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Abstract. We introduce a near-linear complexity (geometric and meshless/algebraic) multigrid/multi-
resolution method for PDEs with rough (L∞) coefficients with rigorous a priori accuracy
and performance estimates. The method is discovered through a decision/game theory
formulation of the problems of (1) identifying restriction and interpolation operators, (2)
recovering a signal from incomplete measurements based on norm constraints on its image
under a linear operator, and (3) gambling on the value of the solution of the PDE based on
a hierarchy of nested measurements of its solution or source term. The resulting elementary
gambles form a hierarchy of (deterministic) basis functions of H1

0 (Ω) (gamblets) that (1)
are orthogonal across subscales/subbands with respect to the scalar product induced by the
energy norm of the PDE, (2) enable sparse compression of the solution space in H1

0 (Ω), and
(3) induce an orthogonal multiresolution operator decomposition. The operating diagram
of the multigrid method is that of an inverted pyramid in which gamblets are computed
locally (by virtue of their exponential decay) and hierarchically (from fine to coarse scales)
and the PDE is decomposed into a hierarchy of independent linear systems with uniformly
bounded condition numbers. The resulting algorithm is parallelizable both in space (via
localization) and in bandwidth/subscale (subscales can be computed independently from
each other). Although the method is deterministic, it has a natural Bayesian interpretation
under the measure of probability emerging (as a mixed strategy) from the information
game formulation, and multiresolution approximations form a martingale with respect to
the filtration induced by the hierarchy of nested measurements.
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1. Introduction.

1.1. Scientific Discovery as a Decision Theory Problem. The process of scien-
tific discovery is often based on intuition, trial and error, and plain guesswork. This
article is motivated by the question of the existence of a rational decision framework
that could be used to facilitate/guide this process or turn it, to some degree, into
an algorithm. In exploring this question, we will consider the problem of finding a
method for solving (up to a prespecified level of accuracy) PDEs with rough (L∞)
coefficients as fast as possible with the following prototypical PDE (and its possible
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MULTIGRID WITH ROUGH COEFFICIENTS 101

discretization over a fine mesh) as an example:

(1.1)

{
− div

(
a(x)∇u(x)

)
= g(x), x ∈ Ω; g ∈ L2(Ω) or g ∈ H−1(Ω),

u = 0 on ∂Ω,

where Ω is a bounded subset of Rd (of arbitrary dimension d ∈ N∗) with piecewise
Lipschitz boundary and a is a symmetric, uniformly elliptic d× d matrix with entries
in L∞(Ω) such that, for all x ∈ Ω and l ∈ Rd,

(1.2) λmin(a)|l|2 ≤ lTa(x)l ≤ λmax(a)|l|2.

Although multigrid methods [41, 16, 50, 51, 101] are now well known as being the
fastest for solving elliptic boundary problems and have been successfully generalized
to other types of PDEs and computational problems [123], their convergence rate can
be severely affected by the lack of regularity of the coefficients [37, 114]. Furthermore,
although significant progress has been achieved in the development of multigrid meth-
ods that are, to some degree, robust with respect to mesh size and lack of smoothness
(we refer, in particular, to algebraic multigrid [94], multilevel finite element splitting
[124], hierarchical basis multigrid [9, 24], multilevel preconditioning [106], stabilized
hierarchical basis methods [107, 109, 110], energy minimization [65, 114, 122, 121, 108],
and homogenization based methods [37, 34]), the design of multigrid methods that
are provably robust with respect to rough (L∞) coefficients has remained an open
problem of practical importance [17].

Alternative hierarchical strategies for the resolution of (1.1) are (1) wavelet based
methods [18, 15, 3, 29, 38] (2) the fast multipole method [49], and (3) hierarchi-
cal matrices [52, 11]. Although methods based on (classical) wavelets achieve a
multiresolution compression of the solution space of (1.1) in L2, and although ap-
proximate wavelets and approximate L2 projections can stabilize hierarchical basis
methods [109, 110], their applications to (1.1) are limited by the facts that (a) the
underlying wavelets can perform arbitrarily badly [7] in their H1

0 (Ω) approximation
of the solution space, and (b) the operator (1.1) does not preserve the orthogonal-
ity between subscales/subbands with classical wavelets. The fast multipole method
and hierarchical matrices exploit the property that submatrices of the inverse dis-
crete operator are of low rank away from the diagonal. This low rank property can
be rigorously proven for (1.1) (based on the approximation of its Green’s function
by sums of products of harmonic functions [10]) and leads to provable convergence
(with rough coefficients), up to the prespecified level of accuracy ε in the L2-norm,
in O(N ln6N ln2d+2 1

ε ) operations (see [10] and [11, Thms. 2.33 and 4.28]). Can the
problem of finding a fast solver for (1.1) be, to some degree, reformulated as an uncer-
tainty quantification/decision theory problem that could, to some degree, be solved as
such in an automated fashion? Can discovery be computed? Although these questions
may seem unorthodox their answer appears to be positive: this paper shows that this
reformulation is possible and leads to a multigrid/multiresolution method/algorithm
solving (1.1), up to the prespecified level of accuracy ε in the H1-norm (i.e., finding
uapp such that ‖u − uapp‖H1

0 (Ω) ≤ ε‖g‖H−1(Ω) for an arbitrary g decomposed over

N degrees of freedom), in O
(
N ln3d

(
max( 1

ε , N
1/d)

))
operations (for ε ∼ N−1/d, the

hierarchical matrix method achieves ε-accuracy in the L2 norm in O(N ln2d+8N)
operations and the proposed multiresolution method achieves ε-accuracy in the H1

norm in O(N ln3dN) operations). For subsequent solves (i.e., if (1.1) needs to be
solved for more than one g), the proposed multiresolution method achieves accuracy
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102 HOUMAN OWHADI

ε ≈ N− 1
d in the H1-norm in O(N lnd+1N) operations (we refer to subsection 5.4 and,

in particular, to Table 1 for a detailed complexity analysis of the proposed method,
which can also achieve sublinear complexity if one only requires L2-approximations).

The core mechanism supporting the complexity of the method presented here is
the fast decomposition of H1

0 (Ω) into a direct sum of linear subspaces that are orthog-
onal (or near-orthogonal) with respect to the energy scalar product and over which
(1.1) has uniformly bounded condition numbers. It is, to some degree, surprising that
this decomposition can be achieved in near-linear complexity and not in the complex-
ity of an eigenspace decomposition. Naturally [84], this decomposition can be applied
to the fast simulation of the wave and parabolic equations associated with (1.1) or
with its fast diagonalization.

The essential step behind the automation of the discovery/design of scalable nu-
merical solvers is the observation that fast computation requires repeated computation
with partial information (and limited resources) over hierarchies of levels of complex-
ity and the reformulation of this process as that of playing underlying hierarchies of
adversarial information games [111, 112].

Although the problem of finding a fast solver for (1.1) may appear to be dis-
connected from that of finding statistical estimators or making decisions from data
sampled from an underlying unknown probability distribution, the proposed game
theoretic reformulation is, to some degree, analogous to the one developed in Wald’s
decision theory [113], evidently influenced by Von Neumann’s game theory [111, 112]
(the generalization of worst-case uncertainty quantification analysis [83] to sample
data/model uncertainty requires an analogous game theoretic formulation [80]; see
also [79] for how the underlying calculus could be used to guide the discovery of new
Selberg identities). We also refer to section 1.3 for a review of the correspondence
between statistical inference and numerical approximation.

1.2. Outline of the Paper. The essential difficulty in generalizing the multigrid
concept to PDEs with rough coefficients lies in the fact that the interpolation (down-
scaling) and restriction (upscaling) operators are, a priori, unknown. Indeed, in this
situation, piecewise linear finite elements can perform arbitrarily badly [7] and the de-
sign of the interpolation operator requires the identification of accurate basis elements
adapted to the microstructure a(x).

This identification problem has also been the essential difficulty in numerical
homogenization [117, 6, 4, 18, 59, 33, 85, 17]. Although inspired by classical ho-
mogenization ideas and concepts (such as oscillating test functions [68, 36, 35], cell
problems/correctors and effective coefficients [13, 90, 1, 72, 39, 46], harmonic coor-
dinates [61, 6, 4, 76, 12, 2, 85], and compactness by compensation [100, 45, 67, 14]),
an essential goal of numerical homogenization has been the numerical approximation
of the solution space of (1.1) with arbitrary rough coefficients [85], i.e., in particular,
without the assumptions found in classical homogenization, such as scale separa-
tion, ergodicity at fine scales, and ε-sequences of operators (otherwise, the resulting
method could lack robustness to rough coefficients, even under the assumption that
coefficients are stationary [8]). Furthermore, to envisage applications to multigrid
methods, the computation of these basis functions must also be provably localized
[5, 86, 64, 48, 87, 58] and compatible with nesting strategies [87]. In [77] it was
shown that this process of identification (of accurate basis elements for numerical ho-
mogenization) could, in principle, be guided through its reformulation as a Bayesian
inference problem in which the source term g in (1.1) is replaced by noise ξ and one
tries to estimate the value of the solution at a given point based on a finite number
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MULTIGRID WITH ROUGH COEFFICIENTS 103

of observations. In particular it was found that rough polyharmonic splines [87] and
polyharmonic splines [54, 30, 31, 32] can be rediscovered as solutions of Gaussian
filtering problems. This paper is inspired by the suggestion that this link between
numerical homogenization and Bayesian inference (and the link between numerical
quadrature and Bayesian inference [92, 27, 97, 74, 75]) are not coincidences, but
particular instances of mixed strategies for underlying information games, and that
optimal or near-optimal methods could be obtained by identifying such games and
their optimal strategies.

The process of identification of these games starts with the (information based
complexity [119]) notion that computation can only be done with partial informa-
tion. For instance, since the operator (1.1) is infinite-dimensional, one cannot di-
rectly compute with u ∈ H1

0 (Ω) but only with finite-dimensional features of u.
An example of such finite-dimensional features is the m-dimensional vector um :=
(
∫

Ω
uφ1, . . . ,

∫
Ω
uφm) obtained by integrating the solution u of (1.1) against m test/

measurement functions φi ∈ L2(Ω). However, to achieve an accurate approximation
of u through computation with um one must fill the information gap between um
and u (i.e., construct an interpolation operator giving u as a function of um). We
will, therefore, reformulate the identification of this interpolation operator as a non-
cooperative (min max) game where Player I chooses the source term g (1.1) in an
admissible set/class (e.g., the unit ball of L2(Ω)) and Player II is shown um and must
approximate u from these incomplete measurements. Using the energy norm

(1.3) ‖u‖2a :=

∫
Ω

∇uT (x)a(x)∇u(x) dx

to quantify the accuracy of the recovery and calling u∗ Player I’s bet (on the value
of u), the objective of Player I is to maximize the approximation error ‖u − u∗‖a,
while the objective of Player II is to minimize it. A remarkable result from game
theory (as developed by Von Neumann [111], Von Neumann and Morgenstern [112],
and Nash [70]) is that optimal strategies for deterministic zero sum finite games are
mixed (i.e., randomized) strategies. Although the information game described above
is zero sum, it is not finite. Nevertheless, as in Wald’s decision theory [113], under
sufficient regularity conditions it can be made compact and therefore approximable
by a finite game. Therefore, although the information game described above is purely
deterministic (and has no a priori connection to statistical estimation), under com-
pactness (and continuity of the loss function), the best strategy for Player I is to
play at random by placing a probability distribution πI on the set of candidates for
g (and select g as a sample from πI), and the optimal strategy for Player II is to
place a probability distribution πII on the set of candidates for g and approximate
the solution of (1.1) by the expectation of u (under πII used as a prior distribution)
conditioned on the measurements

∫
Ω
uφi.

Although the estimator employed by Player II may be called Bayesian, the game
described here is not (i.e., the choice of Player I might be distinct from that of Player
II) and Player II must solve a min max optimization problem over πI and πII to
identify an optimal prior distribution for the Bayesian estimator (a careful choice of
the prior also appears to be important due to the possible high sensitivity of posterior
distributions [81, 79, 82]). Although solving the min max problem over πI and πII
may be one way of determining the strategy of Player II, it will not be the method
employed here. We will instead analyze the error of Player II’s approximation as a
function of Player II’s prior and the source term g picked by Player I. Furthermore, to
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104 HOUMAN OWHADI

preserve the linearity of the calculations we will restrict Player II’s decision space (the
set of possible priors πII) to Gaussian priors on the source term g. Since the resulting
analysis is independent of the structure of (1.1) and depends solely on its linearity,
we will first perform this investigation, in section 2, in the algebraic framework of
linear systems of equations, identify Player II’s optimal mixed strategy, and show
that it is characterized by deterministic optimal recovery and accuracy properties.
The mixed strategy identified in section 2 will then be applied in section 3 to the
numerical homogenization of (1.1) and the discovery of interpolation interpolators.
In particular, it will be shown that the resulting elementary gambles form a set of
deterministic basis functions (gamblets) characterized by (1) optimal recovery and
accuracy properties, (2) exponential decay (enabling their localized computation),
and (3) robustness to high contrast.

To compute rapidly, the game presented above must not be limited to filling the
information gap between um ∈ Rm and u ∈ H1

0 (Ω). This game must be played (and
repeated) over hierarchies of levels of complexity (e.g., one must fill information gaps
between R4 and R16, then R16 and R64, etc.). We will, therefore, in section 4, con-
sider the (hierarchical) game where Player I chooses the right-hand side of (1.1) and
Player II must (iteratively) gamble on the value of its solution based on a hierarchy
of nested measurements of u (from coarse to fine measurements). Under Player II’s
mixed strategy (identified in section 2 and used in section 3), the resulting sequence
of multiresolution approximations forms a martingale. Conditioning and the indepen-
dence of martingale increments lead to the hierarchy of nested interpolation operators
and to the multiresolution orthogonal decomposition of (1.1) into independent linear
systems of uniformly bounded condition numbers. The resulting elementary gambles
(gamblets) (1) form a hierarchy of nested basis functions leading to the orthogonal
decomposition (in the scalar product of the energy norm) of H1

0 (Ω), (2) enable the
sparse compression of the solution space of (1.1), (3) can be computed and stored in
near-linear complexity by solving a nesting of linear systems with uniformly bounded
condition numbers, and (4) enable the computation of the solution of (1.1) (or its
hyperbolic or parabolic analogues) in near-linear complexity. The implementation
and complexity of the algorithm are discussed in section 5 with numerical illustra-
tions.

1.3. On the Correspondence between Statistical Inference and Numerical
Approximation. As exposed by Diaconis [27], the investigation of the correspon-
dence between statistical inference and numerical approximation can be traced back to
Poincaré’s course in probability theory [92]. It is useful to recall Diaconis’s compelling
example [27] as an illustration of this connection. Let f : [0, 1]→ R be a given function

and assume that we are interested in the numerical approximation of
∫ 1

0
f(t) dt. The

Bayesian approach to this quadrature problem is to (1) put a prior (probability distri-
bution) on continuous functions C[0, 1], (2) calculate f at x1, x2, . . . , xn (to obtain the

data (f(x1), . . . , f(xn))), (3) compute a posterior, and (4) estimate
∫ 1

0
f(t) dt by the

Bayes rule. If the prior on C[0, 1] is that of a Brownian motion (i.e., f(t) = Bt where
Bt is a Brownian motion and B0 is normal), then E

[
f(x)

∣∣f(x1), . . . , f(xn)
]

is the
piecewise linear interpolation of f between the points x1, . . . , xn and one rediscovers
the trapezoidal quadrature rule. If the prior on C[0, 1] is that of the first integral of a

Brownian motion (i.e., f(t) ∼
∫ t

0
Bs ds), then the posterior E

[
f(x)

∣∣f(x1), . . . , f(xn)
]

is the cubic spline interpolant and integrating k times yields splines of order 2k + 1.
Subsequent to Poincaré’s early discovery [92], Sul’din [102] and (in particular)

Larkin [62] initiated the systematic investigation of the correspondence between con-
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MULTIGRID WITH ROUGH COEFFICIENTS 105

ditioning Gaussian measures/processes and numerical approximation. As noted by
Larkin [62], despite Sard’s introduction of probabilistic concepts in the theory of lin-
ear approximation [95], and Kimeldorf and Wahba’s exposition [60] of the correspon-
dence between Bayesian estimation and spline smoothing/interpolation, the applica-
tion of probabilistic concepts and techniques to numerical integration/approximation
“attracted little attention among numerical analysts” (perhaps due to the counterin-
tuitive nature of the process of randomizing a known function). However, a nat-
ural framework for understanding this process of randomization can be found in
the pioneering works of Woźniakowski [118], Packel [88], and Traub, Wasilkowski,
and Woźniakowski [104] on information based complexity [71, 119], the branch of
computational complexity that studies the complexity of approximating continuous
mathematical operations with discrete and finite operations up a to specified level of
accuracy. Indeed, the concept that numerical implementation requires computation
with partial information and limited resources emerges naturally from information
based complexity, where it is also augmented by concepts of contaminated and priced
information associated with, for example, truncation errors and the cost of numer-
ical operations. In this framework, the performance of an algorithm operating on
incomplete information can be analyzed in the usual worst case setting or the average
case (randomized) setting [93, 73] with respect to the missing information. Although
the measure of probability (on the solution space) employed in the average case set-
ting may be arbitrary, as observed by Packel [88], if that measure is chosen carefully
(as the solution of a game theoretic problem), then the average case setting can be
interpreted as lifting a (worst case) min max problem (where saddle points of pure
strategies do not, in general, exist) to a min max problem over mixed (randomized)
strategies (where saddle points do exist [111, 112]). As exposed by Diaconis [27]
(see also Shaw [97]), the randomized setting also establishes a correspondence be-
tween numerical analysis and Bayesian inference, providing a natural framework for
the statistical description of numerical errors (in which confidence intervals can be
derived from posterior distributions). Furthermore [89, 27], classical min max numer-
ical quadrature rules can be formulated as solutions of Bayesian inference problems
with carefully chosen priors [27] and, as shown by Hagan [74, 75], this correspon-
dence can be exploited to discover new and useful numerical quadrature rules. As
envisioned by Skilling [99], by placing a (carefully chosen) probability distribution on
the solution space of an ODE and conditioning on quadrature points, one obtains a
posterior distribution on the solution whose mean may coincide with classical numer-
ical integrators such as Runge–Kutta methods [96]. As shown in [23] the statistical
approach is particularly well suited for chaotic dynamical systems for which deter-
ministic worst case error bounds may provide little information. While in [99, 96, 23]
the probability distribution is directly placed on the solutions space, for PDEs [77]
argues that the prior distribution must be placed on source terms (or on the image
space of an integro-differential operator) and propagated/filtered through the inverse
operator to reflect the structure of the solution space. In particular, [77] shows that
this process of filtering noise with the inverse operator, when combined with condi-
tioning, produces accurate finite element basis functions for the solution space whose
deterministic worst case errors can be bounded by standard deviation errors using
the reproducing kernel structure of the covariance function of the filtered Gaussian
field. As already witnessed in [23, 96, 77, 56, 55, 19, 25], it is natural to expect that
the possibilities offered by combining numerical uncertainties/errors with model un-
certainties/errors in a unified framework will stimulate a resurgence of the statistical
inference approach to numerical analysis.
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106 HOUMAN OWHADI

2. Linear Algebra with Incomplete Information.

2.1. The Recovery Problem. The problem of identifying interpolation opera-
tors for (1.1) is equivalent (after discretization or in the algebraic setting) to that
of recovering or approximating the solution of a linear system of equations from an
incomplete set of measurements (coarse variables) given known norm constraints on
the image of the solution.

Let n ≥ 2 and A be a known real invertible n× n matrix. Let b be an unknown
element of Rn. Our purpose is to approximate the solution x of

(2.1) Ax = b

based on the information that (1) x solves

(2.2) Φx = y,

where Φ (the measurement matrix) is a known, rank m, m× n real matrix such that
m < n and y (the measurement vector) is a known vector of Rm, and (2) the norm
bTT−1b of b is known or bounded by a known constant (e.g., bTT−1b ≤ 1), where
T−1 is a known positive definite n×n matrix (with T−1 being the identity matrix as
a prototypical example). Observe that since m < n, the measurements (2.2) are, a
priori, not sufficient to recover the exact value x.

As described in section 1, by formulating this recovery problem as a (noncoopera-
tive) information game (where Player I chooses b and Player II chooses an approx-
imation x∗ of x based on the observation Φx), one (Player II) is naturally lead to
search for a mixed strategy in the Bayesian class by placing a prior distribution on
b. The purpose of this section is to analyze the resulting approximation error and
select the prior distribution accordingly. To preserve the linearity (i.e., simplicity and
computational efficiency) of calculations we will restrict Player II’s decision space to
Gaussian priors.

2.2. Player I’s Mixed Strategy. We will, therefore, in the first step of the analysis,
replace b in (2.1) by ξ, a centered Gaussian vector of Rn with covariance matrix Q
(which may be distinct from T ) and consider the stochastic linear system

(2.3) AX = ξ .

The Bayesian answer (a mixed strategy for Player II) to the recovery problem of
section 2 is to approximate x by the conditional expectation E[X|ΦX = y].

Theorem 2.1. The solution X of (2.3) is a centered Gaussian vector of Rn with
covariance matrix

(2.4) K = A−1Q(A−1)T .

Furthermore, X conditioned on the value ΦX = y is a Gaussian vector of Rn with
mean E[X|ΦX = y] = Ψy and of covariance matrix KΦ, where Ψ is the n×m matrix

(2.5) Ψ := KΦT (ΦKΦT )−1

and KΦ is the rank n−m positive n×n symmetric matrix defined by KΦ := K−ΨΦK.

Proof. (2.4) simply follows from X = A−1ξ. Since X is a Gaussian vector,
E[X|ΦX = y] = Ψy, where Ψ is an n × m matrix minimizing the mean squared
error E

[
|X − MΦX|2

]
over all n × m matrices M . We have E

[
|X − MΦX|2

]
=

Trace[K] + Trace[MΦKΦTMT ] − 2 Trace[ΦKM ], whose minimum is achieved for
M = Ψ as defined by (2.5). The covariance matrix ofX given ΦX = y is then obtained
by observing that for v ∈ Rn, vTKΦv = E

[
|vTX−vTΨΦX|2

]
= vTKv−vTΨΦKv.
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MULTIGRID WITH ROUGH COEFFICIENTS 107

2.3. Variational/Optimal Recovery Properties and Approximation Error. For
an n× n symmetric positive definite matrix M , let

〈
·, ·
〉
M

be the (scalar) product on

Rn defined as follows: for u, v ∈ Rn,
〈
u, v
〉
M

:= uTMv and write ‖v‖M :=
〈
v, v
〉 1

2

M
as

the corresponding norm. When M is the identity matrix, we write
〈
u, v
〉

and ‖v‖ as
the corresponding scalar product and norm. For a linear subspace V of Rn we write
PV,M for the orthogonal projections onto V with respect to the scalar product

〈
·, ·
〉
M

.
For a (possibly rectangular) matrix B we write Im(B) as the image (range) of B and
Ker(B) as the null space of B. For an integer n, let In be the n× n identity matrix.

Theorem 2.2. For w ∈ Rm, Ψw is the unique minimizer of the quadratic problem

(2.6)

{
Minimize

〈
v, v
〉
K−1

subject to Φv = w and v ∈ Rn .

In particular, v = Ψy, the Bayesian approximation of the solution of (2.1), is the
unique minimizer of ‖Av‖Q−1 under the measurement constraints Φv = y. Further-
more, it also holds true that (1) ΦΨ = Im, (2) Im(Ψ) is the orthogonal complement
of Ker(Φ) with respect to the product

〈
·, ·
〉
K−1 , and (3) ΨΦ = PIm(KΦT ),K−1 and

In −ΨΦ = PKer(Φ),K−1 .

Proof. First observe that (2.5) implies that ΦΨ = Im, where Im is the identity
m ×m matrix. Therefore, Φ(Ψw) = w. Note that (2.5) implies that for all z ∈ Rm,〈
Ψz, v

〉
K−1 = zT

(
ΦKΦT

)−1
Φv. Therefore, if v ∈ Ker(Φ), then

〈
Ψz, v

〉
K−1 = 0 for all

z ∈ Rm. Conversely, if
〈
Ψz, v

〉
K−1 = 0 for all z ∈ Rm, then v must belong to Ker(Φ).

Since the dimension of Im(Ψ) is m and that of Ker(Φ) is n − m, we conclude that
Im(Ψ) is the orthogonal complement Ker(Φ) with respect to the product

〈
·, ·
〉
K−1

and, in particular,

(2.7)
〈
Ψw, v

〉
K−1 = 0 ∀w ∈ Rm and ∀v ∈ Rn such that Φv = 0 .

Let w ∈ Rm and v ∈ Rn such that Φv = w. Since Ψw − v ∈ Ker(Φ), it follows from
(2.7) that

〈
v, v
〉
K−1 =

〈
Ψw,Ψw

〉
K−1 +

〈
v − Ψw, v −Ψw

〉
K−1 . Therefore, Ψw is the

unique minimizer of
〈
v, v
〉
K−1 over all v ∈ Rn such that Φv = w. Now consider f ∈

Rn; since Im(Ψ) = Im(KΦT ) and Im(Ψ) is the orthogonal complement of Ker(Φ) with
respect to the product

〈
·, ·
〉
K−1 , there exist a unique z ∈ Rm and a unique g ∈ Ker(Φ)

such that f = KΦT z + g. Since ΨΦ = KΦT (ΦKΦT )−1Φ, it follows that ΨΦf =
KΦT z and (In −ΨΦ)f = g. We conclude by observing that g = PKer(Φ),K−1f .

Theorem 2.3. For v ∈ Rn, w∗ = Φv is the unique minimizer of ‖v − Ψw‖K−1

over all w ∈ Rm. In particular, ‖v − ΨΦv‖K−1 = minz∈Rm ‖v − KΦT z‖K−1 and if
x is the solution of the original equation (2.1), then ‖x − Ψy‖K−1 = minw∈Rm ‖x −
Ψw‖K−1 = minz∈Rm ‖x−KΦT z‖K−1 .

Proof. The proof follows by observing that v −ΨΦv belongs to the null space of
Φ which, from Theorem 2.2, is the orthogonal complement of the image of Ψ with
respect to the scalar product defining the norm ‖ · ‖K−1 . Observe also that the image
of Ψ is equal to that of KΦT .

Remark 1. Observe that, from Theorem 2.2, v −ΨΦv spans the null space of Φ,

and ‖v‖2K−1 =
∥∥v−ΨΦv

∥∥2

K−1+
∥∥ΨΦv

∥∥2

K−1 . Therefore, ifD is a symmetric positive def-

inite n×n matrix, then supv∈Rn
∥∥v−ΨΦv

∥∥
D
/‖v‖K−1 = supv∈Rn,Φv=0 ‖v‖D/‖v‖K−1 .

In particular, if x is the solution of (2.1) and y the vector in (2.2), then
∥∥x −
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108 HOUMAN OWHADI

Ψy
∥∥
D
/‖b‖Q−1 ≤ supv∈Rn,Φv=0 ‖v‖D/‖v‖K−1 and the right-hand side is the small-

est constant for which the inequality holds (for all b).

Remark 2. A simple calculation (based on the reproducing Kernel property〈
v,K·,i

〉
K−1 = vi) shows that if x is the solution of (2.1) and y the vector in (2.2),

then
∣∣(x−Ψy)i

∣∣ ≤ (KΦ
i,i

) 1
2 ‖b‖Q−1 , i.e., the variance of the ith entry of the solution of

the stochastic system (2.3) conditioned on ΦX = y controls the accuracy of the ap-
proximation of the ith entry of the solution of the deterministic system (2.1). In that
sense, the role of KΦ is analogous to that of the power function in radial basis function
interpolation [116, 40] and that of the Kriging function [120] in geostatistics [69].

2.4. Energy Norm Estimates and Selection of the Prior. We will from now on
assume that A is symmetric positive definite. Observe that in this situation the energy
norm ‖ · ‖A is of practical significance for quantifying the approximation error and

Theorem 2.3 leads to the estimate ‖x−Ψy‖K−1 = minz∈Rm ‖Q−
1
2 b−Q− 1

2A
1
2K

1
2 ΦT z‖,

which simplifies to the energy norm estimate expressed by Corollary 2.4 under the
choice Q = A (note that K−1 = A under that choice).

Corollary 2.4. If A is symmetric positive definite and Q = A, then for v ∈ Rn,
‖v − ΨΦv‖A = minz∈Rm ‖v − A−1ΦT z‖A. Therefore, if x is the solution of (2.1)
and y the vector in (2.2), then ‖x − Ψy‖A = minw∈Rm ‖x − Ψw‖A = minz∈Rm ‖x −
A−1ΦT z‖A. In particular,

(2.8) ‖x−Ψy‖A = min
z∈Rm

‖A− 1
2 b−A− 1

2 ΦT z‖ .

Remark 3. Therefore, according to Corollary 2.4, if Q = A, then Ψy is the
Galerkin approximation of x, i.e., the best approximation of x in the ‖ · ‖A-norm
in the image of Ψ (which is equal to the image of A−1ΦT ). This is interesting because
Ψy is obtained without prior knowledge of b.

Corollary 2.4 and Remark 3 motivate us to select Q = A as the covariance matrix
of the Gaussian prior distribution (mixed strategy of Player II).

2.5. Impact and Selection of the Measurement Matrix Φ. It is natural to
wonder how good this recovery strategy is (under the choice Q = A) compared to
the best possible function of y and how the approximation error is impacted by the
measurement matrix Φ. If the energy norm is used to quantify accuracy, then the
recovery problem can be expressed as finding the function θ of the measurements y
minimizing the (worst case) approximation error infθ sup‖b‖≤1 ‖x − θ(y)‖A/‖b‖ with

x = A−1b and y = ΦA−1b. Writing 0 < λ1(A) ≤ · · · ≤ λn(A) as the eigenvalues of
A in increasing order, and a1, . . . , an as the corresponding eigenvectors, it is easy to
obtain that (1) the best choice for Φ would correspond to measuring the projection of x
on span{a1, . . . , am} and would lead to the worst approximation error 1/

√
λm+1, and

(2) the worst choice would correspond to measuring the projection of x on a subspace
orthogonal to a1 and would lead to the worst approximation error 1/

√
λ1. Under

the decision Q = A the minimal value of (2.8) is also 1/
√
λm+1 and is achieved for

Im(ΦT ) = span{a1, . . . , am}, and the maximal value of (2.8) is 1/
√
λ1 and is achieved

when Im(ΦT ) is orthogonal to a1. The following theorem, which is a direct application
of (2.8) and the estimate derived in [53, p. 10] (see also [66]), shows that the subset
of measurement matrices that are not nearly optimal is of small measure if the rows
of ΦT are sampled independently on the unit sphere of Rn.
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MULTIGRID WITH ROUGH COEFFICIENTS 109

Theorem 2.5. If Φ is an n × m matrix with i.i.d. N (0, 1) (Gaussian) entries,
Q = A, x is the solution of the original equation (2.1), and 2 ≤ p, then with probability
at least 1− 3p−p, ‖x−Ψy‖A/‖b‖ ≤ (1 + 9

√
m+ p

√
n)/
√
λm+1.

Although the randomization of the measurement matrix [42, 63, 43, 78] can be
an efficient strategy in compressed sensing [105, 21, 20, 28, 44, 22] and in singular
value decomposition/low rank approximation [53], we will not use this strategy here
because the design of the interpolation operator presents the (added) difficulty of
approximating the eigenvectors associated with the smallest eigenvalues of A rather
than those associated with the largest ones. Furthermore, Ψ has to be computed
efficiently and the dependence of the approximation constant in Theorem 2.5 on n
and m can be problematic if sharp convergence estimates are to be obtained. We will
instead select the measurement matrix based on the transfer property introduced in
[14] and given in a discrete context in the following theorem.

Theorem 2.6. If A is symmetric positive definite, Q = A, and x is the solution
of the original equation (2.1), then for any symmetric positive definite matrix B, we
have
(2.9)

inf
v∈Rn

√
vTBv

vTAv
min
z∈Rm

‖b− ΦT z‖B−1 ≤ ‖x−Ψy‖A ≤ sup
v∈Rn

√
vTBv

vTAv
min
z∈Rm

‖b− ΦT z‖B−1 .

Proof. Corollary 2.4 implies that if x is the solution of the original equation (2.1),
then ‖x−Ψy‖A = minz∈Rm ‖b−ΦT z‖A−1 . We finish the proof by observing that if A
and B are symmetric positive definite matrices such that α1B ≤ A ≤ α2B for some
constants α1, α2 > 0, then α−1

2 B−1 ≤ A−1 ≤ α−1
1 B−1.

Therefore, according to Theorem 2.6, once a good measurement matrix Φ has
been identified for a symmetric positive definite matrix B such that α1B ≤ A, the
same measurement matrix can be used for A at the cost of an increase in the bound
on the error by the multiplicative factor α

−1/2
1 . As a prototypical example, one may

consider a (stiffness) matrix A obtained from a finite element discretization of the
PDE (1.1) and B may be the stiffness matrix of the finite element discretization of
the Laplace Dirichlet PDE

(2.10) −∆u′(x) = g(x) on Ω with u′ = 0 on ∂Ω,

obtained from the same finite elements (e.g., piecewise-linear nodal basis functions
over the same fine mesh Th). Using the energy norm (1.3), Theorem 2.6 and Remark
3 imply the following proposition

Proposition 2.7. Let uh (resp., u′h) be the finite element approximation of the
solution u of (1.1) (resp., the solution u′ of (2.10)) over the finite nodal elements of
Th. Let uH (resp., u′H) be the finite element approximation of the solution u of (1.1)
(resp., the solution u′ of (2.10)) over linear space spanned by the rows of A−1ΦT

(resp., over the linear space spanned by the rows of B−1ΦT ). It holds true that

(2.11)
1√

λmax(a)
‖u′h − u′H‖H1

0 (Ω) ≤ ‖uh − uH‖a ≤
1√

λmin(a)
‖u′h − u′H‖H1

0 (Ω).

Observe that the right-hand side of (2.11) does not depend on λmax(a), therefore, if
λmin(a) = 1, then the error bound on ‖uh− uH‖a does not depend on the contrast of
a (i.e., λmax(a)/λmin(a)).
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110 HOUMAN OWHADI

3. Numerical Homogenization and Design of the Interpolation Operator in
the Continuous Case. We will now generalize the results and continue the analysis
of section 2 in the continuous case and design the interpolation operator for (1.1) in
the context of numerical homogenization.

3.1. Information Game and Gamblets. As in section 2 we will identify the in-
terpolation operator (that will be used for the multigrid algorithm) through a nonco-
operative game formulation where Player I chooses the source term g (1.1) and Player
II tries to approximate the solution u of (1.1) based on a finite number of measure-
ments (

∫
Ω
uφi)1≤i≤m obtained from linearly independent test functions φi ∈ L2(Ω).

As in section 2, this game formulation motivates the search for a mixed strategy for
Player II that can be expressed by replacing the source term g with noise ξ. We will
therefore consider the stochastic PDE (SPDE)

(3.1)

{
− div

(
a(x)∇v(x)

)
= ξ(x), x ∈ Ω,

v = 0 on ∂Ω,

where Ω and a are the domain and conductivity of (1.1). As in section 2, to preserve
the computational efficiency of the interpolation operator we will assume that ξ is a
centered Gaussian field on Ω. The decision space of Player II is therefore the covari-
ance function of ξ. Write as L the differential operator −div(a∇) with zero Dirichlet
boundary condition mapping H1

0 (Ω) onto H−1(Ω). Motivated by the analysis (Re-
mark 3) of section 2.4 (which can be reproduced in the continuous case) we will select
the covariance function of ξ (Player II’s decision) to be L. Therefore, under that
choice, for all f ∈ H1

0 (Ω),
∫

Ω
f(x)ξ(x) dx is a Gaussian random variable with mean

0 and variance
∫

Ω
fLf = ‖f‖2a, where ‖f‖a is the energy norm of f defined in (1.3).

Introducing the scalar product on H1
0 (Ω) defined by

(3.2)
〈
v, w

〉
a

:=

∫
Ω

(∇v)Ta∇w ,

recall that if (e1, e2, . . .) is an orthonormal basis of (H1
0 (Ω), ‖ · ‖a) diagonalizing L,

then ξ can formally be represented as ξ =
∑∞
i=1(Lei)Xi (where the Xi are i.i.d.

N (0, 1) random variables) and, therefore, ξ can also be identified as the linear isometry
mapping H1

0 (Ω) onto a Gaussian space and f =
∑∞
i=1

〈
f, ei

〉
a
ei onto

∫
Ω
f(x)ξ(x) dx =∑∞

i=1

〈
f, ei

〉
a
Xi.

Observe also that [77], if ξ′ is white noise on Ω (i.e., a Gaussian field with covari-

ance function δ(x − y)), then ξ can be represented as ξ = L− 1
2 ξ′. Furthermore [77,

Prop. 3.1], the solution of (3.1) is a Gaussian field with covariance function G(x, y)
(where G is the Green’s function of the PDE (1.1), i.e., LG(x, y) = δ(x − y) with
G(x, y) = 0 for y ∈ ∂Ω).

Let F be the σ-algebra generated by the random variables
∫

Ω
v(x)φi for i ∈

{1, . . . ,m} (with v solution of (3.1)). We will identify the interpolation basis elements
by conditioning the solution of (3.1) on F . Observe that the covariance matrix of the
measurement vector (

∫
Ω
v(x)φi)1≤i≤m is the m×m symmetric matrix Θ defined by

(3.3) Θi,j :=

∫
Ω2

φi(x)G(x, y)φj(y) dx dy.

Note that for l ∈ Rm, lTΘl = ‖w‖2a, where w is the solution of (1.1) with right-hand
side g =

∑m
i=1 liφi. Therefore (since the test functions φi are linearly independent), Θ
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MULTIGRID WITH ROUGH COEFFICIENTS 111

is positive definite and we will write Θ−1 as its inverse. Write δi,j as the Kronecker’s
delta (δi,i = 1 and δi,j = 0 for i 6= j).

Theorem 3.1. Let v be the solution of (3.1). It holds true that

(3.4) E
[
v(x)

∣∣F] =
m∑
i=1

ψi(x)

∫
Ω

v(y)φi(y) dy,

where the functions ψi ∈ H1
0 (Ω) are defined by

(3.5) ψi(x) := E
[
v(x)

∣∣∣ ∫
Ω

v(y)φj(y) dy = δi,j , j ∈ {1, . . . ,m}
]

and admit the representation formula

(3.6) ψi(x) =
m∑
j=1

Θ−1
i,j

∫
Ω

G(x, y)φj(y) dy .

Furthermore, the distribution of v conditioned on F is that of a Gaussian field with
mean (3.4) and covariance function Γ(x, y) = G(x, y) +

∑m
i,j=1 ψi(x)ψj(y)Θi,j

−
∑m
i=1 ψi(x)

∫
Ω
G(y, z)φi(z) dz −

∑m
i=1 ψi(y)

∫
Ω
G(x, z)φi(z) dz .

Proof. The proof is similar to that of [77, Thm. 3.5]. The identification of the co-
variance function follows from the expansion of Γ(x, y) = E[

(
v(x)−E

[
v(x)

∣∣F])(v(y)−
E
[
v(y)

∣∣F])]. Note that (3.6) proves that ψi ∈ H1
0 (Ω).

Since, according to (3.5) and the discussion preceding (3.1), each ψi is an elemen-
tary gamble (bet) on value of the solution of (1.1) given the information

∫
Ω
φju = δi,j

for j = 1, . . . ,m, we will refer to the basis functions (ψi)1≤i≤m as gamblets. According
to (3.4), once gamblets have been identified, they form a basis for betting on the value
of the solution of (1.1) given the measurements (

∫
Ω
φju)1≤i≤m.

3.2. Optimal Recovery Properties. Although gamblets admit the representa-
tion formula (3.6), we will not use it for their practical (numerical) computation.
Instead, we will work with variational properties inherited from the conditioning of
the Gaussian field v. To guide our intuition, note that since L is the precision func-
tion (inverse of the covariance function) of v, the conditional expectation of v can
be identified by minimizing

∫
Ω
ψLψ given measurement constraints. This observation

motivates us to consider, for i ∈ {1, . . . ,m}, the quadratic optimization problem

(3.7)

{
Minimize ‖ψ‖a
subject to ψ ∈ H1

0 (Ω) and
∫

Ω
φjψ = δi,j for j = 1, . . . ,m,

where ‖ψ‖a is the energy norm of ψ defined in (1.3).
The following theorem shows that (3.7) can be used to identify ψi and that gam-

blets are characterized by optimal (variational) recovery properties.

Theorem 3.2. It holds true that (1) the optimization problem (3.7) admits a
unique minimizer ψi defined by (3.5) and (3.6), (2) for w ∈ Rm,

∑m
i=1 wiψi is the

unique minimizer of ‖ψ‖a subject to
∫

Ω
ψ(x)φj(x) = wj for j ∈ {1, . . . ,m}, and (3)

(using the scalar product defined in (3.2))
〈
ψi, ψj

〉
a

= Θ−1
i,j .
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112 HOUMAN OWHADI

Proof. Let w ∈ Rm and ψw =
∑m
i=1 wiψi with ψi defined as in (3.6). The defini-

tion of Θ implies that
∫

Ω
ψw(x)φj(x) = wj for j ∈ {1, . . . ,m}. Furthermore, we obtain

by integration by parts that for all ϕ ∈ H1
0 (Ω),

〈
ψw, ϕ

〉
a

=
∑m
i,j=1 wiΘ

−1
i,j

∫
Ω
φjϕ.

Therefore, if ψ ∈ H1
0 (Ω) is such that

∫
Ω
ψ(x)φj(x) = wj for j ∈ {1, . . . ,m}, then〈

ψw, ψ − ψw
〉
a

= 0 and

(3.8) ‖ψ‖2a = ‖ψw‖2a + ‖ψ − ψw‖2a,

which finishes the proof of the optimality of ψi and ψw.

3.3. Optimal Accuracy of the Recovery. Define

(3.9) u∗(x) :=
m∑
i=1

ψi(x)

∫
Ω

u(y)φi(y) dy,

where u is the solution of (1.1) and ψi are the gamblets defined by (3.5) and (3.6).
Note that u∗ corresponds to Player II’s bet on the value of u given the measurements
(
∫

Ω
u(y)φi(y) dy)1≤i≤m. In particular, if v is the solution of (3.1), then

(3.10) u∗(x) = E
[
v(x)

∣∣ ∫
Ω

v(y)φi(y) dy =

∫
Ω

u(y)φi(y) dy
]
.

For φ ∈ H−1(Ω) write L−1φ as the solution of (1.1) with g = φ. The follow-
ing theorem shows that u∗ is the best approximation (in the energy norm) of u in
span{L−1φi : i ∈ {1, . . . ,m}}.

Theorem 3.3. Let u be the solution of (1.1), with u∗ as defined in (3.9) and
(3.10). It holds true that

(3.11) ‖u− u∗‖a = inf
ψ∈span{L−1φi:i∈{1,...,m}}

‖u− ψ‖a.

Proof. By Theorem 3.1, span{L−1φi : i ∈ {1, . . . ,m}} = span{ψ1, . . . , ψm} and
(3.11) follows from the fact that

∫
Ω

(u − u∗)φj = 0 for all j implies that u − u∗ is

orthogonal to span{ψ1, . . . , ψm} with respect to the scalar product
〈
·, ·
〉
a
.

3.4. Transfer Property and Selection of the Measurement Functions. We will
now select the measurement (test) functions φi by extending the result of Proposition
2.7 to the continuous case. For V a finite-dimensional linear subspace of H−1(Ω),
define

(3.12) (div a∇)−1V := span{(div a∇)−1φ : φ ∈ V },

where (div a∇)−1φ is the solution of (1.1) with g = −φ. Similarly, define ∆−1V :=
span{∆−1φ : φ ∈ V }, where ∆−1φ is the solution of (2.10) with g = −φ.

Proposition 3.4. If u and u′ are the solutions of (1.1) and (2.10) (with the
same right-hand side g) and V is a finite-dimensional linear subspace of H−1(Ω),
then

(3.13)

1√
λmax(a)

inf
v∈∆−1V

‖u′ − v‖H1
0 (Ω) ≤ inf

v∈(div a∇)−1V
‖u− v‖a

≤ 1√
λmin(a)

inf
v∈∆−1V

‖u′ − v‖H1
0 (Ω).
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MULTIGRID WITH ROUGH COEFFICIENTS 113

Proof. Write G as the Green’s function of (1.1) and G∗ as the Green’s function
of (2.10). Observe that for f ∈ V and v = (div a∇)−1f , ‖u − v‖2a =

∫
Ω2(g(x) −

f(x))G(x, y)(g(y)− f(y)) dx dy. The monotonicity of Green’s function as a quadratic
form (see, for instance, [12, Lemma 4.13]) implies

∫
Ω2(g(x) − f(x))G(x, y)(g(y) −

f(y)) dx dy ≤ 1
λmin(a)

∫
Ω2(g(x) − f(x))G∗(x, y)(g(y) − f(y)) dx dy (with a similar in-

equality on the left-hand side), which concludes the proof.

This extension, which is also directly related to the transfer property of the flux-
norm (introduced in [14] and generalized in [103]; see also [115]), allows us to select
accurate finite-dimensional bases for the approximation of the solution space of (1.1).

Construction 3.5. Let (τi)1≤i≤m be a partition of Ω such that each τi is Lips-
chitz, convex, and of diameter at most H. Let (φi)1≤i≤m be elements of L2(Ω) such
that for each i, the support of φi is contained in the closure of τi and

∫
τi
φi 6= 0.

Proposition 3.6. Let (φi)1≤i≤m be the elements of Construction 3.5 and let u
be the solution of (1.1). If V = span{φi : 1 ≤ i ≤ m}, then

(3.14) inf
v∈(div a∇)−1V

‖u− v‖a ≤ CH‖g‖L2(Ω)

with C =
(
π
√
λmin(a)

)−1(
1 + max1≤i≤m

( 1
|τi|

∫
τi
φ2
i

( 1
|τi|

∫
τi
φi)2 )

1
2

)
(writing |τi| as the volume

of τi).

Proof. Using Proposition 3.4 it is sufficient to complete the proof when a is the
constant identity matrix. Let u′ be the solution of (2.10) and v ∈ ∆−1V . Note that
∆v =

∑m
i=1 ciφi, therefore, ‖u′ − v‖2

H1
0 (Ω)

= −
∫

Ω
(u′ − v)(g −

∑m
i=1 ciφi). Taking

ci =
∫
τi
g/
∫
τi
φi we obtain that

∫
τi

(g −
∑m
j=1 cjφj) = 0 and, writing |τi| as the

volume of τi, ‖u′ − v‖2H1
0 (Ω)

= −
∑m
i=1

∫
τi

(u′ − v − 1
|τi|
∫
τi

(u′ − v))(g −
∑m
j=1 cjφj),

which by Poincaré’s inequality (see [91] for the optimal constant 1/π used here) lead

to ‖u′ − v‖2
H1

0 (Ω)
≤ H

π

∑m
i=1

( ∫
τi
|∇(u′ − v)|2

) 1
2
( ∫

τi
(g −

∑m
j=1 cjφj)

2
) 1

2 . Therefore,

by using the Cauchy–Schwarz inequality and simplifying, ‖u′ − v‖H1
0 (Ω) ≤ H

π ‖g −∑m
i=1 ciφi‖L2(Ω) . Now, since each φi has support in τi, we have ‖

∑m
i=1 ciφi‖2L2(Ω) =∑m

i=1(
∫
τi
g)2

∫
τi
φ2
i

(
∫
τi
φi)2 ≤ ‖g‖2L2(Ω) max1≤i≤m

1
|τi|

∫
τi
φ2
i

( 1
τi

∫
τi
φi)2 , which concludes the proof.

The value of the constant C in Proposition 3.6 motivates us to modify Construc-
tion 3.5 as follows.

Construction 3.7. Let (φi)1≤i≤m be the elements constructed in Construction
3.5 under the additional assumptions that (a) each φi is equal to one on τi and zero
elsewhere, and (b) there exists δ ∈ (0, 1) such that for each i ∈ {1, . . . ,m}, τi contains
a ball of diameter δH.

Let (φi)1≤i≤m be as in Construction 3.7. Note that the additional assumption (a)

implies that the constant C in Proposition 3.6 is equal to 2/(π
√
λmin(a)). Assumption

(b) will be used for localization purposes in sections 3.5 and 3.6 (and is not required
for Theorem 3.8). The following theorem is a direct consequence of Proposition 3.6
and Theorem 3.3.

Theorem 3.8. If u is the solution of (1.1) and (ψi)
m
i=1 are the gamblets identified

in (3.5), (3.7), and (3.6), then

(3.15) inf
v∈span{ψ1,...,ψm}

‖u− v‖a ≤
2

π
√
λmin(a)

H‖g‖L2(Ω)
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114 HOUMAN OWHADI

and the minimum in the left-hand side of (3.15) is achieved for v = u∗ defined in
(3.9) and (3.10).

Remark 4. The assumption of convexity of the subdomains τi is only used to
derive sharper constants via Poincaré’s inequality for convex domains (without it,
approximation error bounds remain valid after multiplication by π). Similarly, the
transfer property can be used to derive constructions that are distinct from Construc-
tions 3.5 and 3.7.

Remark 5. Gamblets defined via the constrained energy minimization problem
(3.7) are analogous to the energy minimizing bases of [65, 114, 122, 121] and, in par-
ticular, [108]. However, they form a different set of basis functions when global con-
straints are added: the (total) energy minimizing bases of [65, 114, 122, 121, 108] are
defined by minimizing the total energy

∑
i ‖ψi‖2a subject to the constraint

∑
i ψi(x) =

1 related to the local preservation of constants. Numerical experiments [122] suggest
that total energy minimizing basis functions could lead to an O(

√
H) convergence rate

(with rough coefficients). Note that (3.7) is also analogous to the constrained min-
imization problems associated with polyharmonic splines [54, 30, 31, 32, 87], which
can be recovered with a Gaussian prior (on ξ) with covariance function δ(x−y) (corre-
sponding to exciting (3.1) with white noise). We suspect that the basis functions ob-
tained in the orthogonal decomposition of [64] can also be recovered via the variational
formulation (3.7) by identifying the null space of the Clement quasi-interpolation op-
erator with that of appropriately chosen measurement functions φi.

3.5. Exponential Decay of Gamblets. Theorems 3.2 and 3.3 show that the gam-
blets ψi have optimal recovery properties analogous to the discrete case of Theorem
2.2 and Corollary 2.4. However, one might wonder why one should compute these
gamblets rather than the elements (div a∇)−1φi since they span the same linear space
(by the representation formula (3.6)). The answer lies in the fact that each gamblet
ψi decays exponentially as a function of the distance from the support of φi, and its
computation can therefore be localized to a subdomain of diameter O(H ln 1

H ) with-
out impacting the order of accuracy (3.15). Consider the construction 3.7. Let ψi be
defined as in Theorem 3.2 and let xi be an element of τi. Write B(x, r) as the ball of
center x and radius r.

Theorem 3.9 (exponential decay of the basis elements ψi). It holds true that

(3.16)

∫
Ω∩(B(xi,r))c

(∇ψi)Ta∇ψi ≤ e1− r
lH

∫
Ω

(∇ψi)Ta∇ψi

with l = 1 + (e/π)
√
λmax(a)/λmin(a)(1 + 2

3
2 (2/δ)1+d/2) (where e is Euler’s number).

Proof. Let k, l ∈ N∗ and i ∈ {1, . . . ,m}. Let S0 be the union of all the domains
τj that are contained in the closure of B(xi, klH) ∩ Ω, let S1 be the union of all
the domains τj that are contained in the closure of (B(xi, (k + 1)lH))c ∩ Ω, and let
S∗ = Sc0 ∩Sc1 ∩Ω be the union of the remaining elements τj not contained in S0 or S1.
Let η be the function on Ω defined by η(x) = dist(x, S0)/(dist(x, S0) + dist(x, S1)).
Observe that (1) 0 ≤ η ≤ 1, (2) η is equal to zero on S0, (3) η is equal to one on
S1, and (4) ‖∇η‖L∞(Ω) ≤ 1

lH . Observe that −
∫

Ω
ηψi div(a∇ψi) =

∫
Ω
∇(ηψi)aψi =∫

Ω
η(∇ψi)Ta∇ψi +

∫
Ω
ψi(∇η)Ta∇ψi. Therefore,

∫
S1

(∇ψi)Ta∇ψi ≤ I1 + I2 with

(3.17) I1 = ‖∇η‖L∞(Ω)

( ∑
τj⊂S∗

∫
τj

ψ2
i

) 1
2
(∫

S∗
(∇ψi)Ta∇ψi

) 1
2√

λmax(a)
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MULTIGRID WITH ROUGH COEFFICIENTS 115

and I2 = −
∫

Ω
ηψi div(a∇ψi). By (3.6), −div(a∇ψi) is piecewise constant and equal

to Θ−1
i,j on τj . By the constraints of (3.7),

∫
τj
ψi = 0 for i 6= j. Therefore (writing ηj

the volume average of η over τj), we have
(3.18)

I2 ≤ −
∑

τj⊂S1∪S∗

∫
τj

(η − ηj)ψi div(a∇ψi) ≤
1

l

∑
τj⊂S∗

‖ψi‖L2(τj)‖div(a∇ψi)‖L2(τj).

We will now need the following lemma.

Lemma 3.10. If v ∈ span{ψ1, . . . , ψm}, then

(3.19) ‖div(a∇v)‖L2(Ω) ≤ H−1‖v‖a(λmax(a)25+d/δ2+d)
1
2 .

Proof. Let c ∈ Rm and v =
∑m
i=1 ciψi. Observing that − div(a∇v) =

∑m
i=1 ciΘ

−1
i,j

in τj and using the decomposition ‖div(a∇v)‖2L2(Ω) =
∑m
i=1 ‖div(a∇v)‖2L2(τj)

, we

obtain that

(3.20) ‖div(a∇v)‖2L2(Ω) =
m∑
j=1

( m∑
i=1

ciΘ
−1
i,j

)2

|τj |.

Furthermore, v can be decomposed over τj as v = v1+v2, where v1 solves −div(a∇v1)
=
∑m
i=1 ciΘ

−1
i,j in τj with v1 = 0 on ∂τj , and v2 solves −div(a∇v2) = 0 in τj

with v2 = v on ∂τj . Using the notation |ξ|2a = ξTaξ, observe that
∫
τj
|∇v|2a =∫

τj
|∇v1|2a +

∫
τj
|∇v2|2a. Furthermore,

∫
τj
|∇v1|2a =

∑m
i=1 ciΘ

−1
i,j

∫
τj
v1. Writing Gj as

the Green’s function of the operator − div(a∇·) with Dirichlet boundary condition
on ∂τj , note that

∫
τj
v1 = (

∑m
i=1 ciΘ

−1
i,j )

∫
τ2
j
Gj(x, y) dx dy. Using the monotonicity of

the Green’s function as a quadratic form (as in the proof of Proposition 3.4), we have∫
τ2
j
Gj(x, y) dx dy ≥ 1

λmax(a)

∫
τ2
j
G∗j (x, y) dx dy, where G∗j is the Green’s function of the

operator −∆ with Dirichlet boundary condition on ∂τj . Recall that 2
∫
τj
G∗j (x, y) dy

is the mean exit time (from τj) of a Brownian motion started from x, and the mean
exit time of a Brownian motion started from x to exit a ball of center x and radius r
is r2 (see, for instance, [12]). Since τj contains a ball of diameter δH, it follows that
2
∫
τ2
j
G∗j (x, y) dx dy ≥ (δH/4)2+dVd (where Vd is the volume of the d-dimensional unit

ball). Therefore (using |τj | ≤ Vd(H/2)d and simplification),

(3.21)

∫
τj

|∇v1|2a ≥
( m∑
i=1

ciΘ
−1
i,j

)2

|τj |H2δ2+d/(25+dλmax(a)),

which finishes the proof after taking the sum over j.

Now observe that since
∫
τj
ψi = 0 for i 6= j, we obtain, using Poincaré’s inequality

(with the optimal constant of [91]), that ‖ψi‖L2(τj) ≤ ‖∇ψi‖L2(τj)H/π. Therefore,
combining (3.17), (3.18), and the result of Lemma 3.10, we obtain after simplification

(3.22)

∫
S1

(∇ψi)Ta∇ψi ≤
1

πl

√
λmax(a)/λmin(a)(1 + 2

3
2 (2/δ)1+d/2)

∫
S∗

(∇ψi)Ta∇ψi.

Taking l ≥ e
π

√
λmax(a)/λmin(a)(1 + 2

3
2 (2/δ)1+d/2) and enlarging the integration do-

main on the right-hand side, we obtain
∫
S1

(∇ψi)Ta∇ψi ≤ e−1
∫
S∗∪S1

(∇ψi)Ta∇ψi.
We conclude the proof via straightforward iteration on k.
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116 HOUMAN OWHADI

3.6. Localization of the Basis Elements. Theorem 3.9 allows us to localize the
construction of basis elements ψi as follows. For r > 0, let Sr be the union of the
subdomains τj intersecting B(xi, r) (recall that xi is an element of τi) and let ψloc,r

i

be the minimizer of the quadratic problem

(3.23)

{
Minimize

∫
Sr

(∇ψ)Ta∇ψ
subject to ψ ∈ H1

0 (Sr) and
∫
Sr
φjψ = δi,j for j such that τj ⊂ Sr.

We will naturally identify ψloc,r
i with its extension to H1

0 (Ω) by setting ψloc,r
i = 0

outside of Sr. From now on, to simplify the expression of constants, we will assume
without loss of generality that the domain is rescaled so that diam(Ω) ≤ 1.

Theorem 3.11. It holds true that

(3.24) ‖ψi − ψloc,r
i ‖a ≤ Ce−

r
2lH ,

where l is defined in Theorem 3.9, C = (λmax(a)/
√
λmin(a))H−

d
2−222d+9/(

√
Vdδ

d+2),
and Vd is the volume of the d-dimensional unit ball.

Proof. We will need the following lemma.

Lemma 3.12. It holds true that

(3.25) ‖ψi‖a ≤ (Hδ)−
d
2−1
√
λmax(a)2

3
2d+2(Vd)

− 1
2 ,

where Vd is the volume of the d-dimensional unit ball and

(3.26) |
〈
ψi, ψj

〉
a
| ≤ e−

ri,j
2lHH−2−dλmax(a)2

5d+11
2 /(Vdδ

d+2),

where l is the constant of Theorem 3.9 and ri,j is the distance between τi and τj.

Proof. Since τi contains a ball B(xi, δH/2) of center xi ∈ τi and diameter δH/2,
there exists a piecewise-differentiable function η equal to 1 on B(xi, δH/4), equal
to 0 on (B(xi, δH/2))c, and such that 0 ≤ η ≤ 1 with ‖∇η‖L∞(Ω) ≤ 4

Hδ . Since
ψ = η/(

∫
τi
η) satisfies the constrains of the minimization problem (3.7), we have

‖ψi‖a ≤ ‖ψ‖a, which proves (3.25). Theorem 3.2 implies that
〈
ψi, ψj

〉
a

= Θ−1
i,j .

Observing that−div(a∇ψi) is piecewise constant and equal to Θ−1
i,j on τj and applying

(3.21) (with v = ψi and using
∫
τj
|∇v1|2a ≤

∫
τj
|∇v|2a), we obtain that

(3.27) |Θ−1
i,j | ≤

(
λmax(a)25+d/(δ2+d|τj |)

) 1
2H−1

(∫
τj

(∇ψi)Ta∇ψi
) 1

2

,

which leads to (3.26) by the exponential decay obtained in Theorem 3.9 and (3.25).

Let us now prove Theorem 3.11. Let S0 be the union of the subdomains τj not
contained in Sr and let S1 be the union of the subdomains τj that are at distance
at least H from S0 (for S0 = ∅ the proof is trivial, so we may assume that S0 6= ∅;
similarly, it is no restriction to assume that S1 6= ∅). Let η be the function on Ω
defined by η(x) = dist(x, S0)/(dist(x, S0) + dist(x, S1)). Observe that is a piecewise-
differentiable function on Ω such that (1) η is equal to one on S1 and zero on S0, (2)

‖∇η‖L∞(Ω) ≤ 1
H , and (3) 0 ≤ η ≤ 1. Since ψloc,r

i satisfies the constraints of (3.7), we
have from (3.8),

(3.28) ‖ψi − ψloc,r
i ‖2a = ‖ψloc,r

i ‖2a − ‖ψi‖2a.
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MULTIGRID WITH ROUGH COEFFICIENTS 117

Let ψi,rk be the minimizer of
∫
Sr

(∇ψ)Ta∇ψ subject to ψ ∈ H1
0 (Sr) and

∫
Sr
φjψ = δk,j

for τj ⊂ Sr. Write wj =
∫

Ω
ηψiφj . Let ψi,rw :=

∑m
j=1 wjψ

i,r
j . Noting that ψi,rw =

ψloc,r
i +

∑
τj⊂S∗ wjψ

i,r
j , where S∗ is the union of τj ⊂ Sr not contained in S1, and

using property (3) of Theorem 3.2 (with Θi,−1
k,k′ =

∫
Sr

(∇ψi,rk )Ta∇ψi,rk′ ), it follows that

(3.29) ‖ψi,rw ‖2a = ‖ψloc,r
i ‖2a +

∥∥∥∥ ∑
τj⊂S∗

wjψ
i,r
j

∥∥∥∥2

a

+ 2
∑
τj⊂S∗

Θi,−1
i,j wj .

Noting that ηψi ∈ H1
0 (Sr), Theorem 3.2 implies that ‖ψi,rw ‖a ≤ ‖ηψi‖a, which, com-

bined with (3.29) and (3.28), leads to ‖ψi−ψloc,r
i ‖2a ≤ ‖ηψi‖2a−‖ψi‖2a−2

∑
τj⊂S∗ Θi,−1

i,j wj

and (using ‖ηψi‖2a − ‖ψi‖2a ≤
∫
S∗∇(ηψi)

Ta∇(ηψi))

(3.30) ‖ψi − ψloc,r
i ‖2a ≤

∫
S∗
∇(ηψi)

Ta∇(ηψi) + 2

∣∣∣∣ ∑
τj⊂S∗

Θi,−1
i,j wj

∣∣∣∣ .
Now observe 1

2

∫
S∗∇(ηψi)

Ta∇(ηψi)≤
∫

Ω∩(B(xi,r−2H))c
(∇ψi)Ta∇ψi+λmax(a)

H2

∫
S∗
|ψi|2.

Applying Poincaré’s inequality we obtain
∫
S∗
|ψi|2 ≤ 1

π2H
2
∑
τj⊂S∗

∫
τj
|∇ψi|2 (since∫

τj
ψi = 0 for τj ⊂ S∗) and

∫
S∗
|ψi|2 ≤ H2

π2λmin(a)

∫
Ω∩(B(xi,r−2H))c

(∇ψi)Ta∇ψi. Com-

bining these equations with the exponential decay of Theorem 3.9 we deduce

(3.31)

∫
S∗
∇(ηψi)

Ta∇(ηψi) ≤ 2
(

1 + λmax(a)/
(
π2λmin(a)

))
e1− r−2H

lH ‖ψi‖2a .

Similarly, using the Cauchy–Schwarz and Poincaré inequalities, we have for τj ⊂ S∗,

|wj | ≤ |τj |
1
2 ‖ψi‖L2(τj) ≤ |τj |

1
2 (
∫
τj

(∇ψi)Ta(∇ψi))
1
2 /
√
λmin(a) and |

∑
τj⊂S∗ Θi,−1

i,j wj | ≤

|
∑
τj⊂S∗(Θ

i,−1
i,j )2|τj ||

1
2

( ∫
S∗

(∇ψi)Ta(∇ψi)/λmin(a)
) 1

2 . Using (3.27) we obtain that

|
∑
τj⊂S∗(Θ

i,−1
i,j )2|τj ||

1
2 ≤

(
λmax(a)25+d/δ2+d

) 1
2H−1

( ∫
S∗

(∇ψi,ri )Ta∇ψi,ri
) 1

2 , which by

the exponential decay of Theorem (3.9) (and ‖ψi‖a ≤ ‖ψi,ri ‖a) leads to

(3.32)

∣∣∣∣ ∑
τj⊂S∗

Θi,−1
i,j wj

∣∣∣∣ ≤ (λmax(a)25+d

λmin(a)δ2+d

) 1
2

H−1‖ψi,ri ‖
2
ae

1− r−2H
lH .

Using (3.25) to bound ‖ψi,ri ‖a and combining (3.32) with (3.31) and (3.30) concludes
the proof.

The following theorem shows that gamblets preserve theO(H) rate of convergence
(in the energy norm) after localization to subdomains of size O(H ln(1/H)). They can
therefore be used as localized basis functions in numerical homogenization [5, 86, 64,
87]. Section 4 will show that they can also be computed hierarchically at near-linear
complexity.

Theorem 3.13. Let u be the solution of (1.1) and (ψloc,r
1 )1≤i≤m be the localized

gamblets identified in (3.23), then for r ≥ H(C1 ln 1
H + C2) we have

(3.33) inf
v∈span{ψloc,r

1 ,...,ψloc,r
m }

‖u− v‖a ≤
1√

λmin(a)
H‖g‖L2(Ω) .

The constants are C1 = (d + 4)l and C2 = 2l ln
(λmax(a)
λmin(a)

2
3
2
d+11

δd+2

)
, where l is the

constant of Theorem 3.11. Furthermore, the inequality (3.33) is achieved for v =∑m
i=1 ψ

loc,r
i

∫
Ω
uφi.
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118 HOUMAN OWHADI

Proof. Let v1 :=
∑m
i=1 ciψi and v2 =

∑m
i=1 ciψ

loc,r
i with ci =

∫
Ω
uφi. Theo-

rem 3.8 implies that ‖u − v1‖a ≤ 2/(π
√
λmin(a))H‖g‖L2(Ω). Observe that ‖u −

v2‖a ≤ ‖u− v1‖a + ‖v1 − v2‖a and ‖v1 − v2‖a ≤ maxi ‖ψi − ψloc,r
i ‖a

∑m
i=1 |ci|. Using

Poincaré’s inequality ‖u‖L2(Ω) ≤ diam(Ω)‖∇u‖L2(Ω) (with diam(Ω) ≤ 1) we obtain∑m
i=1 |ci| ≤

∫
Ω
|u| ≤ ‖g‖L2(Ω)2

−d/2V
1
2

d /λmin(a). We conclude using Theorem 3.11 to

bound maxi ‖ψi − ψloc,r
i ‖a.

4. Multiresolution Operator Decomposition. Building on the analysis of sec-
tion 3, we will now gamble on the approximation of the solution of (1.1) based on
measurements performed at different levels of resolution. The resulting hierarchi-
cal (and nested) games will then be used to derive a multiresolution decomposition
of (1.1) (orthogonal across subscales) and a near-linear complexity multiresolution
algorithm with a priori error bounds.

4.1. Hierarchy of Nested Measurement Functions. In order to define the hi-
erarchy of games we will first define a hierarchy of nested measurement functions.

Definition 4.1. We say that I is an index tree of depth q if it is a finite set of
q-tuples of the form i = (i1, . . . , iq) with 1 ≤ i1 ≤ m0 and 1 ≤ ij ≤ m(i1,...,ij−1) for
j ≥ 2, where m0 and m(i1,...,ij−1) are strictly positive integers. For 1 ≤ k ≤ q and

i = (i1, . . . , iq) ∈ I, we write i(k) := (i1, . . . , ik) and I(k) := {i(k) : i ∈ I}. For

k ≤ k′ ≤ q and j = (j1, . . . , jk′) ∈ I(k′), we write j(k) := (j1, . . . , jk). For i ∈ I(k)

and k ≤ k′ ≤ q, we write i(k,k
′) the set of elements j ∈ I(k′) such that j(k) = i.

Construction 4.2. Let I be an index tree of depth q. Let δ ∈ (0, 1) and 0 <

Hq < · · · < H1 < 1. Let (τ
(k)
i , k ∈ {1, . . . , q}, i ∈ I(k)) be a collection of subsets

of Ω such that (1) for 1 ≤ k ≤ q, (τ
(k)
i , i ∈ I(k)) is a partition of Ω such that each

τ
(k)
i is a Lipschitz, convex subset of Ω of diameter at most Hk and contains a ball of

diameter δHk, and (2) the sequence of partitions is nested, i.e., for k ∈ {1, . . . , q− 1}
and i ∈ I(k), τ

(k)
i := ∪j∈i(k,k+1) τ

(k+1)
j .

As in Remark 4, the assumption of convexity of the subdomains τ
(k)
i is not neces-

sary to the results presented here and is only used to derive sharper/simpler constants.

Let φ
(k)
i be the indicator function of the set τ

(k)
i (i.e., φ

(k)
i = 1 if x ∈ τ (k)

i and φ
(k)
i = 0

if x 6∈ τ (k)
i ). Note that the nesting of the domain decomposition implies that of the

measurement functions, i.e., for k ∈ {1, . . . , q − 1} and i ∈ I(k),

(4.1) φ
(k)
i =

∑
j∈I(k+1)

π
(k,k+1)
i,j φ

(k+1)
j ,

where π(k,k+1) is the I(k) × I(k+1) matrix defined by π
(k,k+1)
i,j = 1 if j ∈ i(k,k+1)

and π
(k,k+1)
i,j = 0 if j 6∈ i(k,k+1). We will assume without loss of generality that

‖φ(k)
i ‖2L2(Ω) = |τ (k)

i | is constant in i (for the general case, rescale/renormalize each

φ
(k)
i and the entries of π(k,k+1) by the corresponding multiplicative factors; we will

keep track of the dependence of some of the constants on maxi,j |τ (k)
i |/|τ

(k)
j |).

4.2. Hierarchy of Nested Gamblets and Multiresolution Approximations. Let
us now consider the problem of recovering the solution of (1.1) based on the nested

measurements (
∫

Ω
uφ

(k)
i )i∈I(k) for k ∈ {1, . . . , q}. As in section 3 we are lead to inves-

tigate the mixed strategy (for Player II) expressed by replacing the source term g with
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MULTIGRID WITH ROUGH COEFFICIENTS 119

a centered Gaussian field with covariance function L = − div(a∇). Under that mixed
strategy, Player II’s bet on the value of the solution of (1.1), given the measurements

(
∫

Ω
u(y)φ

(k)
i (y) dy)i∈I(k) , is (see section 3.3)

(4.2) u(k)(x) :=
∑
i∈I(k)

ψ
(k)
i (x)

∫
Ω

u(y)φ
(k)
i (y) dy,

where (see Theorem 3.2), for k ∈ {1, . . . , q} and i ∈ I(k), ψ
(k)
i is the minimizer of

(4.3)

{
Minimize ‖ψ‖a
subject to ψ ∈ H1

0 (Ω) and
∫

Ω
φ

(k)
j ψ = δi,j for j ∈ I(k) .

Define V(q+1) := H1
0 (Ω) and, for k ∈ {1, . . . , q},

(4.4) V(k) := span{ψ(k)
i | i ∈ I(k)}.

By Theorem 3.1 span{ψ(k)
i | i ∈ I(k)} = span{L−1φ

(k)
i | i ∈ I(k)}, and the

nesting (4.1) of the measurement functions implies the nesting of the spaces V(k).
The following theorem (a direct application of Theorems 3.3 and 3.8) shows that u(k)

is the best (energy norm) approximation of the solution of (1.1) in V(k).

Theorem 4.3. It holds true that (1) for k ∈ {1, . . . , q}, V(k) ⊂ V(k+1) and

V(k) = span{L−1φ
(k)
i | i ∈ I(k)}, and (2) if u is the solution of (1.1) and u(k) is

defined in (4.2), then

(4.5) ‖u− u(k)‖a = inf
v∈V(k)

‖u− v‖a ≤
2

π
√
λmin(a)

Hk‖g‖L2(Ω).

4.3. Nested Games and Martingale/Multiresolution Decomposition. As in
section 3 we consider the mixed strategy (for Player II) expressed by replacing the
source term g with a centered Gaussian field with covariance function L. Under
this mixed strategy, Player II’s bet (4.2) on the value of the solution of (1.1), given

the measurements (
∫

Ω
u(y)φ

(k)
i (y) dy)i∈I(k) , can also be obtained by conditioning the

solution v of the SPDE (3.1) (see (3.10)), i.e.,

(4.6) u(k)(x) = E
[
v(x)

∣∣∣∣ ∫
Ω

v(y)φ
(k)
i (y) dy =

∫
Ω

u(y)φ
(k)
i (y) dy, i ∈ I(k)

]
.

Furthermore, each gamblet ψ
(k)
i represents Player II’s bet on the value of the solution

of (1.1) given the measurements
∫

Ω
u(y)φ

(k)
j (y) dy = δi,j , i.e.,

(4.7) ψ
(k)
i = E

[
v

∣∣∣∣ ∫
Ω

v(y)φ
(k)
j (y) dy = δi,j , j ∈ I(k)

]
.

Now consider the nesting of noncooperative games where Player I chooses g in

(1.1) and Player II is shown the measurements (
∫

Ω
uφ

(k)
i )i∈I(k) , step by step in a

hierarchical manner, from coarse (k = 1) to fine (k = q), and must, at each step
k of the game, gamble on the value of solution u. The following theorem and (4.6)
show that the resulting sequence of approximations u(k) forms the realization of a
martingale with independent increments.
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120 HOUMAN OWHADI

Theorem 4.4. Let Fk be the σ-algebra generated by the random variables

(
∫

Ω
v(x)φ

(k)
i )i∈I(k) and

(4.8) v(k)(x) := E
[
v(x)

∣∣Fk] =
∑
i∈I(k)

ψ
(k)
i (x)

∫
Ω

v(y)φ
(k)
i (y) dy.

It holds true that (1) F1, . . . ,Fq forms a filtration, i.e., Fk ⊂ Fk+1, (2) for x ∈
Ω, v(k)(x) is a martingale with respect to the filtration (Fk)k≥1, i.e., v(k)(x) =
E
[
v(k+1)(x)

∣∣Fk], and (3) v(1) and the increments (v(k+1) − v(k))k≥1 are independent
Gaussian fields.

Proof. The nesting (4.1) of the measurement functions implies Fk ⊂ Fk+1, and
(Fk)k≥1 is therefore filtration. The fact that v(k) is a martingale follows from v(k) =
E
[
v
∣∣Fk]. Since v(1) and the increments (v(k+1)− v(k))k≥1 are Gaussian fields belong-

ing to the same Gaussian space, their independence is equivalent to zero covariance,
which follows from the martingale property, i.e., for k ≥ 1, E

[
v(1)(v(k+1) − v(k))

]
=

E
[
E
[
v(1)(v(k+1) − v(k))

∣∣Fk]] = E
[
v(1)E

[
(v(k+1) − v(k))

∣∣Fk]] = 0 and for k > j ≥ 1,

E
[
(v(j+1) − v(j))(v(k+1) − v(k))

]
= E

[
(v(j+1) − v(j))E

[
(v(k+1) − v(k))

∣∣Fk]] = 0.

Remark 6. Theorem 4.4 enables the application of classical results concerning
martingales to the numerical analysis of v(k) (and u(k)). In particular, (1) martingale
(concentration) inequalities can be used to control the fluctuations of v(k), (2) optimal
stopping times can be used to derive optimal strategies for stopping numerical simu-
lations based on loss functions mixing computation costs with the cost of imperfect

decisions, and (3) taking q = ∞ in the construction of the basis elements ψ
(k)
i (with

a sequence Hk decreasing toward 0) and using the martingale convergence theorem
imply that, for all ϕ ∈ C∞0 (Ω),

∫
Ω
v(k)ϕ→

∫
Ω
vϕ as k →∞ (a.s. and in L1).

The independence of the increments v(k+1) − v(k) is related to the following or-
thogonal multiresolution decomposition of the operator (1.1). For V(k) defined as in
(4.4) and for k ∈ {2, . . . , q + 1}, let W(k) be the orthogonal complement of V(k−1)

within V(k) with respect to the scalar product
〈
·, ·
〉
a
. Write ⊕a as the orthogonal

direct sum with respect to the scalar product
〈
·, ·
〉
a
. Note that by Theorem 4.3, u(k)

defined by (4.2) is the finite element solution of (1.1) in V(k) (in particular, we will
write u(q+1) = u).

Theorem 4.5. It holds true that (1) for k ∈ {2, . . . , q + 1},

(4.9) V(k) = V(1) ⊕a W(2) ⊕a · · · ⊕a W(k),

(2) for k ∈ {1, . . . , q}, u(k+1) − u(k) belongs to W(k+1) and

(4.10) u = u(1) + (u(2) − u(1)) + · · ·+ (u(q) − u(q−1)) + (u− u(q))

is the orthogonal decomposition of u in H1
0 (Ω) = V(1)⊕aW(2)⊕a · · ·⊕aW(q)⊕aW(q+1),

and (3) u(k+1) − u(k) is the finite element solution of (1.1) in W(k+1).

Proof. Observe that since the V(k) are nested (see Theorem 4.3), u(k+1) − u(k)

belongs to V(k+1). Furthermore (by property (1) of Theorem 4.3 and integration by

parts), for i ∈ I(k),
〈
u(k+1) − u(k), ψ

(k)
i

〉
a

belongs to span{
∫

Ω
(u(k+1) − u(k))φ

(k)
i | i ∈

I(k)}. Finally, (4.2), the constraints of (4.3), and the nesting property (4.1) imply

that for i ∈ I(k),
∫

Ω
(u(k+1)−u(k))φ

(k)
i =

∑
j∈I(k+1) π

(k,k+1)
i,j

∫
Ω
uφ

(k+1)
j −

∫
Ω
uφ

(k)
i = 0,

which implies that u(k+1) − u(k) belongs to W(k+1).
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MULTIGRID WITH ROUGH COEFFICIENTS 121

4.4. Interpolation and Restriction Matrices/Operators. Since the spaces V(k)

are nested there exists a I(k) × I(k+1) matrix R(k,k+1) such that for 1 ≤ k ≤ q − 1
and i ∈ I(k),

(4.11) ψ
(k)
i =

∑
j∈I(k+1)

R
(k,k+1)
i,j ψ

(k+1)
j .

We will refer to R(k,k+1) as the restriction matrix and to its transpose R(k+1,k) :=
(R(k,k+1))T as the interpolation/prolongation matrix. The following theorem shows

that (see Figure 1) R
(k,k+1)
i,j is Player II’s best bet on the value of

∫
Ω
uφ

(k+1)
j given

the information that
∫

Ω
uφ

(k)
s = δi,s, s ∈ I(k).

Theorem 4.6. It holds true that for i ∈ I(k) and j ∈ I(k+1),

R
(k,k+1)
i,j =

∫
Ω

ψ
(k)
i φ

(k+1)
j = E

[ ∫
Ω

v(y)φ
(k+1)
j (y) dy

∣∣∣∣ ∫
Ω

v(y)φ
(k)
l (y) dy = δi,l, l ∈ I(k)

]
.

Proof. The first equality is obtained by integrating (4.11) against φ
(k+1)
j and us-

ing the constraints satisfied by ψ
(k+1)
j in (4.3). For the second equality, observe that

since Fk is a filtration, we can replace v in the representation formula (4.7) by v(k)

(as defined by the right-hand side of (4.8)) and obtain ψ
(k)
i (x) =

∑
j∈I(k+1) ψ

(k+1)
j (x)

E
[ ∫

Ω
v(y)φ

(k+1)
j (y) dy

∣∣ ∫
Ω
v(y)φ

(k)
l (y) dy = δi,l, l ∈ I(k)

]
, which corresponds to

(4.11).

4.5. Nested Computation of the Interpolation and Stiffness Matrices. Let v

be the solution of (3.1). Observe that (
∫

Ω
v(x)φ

(k)
i )i∈I(k) is a Gaussian vector with

(symmetric, positive definite) covariance matrix Θ(k) defined by, for i, j ∈ I(k),

(4.12) Θ
(k)
i,j :=

∫
Ω2

φ
(k)
i (x)G(x, y)φ

(k)
j (y) dx dy .

As in (3.3), Θ(k) is invertible and we write Θ(k),−1 as its inverse. Observe that, as in

Theorem 3.2, ψ
(k)
i admits the representation formula

(4.13) ψ
(k)
i (x) =

∑
j∈I(k)

Θ
(k),−1
i,j

∫
Ω

G(x, y)φ
(k)
j (y) dy.

Observe that, as in Theorem 3.2, Θ(k),−1 = A(k), where A(k) is the (symmetric,

positive definite) stiffness matrix of the elements ψ
(k)
i , i.e., for i, j ∈ I(k),

(4.14) A
(k)
i,j :=

〈
ψ

(k)
i , ψ

(k)
j

〉
a
.

Write π(k+1,k) as the transpose of the matrix π(k,k+1) (defined below (4.1)) and
I(k) as the I(k) × I(k) identity matrix. The following theorem enables the hierarchi-
cal/nested computation of A(k) from A(k+1).

Theorem 4.7. For b ∈ RI(k)

, R(k+1,k)b is the (unique) minimizer c ∈ RI(k+1)

of

(4.15)

{
Minimize cTA(k+1)c

subject to π(k,k+1)c = b.

Furthermore, R(k,k+1)π(k+1,k) = π(k,k+1)R(k+1,k) = I(k), R(k,k+1) = A(k)π(k,k+1)Θ(k+1),
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122 HOUMAN OWHADI

Θ(k) = π(k,k+1)Θ(k+1)π(k+1,k), and

(4.16) A(k) = R(k,k+1)A(k+1)R(k+1,k) .

Proof. Using the decompositions (4.11) and (4.1) in
∫

Ω
φ

(k)
j ψ

(k)
i = δi,j leads to

R(k,k+1)π(k+1,k) = I(k). Using (4.13) and (4.1) to expand ψ
(k)
i , Theorem 4.6 leads to

R(k,k+1) = A(k)π(k,k+1)Θ(k+1). Using (4.1) to expand φ
(k)
i and φ

(k)
j , in (4.12) leads to

Θ(k) = π(k,k+1)Θ(k+1)π(k+1,k). Using (4.11) to expand ψ
(k)
i and ψ

(k)
j in (4.14) leads to

(4.16). Let b ∈ RI(k)

. Theorem 3.2 implies that
∑
i∈I(k) biψ

(k)
i is the unique minimizer

of ‖v‖2a subject to v ∈ H1
0 (Ω) and

∫
Ω
φ

(k)
j v = bj for j ∈ I(k). Since V(k) ⊂ V(k+1)

and since the minimizer is in V(k), the minimization over v ∈ H1
0 (Ω) can be reduced

to v ∈ V(k+1) of the form v =
∑
i∈I(k+1) ciψ

(k+1)
i , which, after using (4.1) to expand

the constraint
∫

Ω
φ

(k)
j v = bj , corresponds to (4.15).

4.6. Multiresolution Gamblets. The interpolation and restriction operators are
sufficient to derive a multigrid method for solving (1.1). To design a multiresolu-
tion algorithm we need to continue the analysis and identify basis functions for the
subspaces W(k). For k = 2, . . . , q, let J (k) be the finite set of k-tuples of the form
i = (i1, . . . , ik) with 1 ≤ i1 ≤ m0, 1 ≤ ij ≤ m(i1,...,ij−1) for 2 ≤ j ≤ k − 1, and
1 ≤ ik ≤ m(i1,...,ik−1) − 1, where the integers m· are the same as those defining the
index tree I. For a matrix M , write Im(M) and Ker(M) as its image and kernel.

Lemma 4.8. For k = 2, . . . , q, let W (k) be a J (k)×I(k) matrix such that Im(W (k),T )

= Ker(π(k−1,k)). It holds true that the elements (χ
(k)
i )i∈J (k) ∈ V(k) defined as

(4.17) χ
(k)
i :=

∑
j∈I(k)

W
(k)
i,j ψ

(k)
j

form a basis of W(k).

Proof. Since LV(k−1) = span{φ(k−1)
i | i ∈ I(k−1)}, w ∈ V(k) belongs to W(k) if

and only if
∫

Ω
φ

(k−1)
j w = 0 for all j ∈ I(k−1), which, taking w = χ

(k)
i and using (4.1),

translates to (π(k−1,k)W (k),T )j,i = 0. Writing |J (k)| as the number of elements of
J (k) (which is equal to the dimension of W(k)), observe that |J (k)| = |I(k)|− |I(k−1)|.
Therefore, Im(W (k),T ) = Ker(π(k−1,k)) also implies that the |J (k)| elements χ

(k)
i are

linearly independent and, therefore, form a basis of W(k).

Remark 7. Observe that since 0 =
〈
ψ

(k−1)
i , χ

(k)
j

〉
a

= (R(k−1,k)A(k)W (k),T )i,j , it

also holds true that Im(W (k),T ) = Ker(R(k−1,k)A(k)) and Im(A(k)W (k),T ) =
Ker(R(k−1,k)).

From now on we choose, for each k ∈ {2, . . . , q}, a J (k) × I(k) matrix W (k) as
in Lemma 4.8. This choice is not unique and to enable fast multiplication by W (k)

(or its transpose) we require that for (j, i) ∈ J (k) × I(k), W
(k)
j,i = 0 if j(k−1) 6= i(k−1).

Therefore, the construction of W (k) requires, for each s ∈ I(k−1), the specification

of a number ms − 1 of ms-dimensional vectors W
(k)
(s,1),(s,·), . . . ,W

(k)
(s,ms−1),(s,·) that are

linearly independent and orthogonal to the ms-dimensional vector (1, 1, . . . , 1, 1). We
propose two simple constructions.
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MULTIGRID WITH ROUGH COEFFICIENTS 123

Fig. 1 If (τ
(k)
s , s ∈ I(k)) is a nested rectangular partition of Ω, then (a) ψ

(k)
i is Player II’s best bet

on the value of the solution u of (1.1) given
∫
τ

(k)
j

u = δi,j for j ∈ I(k), (b) χ
(k)
i is Player

II’s best bet on u given
∫
τ

(k)
j

u = δi,j − δi+,j for j ∈ I(k), and (c) R
(k,k+1)
i,j is Player II’s

best bet on
∫
τ

(k+1)
j

u given
∫
τ

(k)
j

u = δi,j for j ∈ I(k).

Construction 4.9. For k ∈ {2, . . . , q}, choose W (k) such that (1) W
(k)
j,i = 0 for

(j, i) ∈ J (k) × I(k) with j(k−1) 6= i(k−1) and (2) for s ∈ I(k−1), t ∈ {1, . . . ,ms − 1},
and t′ ∈ {1, . . . ,ms}, W (k)

(s,t),(s,t′) = δt,t′ − δt+1,t′ .

For k ∈ {2, . . . , q} and i = (i1, . . . , ik−1, ik) ∈ J (k), define i+ := (i1, . . . , ik−1, ik+
1) and observe that under Construction 4.9,

(4.18) χ
(k)
i = ψ

(k)
i − ψ

(k)
i+ ,

whose game-theoretic interpretation is provided in Figure 1.
For the second construction we need the following lemma whose proof is trivial.

Lemma 4.10. Let U (n) be the sequence of n × n matrices defined (1) for n = 2

by U
(2)
1,· = (1,−1) and U

(2)
2,· = (1, 1) and (2) iteratively for n ≥ 2 by U

(n+1)
i,j = U

(n)
i,j

for 1 ≤ i, j ≤ n, U
(n+1)
n+1,j = 1 for 1 ≤ j ≤ n + 1, U

(n+1)
i,n+1 = 0 for 1 ≤ i ≤ n − 1,

and U
(n+1)
n,n+1 = −n. Then, for n ≥ 2, the rows of U (n) are orthogonal, U

(n)
n,j = 1 for

1 ≤ j ≤ n, and we write Ū (n) for the corresponding orthonormal matrix obtained by
renormalizing the rows of U (n).

Construction 4.11. For k ∈ {2, . . . , q}, choose W (k) such that (1) W
(k)
j,i = 0 for

(j, i) ∈ J (k)×I(k) with j(k−1) 6= i(k−1) and (2) for s ∈ I(k−1) and t ∈ {1, . . . ,ms−1}
and t′ ∈ {1, . . . ,ms}, W (k)

(s,t),(s,t′) = Ū
(ms)
t,t′ (where Ū (ms) is defined in Lemma 4.10).

Observe that under Construction 4.11, (1) the complexity of constructing W (k)

is |I(k−1)| ×m2
s and (2) W (k)W (k),T = J (k), where J (k) is the J (k) × J (k) identity

matrix.

4.7. Multiresolution Operator Inversion. We will now use the basis functions

ψ
(1)
i and χ

(k)
i to perform the multiresolution inversion of (1.1). Let B(k) be the

J (k) × J (k) (stiffness) matrix B
(k)
i,j =

〈
χ

(k)
i , χ

(k)
j

〉
a

and observe that

(4.19) B(k) = W (k)A(k)W (k),T .

Observe that B(k) is positive symmetric definite and write B(k),−1 as its inverse. Let

© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

07
/1

9/
17

 to
 1

31
.2

15
.2

25
.9

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



124 HOUMAN OWHADI

π̄(k,k+1) be the I(k) × I(k+1) matrix defined by

(4.20) π̄
(k,k+1)
i,j = π

(k,k+1)
i,j /(π(k,k+1)π(k+1,k))i,i.

Using the notations of Definition 4.1 note that (π(k,k+1)π(k+1,k))i,i = mi. Let D(k,k−1)

be the J (k) × I(k−1) matrix defined as

(4.21) D(k,k−1) := −B(k),−1W (k)A(k)π̄(k,k−1)

and write D(k−1,k) := D(k,k−1),T as its transpose.

Theorem 4.12. It holds true that for k ∈ {1, . . . , q − 1} and i ∈ I(k),

(4.22) ψ
(k)
i =

∑
l∈I(k+1)

π̄
(k,k+1)
i,l ψ

(k+1)
l +

∑
j∈J (k+1)

D
(k,k+1)
i,j χ

(k+1)
j .

In particular,

(4.23) R(k,k+1) = π̄(k,k+1) +D(k,k+1)W (k+1).

Proof. For s ∈ I(k), write ψ̄
(k)
s :=

∑
l∈I(k+1) π̄

(k,k+1)
s,l ψ

(k+1)
l and V̄(k) := span{ψ̄(k)

s |
s ∈ I(k)}. Let x ∈ RI(k)

, y ∈ RJ (k+1)

, and

(4.24) ψ =
∑
s∈I(k)

xsψ̄
(k)
s +

∑
j∈J (k+1)

yjχ
(k+1)
j .

If ψ = 0, then integrating ψ against φ
(k)
i for i ∈ I(k) (and observing that

∫
Ω
φ

(k)
i ψ̄

(k)
s =

δi,s) implies x = 0 and y = 0. Therefore, the elements ψ̄
(k)
s , χ

(k+1)
j form a basis

for V̄(k) + W(k+1). Observing that dim(V(k+1)) = dim(V̄(k)) + dim(W(k+1)), we

deduce that V(k+1) = V̄(k) + W(k+1). Therefore, since V(k) ⊂ V(k+1), ψ
(k)
i can be

decomposed as in (4.24). The constraints
∫

Ω
φ

(k)
s ψ

(k)
i = δi,s lead to xs = δi,s. The

orthogonality between ψ and W(k+1) leads to the equations
〈
ψ, χ

(k+1)
j

〉
a

= 0 for j ∈
J (k+1), i.e.,

∑
l∈I(k+1) π̄

(k,k+1)
i,l

〈
ψ

(k+1)
l , χ

(k+1)
j

〉
a
+
∑
j′∈J (k+1) yj′

〈
χ

(k+1)
j′ , χ

(k+1)
j

〉
a

= 0,

which translates into W (k+1)A(k+1)π̄
(k+1,k)
·,i +B(k+1)y, that is, (4.22). Plugging (4.17)

into (4.22) and comparing with (4.11) leads to (4.23).

Let g be the right-hand side of (1.1). For k ∈ {1, . . . , q}, let g(k) be the |I(k)|-
dimensional vector defined by g

(k)
i =

∫
Ω
ψ

(k)
i g for i ∈ I(k). Observe that g(k) can be

computed iteratively using

(4.25) g(k) = R(k,k+1)g(k+1) .

For k ∈ {2, . . . , q}, let w(k) be the |J (k)|-dimensional vector defined as the solution
of

(4.26) B(k)w(k) = W (k)g(k).

Furthermore, let U (1) be the |I(1)|-dimensional vector defined as the solution of

(4.27) A(1)U (1) = g(1).

According to following theorem, which is a direct consequence of Theorem 4.5, the
solution of (1.1) can be computed at any scale by solving the decoupled linear systems
(4.26) and (4.27).
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MULTIGRID WITH ROUGH COEFFICIENTS 125

Theorem 4.13. For k ∈ {2, . . . , q}, let u(k) be the finite element solution of (1.1)

in V(k). It holds true that u(k) − u(k−1) =
∑
i∈J (k) w

(k)
i χ

(k)
i and, in particular,

(4.28) u(k) =
∑
i∈I(1)

U
(1)
i ψ

(1)
i +

k∑
k′=2

∑
i∈J (k′)

w
(k′)
i χ

(k′)
i .

4.8. Uniformly Bounded Condition Numbers across Subscales/Subbands.
Taking q = ∞ in Theorem 4.5, the construction of the basis elements ψ

(k)
i leads to

the multiresolution orthogonal decomposition

(4.29) H1
0 (Ω) = V(1)

∞
⊕a
i=2

W(i).

In that sense, the basis elements ψ
(k)
i and χ

(k)
i could be seen as a generalization of

wavelets to the orthogonal decomposition ofH1
0 (Ω) (rather than L2(Ω)) adapted to the

solution space of the PDE (1.1). We will now show that this orthogonal decomposition
induces a subscale decomposition of the operator −div(a∇) into layered subbands of
increasing frequencies. Moreover, the condition number of the operator −div(a∇)
restricted to each subspace W(k) will be shown to be uniformly bounded if Hk−1/Hk

is uniformly bounded (e.g., if Hk is a geometric sequence). Write H0 := 1 and let δ
be defined as in Construction 4.2.

Theorem 4.14. If k ∈ {1, . . . , q} and v ∈ V(k), then

(4.30)
δ1+d/2√

λmax(a)25/2+d/2
Hk ≤

‖v‖a
‖div(a∇v)‖L2(Ω)

.

If k = 1 and v ∈ V(1), or k ∈ {2, . . . , q} and v ∈W(k), then

(4.31)
‖v‖a

‖div(a∇v)‖L2(Ω)
≤ 1√

λmin(a)
Hk−1 .

Proof. (4.30) is a direct consequence of Lemma 3.10. For k = 1 (4.31) is a simple
consequence of Poincaré’s inequality. Let k ∈ {2, . . . , q}. V(k) = V(k−1) ⊕a W(k) and

Theorem 4.3 imply supv∈W(k)
‖v‖a

‖ div(a∇v)‖L2(Ω)
≤ supv∈V(k) infv′∈V(k−1)

‖v−v′‖a
‖ div(a∇v)‖L2(Ω)

≤
2

π
√
λmin(a)

Hk−1.

Write |c| as the Euclidean norm of c and for k ∈ {1, . . . , q} let

(4.32)
¯
γk := inf

c∈RI(k)

‖
∑
i∈I(k) ci φ

(k)
i ‖2L2(Ω)

|c|2
and γ̄k := sup

c∈RI(k)

‖
∑
i∈I(k) ci φ

(k)
i ‖2L2(Ω)

|c|2
.

Write |τ | as the volume of a set τ and note that γ̄k ≤ maxi∈I(k) |τ (k)
i | and

¯
γk ≥

mini∈I(k) |τ (k)
i |; therefore, γ̄k/

¯
γk ≤ δ−d.

For a given matrix M , write Cond(M) :=
√
λmax(MTM)/

√
λmin(MTM) as its

condition number.

Theorem 4.15. It holds true that

(4.33) Cond(A(1)) ≤ 1

H2
1

λmax(a)25+d

λmin(a)δ2+2d
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126 HOUMAN OWHADI

and, for k ∈ {2, . . . , q},

(4.34) Cond(B(k)) ≤
(
Hk−1

Hk

)2(
λmax(a)

λmin(a)

)2
211+2d

δ4+7dπ2
Cond(W (k)W (k),T ) .

Furthermore, Cond(W (k)W (k),T ) = 1 under Construction 4.11 and Cond(W (k)W (k),T )

≤ 2
(
Hk−1/(δHk)

)2d
under Construction 4.9.

Proof. Let k ∈ {1, . . . , q} and c ∈ RI(k)

. Write v =
∑
i∈I(k) ciψ

(k)
i . Observ-

ing that ‖v‖2a = cTA(k)c and ‖div(a∇v)‖2L2(Ω) = ‖
∑
i∈I(k)(A(k)c)iφ

(k)
i ‖2L2(Ω) ≥

¯
γk|A(k)c|2, (4.30) implies that

¯
γkH

2
kδ

2+d/(λmax(a)25+d) ≤ cTA(k)c/|A(k)c|2, which,
after taking the minimum in c, leads to (for k ≥ 1)

(4.35) λmax(A(k)) ≤ λmax(a)25+d/(H2
kδ

2+d

¯
γk),

and for k ≥ 2 (using (4.19))

(4.36) λmax(B(k)) ≤ λmax(W (k)W (k),T )λmax(a)25+d/(H2
kδ

2+d

¯
γk) .

Similarly, for k = 1 (4.31) leads to λmin(A(1)) ≥ λmin(a)/γ̄1. Now let us consider k ∈
{2, . . . , q} and c ∈ RJ (k)

. Write w =
∑
i∈J (k), j∈I(k) ciW

(k)
i,j ψ

(k)
j . (4.17) and (4.19) im-

ply that ‖w‖2a = cTB(k)c and, using (4.32), ‖div(a∇w)‖L2(Ω) =

‖
∑
i∈J (k), j∈I(k)(A(k)W (k),T c)jφ

(k)
j ‖L2(Ω) ≤ γ̄k|A(k)W (k),T c|2. Observing that w ∈

W(k), (4.31) implies that cTB(k)c
cTW (k)(A(k))2W (k),T c

≤ γ̄k 1
λmin(a)H

2
k−1. Taking c = B(k),−1y

for y ∈ RJ (k)

, we deduce that yTB(k),−1y
|A(k)W (k),TB(k),−1y|2 ≤ γ̄k

1
λmin(a)H

2
k−1. Writing N (k) =

−A(k)W (k),TB(k),−1, we have obtained that

(4.37) λmin(a)/
(
H2
k−1γ̄kλmax(N (k),TN (k))

)
≤ λmin(B(k)) .

For k ∈ {2, . . . , q} let P (k) := π(k,k−1)R(k−1,k). Using R(k−1,k) = A(k−1)π(k−1,k)Θ(k)

and π(k−1,k)Θ(k)π(k,k−1) = Θ(k−1) (Theorem 4.7), we obtain that (P (k))2 = P (k), i.e.,
P (k) is a projection. Write ‖P (k)‖Ker(π(k−1,k)) := supx∈Ker(π(k−1,k)) |P (k)x|/|x|.

Lemma 4.16. It holds true that, for k ∈ {2, . . . , q},

(4.38) λmax(N (k),TN (k)) ≤
1 + ‖P (k)‖2

Ker(π(k−1,k))

λmin(W (k)W (k),T )
.

Proof. Since Im(W (k),T ) and Im(π(k,k−1)) are orthogonal and dim(RI(k)

) =

dim
(

Im(W (k),T )
)

+ dim
(

Im(π(k,k−1))
)
, for x ∈ RI(k)

there exists a unique y ∈ RJ (k)

and z ∈ RI(k−1)

such that x = W (k),T y+π(k,k−1)z and |x|2 = |W (k),T y|2+|π(k,k−1)z|2.
Observe that W (k)x = W (k)W (k),T y (since W (k)π(k,k−1) = 0) and R(k−1,k)x =
R(k−1,k)W (k),T y + z (since R(k−1,k)π(k,k−1) = I(k−1) from Theorem 4.7). There-
fore, |x|2 = |W (k),T y|2 + |P (k)(x − W (k),T y)|2 with y = (W (k)W (k),T )−1W (k)x.

Let v ∈ RJ (k)

. Taking x = A(k)W (k),T v and observing that P (k)x = 0 (since
R(k−1,k)A(k)W (k),T = 0 from the

〈
·, ·
〉
a
-orthogonality between V(k−1) and W(k)) leads

to |A(k)W (k),T v|2 = |W (k),T y|2 + |P (k)W (k),T y|2 with y = (W (k)W (k),T )−1B(k)v.

Therefore, |A(k)W (k),T v|2 ≤ (1+‖P (k)‖2
Ker(π(k−1,k))

) |B(k)v|2
λmin(W (k)W (k),T )

, which concludes

the proof after taking v = B(k),−1v′ and maximizing the left-hand side over |v′| = 1.
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MULTIGRID WITH ROUGH COEFFICIENTS 127

Lemma 4.17. Writing ‖M‖2 := supx |Mx|/x as the spectral norm, we have

(4.39) ‖P (k)‖2Ker(π(k−1,k)) ≤ ‖π
(k,k−1)A(k−1)π(k−1,k)‖2 sup

x∈Ker(π(k−1,k))

xTΘ(k)x

xTx
.

Proof. Let x ∈ Ker(π(k−1,k)). Using P (k) = π(k,k−1)A(k−1)π(k−1,k)Θ(k)

we obtain that |P (k)x| = ‖π(k,k−1)A(k−1)π(k−1,k)(Θ(k))
1
2 ‖2|(Θ(k))

1
2x|. Observ-

ing that for M = π(k−1,k)(Θ(k))
1
2 we have MMT = Θ(k−1) and for N =

π(k,k−1)A(k−1)π(k−1,k)(Θ(k))
1
2 we have λmax(NTN) = λmax(NNT ), we deduce that

‖π(k,k−1)A(k−1)π(k−1,k)(Θ(k))
1
2 ‖22 = ‖π(k,k−1)A(k−1)π(k−1,k)‖2 and conclude by tak-

ing the supremum over x ∈ Ker(π(k−1,k)).

Lemma 4.18. It holds true that

(4.40) sup
x∈Ker(π(k−1,k))

xTΘ(k)x

xTx
≤ H2

k−1

γ̄2
k

¯
γkπ2λmin(a)

.

Proof. Let y ∈ RJ (k)

and α ∈ R. Let x = αW (k),T y. Write φ =
∑
i∈I(k) xiφ

(k)
i

and ψ = (− div(a∇·))−1φ. Observe that ‖ψ‖2a = xTΘ(k)x ≥ αyTW (k)Θ(k)W (k),T y.

Using
∫

Ω
φ

(k)
i φ

(k)
l = 0 for i 6= l and selecting α = ‖φ(k)

i ‖
−2
L2(Ω) (assuming, without loss

of generality, that ‖φ(k)
i ‖2L2(Ω) = |τ (k)

i | is constant in i, for the general case, rescale

each φ
(k)
i by a multiplicative constant), we obtain that for j ∈ I(k−1),

∫
Ω
φφ

(k−1)
j =∑

i∈I(k) xi‖φ(k)
i ‖2L2(Ω)π

(k−1,k)
j,i = (π(k−1,k)W (k),T y)j = 0. Therefore, since ‖ψ‖2a =∫

Ω
φψ, we have for ψ′ ∈ span{φ(k−1)

i | i ∈ I(k−1)}, ‖ψ‖2a =
∫

Ω
φ(ψ − ψ′) ≤

‖φ‖L2(Ω)‖ψ − ψ′‖L2(Ω). Choosing ψ′ =
∑
i∈I(k−1) φ

(k−1)
i

∫
Ω
ψφ

(k−1)
i /‖φ(k−1)

i ‖2L2(Ω)

we obtain (via the Poincaré and Cauchy–Schwarz inequalities as in the proof of
Proposition 3.6) that ‖ψ − ψ′‖L2(Ω) ≤ Hk−1‖ψ‖a/(π

√
λmin(a)) and deduce ‖ψ‖a ≤

Hk−1‖φ‖L2(Ω)/(π
√
λmin(a)). Observing that ‖φ‖2L2(Ω) ≤ |x|

2γ̄k and
¯
γk ≤ α−1 ≤ γ̄k,

we summarize and obtain that yTW (k)Θ(k)W (k),T y ≤ H2
k−1|x|2γ̄2

k/(π
2λmin(a)) ≤

H2
k−1|W (k),T y|2γ̄2

k/(
¯
γkπ

2λmin(a)), which concludes the proof of the lemma (since

Ker(π(k−1,k)) = Im(W (k),T )).

Observing that ‖π(k,k−1)A(k−1)π(k−1,k)‖2 ≤ λmax(π(k,k−1)π(k−1,k))λmax(A(k−1))
and using (4.35), we derive from Lemmas 4.17 and 4.18 that

(4.41) ‖P (k)‖2Ker(π(k−1,k)) ≤ λmax(π(k,k−1)π(k−1,k))
γ̄2
k25+dλmax(a)

¯
γk

¯
γk−1δ2+dπ2λmin(a)

.

Observing that π(k,k−1)π(k−1,k) is block diagonal and using the notations of Defini-
tion 4.1, we have λmax(π(k,k−1)π(k−1,k)) = maxj∈I(k−1) supx∈Rmj |

∑mj
i=1 xi|2/|x|2 =

maxj∈I(k−1) mj . Noting that a set τ
(k−1)
j can contain at most (maxj∈I(k−1) |τ (k−1)

j |)/
(mini∈I(k) |τ (k)

i |) subsets τ
(k)
i , we have

(4.42) max
j∈I(k−1)

mj ≤
(
Hk−1/(δHk)

)d
and conclude that λmax(π(k,k−1)π(k−1,k)) ≤

(
Hk−1/(δHk)

)d
. Therefore, (4.37) and

Lemma 4.16 imply, after simplification, that

(4.43) λmin(B(k)) ≥ λmin(a)

H2
k−1γ̄k

λmin(W (k)W (k),T )
Hd
k
¯
γk−1

¯
γkδ

2+2dπ2λmin(a)

Hd
k−1γ̄

2
k26+dλmax(a)

.
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128 HOUMAN OWHADI

Recalling that γ̄k/
¯
γk ≤ δ−d, using γ̄k/

¯
γk−1 ≤ Hd

k/(Hk−1δ)
d, and summarizing, we

conclude the proof of (4.33) and (4.34). Recall that under Construction 4.11 we have
W (k)W (k),T = J (k), which implies Cond(W (k)W (k),T ) = 1. Under Construction 4.9,
W (k)W (k),T is block diagonal with, for j ∈ I(k−1), diagonal blocks corresponding
to (mj − 1) × (mj − 1) matrices M (mj−1) such that (1) for n = 1 and x ∈ R,
xTM (1)x = 2x2, (2) for n = 2 and x ∈ R2, xTM (2)x = x2

1 + (x2 − x1)2 + x2
2, and (3)

for n ≥ 3 and x ∈ Rn, xTM (n)x = x2
1+
∑n−2
i=1 (xi−xi+1)2+x2

n. Note that for all n ≥ 1,
λmax(M (n)) ≤ 3. Furthermore, for n ≥ 3 (n ≤ 2 is trivial), introducing the variables
y2 = x2 − x1, . . . , yn = xn − xn−1, we obtain that xTM (n)x = x2

1 + y2
2 + · · ·+ y2

n + x2
n

and |x|2 = x2
1 + (x1 + y2)2 + · · · + (x1 + y2 + · · · + yn)2 ≤ (xTM (n)x)n(n + 1)/2.

Therefore, λmin(M (n)) ≥ 2/(n(n + 1)). We conclude that under Construction 4.9,
Cond(W (k)W (k),T ) ≤ maxj∈I(k−1) 3(mj − 1)mj/2 and bound mj as in (4.42).

4.9. Well-Conditioned Relaxation across Subscales. If Hk is a geometric se-
quence, or if Hk−1/Hk is uniformly bounded, then, by Theorem (4.15), the linear

systems (4.26) and (4.27) entering into the calculation of the gamblets χ
(k)
i (and there-

fore ψ
(k)
i ) and the subband/subscale solutions u(1) and u(k+1) − u(k) have uniformly

bounded condition numbers (in particular, these condition numbers are bounded in-
dependently from the mesh size/resolution and the regularity of a(x)). Therefore,
these systems can be solved efficiently using iterative methods. One such method
is the conjugate gradient (CG) method [57]. Recall [98] that the application of
the CG method to a linear system Ax = b (where A is an n × n symmetric posi-
tive definite matrix) with initial guess x(0) yields a sequence of approximations x(l)

satisfying (writing |e|2A := eTAe) |x − x(l)|A ≤ 2
(√Cond(A)−1√

Cond(A)+1

)l|x − x(0)|A, where

Cond(A) := λmax(A)/λmin(A). Also recall [98] that the maximum number of itera-
tions required to reduce the error by a factor ε (|x− x(l)|A ≤ ε|x− x(0)|A) is bounded
by 1

2

√
Cond(A) ln 2

ε and has complexity (number of required arithmetic operations)

O(
√

Cond(A)NA) (writing NA as the number of nonzero entries of A).

4.10. Hierarchical Localization and Error Propagation across Scales. Despite
the fact that the multiresolution decomposition presented in this section leads to
well-conditioned linear systems, the resulting matrices B(k) and A(k) are dense and,
to achieve near-linear complexity in the resolution of (1.1), these matrices must be

truncated by localizing the computation of the basis functions ψ
(k)
i (and therefore

χ
(k)
i ). The approximation error induced by these localization/truncation steps is con-

trolled by the exponential decay of gamblets and the uniform bound on the condition
numbers of the matrices B(k). To make this control explicit and derive a bound the
size of the localization subdomains we need to quantify the propagation of trunca-
tion/localization errors across scales, and this is the purpose of this subsection.

For k ∈ {1, . . . , q}, ρ ≥ 1, and i ∈ I(k), we define (1) iρ as the subset of indices

j ∈ I(k) whose corresponding subdomains τ
(k)
j are at distance at most Hkρ from τ

(k)
i

and (2) Siρ := ∪j∈iρτ (k)
j . Let ρ1, . . . , ρq ≥ 1. For k ∈ {1, . . . , q − 1} and i ∈ I(k),

write iρ,k+1 as the subset of indices j ∈ I(k+1) such that j(k) ∈ iρ. For i ∈ I(q), let

V
(q+1),loc
i := H1

0 (Siρq ). For k ∈ {1, . . . , q} and i ∈ I(k), let ψ
(k),loc
i be the minimizer of

(4.44) Minimize ‖ψ‖a subject to ψ ∈ V
(k+1),loc
i and

∫
Ω

ψφ
(k)
j = δi,j for j ∈ iρk ,

where, for k ∈ {1, . . . , q − 1} and i ∈ I(k), V
(k+1),loc
i is defined (via induction) by

V
(k+1),loc
i := span{ψ(k+1),loc

j | j ∈ iρk,k+1}.
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MULTIGRID WITH ROUGH COEFFICIENTS 129

From now on we will assume that Hk = Hk for some H ∈ (0, 1) (or simply
that Hk is uniformly bounded from below and above by Hk). To simplify the pre-
sentation, we will also, from now on, write C as any constant that depends only
on d,Ω, λmin(a), λmax(a), or δ (e.g., 2Cλmax(a) will still be written C). The fol-
lowing theorem allows us to control the localization error propagation across scales.

For k ∈ {1, . . . , q}, let A(k),loc be the I(k) × I(k) matrix defined by A
(k),loc
i,j :=〈

ψ
(k),loc
i , ψ

(k),loc
j

〉
a

and let E(k) be the (localization) error E(k) :=
(∑

i∈I(k) ‖ψ(k)
i −

ψ
(k),loc
i ‖2a

) 1
2 .

Theorem 4.19. For k ∈ {1, . . . , q − 1}, we have

(4.45) E(k) ≤ CH− d2 E(k + 1) + Ce−ρk/CH
d
2−(k+1)(d+1).

Proof. We will need the following lemma summarizing and simplifying some re-
sults obtained in Theorem 4.14 when Hk = Hk.

Lemma 4.20. Let Hk = Hk and W (k) be as in Construction 4.9 or Construction
4.11. It holds true that for k∈{q, . . . , 2}, (1) ‖W (k)‖2≤

√
3, (2) 1/λmin(W (k)W (k),T )≤

CH−2d, (3) ‖π̄(k−1,k)‖2 ≤ CH
d
2 , (4) ‖π(k−1,k)‖2 ≤ CH−d/2, (5) ‖R(k−1,k)‖2 ≤

CH−d/2, (6) Cond(B(k)) ≤ CH−2−2d, (7) λmax(B(k)) ≤ CH−k(2+d), and
(8) 1/λmin(B(k)) ≤ CHk(2+d)−2−2d. Furthermore, (9) Cond(A(1)) ≤ CH−2, (10)
1/λmin(A(1)) ≤ CHd, and, for k ∈ {1, . . . , q}, (11) λmax(A(k)) ≤ CH−k(2+d).

Proof. From the proof of Theorem 4.15 we have (1) and 1/λmin(W (k)W (k),T ) ≤
maxi∈I(k−1)(mi − 1)mi/2, which implies (2). For (3), noting that π̄

(k−1,k)
i,j = 0 if

j(k−1) 6= i and π̄
(k−1,k)
i,j = 1/mi, otherwise, we have ‖π̄(k−1,k)‖2 = maxi∈I(k−1) 1/

√
mi

≤ CH
d
2 . (4) follows from λmax(π(k,k−1)π(k−1,k)) = maxi∈I(k−1) mi ≤ CH−d. Let

us now prove (5). Using (4.23), (4.21), and defining N (k) = −A(k)W (k),TB(k),−1

as in Lemma 4.16, we have R(k−1,k) = π̄(k−1,k) + π̄(k−1,k)N (k)W (k), which leads to
‖R(k−1,k)‖2 ≤ ‖π̄(k−1,k)‖2(1 + ‖N (k)‖2‖W (k)‖2). Using Lemma 4.16 and (4.41) we
obtain that λmax(N (k),TN (k)) ≤

(
1+Cλmax(π(k,k−1)π(k−1,k))Hd

)
/λmin(W (k)W (k),T )

and, therefore, ‖N (k)‖2 ≤ CH−d. Summarizing, we have obtained (5). (6), (7), (8),
and (11) follow from Theorem 4.14 and, in particular, (4.36), (4.43), and (4.35). See
(4.33) and the proof of Theorem 4.15 for (9) and (10).

We will also need the following lemma.

Lemma 4.21. Let k ∈ {1, . . . , q− 1} and let R be the I(k)×I(k+1) matrix defined

by Ri,j = 0 for j ∈ iρk,k+1 and Ri,j = R
(k,k+1)
i,j for j ∈ I(k+1)/iρk,k+1. It holds true

that ‖R‖2 ≤ CHd/2e−ρk/C .

Proof. Observe that ‖R‖22 ≤ |I(k)|maxi∈I(k)

∑
j∈I(k+1)/iρk,k+1 |R(k,k+1)

i,j |2 with

|I(k)| ≤ CH−dk . Let i ∈ I(k). Using Theorem 4.6 and the Cauchy–Schwarz

inequality we have |R(k,k+1)
i,j | ≤ ‖ψ(k)

i ‖L2(τ
(k+1)
j )

‖φ(k+1)
j ‖

L2(τ
(k+1)
j )

. Therefore,∑
j∈I(k+1)/iρk,k+1 |R(k,k+1)

i,j |2 ≤ CHd
k+1

∑
j∈I(k+1)/iρk,k+1 ‖ψ(k)

i ‖2L2(τ
(k+1)
j )

. Observe that∑
j∈I(k+1)/iρk,k+1 ‖ψ(k)

i ‖2L2(τ
(k)
j )

=
∑
s∈I(k)/iρk ‖ψ

(k)
i ‖2L2(τ

(k)
s )

. Since
∫
τ

(k)
s
ψ

(k)
i = 0 for

s 6= i we obtain from Poincaré’s inequality that ‖ψ(k)
i ‖L2(τs) ≤ C‖∇ψ(k)

i ‖L2(τ
(k)
s )

Hk.

Therefore,
∑
j∈I(k+1)/iρk,k+1 |R(k,k+1)

i,j |2 ≤ CHd
k+1H

2
k

∑
s∈I(k)/iρk ‖∇ψ

(k)
i ‖2L2(τ

(k)
s )

. Us-

ing Theorem 3.9 we obtain that
∑
s∈I(k)/iρk ‖∇ψ

(k)
i ‖2L2(τ

(k)
s )
≤ Ce−C

−1ρk‖ψ(k)
i ‖2a.
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130 HOUMAN OWHADI

Using (3.25) we have ‖ψ(k)
i ‖2a ≤ CH−d−2

k , therefore,
∑
j∈I(k+1)/iρk,k+1 |R(k,k+1)

i,j |2 ≤
CHde−C

−1ρk .

Let us now prove Theorem 4.19. We obtain by induction (using the constraints

in (4.44)) that for k ∈ {1, . . . , q} and i ∈ I(k), ψ
(k),loc
i satisfies the constraints of

(4.3). Moreover, (3.8) implies that if ψ satisfies the constraints of (4.3), then ‖ψ‖2a =

‖ψ(k)
i ‖2a+‖ψ−ψ(k)

i ‖2a. Therefore, for k ∈ {2, . . . , q−1}, ψ(k),loc
i is also the minimizer of

‖ψ−ψ(k)
i ‖a over functions ψ of the form ψ =

∑
j∈iρk,k+1 cjψ

(k+1),loc
j satisfying the con-

straints of (4.44). Thus, writing ψ∗ :=
∑
j∈iρk,k+1 R

(k,k+1)
i,j ψ

(k+1),loc
j , we have (since

ψ∗ satisfies the constraints of (4.44)) ‖ψ(k),loc
i − ψ(k)

i ‖a ≤ ‖ψ∗ − ψ
(k)
i ‖a. Write ψ1 :=∑

j∈I(k+1) R
(k,k+1)
i,j ψ

(k+1),loc
j and ψ2 :=

∑
j∈I(k+1)/iρk,k+1 R

(k,k+1)
i,j ψ

(k+1),loc
j . Observ-

ing that ψ∗ = ψ1 − ψ2, we deduce that ‖ψ(k),loc
i − ψ(k)

i ‖2a ≤ 2‖ψ1 − ψ(k)
i ‖2a + 2‖ψ2‖2a

and, after summing over i,
(
E(k)

)2 ≤ 2(I1+I2) with I1 =
∑
i∈I(k) ‖

∑
j∈I(k+1) R

(k,k+1)
i,j

(ψ
(k+1)
j −ψ(k+1),loc

j )‖2a and I2 =
∑
i∈I(k) ‖

∑
j∈I(k+1)/iρk,k+1 R

(k,k+1)
i,j ψ

(k+1),loc
j ‖2a. Writ-

ing S as the I(k+1) × I(k+1) symmetric positive matrix with entries Si,j =
〈
ψ

(k+1)
i −

ψ
(k+1),loc
i , ψ

(k+1)
j − ψ

(k+1),loc
j

〉
a
, note that I1 = Trace[R(k,k+1)SR(k+1,k)]. Writing

S
1
2 as the matrix square root of S, observe that for a matrix U , using the cyclic

property of the trace, Trace[USUT ] = Trace[S
1
2UTUS

1
2 ] ≤ λmax(UTU) Trace[S],

which, observing that Trace[S] = (E(k + 1))2 and λmax(UTU) = ‖U‖22, implies I1 ≤
‖R(k,k+1)‖22

(
E(k + 1)

)2
. Therefore (using Lemma 4.20), we have

√
I1 ≤ CHd/2E(k +

1). Let us now bound I2. Let R be defined as in Lemma 4.21. Noting that〈
ψ

(k+1),loc
i , ψ

(k+1),loc
j

〉
a

= A
(k+1),loc
i,j we have (as above) I2 = Trace[RA(k+1),locRT ] ≤

λmax(RTR) Trace[A(k+1),loc].
Summarizing and using Lemma 4.21 we deduce that E(k) ≤ CHd/2E(k + 1) +

CHd/2e−ρk/C
√

Trace[A(k+1),loc]. Observing that
√

Trace[A(k+1),loc] ≤ E(k + 1) +√
Trace[A(k+1)] and using Trace[A(k+1)] ≤ CH−dk+1 maxi∈I(k+1) ‖ψ(k+1)

i ‖2a and (Lemma

3.12) ‖ψ(k+1)
i ‖a ≤ CH

− d2−1

k+1 , we conclude the proof of the theorem.

Let u(1),loc be the finite element solution of (1.1) in V(1),loc := span{ψ(k),loc
j | j ∈

I(1)}. For k ∈ {2, . . . , q}, let W (k) be defined as in Construction 4.9 or Construction

4.11. For i ∈ J (k), let χ
(k),loc
i :=

∑
j∈I(k) W

(k)
i,j ψ

(k),loc
j . For k ∈ {2, . . . , q}, let u(k),loc−

u(k−1),loc be the finite element solution of (1.1) in W(k),loc := span{χ(k),loc
j | j ∈ J (k)}.

For k ∈ {2, . . . , q}, write u(k),loc := u(1),loc +
∑k
j=2(u(j),loc − u(j−1),loc). Let B(k),loc

be the J (k) × J (k) matrix defined by B
(k),loc
i,j :=

〈
χ

(k),loc
i , χ

(k),loc
j

〉
a
. Observe that

B(k),loc = W (k)A(k),locW (k),T . Write for k ∈ {2, . . . , q}, E(k, χ) :=
(∑

j∈J (k) ‖χ(k)
j −

χ
(k),loc
j ‖2a

) 1
2 . The following theorem allows us to control the effect of the localization

error on the approximation of the solution of (1.1).

Theorem 4.22. It holds true that, for k ∈ {2, . . . , q}, (1) E(k, χ) ≤ CH−d/2E(k).
Furthermore for k ∈ {2, . . . , q} and E(k, χ) ≤ C−1H−k(1+d/2)+1+d, we have (2)
Cond(B(k),loc) ≤ CH−2−2d and (3) ‖u(k)−u(k−1)−(u(k),loc−u(k−1),loc)‖a ≤ CE(k, χ)
‖g‖H−1(Ω)H

k(1+d/2)−3d−3. Similarly, for E(1)≤C−1H−d/2, we have (4) Cond(A(1),loc)

≤ CH−2 and (5) ‖u(1) − u(1),loc‖a ≤ CE(1)‖g‖H−1(Ω)H
−2+d/2.

Proof. We will need the following lemma.
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MULTIGRID WITH ROUGH COEFFICIENTS 131

Lemma 4.23. Let χ1, . . . , χm be linearly independent elements of H1
0 (Ω). Let

χ′1, . . . , χ
′
m be another set of linearly independent elements of H1

0 (Ω). Write E :=(∑m
i=1 ‖χi−χ′i‖2a

) 1
2 . Let B (resp., B′) be the m×m matrix defined by Bi,j =

〈
χi, χj

〉
a

(resp., B′i,j =
〈
χ′i, χ

′
j

〉
a
). Let um (resp., u′m) be the solution of (1.1) in span{χi | i =

1, . . . ,m} (resp., span{χ′i | i = 1, . . . ,m}). It holds true that for E ≤
√
λmin(B)/2

(1) Cond(B′) ≤ 8 Cond(B), (2) ‖B − B′‖2 ≤ 3
√
λmax(B)E, (3) ‖B−1 − (B′)−1‖2 ≤

12
√
λmax(B)

(
λmin(B)

)−2E, and (4) ‖um − u′m‖a ≤ CE‖g‖H−1(Ω)
Cond(B)√
λmin(B)

.

Proof. For (1) observe that
√
λmax(B′) = sup|x|=1 ‖

∑m
i=1 xiχ

′
i‖a ≤

√
λmax(B) +

E and
√
λmin(B′) = inf |x|=1 ‖

∑m
i=1 xiχ

′
i‖a ≥

√
λmin(B)−E . For (2) observe that for

x, y ∈ Rm with |x| = |y| = 1 we have yT (B−B′)x =
〈∑m

i=1 yi(χi−χ′i),
∑m
i=1 xiχi

〉
a
−〈∑m

i=1 yiχ
′
i,
∑m
i=1 xi(χ

′
i − χi)

〉
a
≤ (
√
λmax(B′) +

√
λmax(B))E . (3) follows from (2)

and ‖B−1 − (B′)−1‖2 ≤ ‖B − B′‖2/
(
λmin(B)λmin(B′)

)
. For (4) observe that um =∑m

i=1 wiχi (resp., u′m =
∑m
i=1 w

′
iχ
′
i), where w = B−1b with bi =

∫
Ω
gχi (resp., w′ =

(B′)−1b′ with b′i =
∫

Ω
gχ′i). Therefore, ‖um − u′m‖a ≤ |w|E + |w − w′|

√
λmax(B).

w − w′ = B−1(b − b′) − B−1(B − B′)w′ leads to |w − w′| ≤ C(‖g‖H−1(Ω)E + ‖B −
B′‖2|w′|)/λmin(B). Using (2), λmin(B)|w|2 ≤ ‖

∑m
i=1 wiχi‖2a ≤ ‖u‖2a ≤ C‖g‖2H−1(Ω),

and λmin(B′)|w′|2 ≤ C‖g‖2H−1(Ω) we conclude the proof of (4) after simplification.

Let us now prove Theorem 4.22. Using χ
(k)
j − χ

(k),loc
j =

∑
i∈I(k) W

(k)
j,i (ψ

(k)
i −

ψ
(k),loc
i ) and noting that W

(k)
j,i = 0 for i(k−1) 6= j(k−1) we have

(
E(k, χ)

)2 ≤∑j∈J (k)(∑
i∈I(k)(W

(k)
j,i )2

∑
i∈I(k),i(k−1)=j(k−1) ‖ψ(k)

i − ψ
(k),loc
i ‖2a

)
. Therefore,

(
E(k, χ)

)2 ≤(
E(k)

)2
maxi∈I(k−1) mi maxj∈J (k)

∑
i∈I(k)(W

(k)
j,i )2. Observing that (see (4.42))

maxi∈I(k−1) mi ≤ 1/(Hδ)d and
∑
i∈I(k)(W

(k)
j,i )2 ≤ λmax(W (k)W (k),T ) ≤ 3 (see Lemma

4.20) we conclude that (1) holds true with C = (3/δd)
1
2 . (2) and (3) are a direct

application of Lemmas 4.23 and 4.20. For (3), observe that u(k) − u(k−1) (resp.,
u(k),loc − u(k−1),loc) is the finite element solution of (1.1) in W(k) (resp., W(k),loc :=

span{χ(k),loc
j | j ∈ J (k)}). The proof of (4) and (5) is similar to that of (2) and (3).

Theorem 4.24. Let k ∈ {1, . . . , q}. We have E(k) ≤ C
∑q
j=k e

−ρj/C

Cj−kH−
d
2 +k d2−j3

d
2 .

Proof. By Theorem 4.19, for k ∈ {1, . . . , q−1}, we have E(k) ≤ ak+bkE(k+1) with

ak = Ce−ρk/CH
d
2−(k+1)(d+1) and bk = CH−

d
2 . Therefore, we obtain by induction

that E(k) ≤ ak + bkak+1 + bkbk+1ak+2 + · · ·+ bk · · · bq−2aq−1 + bk · · · bq−1E(q). Using
Theorem 3.11 we have E(q) ≤ CH−d/2−q(2+d/2)e−ρq/C and obtain the result after
simplification.

Theorem 4.25. Let ε ∈ (0, 1). It holds true that if ρk ≥ C
(
(1 + 1

ln(1/H) ) ln 1
Hk

+

ln 1
ε

)
for k ∈ {1, . . . , q}, then (1) for k ∈ {1, . . . , q} we have ‖u(k) − u(k),loc‖a ≤

ε‖g‖H−1(Ω) and ‖u − u(k),loc‖a ≤ C(Hk + ε)‖g‖L2(Ω), (2) Cond(A(1),loc) ≤ CH−2,

and, for k ∈ {2, . . . , q}, we have (3) Cond(B(k),loc) ≤ CH−2−2d and (4) ‖u(k) −
u(k−1) − (u(k),loc − u(k−1),loc)‖a ≤ ε

2k2 ‖g‖H−1(Ω).

Proof. Theorems 4.3 and 4.22 imply that the results of Theorem 4.25 hold true
if for k ∈ {1, . . . , q}, E(k) ≤ C−1H−k(1+d/2)+7d/2+3ε/k2. Using Theorem 4.24 we
deduce that the results of Theorem 4.25 hold true if for k ∈ {1, . . . , q} and k ≤ j ≤ q
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132 HOUMAN OWHADI

we have Ce−ρj/CCj−kH−
d
2 +k d2−j3

d
2 ≤ H−k(1+d/2)+7d/2+3ε/(k2j2). We conclude after

simplification.

5. The Algorithm, Its Implementation, and Its Complexity.

5.1. The Initialization of the Algorithm. To describe the practical implemen-
tation of the algorithm we consider the (finite element) discretized version of (1.1).
Let Th be a regular fine mesh discretization of Ω of resolution h with 0 < h � 1.
Let N be the set of interior nodes zi and N = |N | be the number of interior nodes
(N = O(h−d)) of Th. Write (ϕi)i∈N as a set of regular nodal basis elements (of
H1

0 (Ω)) constructed from Th such that, for each i ∈ N , support(ϕi) ⊂ B(zi, C0h) and
for y ∈ RN ,

(5.1)
¯
γhd|y|2 ≤ ‖

∑
i∈N

yiϕi‖2L2(Ω) ≤ γ̄h
d|y|2

for some constants
¯
γ, γ̄, C0 ≈ O(1). In addition to (5.1) the regularity of the finite

elements is used to ensure the availability of the inverse Poincaré inequality

(5.2) ‖∇v‖L2(Ω) ≤ C1h
−1‖v‖L2(Ω)

for v ∈ span{ϕi | i ∈ N} and some constant C1 ≈ O(1), used to generalize the proof
of Theorem 4.14 to the discrete case.

Given g =
∑
i∈N giϕi we want to find u ∈ span{ϕi | i ∈ N} such that for all

j ∈ N ,

(5.3)
〈
ϕj , u

〉
a

=

∫
Ω

ϕjg for all j ∈ N .

In practical applications a is naturally assumed to be piecewise constant over the fine
mesh (e.g., of constant value in each triangle or square of Th) and one purpose of the
algorithm is the fast resolution of the linear system (5.3) up to accuracy ε ∈ (0, 1).

Fig. 2 The (fine) mesh Th, a (in log10 scale), and u.

Example 5.1. We will illustrate the presentation of the algorithm with a numer-
ical example in which Th is a square grid of mesh size h = (1 + 2q)−1 with q = 6 and
64 × 64 interior nodes (see Figure 2). a is piecewise constant on each square of Th
given by a(x) =

∏6
k=1

(
1+0.5 cos

(
2kπ( i

2q+1 + j
2q+1 )

))(
1+0.5 sin

(
2kπ( j

2q+1−3 i
2q+1 )

))
for x ∈ [ i

2q+1 ,
i+1

2q+1 )× [ j
2q+1 ,

j+1
2q+1 ). The contrast of a (i.e., when a is scalar, the ratio

between its maximum and minimum values) is 1866. The finite element discretization
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MULTIGRID WITH ROUGH COEFFICIENTS 133

(5.3) is obtained using continuous nodal basis elements ϕi spanned by {1, x1, x2, x1x2}
in each square of Th. Writing zi as the positions of the interior nodes of Th, we choose,
for our numerical example, g(x) =

∑
i∈N

(
cos(3zi,1 + zi,2) + sin(3zi,2) + sin(7zi,1 −

5zi,2)
)
ϕi(x).

Fig. 3 I(1), I(2), and I(3).

The first step of the proposed algorithm is the construction of the index tree I
of Definition 4.2 describing the domain decomposition of Definition 4.2. To ensure a
uniform bound on the condition numbers of the stiffness matrices (4.19), one must
select the resolutions Hk to form a geometric sequence (or simply such that Hk−1/Hk

is uniformly bounded), i.e., Hk = Hk for some H ∈ (0, 1) (for our numerical example,
H = 1/2, q = 6, and we identify I(k) as the indices of the interior nodes of a square
grid of resolution (1 + 2k)−1 as illustrated in Figure 3). In this construction Hq = h

corresponds to the resolution of the fine mesh and each subset τ
(q)
i (i ∈ I(q)) contains

one and only one element of N (interior node of the fine mesh). Using this one-to-one
correspondence we use the elements of I = Iq to (re)label the nodal elements (ϕi)i∈N
as (ϕi)i∈I . The measurement functions (φ

(k)
i )i∈I(k) are then identified (1) by selecting

φ
(q)
i = ϕi for i ∈ I(q) and (2) via the nested aggregation (4.1) of the nodal elements (as

is commonly done in AMG), i.e., φ
(k)
i =

∑
j∈I(k+1) π

(k,k+1)
i,j φ

(k+1)
j =

∑
j∈i(k,k+1) φ

(k+1)
j

for k ∈ {1, . . . , q − 1} and i ∈ I(k).

Remark 8. We refer to Figure 4 for an illustration of these measurement functions

for our numerical example. Note that the support of each φ
(k)
i is only approxima-

tively (and not exactly) τ
(k)
i and that the φ

(k)
i are only approximate set functions

(and not exact ones). This does not affect the design, accuracy, and localization of
the algorithm presented here because the frame inequalities (4.32), and the Poincaré

inequalities ‖
∑
i∈I(k) xiφ

(k)
i ‖H−1(Ω) ≤ C Hk−1‖φ(k)

i ‖L2(Ω) x ∈ Ker(π(k−1,k)), hold
true. Indeed, (5.1) and Construction 4.2 imply that the frame inequalities (4.32) with
γ̄k ≤ γ̄δ−d and

¯
γk ≥

¯
γδd and the Poincaré inequalities are regularity/homogeneity

conditions on the mesh and the aggregated elements. Although a fine mesh has been
used to facilitate the presentation of the algorithm, the proposed method is meshless
(it only requires the specification of the basis elements (ϕi)i∈I).

5.2. Exact Gamblet Transform and Multiresolution Operator Inversion. The
near-linear complexity of the proposed multiresolution algorithm (Algorithm 2) is
based on three properties: (i) nesting, (ii) uniformly bounded condition numbers,
and (iii) localization/truncation based on exponential decay. Truncation/localization
levels/subsets are, a priori, functions of the desired level of accuracy ε ∈ (0, 1) in ap-
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134 HOUMAN OWHADI

Fig. 4 The functions φki with k ∈ {1, . . . , q} and q = 6.

Algorithm 1 Exact gamblet transform/solve.

1: For i, j ∈ I(q), Mi,j =
∫

Ω
ϕiϕj // Mass matrix

2: For i, j ∈ I(q), Ai,j =
∫

Ω
(∇ϕi)Ta∇ϕj // Stiffness matrix

3: Compute M−1 // Mass matrix inversion

4: For i ∈ I(q), ψ
(q)
i =

∑
j∈I(q) M

−1
i,j ϕj // Level q gamblets

5: For i ∈ I(q), g
(q)
i = gi // g

(q)
i =

∫
Ω
ψ

(q)
i g with g =

∑
i∈I(q) giϕi

6: For i, j ∈ I(q), A
(q)
i,j =

∫
Ω

(∇ψ(q)
i )Ta∇ψ(q)

j // A(q) = M−1AM−1,T

7: for k = q to 2 do
8: B(k) = W (k)A(k)W (k),T // Eq. (4.19)
9: w(k) = B(k),−1W (k)g(k) // Eq. (4.26)

10: For i ∈ J (k), χ
(k)
i =

∑
j∈I(k) W

(k)
i,j ψ

(k)
j // Eq. (4.17)

11: u(k) − u(k−1) =
∑
i∈J (k) w

(k)
i χ

(k)
i // Thm. 4.13

12: D(k,k−1) = −B(k),−1W (k)A(k)π̄(k,k−1) // Eq. (4.21)
13: R(k−1,k) = π̄(k−1,k) +D(k−1,k)W (k) // Eq. (4.23)
14: A(k−1) = R(k−1,k)A(k)R(k,k−1) // Eq. (4.16)

15: For i ∈ I(k−1), ψ
(k−1)
i =

∑
j∈I(k) R

(k−1,k)
i,j ψ

(k)
j // Eq. (4.11)

16: g(k−1) = R(k−1,k)g(k) // Eq. (4.25)
17: end for
18: U (1) = A(1),−1g(1) // Eq. (4.27)

19: u(1) =
∑
i∈I(1) U

(1)
i ψ

(1)
i // Thm. 4.13

20: u = u(1) + (u(2) − u(1)) + · · ·+ (u(q) − u(q−1)) // Thm. 4.5 with u = u(q)

proximating the solution of (5.3), and to distinguish the implementation of localiza-
tion/truncation (and its consequences) we will first describe this algorithm in its zero
approximation error version (i.e., ε = 0 and without using localization/truncation;
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MULTIGRID WITH ROUGH COEFFICIENTS 135

see Algorithm 1). Although this error-free version (Algorithm 1) performs the de-
composition of the resolution of the linear system (5.3) (whose condition number is
of the order of h−d−2 � 1) into the resolutions of a nesting of linear systems with
uniformly bounded condition numbers, it is not of near-linear complexity due to the
presence of dense matrices. Algorithm 2 achieves near-linear complexity by truncat-
ing/localizing the dense matrices appearing in Algorithm 1 (ε-accuracy is ensured
using the off-diagonal exponential decay of these dense matrices). Let us now de-
scribe Algorithm 1 in detail. Lines 1 and 2 correspond to the computation of the
(sparse) mass and stiffness matrices of (5.3). Line 4 corresponds to the calculation

of level q gamblets ψ
(q)
i defined as the minimizer of ‖ψ‖a subject to

∫
Ω
ψφ

(q)
j = δi,j

and ψ ∈ span{ϕl | l ∈ I}; note that since the number of constraints is equal to the

number of degrees of freedom of ψ, and since
∫

Ω
ϕlφ

(q)
j = Ml,j , level q gamblets do

not depend on a and are obtained by inverting the mass matrix in line 3 (note that by
(5.1), the mass matrix is of O(1) condition number). Although not done here, one can

also initialize the algorithm (and its fast version) with ψ
(q)
i = ϕi (which is equivalent

to using
∑
j∈I(q) M

−1
i,j ϕ

(q)
j as level q measurement functions). Line 5 corresponds to

initialization of the vector g(q) introduced above (4.25). Line 6 corresponds to the ini-
tialization of the stiffness matrix A(q) introduced in (4.14). The core of the algorithm
is the nested computation performed (iteratively from k = q down to k = 2) in lines 8

to 16. Note that this nested computation takes A(k), g(k), and (ψ
(k)
i )i∈I(k) as inputs

and produces (1) A(k−1), g(k−1), and (ψ
(k−1)
i )i∈I(k) as outputs for the next iteration,

and (2) the subband u(k) − u(k−1) of the solution and subband gamblets (χ
(k)
i )i∈J (k)

(which do not need to be explicitly computed/stored since line 11 is equivalent to

u(k) − u(k−1) =
∑
i∈I(k)(W (k),Tw(k))iψ

(k)
i ). Note also that the gamblets (ψ

(k)
i )i∈I(k)

and (χ
(k)
i )i∈J (k) can be stored and displayed using the hierarchical structure (4.11).

Throughout this section and in what follows we assume that the matrices W (k) are
obtained as in Constructions 4.9 or 4.11. Note that the number of nonzero entries of
π(k−1,k) and W (k) is O(|I(k)|) (proportional to H−k in our numerical example). Line
9 corresponds to solving the well-conditioned linear system B(k)w(k) = W (k)g(k) and
the |I(k−1)| well-conditioned linear systems B(k)D(k,k−1) = −W (k)A(k)π(k,k−1). Note
that by Theorem 4.15 the matrices B(k) have uniformly bounded condition numbers
and these linear systems can be solved efficiently using iterative methods (such as
the CG method recalled in section 4.9). u(1) is computed in lines 19 and 20 (recall
that A(1) is also of uniformly bounded condition number) and the last step of the
algorithm is to obtain u via simple addition of the subband/subscale solution u(1)

and (u(k) − u(k−1))2≤k≤q. Observe that the operating diagram of Algorithm 1 is not
a V or W but an inverted pyramid (or a comb). More precisely, the basis functions

ψ
(k)
i are computed hierarchically from fine to coarse scales. Furthermore, as soon

as the elements ψ
(k)
i have been computed, they can be applied (independently from

the other scales) to the computation of u(k) − u(k−1) (the projection of u onto W(k)

corresponding to the bandwidth [Hk, Hk−1]).

Example 5.2. We refer to Figures 5 and 6 for an illustration of the gamblets ψ
(k)
i

and χ
(k)
j corresponding to Example 5.1 with W (k) defined by Construction 4.9. We

refer to Figure 7 for an illustration of the exponential decay of the gamblets ψ
(k)
i . We

refer to Figure 8 for an illustration of the condition numbers of A(k) and B(k) (with
W (k) still defined by Construction 4.9). Observe that the bound on the condition num-
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136 HOUMAN OWHADI

Fig. 5 The basis elements ψki with k ∈ {1, . . . , 6}.

Fig. 6 The basis elements ψ1
i and χki with k ∈ {2, . . . , 6}.

bers of B(k) depends on the contrast and the saturation of that bound occurs for smaller
values of k under low contrast. We refer to Figure 9 for an illustration of the subband
solutions u(1), u(2) − u(1), . . . , u(q) − u(q−1) corresponding to Example 5.1. Observe
that these (subband) solutions form a multiresolution decomposition of u as a sum of
functions characterizing the behavior of u at subscales [H, 1], [H2, H],. . . ,[Hq, Hq−1].
Once the components u(1), u(2) − u(1),. . . , and u(q) − u(q−1) have been computed one
obtains, via simple summation, u(1), . . . , u(q), the finite element approximation of u
at resolutions H, H2, . . . , Hq illustrated in Figure 11. As described in Theorem 4.3,
the error of the approximation of u by u(k) is proportional to Hk for k ∈ {1, . . . , q−1}.
For k = q, as illustrated in Figure 11, this approximation error drops down to zero

because there is no gap between Hq and the fine mesh (i.e., ψ
(q)
i and ϕi span the
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MULTIGRID WITH ROUGH COEFFICIENTS 137

Fig. 7 Exponential decay.

Fig. 8 Condition numbers of A(k) and B(k).

Fig. 9 u(1), u(2) − u(1),. . . , and u(q) − u(q−1).

same linear space in the discrete case). Moreover, as illustrated in Figure 10, the

representation of u in the basis formed by the functions
ψ

(1)
i

‖ψ(1)
i ‖a

and
χ

(k)
j

‖χ(k)
j ‖a

is sparse.

Therefore, as illustrated in Figure 11 one can compress u, in this basis, by setting the
smallest coefficients to zero without loss in energy norm.
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138 HOUMAN OWHADI

Fig. 10 The coefficients of u in the expansion u =
∑
i c

(1)
i

ψ
(1)
i

‖ψ(1)
i ‖a

+
∑q
k=2

∑
j c

(k)
j

χ
(k)
j

‖χ(k)
j ‖a

.

Fig. 11 u(1), . . . , u(q). Relative approximation error in the energy norm in log10 scale. Com-

pression of u over the basis functions ψ
(1)
i , χ

(2)
i , . . . , χ

(q)
i by setting 99% of the smallest

coefficients to zero in the decomposition of Figure 10.
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MULTIGRID WITH ROUGH COEFFICIENTS 139

5.3. Fast Gamblet Transform/Solve. Algorithm 2 achieves near linear complex-
ity (1) in approximating the solution of (5.3) to a given level of accuracy ε and (2) in
performing an approximate Gamblet transform (sufficient to achieve that level of accu-
racy). This fast algorithm is obtained by localizing/truncating the linear systems cor-
responding to lines 3 and 12 in Algorithm 1. We define these localization/truncation
steps as follows. For k ∈ {1, . . . , q} and i ∈ I(k) define iρ as in section 4.10 (i.e., as

the subset of indices j ∈ I(k) whose corresponding subdomains τ
(k)
j are at distance

at most Hkρ from τ
(k)
i ).

Definition 5.1. For i ∈ I(q), let M (i,ρq) be the iρq × iρq matrix defined by

M
(i,ρq)
l,j = Ml,j for l, j ∈ iρq . Let e(i,ρq) be the |iρq |-dimensional vector defined

by e
(i,ρq)
j = δj,i for j ∈ iρq . Let y(i,ρq) be the |iρq |-dimensional vector solution of

M (i,ρq)y(i,ρq) = e(i,ρq). We define the solution M
−1,ρq
·,i of the localized linear system

M i,ρqM
−1,ρq
·,i = δ·,i (line 3 of Algorithm 2) as the iρq -vector given by M−1,loc

j,i = y
(i,ρq)
j

for j ∈ iρq .

Note that the associated gamblet ψ
(q),loc
i (line 4 of Algorithm 2) is also the solution

of the problem of finding ψ ∈ span{ϕj | j ∈ iρq} such that
∫

Ω
ψϕj = δi,j for j ∈ iρq

(i.e., localizing the computation of the gamblet ψ
(q)
i to a subdomain of size Hqρq).

Line 5 can be replaced by g
(q),loc
i = gi without loss of accuracy (g

(q),loc
i =

∫
Ω
ψ

(q),loc
i g

simplifies the presentation of the analysis). line 12 of Algorithm 2 is defined in a
similar way as follows.

Definition 5.2. Let k ∈ {2, . . . , q} and B be the positive definite J (k) × J (k)

matrix B(k),loc computed in line 8 of Algorithm 2. For i ∈ I(k−1), let ρ = ρk−1

and let iχ be the subset of indices j ∈ J (k) such that j(k−1) ∈ iρ (recall that if j =
(i1, . . . , ik) ∈ J (k), then j(k−1) := (j1, . . . , jk−1) ∈ I(k−1)). B(i,ρ) be the iχ×iχ matrix

defined by B
(i,ρ)
l,j = Bl,j for l, j ∈ iχ. Let b(i,ρ) be the |iχ|-dimensional vector defined by

b
(i,ρ)
j = −(W (k)A(k),locπ̄(k,k−1))j,i for j ∈ iχ. Let y(i,ρ) be the |iχ|-dimensional vector

solution of B(i,ρ)y(i,ρ) = b(i,ρ). We define the solution D(k,k−1),loc of the localized
linear system Inv(B(k),locD(k,k−1),loc = −W (k)A(k),locπ̄(k,k−1), ρk−1) as the J (k) ×
I(k−1) sparse matrix given by D

(k,k−1),loc
j,i = 0 for j 6∈ iχ and D

(k,k−1),loc
j,i = y

(i,ρ)
j

for j ∈ iχ. D(k−1,k),loc (line 13 of Algorithm 2) is then defined as the transpose of
D(k,k−1),loc.

Remark 9. Definition 5.2 (line 8 of Algorithm 2) is equivalent to localizing the

computation of each gamblet ψ
(k−1)
i to a subdomain of size Hk−1ρk−1, i.e., the gam-

blet ψ
(k−1),loc
i computed in line 15 of Algorithm 2 is the solution of (1) the problem of

finding ψ in the affine space
∑
j∈I(k) π̄

(k−1,k)
i,j ψ

(k),loc
j + span{χ(k),loc

j | j(k−1) ∈ iρk−1}
such that ψ is

〈
·, ·
〉
a

orthogonal to span{χ(k),loc
j | j(k−1) ∈ iρk−1}, and (2) the prob-

lem of minimizing ‖ψ‖a in span{ψ(k),loc
l | l(k−1) ∈ iρk−1} subject to constraints∫

Ω
φ

(k−1)
j ψ = δi,j for j ∈ iρk−1 .

5.4. Complexity vs. Accuracy of Algorithm 2 and Choice of the Localization
Radii ρk. The sizes of the localization radii ρk (and therefore the complexity of Algo-
rithm 2) depend on whether Algorithm 2 is used as a preconditioner (as is done with
AMG) or as a direct solver. Although it is natural to expect the complexity of Algo-
rithm 2 to be significantly smaller if used as a preconditioner (since preconditioning
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140 HOUMAN OWHADI

Algorithm 2 Fast gamblet transform/solve.

1: For i, j ∈ I(q), Mi,j =
∫

Ω
ϕiϕj // O(N)

2: For i, j ∈ I(q), Ai,j =
∫

Ω
(∇ϕi)Ta∇ϕj // O(N)

3: M i,ρqM
−1,ρq
·,i = δ·,i // Def. 5.1, Thm. 5.4, O

(
Nρdq ln max(1

ε , q)
)

4: For i ∈ I(q), ψ
(q),loc
i =

∑
j∈iρq M

−1,ρq
j,i ϕj // O(Nρdq)

5: For i ∈ I(q), g
(q),loc
i =

∫
Ω
ψ

(q),loc
i g // O(Nρdq)

6: For i, j ∈ I(q), A
(q),loc
i,j =

∫
Ω

(∇ψ(q),loc
i )Ta∇ψ(q),loc

j // O(Nρ2d
q )

7: for k = q to 2 do
8: B(k),loc = W (k)A(k),locW (k),T // O(|I(k)|ρdk)
9: w(k),loc = (B(k),loc)−1W (k)g(k),loc // Thm. 5.4, O(|I(k)|ρdk ln 1

ε )

10: For i ∈ J (k), χ
(k),loc
i =

∑
j∈I(k) W

(k)
i,j ψ

(k),loc
j // O(|I(k)|ρdk)

11: u(k),loc − u(k−1),loc =
∑
i∈J (k) w

(k),loc
i χ

(k),loc
i // O(Nρdk)

12: Inv(B(k),locD(k,k−1),loc = −W (k)A(k),locπ̄(k,k−1), ρk−1) // Def. 5.2, Thm. 5.4,
O(|I(k)|ρdk−1ρ

d
k ln 1

ε )

13: R(k−1,k),loc = π̄(k−1,k) +D(k−1,k),locW (k) // Def. 5.2, O(|I(k−1)|ρdk−1)

14: A(k−1),loc = R(k−1,k),locA(k),locR(k,k−1),loc // O(|I(k−1)|ρ2d
k−1ρ

d
k)

15: For i ∈ I(k−1), ψ
(k−1),loc
i =

∑
j∈I(k) R

(k−1,k),loc
i,j ψ

(k),loc
j // O(|I(k−1)|ρdk−1)

16: g(k−1),loc = R(k−1,k),locg(k),loc // O(|I(k−1)|ρdk−1)
17: end for
18: U (1),loc = A(1),loc,−1g(1),loc // O(|I(1)|ρd1 ln 1

ε )

19: u(1),loc =
∑
i∈I(1) U

(1)
i ψ

(1)
i // O(Nρd1)

20: uloc = u(1),loc + (u(2),loc − u(1),loc) + · · ·+ (u(q),loc − u(q−1),loc) // O(Nq)

requires lower accuracy and therefore smaller localization radii), we will restrict our
analysis and presentation to using Algorithm 2 as a direct solver. Note that, when
used as a direct solver, Algorithm 2 is parallel both in space (via localization) and
in bandwidth/subscale (subscales can be computed independently from each other

and ψ
(k−1),loc
i and u(k),loc − u(k−1),loc can be resolved in parallel). We will base our

analysis on the results of section 4.10 and, in particular, Theorem 4.25. Although ob-
tained in a continuous setting, these results can be generalized to the discrete setting
without difficulty. Two small differences are worth mentioning. (1) In this discrete
setting, an alternative approach for obtaining localization error bounds in the first

step of the algorithm (the computation of the localized gamblets ψ
(q),loc
i ) is to use

the exponential decay property of the inverse of symmetric well-conditioned banded
matrices [26]: since M is banded and of uniformly bounded condition number, [26]

(see also [11, Thm. 4.10]) implies that M−1
i,j decays like exp

(
− dist(τ

(q)
i , τ

(q)
j )/C

)
,

which guarantees that the bound E(q) ≤ CH−d/2−q(2+d/2)e−ρq/C (used in Theorem
4.24) remains valid in the discrete setting. (2) Since the basis functions ϕi are not

exact set functions, neither are the resulting aggregates φ
(k)
i . This implies that, in the

discrete setting,
∫

Ω
ψ

(k),loc
i φ

(k)
j is not necessarily equal to zero if τ

(k)
j is adjacent to Siρk

(with j 6∈ iρk , using the notation of section 4.10). This, however, does not prevent the

generalization of the proof because the value of
∫

Ω
ψ

(k),loc
i φ

(k)
j (when τ

(k)
j is adjacent

to Siρk) can be controlled via the exponential decay of the basis functions (e.g., as
is done in the proof of Theorem 3.11). We will summarize this generalization in the
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MULTIGRID WITH ROUGH COEFFICIENTS 141

following theorem (where the constant C depends on the constants C1, C0, γ̄, and
¯
γ

associated with the finite elements (ϕi) in (5.1), in addition to d,Ω, λmin(a), λmax(a),
and δ).

Theorem 5.3. Let u be the solution of the discrete system (5.3). Let u(1),loc,
u(k),loc − u(k−1),loc, uloc, A(k),loc, and B(k),loc be the outputs of Algorithm 2. Let u(1)

and u(k) − u(k−1) be the outputs of Algorithm 1. For k ∈ {2, . . . , q}, write u(k),loc :=

u(1),loc +
∑k
j=2(u(j),loc − u(j−1),loc). Let ε ∈ (0, 1). It holds true that if ρk ≥ C

(
(1 +

1
ln(1/H) ) ln 1

Hk
+ ln 1

ε

)
for k ∈ {1, . . . , q}, then (1) for k ∈ {1, . . . , q − 1} we have

‖u(k) − u(k),loc‖H1
0 (Ω) ≤ ε‖g‖H−1(Ω) and ‖u(k) − u(k),loc‖H1

0 (Ω) ≤ C(Hk + ε)‖g‖L2(Ω),

(2) Cond(A(1),loc) ≤ CH−2, and for k ∈ {2, . . . , q} we have (3) Cond(B(k),loc) ≤
CH−2−2d and (4) ‖u(k)−u(k−1)−(u(k),loc−u(k−1),loc)‖H1

0 (Ω) ≤ ε
2k2 ‖g‖H−1(Ω). Finally,

(5) ‖u− uloc‖H1
0 (Ω) ≤ ε‖g‖H−1(Ω).

Therefore, according to Theorem 5.3 if the localization radii ρk are chosen so that
ρk = O

(
ln max(1/ε, 1/Hk)

)
for k ∈ {1, . . . , q}, then the condition numbers of the

matrices B(k),loc and A(1),loc remain uniformly bounded and the algorithm achieves
accuracy ε in a direct solve. The following theorem shows that the linear systems
appearing in lines 3, 9, and 12 of Algorithm 2 do not need to be solved exactly and
provide bounds on the accuracy requirements (to simplify notation, we will from now
on drop the superscripts of the vectors y and b appearing in Definitions 5.1 and 5.2).

Theorem 5.4. The results of Theorem 5.3 remain true if (1) ρk ≥ C
(
(1 +

1
ln(1/H) ) ln 1

Hk
+ ln 1

ε

)
for k ∈ {1, . . . , q}; (2) for each i ∈ I(q) the localized linear

system M i,ρqy = δ·,i of Definition 5.1 and line 3 of Algorithm 2 is solved up to ac-
curacy |y − yapp|Mi,ρq ≤ C−1H7d/2+3ε/q2 (using the notations of section 4.9, i.e.,
|e|2A := eTAe, and writing yapp as the approximation of y); (3) for k ∈ {2, . . . , q} and
each i ∈ I(k−1), the localized linear system B(i,ρ)y = b of Definition 5.2 and line 12
of Algorithm 2 is solved up to accuracy |y − yapp|B(i,ρ) ≤ C−1H7d/2+4ε/(k − 1)2; (4)
for k ∈ {2, . . . , q}, the linear system B(k),locy = W (k)g(k),loc of line 9 of Algorithm 2
is solved up to accuracy |y − yapp|B(k),loc ≤ ε‖g‖H−1(Ω)/(2q).

Proof. From the proof of Theorem 4.25 we need E(k) ≤ C−1H−k(1+d/2)+7d/2+3

ε/k2 for k ∈ {1, . . . , q}. By the inverse Poincaré inequality (5.2) this inequality is sat-

isfied for k = q for ‖ψ(q)
i − ψ

(q),loc
i ‖L2(Ω) ≤ C−1H7d/2+3ε/q2 for each i ∈ I(q), which

by the definition of M i,ρq and line 4 of Algorithm 2 leads to (2). For k ∈ {2, . . . , q} the
inequality E(k−1) ≤ C−1H−(k−1)(1+d/2)+7d/2+3ε/(k−1)2 is satisfied if for i ∈ I(k−1),

‖ψ(k−1)
i − ψ(k−1),loc

i ‖a ≤ C−1H−(k−1)+7d/2+3ε/(k − 1)2. Using the notations of Def-

inition 5.2 we have, ψ
(k−1),loc
i =

∑
j∈I(k) π̄

(k−1,k)
i,j ψ

(k),loc
j +

∑
j∈iχ D

(k−1,k),loc
i,j χ

(k),loc
j

with
〈
χ

(k),loc
j , χ

(k),loc
l

〉
a

= B
(i,ρ)
j,l , which leads to (3) by lines 15, 13, 10, and 8 of Algo-

rithm 2. For (4) we simply observe that for y ∈ J (k), ‖
∑
i∈J (k)(y−yapp)iχ

(k),loc
i ‖a =

|y − yapp|B(k),loc

Let us now describe the complexity of Algorithm 2. This complexity depends on
the desired accuracy ε ∈ (0, 1). Lines 1 and 2 correspond to the computation of the
(sparse) mass and stiffness matrices of (5.3). Note that since A and M are sparse and
banded (of bandwidth 2d = 4 in our numerical example), this computation is of O(N)
complexity. Line 3 corresponds to the resolution of the localized linear system intro-
duced in Definition 5.1 using M i,ρq , the iρq× iρq submatrix of M . According to Theo-
rem 5.3, the accuracy of each solve must be |y− yapp|Mi,ρq ≤ C−1H7d/2+3ε/q2. Since
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142 HOUMAN OWHADI

|iρq | = O(ρdq) and since M i,ρq is of condition number bounded by that of M , for each

i, the linear system of line 3 can be solved efficiently (to accuracy O(C−1H7d/2+3ε/q2)
using O(ρq) = O

(
ln max(1

ε , q)
)

iterations of the CG method (c.f. section 4.9) with a

cost of O(ρdq) per iteration, which results in a total cost of O
(
Nρdq ln max(1

ε , q)
)
. Lines

4 and 5 are naturally of complexity O(Nρdq). Since A
(q),loc
i,j = 0 if τ

(q)
i and τ

(q)
j are at a

distance larger than 2Hqρq, the complexity of line 6 isO(Nρ2d
q ). Note that A(k),loc and

B(k),loc are banded and of bandwidth O(Nρdk). It follows that line 8 is of complexity
O(|I(k)|ρdk). According to Theorem 5.4 the linear system of line 9 needs to be solved
up to accuracy |y−yapp|B(k),loc ≤ ε‖g‖H−1(Ω)/2. Since B(k),loc is of uniformly bounded

condition number this can be done using O(ln 1
ε ) iterations of the CG method with a

cost of O(|I(k)|ρdk) per iteration (using O(|J (k)|) = O(|I(k)|)), which results in a total
cost of O(|I(k)|ρdk ln 1

ε ) for line 9. Storing the fine mesh values of u(k),loc − u(k−1),loc

in line 11 costs O(Nρdk) (since for each node x on the fine mesh only O(ρdk) localized
basis functions contribute to the value of u(k),loc− u(k−1),loc). According to Theorem
5.4, for each i ∈ I(k−1) the linear system B(i,ρ)y = b of line 12 needs to be solved up to
accuracy |y−yapp|B(i,ρ) ≤ C−1H−k+7d/2+4ε/(k−1)2. Since the matrix B(i,ρ) inherits
the uniformly bounded condition number from B(k),loc, this can be done using O(ln 1

ε )
iterations of the CG method with a cost of O(H−dρdk−1ρ

d
k) = O(ρdk−1ρ

d
k) per itera-

tion. This results in a total cost of O(|I(k)|ρdk−1ρ
d
k ln 1

ε ) for line 12. We obtain, using

the sparsity structures of D(k−1,k),loc and R(k−1,k),loc, that the complexity of line 13
is O(|I(k−1)|ρdk−1H

−d) = O(|I(k−1)|ρdk−1) and that of line 14 is O(|I(k−1)|ρ2d
k−1ρ

d
k).

The complexity of lines 15 to 16 is summarized in the display of Algorithm 2 and a
simple consequence of the sparsity structure of R(k−1,k),loc. Line 18 is of complexity
O(|I(1)|ρd1 ln 1

ε ) (using CG as in line 9). As in line 11, storing the values of u(1),loc costs
O(Nρd1). Finally, obtaining uloc in line 20 costs O(Nq) (observe that q = O(lnN)).

Table 1 Complexity of Algorithm 2.

Compute and store ψ
(k),loc
i , χ

(k),loc
i , A(k),loc, B(k),loc, ε ≤ Hq ε ≥ Hq

and uloc s.t. ‖u− uloc‖H1
0 (Ω) ≤ ε‖g‖H−1(Ω)

First solve N ln3d 1
ε

N ln3dN

Subsequence solves N lnd+1 1
ε

N lndN ln 1
ε

Subsequent solves to compute u(k),loc s.t. N lnd+1 1
ε

‖u− u(k),loc‖H1
0 (Ω) ≤ Cε‖g‖L2(Ω)

Subsequent solves to compute the coefficients c
(k)
i

of u(k),hom =
∑
i∈I(k)

c
(k)
i ψ

(k)
i ε−d lnd+1 1

ε

s.t. ‖u− u(k),loc‖H1
0 (Ω) ≤ Cε(‖g‖L2(Ω) + ‖g‖Lip)

Subsequent solves to compute u(k),hom s.t. ε−d lnd+1 1
ε

‖u− u(k),hom‖L2(Ω) ≤ Cε(‖g‖L2(Ω) + ‖g‖Lip)

a periodic/ergodic with mixing length Hp ≤ ε, (N(ln3dN)Hp

first solve of u(k),hom s.t. +ε−d)

‖u− u(k),hom‖L2(Ω) ≤ Cε(‖g‖L2(Ω) + ‖g‖Lip) lnd+1 1
ε
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MULTIGRID WITH ROUGH COEFFICIENTS 143

Total Computational Complexity: First Solve. Summarizing, we obtain that

the complexity of Algorithm 2, i.e., the cost of computing the gamblets (ψ
(k),loc
i ),

(χ
(k),loc
j ), their stiffness matrices (A(k),loc, B(k),loc), and the approximation uloc such

that ‖u − uloc‖H1
0 (Ω) ≤ ε‖g‖H−1(Ω) is O

(
N
(

ln max(1
ε , N

1
d )
)3d)

(with line 14 be-
ing the corresponding complexity bottleneck). The complexity of storing the gam-

blets (ψ
(1),loc
i ), (χ

(k),loc
j ), and their stiffness matrices (A(1),loc, B(k),loc) is

O
(
N
(

ln max(1
ε , N

1
d )
)d)

.

Computational Complexity of Subsequent Solves with g ∈ H−1(Ω). If (5.3)

(i.e., (1.1)) needs to be solved for more than one g, then the gamblets ψ
(k),loc
i , χ

(k),loc
i

and the stiffness matrices B(k),loc do not need to be recomputed. The cost of sub-

sequent solves is therefore that of line 9, i.e., O
(
N
(

ln max(1
ε , N

1
d )
)d

ln 1
ε

)
to achieve

the approximation accuracy ‖u− uloc‖H1
0 (Ω) ≤ ε‖g‖H−1(Ω).

Computational Complexity of Subsequent Solves with g ∈ L2(Ω) and ε ≥
Hq. If g ∈ L2(Ω) (i.e., if ‖g‖L2(Ω) is used to express the accuracy of the approx-

imation) and ε ∈ [Hk, Hk−1], then, by Theorem 5.3, u(k),loc achieves the approxi-
mation accuracy ‖u − u(k),loc‖H1

0 (Ω) ≤ Cε‖g‖L2(Ω) (i.e., u(j+1),loc − u(j),loc does not

need to be computed for j ≥ k) and the corresponding complexity is O
(
N(ln 1

ε )d+1
)

(if g ∈ H−1(Ω), then the energy of the solution can be in the fine scales and
u(j+1),loc − u(j),loc do need to be computed for j ≥ k).

Computational Complexity of Subsequent Solves with g Lipschitz Continu-
ous and ε ≥ Hq. Note that the computational complexity bottleneck for computing

the coefficients of u(k),loc in the basis (ψ
(k),loc
i ), when g ∈ L2(Ω) and ε ∈ [Hk, Hk−1],

is in the computation of the vectors g(j),loc for j > k. If g is Lipschitz continuous, then

let g
(k),loc
i be approximated as g(x

(k)
i ), where x

(k)
i is any point in τ

(k)
i without loss

of accuracy. Note that this approximation requires (only) O(H−kd) evaluations of g
and leads to a corresponding u(k),loc satisfying ‖u−u(k),loc‖a ≤ Cε(‖g‖L2(Ω) +‖g‖Lip)
(with ‖g‖Lip = supx,y∈Ω |g(x)−g(y)|/|x−y|). Therefore, the computational complex-

ity of subsequent solves to obtain the coefficients c
(k)
i in the decomposition u(k),loc =∑

i∈I(k) c
(k)
i ψ

(k),loc
i is O

(
ε−d(ln 1

ε )d+1
)

(i.e., independent of N if g is Lipschitz con-
tinuous). Of course, obtaining an H1

0 (Ω)-norm approximation of u with accuracy

Hk requires expressing the values of ψ
(k),loc
i (and therefore u(k),loc) on the fine mesh,

which leads to a total cost of O(N(ln 1
ε )d). However, if one is only interested in ex-

pressing the values of u(k),loc on the fine mesh in a subdomain of diameter ε, then the
resulting complexity is O((Nεd + ε−d)(ln 1

ε )d).

Computational Complexity of Subsequent L2-Approximations with g Lip-
schitz Continuous and ε ≥ Hq. Let (x

(k)
i )i∈I(k) be points of (τ

(k)
i )i∈I(k) forming

a regular coarse mesh of Ω of resolution Hk and write ϕ
(k)
i as the corresponding

(regular and coarse) piecewise-linear nodal basis elements. If (as in classical homog-
enization or the heterogeneous multiscale method (HMM)) one is only interested in

an L2-norm approximation of u with accuracy Hk, then the coefficients c
(k)
i defined

above are sufficient to obtain the approximation uhom =
∑
i∈I(k)

c
(k)
i∫

Ω
φ

(k)
i

ϕ
(k)
i that sat-

isfies ‖u(k),loc − uhom‖L2(Ω) ≤ CHk‖u(k),loc‖H1
0 (Ω) (

∫
Ω
uhomφ

(k)
i =

∫
Ω
u(k),locφ

(k)
i ) and
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144 HOUMAN OWHADI

therefore ‖u− u(k),hom‖L2(Ω) ≤ Cε(‖g‖L2(Ω) + ‖g‖Lip). Note that the computational

complexity of subsequent solves to obtain uhom is O
(
ε−d(ln 1

ε )d+1
)
.

Total Computational Complexity if a Is Periodic or Ergodic with Mixing
Length Hp and ε ≈ Hk with k ≥ p. Under the assumptions of classical ho-
mogenization or the HMM [33] (e.g., a is of period Hp or a is ergodic with Hp

as mixing length), if the sets τ
(k)
i are chosen to match the period of a and the do-

main is rescaled so that 1/H is an integer, then the entries of A(k) are invariant
under periodic translations (or stationary if the medium is ergodic). Therefore, under
these assumptions, as in classical homogenization, it is sufficient to limit the com-
putation of gamblets to periodicity cells (or ergodicity cells with a tight control on
mixing as in [47]). The resulting cost of obtaining u(k),hom (in a first solve) such that
‖u(k),loc − u(k),hom‖L2(Ω) ≤ Cε(‖g‖L2(Ω) + ‖g‖Lip) is O

(
N ln3dN Hp + ε−d) lnd+1 1

ε

)
.
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