (3) the decision space is compact, then
optimal estimators live in the Bayesian class and non-Bayesian estimators cannot
be optimal. The idea of the proof of this result is to use the compactness of the
decision space and the continuity of the loss function to approximate the decision
theory game by a finite game and recall that optimal strategies of adversarial finite
zero-sum games are mixed strategies [99, 100].

Le Cam [81], see also [83], has substantially extended Wald’s theory in the
sense that requirements of boundedness, or even finiteness, of the loss function
are replaced by a requirement of lower semicontinuity, and the requirements
of the compactness of the decision space and the absolute continuity of the
admissible measures with respect the Lebesgue measure are removed. These vast
generalizations come at some price of abstraction yet reveal the relevance and utility
of an appropriate complete Banach lattice of measures. In particular, this framework
of Le Cam appears to facilitate efficient concrete approximation.

As an illustration, let us describe a complete class theorem on a space of
admissible measures, without the inclusion of functions, where the observation map
consists of taking n-i.i.d. samples, as in Eq. (5). Let A � M.X / be a subset of
the Borel probability measures on a topological space X and consider a quantity of
interest ˆ W A ! R. For � 2 A, the data d is generated by i.i.d. sampling with
respect to �n. That is d � �n. For �� 2 A, the statistical error E�

�; ��/ of an
estimator � W X n ! R of ˆ.��/ is defined in terms of a loss function V WR ! R as
in (5). Define the least upper bound on that statistical error and the sharpest estimator
as in (6) and (7).

Let ‚ WD f� W X n ! R; � measurableg denote the space of estimators. Since,
in general, the game E.�; �/; � 2 ‚; � 2 A will not have a value, that is, one will
have a strict inequality:

sup
�2A

inf
�2‚

E.�; �/ < inf
�2‚

sup
�2A

E.�; �/ ;

classical arguments in game theory suggest that one extend to random estimators
and random selection in A. To that end, let the set of randomized estimators
R WD f O� W X n � B.R/ ! Œ0; 1�; O� Markovg be the set of Markov kernels.
To define a topology for R, define a linear space of measures as follows. Let
An WD f�n 2 M.X n/ W � 2 Ag denote the corresponding set of measures
generating sample data. Say that An is dominated if there exists an ! 2 M.X n/

such that every �n 2 An is absolutely continuous with respect to !. According to
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the Halmos–Savage lemma [50], see also Strasser [139, Lem. 20.3], the set An is
dominated if and only if there exists a countable mixture �� WD P1

iD1 ˛i �
n
i , with

˛i � 0; �i 2 A; i D 1; : : : 1, and
P1

iD1 ˛i D 1, such that �n � ��; � 2 A.
A construct at the heart of Le Cam’s approach is a natural linear space notion of
a mixture space of A, called the L-space L.An/ WD L1.��/. It follows easily, see
[139, Lem. 41.1], that L.An/ is the set of signed measures which are absolutely
continuous with respect to ��. When A is not dominated, a natural generalization
of this construction [139, Def. 41.3] due to Le Cam [81] is used. A crucial property
of the L-space L.An/ is that not only is it a Banach lattice (see Strasser [139,
Cor. 41.4]), but by [139, Lem. 41.5] it is a complete lattice. The utility of the concept
of a complete lattice to the complete class theorems can clearly be seen in the proof
of the lemma in Section 2 of Wald and Wolfowitz’ [163] proof of the complete
class theorem when the number of decisions and the number of distributions is
finite. Then, the natural action of a randomized estimator on the bounded continuous
function/mixture pairs Cb.R/ � L.An/ is

f O�	 WD
Z Z

f .r/ O�.xn; dr/	.dxn/; f 2 Cb.R/; 	 2 L.An/ :

Let R be endowed with the topology of pointwise convergence with respect to this
action, that is, the weak topology with respect to integration against Cb.R/�L.An/.
Moreover, this weak topology also facilitates a definition of the space R of
generalized random estimators as bilinear real-valued maps # W Cb.R/ � L.An/ !
R satisfying j#.f; �/j � kf k1k�k, #.f; �/ � 0 for f � 0, � � 0, and
#.1; �/ D �.X /. By [139, Thm. 42.3], the set of generalized random estimators
R is compact and convex, and by [139, Thm. 42.5] of Le Cam [82], R is dense in
R in the weak topology. Moreover, when An is dominated and one can restrict to a
compact subset C 2 R of the decision space, then Strasser [139, Cor. 42.8] asserts
that R D R.

Returning to our illustration, if one let W�; � 2 A be defined by W�.r/ WD
V .r � ˆ.�//; r 2 R; � 2 A denote the associated family of loss functions, one
can now define a generalization of the statistical error function E.�; �/ of (5) to
randomized estimators O� by

E. O�; �/ WD
Z Z

W�.r/ O�.xn; dr/�n.dxn/; O� 2 R; � 2 A :

This definition reduces to the previous one (5) when the random estimator O�
corresponds to a point estimator � and extends naturally to R. Finally, one says
that an estimator #� 2 R is Bayesian if there exists a probability measure m with
finite support on A such that

Z
E.#�; �/m.d�/ �

Z
E.#; �/m.d�/; # 2 R :
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The following complete class theorem follows from Strasser [139, Thm. 47.9,
Cor. 42.8] since one can naturally compactify the decision space R when the
quantity of interest ˆ is bounded and the loss function V is sublevel compact, that
is has compact sublevel sets.

Theorem 1. Suppose that the loss function V is sublevel compact and the quantity
of interest ˆ W A ! R is bounded. Then, for each generalized randomized estimator
# 2 R, there exists a weak limit #� 2 R of Bayesian estimators such that

E.#�; �/ � E.#; �/; � 2 A :

If, in addition, A is dominated, then there exists such a #� 2 R.

A comprehensive connection of these results, where Bayesian estimators are defined
only in terms of measures of finite support on A, with the framework of Sect. 4
where Bayesian estimators are defined in terms of Borel measures on A, is not
available yet. Nevertheless it appears that much can be done in this regard. In
particular, one can suspect that when A is a closed convex set of probability
measures equipped with the weak topology and X is a Borel subset of a Polish space,
that if the loss function V is convex and ˆ is affine and measurable, the Choquet
theory of Winkler [168, 169] can be used to facilitate this connection. Indeed, as
mentioned above, complete class theorems are available for much more general
loss functions than continuous or convex, more general decision spaces than R, and
without absolute continuity assumptions. Moreover, it is interesting to note that,
although randomization was introduced to obtain minmax results, when the loss
function V is strictly convex, Bayesian estimators can be shown to be non-random.
This can be explicitly observed in the definition (16) of Bayesian estimators
when V .x/ WD x2 and is understood much more generally in Dvoretsky, Wald,
and Wolfowitz [33]. We conjecture that further simplifications can be obtained by
allowing approximate versions of complete class theorems, Bayesian estimators,
optimality, and saddle points, as in Scovel, Hush, and Steinwart’s [129] extension
of classical Lagrangian duality theory to include approximations.

5 Incorporating Complexity and Computation

Although decision theory provides well-posed notions of optimality and perfor-
mance in statistical estimation, it does not address the complexity of the actual
computation of optimal or nearly optimal estimators and their evaluation against
the data. Indeed, although the abstract identification of an optimal estimator as the
solution of an optimization problem provides a clear objective, practical applications
require the actual implementation of the estimator on a machine and its numerical
evaluation against the data.
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5.1 Machine Wald

The simultaneous emphasis on performance and computation can be traced back
to PAC (probably approximately correct) learning initiated by Valiant [149] which
has laid down the foundations of machine learning (ML). Indeed, as asserted by
Wasserman in his 2013 lecture, “The Rise of the Machines” [164, Sec. 1.5]:

There is another interesting difference that is worth pondering. Consider the problem of
estimating a mixture of Gaussians. In Statistics we think of this as a solved problem. You
use, for example, maximum likelihood which is implemented by the EM algorithm. But the
EM algorithm does not solve the problem. There is no guarantee that the EM algorithm will
actually find the MLE; its a shot in the dark. The same comment applies to MCMC methods.
In ML, when you say youve solved the problem, you mean that there is a polynomial time
algorithm with provable guarantees.

That is, on even par with the rigorous performance analysis, machine learning also
requires that solutions be efficiently implementable on a computer, and often such
efficiency is established by proving bounds on the amount of computation required
to produce such a solution with a given algorithm. Although Wald’s theory of
optimal statistical decisions has resulted in many important statistical discoveries,
looking through the three Lehmann symposia of Rojo and Pérez–Abreu [126] in
2004 and Rojo [124, 125] in 2006 and 2009, it is clear that the incorporation of
the analysis of the computational algorithm, both in terms of its computational
efficiency and its statistical optimality, has not begun. Therefore a natural answer to
fundamental challenges in UQ appears to be the full incorporation of computation
into a natural generalization of Wald’s statistical decision function framework,
producing a framework one might call Machine Wald.

5.2 Reduction Calculus

The resolution of minimax problems (11) require, at an abstract level, searching in
the space of all possible functions of the data. By restricting models to the Bayesian
class, the complete class theorem allows to limit this search to prior distributions
on A, i.e., to measure over spaces of measures and functions. To enable the
computation of these models, it is therefore necessary to identify conditions under
which Minimax problems over measures over spaces of measures and functions
can be reduced to the manipulation of finite-dimensional objects and develop the
associated reduction calculus. For min or max problems over measures over spaces
of measures (and possibly functions), this calculus can take the form of a reduction
to a nesting of optimization problems over measures (and possibly functions for the
inner part) [109, 112, 113], which, in turn, can be reduced to searches over extreme
points [51, 110, 114, 142].
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5.3 Stopping Conditions

Many of these optimization problems will not be tractable. However even in the
tractable case, which has rigorous guarantees on the amount of computation required
to obtain an approximate optima, it will be useful to have stopping criteria for the
specific algorithm and the specific problem instance under consideration, which can
be used to guarantee when an approximate optima has been achieved. Although
in the intractable case no such guarantee will exist in general, intelligent choices
of algorithms may result in the attainment of approximate optima and such tests
guarantee that fact. Ermoliev, Gaivoronski, and Nedeva [36] successfully develop
such stopping criteria using Lagrangian duality and generalized Bender’s decompo-
sitions by Geoffrion [46] for certain stochastic optimization problems which are also
relevant here. In addition, the approximation of intractable problems by tractable
ones will be important. Recently, Hanasusanto, Roitch, Kuhn, and Wiesemann
[53] derive explicit conic reformulations for tractable problem classes and suggest
efficiently computable conservative approximations for intractable ones.

5.4 On the Borel-Kolmogorov Paradox

An oftentimes overlooked difficulty with Bayesian estimators lies in the fact that for
a prior � 2 M.A/, the posterior (12) is not a measurable function of d but a convex
set ‚.�/ of measurable functions � of d that are almost surely equal to each other
under the measure � � D on D.

A notorious pathological consequence is the Borel–Kolmogorov paradox (see
Chapter 5 of [76] and Section 15.7 of [63]). Recall that in the formulation of this
paradox, one considers the uniform distribution on the two-dimensional sphere and
one is interested in obtaining the conditional distribution associated with a great
circle of that sphere. If the problem is parameterized in spherical coordinates, then
the resulting conditional distribution is uniform for the equator but nonuniform for
the longitude corresponding to the prime meridian. The following theorem suggests
that this paradox is generic and dissipates the idea that it could be limited to
fabricated toy examples. See also Singpurwalla and Swift [132] for implications
of this paradox in modeling and inference.

Recall that for � 2 M.A/, that ‚.�/ is defined as the convex set of
measurable functions which are equal to � �D-everywhere to the regular conditional
expectation (12). Despite this indeterminateness, it is comforting to know that

E.�2; �/ D E.�1; �/; �1; �2 2 ‚.�/ :

Moreover, it is also easy to see that if �� is absolutely continuous with respect to
� , then �1.d/ D �2.d/ with �� � D probability one for all �1; �2 2 ‚.�/, and
consequently

E.�2; ��/ D E.�1; ��/; �1; �2 2 ‚.�/; �� 	 � ;
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where the notation �� 	 � means that �� is absolutely continuous with respect
to � . The following theorem shows that this requirement of absolute continuity is
necessary for all versions of conditional expectations � 2 ‚.�/ to share the same
risk. See Sect. 6 for its proof.

Theorem 2. Assume that V .x/ D x2 and that the image ˆ.A/ is a nontrivial
interval. If �� is not absolutely continuous with respect to � then

1

4
� sup�1;�22‚.�/

�E.�2; ��/ � E.�1; ��/
�

�U.A/ � L.A/
�2

supB2B.D/ W .� �D/ŒB�D0.�
� � D/ŒB�

� 1 (19)

where U.A/ and L.A/ are defined by (2) and (3).

Remark 3. If moreover �� � D is orthogonal to � � D, that is, there exists a set
B 2 B.D/ such that .� � D/ŒB� D 0 and .�� � D/ŒB� D 1, then Theorem 2 implies
that sup�1;�22‚.�/

�E.�2; ��/ � E.�1; ��/
�

is larger than the statistical error of the
midpoint estimator

� WD L.A/ C U.A/

2
:

As a remedy, one can try (see [144, 145] and [117]) constructing conditional
expectations as disintegration or derivation limits defined as

E�ˇD

�
ˆ.f; �/

ˇ̌
D D d

� D lim
B#fdg

E�ˇD

�
ˆ.f; �/

ˇ̌
D 2 B

�
(20)

where the limit B # fd g is taken over a net of open neighborhoods of d . But as
shown in [66], the limit generally depends on the net B # fd g and the resulting
conditional expectations can be distinctly different for different nets. Furthermore
the limit (20) may exist/not exist on subsets of D of .� � D/-measure zero (which,
as shown above, can lead to the inconsistency of the estimator). A related important
issue is that conditional probabilities can in general not be computed [2]. Observe
that if the limit (20) does not exist, then Bayesian estimation of ˆ.f; �/ may have
significant oscillations as the precise measurement of d becomes sharper.

5.5 On Bayesian Robustness/Brittleness

As much as classical numerical analysis shows that there are stable and unstable
ways to discretize a partial differential equation, positive [13,23,28,75,80,140,152]
and negative results [6,27,42,43,65,84,108,109,112,113] are forming an emerging
understanding of stable and unstable ways to apply Bayes’ rule in practice. One
aspect of stability concerns the sensitivity of posterior conclusions with respect to
the underlying models and prior beliefs.
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Most statisticians would acknowledge that an analysis is not complete unless the sensitivity
of the conclusions to the assumptions is investigated. Yet, in practice, such sensitivity
analyses are rarely used. This is because sensitivity analyses involve difficult computations
that must often be tailored to the specific problem. This is especially true in Bayesian
inference where the computations are already quite difficult. [165]

Another aspect concerns situations where Bayes’ rule is applied iteratively and
posterior values become prior values for the next iteration. Observe in particular
that when posterior distributions (which are later on used as prior distributions) are
only approximated (e.g., via MCMC methods), stability requires the convergence of
the MCMC method in the same metric used to quantify the sensitivity of posterior
with respect to the prior distributions.

In the context of the framework being developed here, recent results [108, 109,
112, 113] on the extreme sensitivity (brittleness) of Bayesian inference in the TV
and Prokhorov metrics appear to suggest that robust inference, in a continuous world
under finite-information, should perhaps be done with reduced/coarse models rather
than highly sophisticated/complex models (with a level of coarseness/reduction
depending on the available finite information) [113].

5.6 Information-Based Complexity

From the point of view of practical applications, it is clear that the set of possible
models entering in the minimax problem 11 must be restricted by introducing
constraints on computational complexity. For example, finding optimal models of
materials in extreme environments is not the correct objective when these models
require full quantum mechanics calculations. A more productive approach is to
search for computationally tractable optimal models in a given complexity class.
Here one may wonder if Bayesian models remain a complete class for the resulting
complexity constrained minimax problems. It is also clear that computationally
tractable optimal models may not use all the available information, for instance,
a material model of bounded complexity should not use the state of every atom. The
idea that fast computation requires computation with partial information forms the
core of information-based complexity, the branch of computational complexity that
studies the complexity of approximating continuous mathematical operations with
discrete and finite ones up to a specified level of accuracy [101, 115, 146, 171, 172],
where it is also augmented by concepts of contaminated and priced information
associated with, for example, truncation errors and the cost of numerical operations.
Recent results [107] suggest that decision theory concepts could be used, not
only to identify reduced models but also algorithms of near-optimal complexity
by reformulating the process of computing with partial information and limited
resources as that of playing underlying hierarchies of adversarial information
games.
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6 Conclusion

Although uncertainty quantification is still in its formative stage, much like the state
of probability theory before its rigorous formulation by Kolmogorov in the 1930s,
it has the potential to have an impact on the process of scientific discovery that is
similar to the advent of scientific computing. Its emergence remains sustained by
the persistent need to make critical decisions with partial information and limited
resources. There are many paths to its development, but one such path appears to be
the incorporation of notions of computation and complexity in a generalization of
Wald’s decision framework built on Von Neumann’s theory of adversarial games.

Appendix

Construction of � ˇ D

The below construction works when A 
 G � M.X / for some Polish subset
G � F.X / and X is Polish. Observe that since D is metrizable, it follows from
[4, Thm. 15.13], that, for any B 2 B.D/, the evaluation 	 7! 	.B/, 	 2 M.D/, is
measurable. Consequently, the measurability of D implies that the mapping

bDWA � B.D/ ! R

defined by

bD
�
.f; �/; B

� WD D.f; �/ŒB�; for .f; �/ 2 A; B 2 B.D/

is a transition function in the sense that, for fixed .f; �/ 2 A, bD
�
.f; �/; � �

is

a probability measure, and, for fixed B 2 B.D/, bD
� � ; B

�
is Borel measurable.

Therefore, by [18, Thm. 10.7.2], any � 2 M.A/ defines a probability measure

� ˇ D 2 M�B.A/ � B.D/
�

through

� ˇ D
�
A � B

� WD E.f:�/��

�
1A.f; �/D.f; �/ŒB�

�
; for A 2 B.A/; B 2 B.D/;

(21)
where 1A is the indicator function of the set A:

1A.f; �/ WD
(

1; if .f; �/ 2 A,

0; if .f; �/ … A.
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It is easy to see that � is the A-marginal of � ˇ D. Moreover, when X is Polish,
[4, Thm. 15.15] implies that M.X / is Polish, and when G is Polish, it follows that
A 
 G � M.X / is second countable. Consequently, since D is Suslin and hence
second countable, it follows from [32, Prop. 4.1.7] that

B�A � D� D B.A/ � B.D/

and hence � ˇ D is a probability measure on A � D. That is,

� ˇ D 2 M.A � D/:

Henceforth denote � �D the corresponding Bayes’ sampling distribution defined
by the D-marginal of � ˇ D, and note that by (21), one has

� � DŒB� WD E.f;�/��

�
D.f; �/ŒB�

�
; for B 2 B.D/:

Since both D and A are Suslin, it follows that the product A � D is Suslin.
Consequently, [18, Cor. 10.4.6] asserts that regular conditional probabilities exist
for any sub-
-algebra of B�A � D�

. In particular, the product theorem of [18,
Thm. 10.4.11] asserts that product regular conditional probabilities

�
� ˇ D

�jd 2 M.A/; for d 2 D

exist and that they are � � D-a.e. unique.

Proof of Theorem 2

If �� �D is not absolutely continuous with respect to � �D, then there exists B 2 B.D/

such that .� � D/ŒB� D 0 and .�� � D/ŒB� > 0. Let � 2 ‚.�/. Define

�y.d/ WD �.d/1Bc .d/ C y1B.d/ (22)

Then it is easy to see that if y is in the range of ˆ, then �y 2 ‚.�/. Now observe
that for y; z 2 Image.ˆ/,

E.�y; ��/�E.�z; ��/ D E.f;�;d/���ˇD

"

1B.d/
�
V

�
y�ˆ.f; �/

��V
�
z�ˆ.f; �/

��#

Hence, for V .x/ D x2, it holds true that

E.�y; ��/ � E.�z; ��/ D �
.y � �/2 � .z � �/2

�
.�� � D/ŒB�
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with

� WD E��ˇDŒˆjD 2 B�

which proves

sup
�22‚.�/

E.�2; ��/ � inf
�12‚.�/

E.�1; ��/ � sup
B2B.D/ W .� �D/ŒB�D0; y;z2Image.ˆ/

h�
y � E��ˇDŒˆjD 2 B�

�2 � �
z � E��ˇDŒˆjD 2 B�

�2
i
.�� � D/ŒB�;

and,

sup
�22‚.�/

E.�2; ��/ � inf
�12‚.�/

E.�1; ��/ � �U.A/ � L.A/
�2

sup
B2B.D/ W .� �D/ŒB�D0

.�� � D/ŒB�:

To obtain the right hand side of (19) observe that (see for instance [29, Sec. 5]) there
exists B� 2 B.D/ such that

.�� � D/ŒB�� D sup
B2B.D/ W .� �D/ŒB�D0

.�� � D/ŒB�

and (since �2 D �1 on the complement of B�)

sup
�1;�22‚.�/

�E.�2; ��/ � E.�1; ��/
�

D sup
�1;�22‚.�/

E.f;�;d/���ˇD

"

1B�.d/
�
V

�
�2 � ˆ.f; �/

� � V
�
�1 � ˆ.f; �/

��#

:

We conclude by observing that for V .x/ D x2,

sup
�1;�22‚.�/

�
V

�
�2 � ˆ.f; �/

� � V
�
�1 � ˆ.f; �/

�� � �U.A/ � L.A/
�2

:

Conditional Expectation as an Orthogonal Projection

It easily follows from Tonelli’s Theorem that

E� �DŒh2� D E�ˇDŒh2� D E.f;�/��ED.f;�/Œh
2� :

By considering the sub 
-algebraA�B.D/ � B.A�D/ D B.A/�B.D/, it follows
from, e.g., Theorem 10.2.9 of [32], that L2

� �D.D/ is a closed Hilbert subspace of the
Hilbert space L2

�ˇD
.A�D/ and the conditional expectation of ˆ given the random

variable D is the orthogonal projection from L2
�ˇD

.A � D/ to L2
� �D.D/.
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171. Woźniakowski, H.: Probabilistic setting of information-based complexity. J. Complex. 2(3),

255–269 (1986)
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