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Abstract. With the advent of high-performance computing, Bayesian methods are becoming increas-
ingly popular tools for the quantification of uncertainty throughout science and industry.
Since these methods can impact the making of sometimes critical decisions in increasingly
complicated contexts, the sensitivity of their posterior conclusions with respect to the
underlying models and prior beliefs is a pressing question to which there currently exist
positive and negative answers. We report new results suggesting that, although Bayesian
methods are robust when the number of possible outcomes is finite or when only a fi-
nite number of marginals of the data-generating distribution are unknown, they could be
generically brittle when applied to continuous systems (and their discretizations) with fi-
nite information on the data-generating distribution. If closeness is defined in terms of
the total variation (TV) metric or the matching of a finite system of generalized moments,
then (1) two practitioners who use arbitrarily close models and observe the same (possibly
arbitrarily large amount of) data may reach opposite conclusions; and (2) any given prior
and model can be slightly perturbed to achieve any desired posterior conclusion. The
mechanism causing brittleness/robustness suggests that learning and robustness are an-
tagonistic requirements, which raises the possibility of a missing stability condition when
using Bayesian inference in a continuous world under finite information.
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The application of Bayes’ theorem in the form of Bayesian inference has fueled
an ongoing debate with practical consequences in science, industry, medicine, and law
[21]. One commonly-cited justification for the application of Bayesian reasoning is
Cox’s theorem [15], which has been interpreted as stating that any “natural” extension
of Aristotelian logic to uncertain contexts must be Bayesian [34]. It has now been
shown that Cox’s theorem as originally formulated is incomplete [28] and there is
some debate about the “naturality” of the additional assumptions required for its
validity [1, 20, 29, 31], e.g., the assumption that knowledge can be always represented
in the form of a σ-additive probability measure that assigns to each measurable event
a single real-valued probability.
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ON THE BRITTLENESS OF BAYESIAN INFERENCE 567

However—and this is the topic of this article—regardless of the internal logic,
elegance, and appealing simplicity of Bayesian reasoning, a critical question is that
of the robustness of its posterior conclusions with respect to perturbations of the
underlying models and priors.

For example, a frequentist statistician might ask, if the data happen to be a
sequence of i.i.d. draws from a fixed data-generating distribution μ†, whether or not
the Bayesian posterior will asymptotically assign full mass to a parameter value that
corresponds to μ†. When it holds, this property is known as frequentist consistency
of the Bayes procedure, or the Bernstein–von Mises property.

Alternatively, without resorting to a frequentist data-generating distribution μ†,
a Bayesian statistician who is also a numerical analyst might ask questions about
stability and conditioning: does the posterior distribution (or the posterior value of
a particular quantity of interest) change only slightly when elements of the problem
setup (namely, the prior distribution, the likelihood model, and the observed data)
are perturbed, e.g., as a result of observational error, numerical discretization, or
algorithmic implementation? When it holds, this property is known as robustness of
the Bayes procedure.

This paper summarizes recent results [46, 47] that give conditions under which
Bayesian inference appears to be nonrobust in the most extreme fashion, in the sense
that arbitrarily small changes of the prior and model class lead to arbitrarily large
changes of the posterior value of a quantity of interest. We call this extreme non-
robustness “brittleness,” and it can be visualized as the smooth dependence of the
value of the quantity of interest on the prior breaking into a fine patchwork, in which
nearby priors are associated to diametrically opposed posterior values. Naturally, the
notion of “nearby” plays an important role, and this point will be revisited later.

Much as classical numerical analysis shows that there are “stable” and “unstable”
ways to discretize a partial differential equation (PDE), these results and the wider
literature of positive [8, 13, 19, 37, 38, 53, 56] and negative [3, 17, 23, 24, 35, 40]
results on Bayesian inference contribute to an emerging understanding of “stable”
and “unstable” ways to apply Bayes’ rule in practice.

The results reported in this article show that the process of Bayesian conditioning
on data at finite enough resolution is unstable (or “sensitive” as defined in [54]) with
respect to the underlying distributions (under the total variation (TV) and Prokhorov
metrics) and is the source of negative results similar to those caused by tail properties
in statistics [2, 18]. The mechanisms causing the stability/instability of posterior
predictions suggest that learning and robustness are conflicting requirements and
raise the possibility of a missing stability condition when using Bayesian inference
for continuous systems with finite information (akin to the Courant–Friedrichs–Lewy
(CFL) stability condition when using discrete schemes to approximate continuous
PDEs).

Bayes’ Theorem and Robustness. To begin, let us consider a simple example of
Bayesian reasoning in action:

Problem 1. Consider a bag containing 102 coins, one of which always lands on
heads, while the other 101 are perfectly fair. One coin is picked uniformly at random
from the bag, flipped 10 times, and 10 heads are obtained. What is the probability that
this coin is the unfair coin?

The correct probability is given by applying Bayes’ theorem:

(1) P[A|B] = P[B|A]P[A]
P[B]

=
1

1 + 101× 2−10
≈ 0.91,
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568 HOUMAN OWHADI, CLINT SCOVEL, AND TIM SULLIVAN

where A is the event “the coin is the unfair coin” and B is the event “10 heads are
observed.” If the number of coins is not known exactly and the supposedly fair coins
are not exactly fair, then Bayes’ theorem produces a robust inference in the following
sense: if the fair coins are slightly unbalanced and the probability of getting a tail is
0.51, and if an estimate of 100 coins is used and an estimate 1

2 of the fairness of the
fair coins is used, then the resulting estimate 1

1+99×2−10 is still a good approximation
to the correct answer. Observe also that if the prior estimate of the number of coins
in the bag is grossly wrong (e.g., 106), then the posterior would still be accurate in
the limit of infinitely many coin flips: in this case, the Bayesian estimator is said to
be consistent.

Do these conclusions remain true when the underlying probability space is con-
tinuous or an approximation thereof? For example, what if the random outcomes are
decimal numbers—perhaps given to finite precision—rather than heads or tails?

The General Problem and Its Bayesian Answer.
Problem 2. Let X denote the space in which observations/samples take their

values, and let M(X ) denote the set of probability measures on X . Let Φ: M(X ) → R

be a function1 defining a quantity of interest. Let the data-generating distribution
μ† ∈ M(X ) be an unknown or partially known probability measure on X . The objective
is to estimate Φ(μ†) from the observation of n i.i.d. samples from μ†, which we denote
by d = (d1, . . . , dn) ∈ Xn.

Example 1. When X is the real line R, a prototypical example of a quantity of
interest is Φ(μ) := μ[X ≥ a], the probability that the random variable X distributed
according to μ exceeds the threshold value a. However, the results that we report below
apply to any prespecified quantity of interest Φ.

The Bayesian answer to this problem is to model μ†’s generation of sample data
as coming from a random measure on X and to condition Φ with respect to the
observation of the n i.i.d. samples. This is done by choosing a model class A ⊆ M(X )
and a probability measure π ∈ M(A) which we call the prior. This prior determines
the randomness with which a representative μ ∈ A is selected, and, for each such
μ ∈ A, the generation of n i.i.d. samples d ∈ Xn by randomly sampling from μn

naturally determines a product measure onA×Xn. The prior estimate of the quantity
of interest is Eμ∼π[Φ(μ)] and, for an open2 B ⊆ Xn, the posterior estimate is defined
as the conditional expectation Eμ∼π,d∼μn [Φ(μ)|d ∈ B] with respect to this product
measure.

The connection to the standard presentation of Bayesian inference in terms of a
prior on a parameter space is as follows: to construct a model class A ⊆ M(X ) and
a prior π0 ∈ M(A) from a Bayesian parametric model P : Θ → M(X ) defined on
a parameter space Θ equipped with a prior p0 ∈ M(Θ), one simply pushes forward
under the map P . That is, the model class A ⊆ M(X ) is defined by A := P(Θ) and
the prior π0 ∈ M(A) is defined as the push-forward π0 := Pp0 of p0 by the model P ,
i.e., π0(E) := p0(P−1(E)) for measurable E ⊆ A.

Inconsistency under Misspecification. We now discuss the effects of misspeci-
fication on a Bayesian parametric model P : Θ → M(X ). It is convenient to denote
such a model by P : θ �→ μ(θ), so that the model class is A := P(Θ) = {μ(θ) | θ ∈ Θ}.

1All spaces will be topological spaces, the term “function” will mean Borel measurable function,
and “measure” will mean Borel measure.

2We assume B to be open and of strictly positive measure to avoid problems associated with
conditioning with respect to events of measure zero.
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ON THE BRITTLENESS OF BAYESIAN INFERENCE 569

If the model class P(Θ) contains the data-generating distribution μ†, i.e., if there
is some parameter value θ ∈ Θ such that μ† = μ(θ), then the model is said to be
well-specified ; otherwise, it is said to be misspecified.

For simplicity, consider the classical case where, for each θ ∈ Θ, μ(θ) has a
probability density function with respect to some common reference measure on X ,
that is, μ(θ) = p( · , θ) dx for some measure dx. Then, for a prior p0 ∈ M(Θ), let
pn ∈ M(Θ) denote the posterior distribution on Θ after observing the data d (see,
e.g., [5, p. 126]) and push forward both the prior and posterior to their corresponding
measures, π0 := Pp0 and πn := Ppn, on M(A).

Now suppose that the model is well-specified and that p0 gives strictly positive
mass to every neighborhood of every point θ ∈ Θ—this assumption of “maximal open-
mindedness” is commonly referred to as Cromwell’s rule [41]. Then, when Θ is finite-
dimensional, under suitable regularity conditions, the posterior value of the quantity
of interest Eμ∼πn

[
Φ(μ)

]
converges to Φ(μ†) as n → ∞. This convergence, which can

be shown to be asymptotically normal, is commonly referred to as the Bernstein–von
Mises theorem or Bayesian central limit theorem [8, 19, 38, 56]. However, for infinite-
dimensional Θ and with similar regularity and strict positivity assumptions, there is
a wealth of positive [13, 37, 53] and negative [3, 17, 23, 24, 35, 40] results showing
that the truth or otherwise of the Bernstein–von Mises property depends sensitively
on subtle topological and geometrical details.

Conversely, if the model is misspecified, then, under regularity conditions [7, 36,
37, 52], the posterior value Eμ∼πn

[
Φ(μ)

]
converges as n → ∞ to Φ

(
μ(θ∗)

)
, where θ∗

maximizes the expected log-likelihood function θ �→ Eμ†
[
log p( · , θ)

]
. If, in addition,

μ† is absolutely continuous with respect to each μ(θ) for θ ∈ Θ, then θ∗ can also be
shown to minimize the Kullback–Leibler (KL) divergence or relative entropy distance
θ �→ DKL

(
μ†∥∥μ(θ)) from μ† to μ(θ).

Example 2. To illustrate this, let X = R and consider the Gaussian model
μ(c, σ) with mean c and standard deviation σ, that is, with the probability density

p(x, c, σ) :=
1

σ
√
2π

exp

(
− (x− c)2

2σ2

)

and the expected log-likelihood

Eμ†
[
log p(·, c, σ)

]
= −

∫
R

(x − c)2

2σ2
dμ†(x)− log σ − log

√
2π.

If, for a data-generating distribution μ† with finite second moments, we let c† de-
note its mean and σ† its standard deviation, then a quick calculation shows that
θ∗ = (c∗, σ∗) maximizes the expected log-likelihood if and only if c∗ = c† and σ∗ = σ†.
Hence, the asymptotic Bayesian posterior estimate of Φ(μ†) is Φ

(
μ(c†, σ†)

)
, irrespec-

tive of what the quantity of interest Φ might be. However, there are many different
probability distributions μ on R that have the same first and second moments as μ†

but have different higher-order moments, or different quantiles. Predictions of those
other moments or quantiles using the Gaussian distribution μ(c†, σ†) can be inac-
curate by orders of magnitude. A simple example is provided by the tail probability
Φ(μ) := Pμ

[
|X−cμ| ≥ tσμ

]
, where cμ and σμ denote the mean and standard deviation

of μ and t > 0. Under the Gaussian model

Pμ

[
|X − cμ| ≥ tσμ

]
= 1 + erf

(
− t√

2

)
,

© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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570 HOUMAN OWHADI, CLINT SCOVEL, AND TIM SULLIVAN

whereas the extreme cases that prove the sharpness of Chebyshev’s inequality—in which
the probability measure is a discrete measure with support on at most three points in
R—have

Pμ

[
|X − cμ| ≥ tσμ

]
= min

{
1,

1

t2

}
.

In the case of the archetypically rare “6σ event,” i.e., t = 6, the ratio between the two
is approximately 1.4× 107. This comparison is, of course, almost perversely extreme:
it would be obvious to any observer with only moderate amounts of “Chebyshev-type”
sample data that the data had been drawn from a highly non-Gaussian distribution.
However, it is not inconceivable that the true distribution μ† has a Gaussian-looking
bulk but also has tails that are significantly fatter than those of a Gaussian, and
the difference may be difficult to establish using reasonable amounts of sample data;
however, it is those tails that drive the occurrence of “Black Swans,” catastrophically
high-impact but low-probability outcomes.

Although it is understood that Bayesian estimators can be inconsistent if the
model is grossly misspecified, a pressing question is whether they have good conver-
gence properties when the model class {μ(θ) | θ ∈ Θ} is “close enough” to the truth
μ† in an appropriate sense.

Such concerns can be traced back to Box’s dictum that “essentially, all models
are wrong, but some are useful” [12, p. 424] and question “how wrong do they have
to be to not be useful?” [12, p. 74]. These queries are also critical because, although
gross misspecification of the model can be detected before engaging in a complete
Bayesian analysis [32, 61], usually one cannot be sure that the model is well-specified.

To answer these questions we will examine the robustness of Bayesian inference
by computing optimal bounds on prior and posterior values in terms of given sets
of priors. Indeed, the exploration of classes of Bayesian models is one response to
the concern that the choice of prior-likelihood combination could, to some degree, be
arbitrary, and this forms the basis of the approach known as robust Bayesian inference
[4, 6, 11, 58, 60]. To do so, we need some definitions.

Definition 1. For a model class A ⊆ M(X ), a quantity of interest Φ: A → R,
and a set of priors Π ⊆ M(A), let

L(Π) := inf
π∈Π

Eμ∼π

[
Φ(μ)

]
,

U(Π) := sup
π∈Π

Eμ∼π

[
Φ(μ)

]
denote the optimal lower and upper bounds on the prior values of Φ. For B a non-
empty open subset of the data space Xn, let ΠB ⊆ Π be the subset of priors π such
that the probability that d ∈ B is nonzero, i.e., Pμ∼π,d∼μn [d ∈ B] > 0, and let

L(Π|B) := inf
π∈ΠB

Eμ∼π,d∼μn

[
Φ(μ)

∣∣d ∈ B
]
,

U(Π|B) := sup
π∈ΠB

Eμ∼π,d∼μn

[
Φ(μ)

∣∣d ∈ B
]

denote the optimal lower and upper bounds on the posterior values of Φ given that
d ∈ B.

Brittleness under Infinitesimal Perturbations. Consider again the model P : Θ
→ M(X ), but now denote the model class by A0 := P(Θ) = {μ(θ) | θ ∈ Θ} and

© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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ON THE BRITTLENESS OF BAYESIAN INFERENCE 571

Fig. 1 The original model class A0 (black curve) is enlarged to its metric neighborhood Aα (shaded).
This procedure determines perturbations μα ∈ Aα of the original random measure μ0 ∈ A0.

the prior by π0 ∈ M
(
A0

)
. To quantify perturbations in the model and define what

it means for two distributions to be close to one another, we select a metric ρ on
M(X ). As illustrated in Figure 1, for α > 0, we enlarge the set A0 to its metric
neighborhood Aα and thereby naturally determine a set of priors Πα ⊆ M(Aα) such
that the random measure μα associated with every πα ∈ Πα lies within distance α
of the random measure μ0 associated with the prior μ0 and the Bayesian model P .
Then we analyze the robustness of its posteriors, as in Definition 1, with respect to
these size-α perturbations.

To that end, suppose that X is metrizable and select a consistent metric d for
X . Let B(X ) denote the Borel subsets of X . We will consider two metric distances
ρ(μ, ν) between μ, ν ∈ M(X ): ρ will be either the TV metric

ρTV(μ, ν) := sup
{
|μ(A)− ν(A)|

∣∣A ∈ B(X )
}
,

or the Prokhorov metric3

ρP(μ, ν) := inf {ε > 0 |μ(A) ≤ ν(Aε) + ε, A ∈ B(X )} ,

where Aε := {x ∈ X|d(x,A) < ε}. For α > 0, the neighborhood Aα of A0 emerges
naturally from the ball fibration

A∗ :=
{
(μ1, μ2) ∈ M(X )×M(X )

∣∣μ1 ∈ A0, ρ(μ2, μ1) < α
}
,

in the sense that if P0 and Pα denote the projections onto the first and second compo-
nents of M(X )×M(X ), then P0A∗ = A0 and PαA∗ = Aα. Consequently, a natural
set of priors Πα ⊆ M(Aα) corresponding to π0 ∈ M(A0) is defined by

Πα :=
{
πα ∈ M(Aα)

∣∣ for some π ∈ M(A∗), P0π = π0 and Pαπ = πα
}
.

To state our result, consider again Problem 2 and let some xn := (x1, . . . , xn) ∈
Xn be a point such that we observe d ∈ Bn

δ :=
∏n

i=1Bδ(xi), where Bδ(x) ⊆ X is the
open ball of radius δ centered on x ∈ X . Using the notation of Definition 1, and Πα

3The TV metric is generally considered to generate too strong a topology on the space M(X ) of
probability measures, and the weak topology is generally considered more appropriate; see, e.g., [9].
Fortunately, when X is separable, this topology is metrized by the Prokhorov metric. For a thorough
discussion regarding metrics on spaces of measures, see, e.g., [49].

© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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572 HOUMAN OWHADI, CLINT SCOVEL, AND TIM SULLIVAN

defined above in terms of the TV or Prokhorov metric, the Brittleness Theorem 6.4
of [47] then reads as follows.4

Theorem 1. If

(2) lim
δ↓0

sup
x∈X

sup
θ∈Θ

μ(θ)[Bδ(x)] = 0,

then, for all α > 0, there exists δ(α) > 0 such that for all 0 < δ < δ(α), all n ∈ N,
and all xn ∈ Xn,

L(Πα|Bn
δ ) ≤ ess infπ0(Φ) and ess supπ0

(Φ) ≤ U(Πα|Bn
δ ) ,

where ess infπ0(Φ) := sup{r | π0[Φ < r] = 0} and ess supπ0
(Φ) := inf{r | π0[Φ > r] =

0}.
Note that condition (2) is extremely weak and is satisfied for most paramet-

ric Bayesian models. Furthermore, suppose that Cromwell’s rule is applied. Then,
although it implies consistency if the model is well-specified, here it leads to maxi-
mal brittleness under local misspecification. More precisely, under Cromwell’s rule,
ess infπ0(Φ) = infμ∈A0 Φ(μ) and ess supπ0

(Φ) = supμ∈A0
Φ(μ), so the conclusion of

Theorem 1 becomes

L(Πα|Bn
δ ) ≤ inf

μ∈A0

Φ(μ) and sup
μ∈A0

Φ(μ) ≤ U(Πα|Bn
δ ) .

In other words, the range of posterior predictions among all admissible priors is as
wide as the deterministic range of the quantity of interest Φ.

Note that since Φ is arbitrary, the brittleness described in Theorem 1 is not limited
to a quantile or moment of μ but concerns its whole posterior distribution.

Brittleness under Finite Information. One response to the concern that the
choices of prior and model are somewhat arbitrary [58] is to perform a sensitivity
analysis over classes of priors and models. One way to specify a class Π of admissi-
ble priors π is to select some “features” (such as the polynomial moments, or other
functionals) and specify some values, ranges, or distributions for those features. It is
interesting to understand the impact of those features left unspecified, i.e., the codi-
mension and not just the dimension of Π; while robust Bayesian inference [4, 6, 11, 60]
has shown that posterior conclusions remain stable when Π is finite-dimensional, our
results can be interpreted as saying that brittleness ensues whenever Π has finite
codimension, regardless of how large its codimension is. It is important to note that
this is in some sense the generic situation: when A is an infinite set, one would have
to specify infinitely many features of priors π ∈ Π to achieve a finite-dimensional Π;
from a computational and epistemic standpoint, the specification of infinitely many
features in finite time appears to be somewhat problematic.

To study this problem, we introduce a representation spaceQ (e.g., prototypically,
R

k) and a mapping Ψ: A → Q from the subset A ⊆ M(X ) into Q, which can be

4All results of this article and those in [46, 47, 48] require some mild technical measure-theoretic
and topological assumptions. For example, here it is sufficient if P(Θ) is a Borel subset of a Polish
space (a separable completely metrizable space). Unfortunately, M(X ) is not generally separable
with respect to the TV metric, and hence is not Polish. However, if X is Polish, then M(X )
topologized by weak convergence is Polish and the Prokhorov metric provides a complete metrization
of it. Consequently, when Θ is Polish, X is Polish, and P is injective and measurable with respect to
the weak topology, it then follows from Suslin’s Theorem that P(Θ) is a Borel subset of the Polish
space M(X ). For a thorough investigation of such matters, illustrating the benefits of Polish spaces
as the foundation for the framework, see [47].

© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

07
/1

9/
17

 to
 1

31
.2

15
.2

25
.9

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



ON THE BRITTLENESS OF BAYESIAN INFERENCE 573

thought of as a map to “generalized moments.” Let Q ⊆ M(Q) be a subset of the set
of probability distributions on Q such that each distribution Q ∈ Q has its support
contained in Ψ(A). If the set Q represents priors for the distribution of Ψ(μ), μ ∈ A,
then a naturally induced set of priors Π on A is the pull-back Π := Ψ−1(Q) ⊆ M(A),
defined by Ψ−1(Q) := {π ∈ M(A) | Ψπ ∈ Q}.

Example 3. Consider the case X = [0, 1], A := M([0, 1]), and Φ(μ) = Eμ[X ].
The aim is to estimate the mean Φ(μ†) = Eμ† [X ] of the random variable X cor-
responding to some unknown measure μ† ∈ A and we observe d = (d1, . . . , dn), n
i.i.d. samples from X. Let k be fixed and let Ψ(μ) = (Eμ[X ], . . . ,Eμ[X

k]) be the
map to the first k polynomial moments. If we write a point q ∈ Rk in terms of
its coordinates q := (q1, . . . , qk), then Ψ−1(q) is exactly the set of measures μ ∈
M([0, 1]) such that Eμ[X

i] = qi for 1 ≤ i ≤ k. Now define a measure Q on
the truncated moment space Ψ(M([0, 1]) ⊆ R

k as follows. Since the first moment
Eμ[X ], μ ∈ M([0, 1]), ranges over the unit interval, consider the uniform measure on
the unit interval in the first coordinate. Next define the conditional measure when
the first coordinate is q1 ∈ [0, 1] to be uniform on the range of the second moment
[infμ: Eμ[X]=q1 Eμ[X

2], supμ:Eμ[X]=q1 Eμ[X
2]]. Repeat this conditioning process on the

higher coordinates iteratively in the same manner. Then, the induced set of priors
Π := Ψ−1Q on M([0, 1]) is the set of measures π such that, when μ ∼ π, the distri-
bution of (Eμ[X ], . . . ,Eμ[X

k]) is Q.
We now state the Brittleness Theorem 4.13 in [47] for the general case of Problem

2 and apply it to Example 3. To that end, let the model class A ⊆ M(X ) be
chosen along with a generalized moment map Ψ: A → Q to a representation space
Q. Let Q ⊆ M(Q) be a specified set of priors on Q and from them determine
Π := Ψ−1(Q) ⊆ M(A) as the induced set of priors. For fixed (x1, . . . , xn) ∈ Xn, let
Bn

δ :=
∏n

i=1 Bδ(xi), where Bδ(x) is the open ball of radius δ centered on x ∈ X . The
following theorem gives optimal bounds on posterior values for the class of priors Π
defined above, given that the observation d ∈ Bn

δ .
Theorem 2. Suppose that, for all γ > 0, there exists some Q ∈ Q such that

(3) Eq∼Q

[
inf

μ∈Ψ−1(q),i=1,...,n
μ[Bδ(xi)]

]
= 0

and

(4) Pq∼Q

[
sup

μ∈Ψ−1(q):μ[Bδ(xi)]>0,i=1,...,n

Φ(μ) > sup
μ∈A

Φ(μ)− γ

]
> 0 .

Then

U
(
Π
∣∣Bn

δ

)
= sup

μ∈A
Φ(μ),

with similar expressions for the lower bounds L.
In other words, if there is a measure Q ∈ Q such that for Q-almost all q ∈ Q,

there is a μ ∈ Ψ−1(q) which achieves an arbitrarily small mass on one of Bδ(xi), i =
1, . . . , n, and with nonzero Q probability there is μ ∈ Ψ−1(q) which almost ex-
tremizes Φ while putting positive mass on all Bδ(xi), i = 1, . . . , n, then the range[
L
(
Π
∣∣Bn

δ

)
,U
(
Π
∣∣Bn

δ

)]
of posterior values for Φ is exactly the “deterministic” range of

Φ, i.e.,
[
infμ∈A Φ(μ), supμ∈A Φ(μ)

]
.

Conditions (3) and (4) are very weak, and simple dimensionality arguments sug-
gest that they are typically satisfied if Q is finite-dimensional. Hence, although
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574 HOUMAN OWHADI, CLINT SCOVEL, AND TIM SULLIVAN

Bayesian inference is robust in situations where the distributions of all but finitely
many generalized moments of the data-generating distribution μ† are known, Theorem
2 suggests that it is brittle when the distributions of only finitely many generalized
moments of μ† are known, while infinitely many remain unknown. As an example,
it is instructive to observe how Theorem 2, applied to Example 3 in [47, Ex. 4.16],
shows that if the data-generating measure has some nonatomic component, then when
the number of samples n is large enough and δ small enough, the optimal bounds on
posterior values of Φ(μ) = Eμ[X ], given the distribution Q defined on its moments,
are 0 and 1.

To quantify “large enough” and “small enough” and to remove the “nonatomic”
requirement above, Theorem 3.1 of [46] provides a quantitative version of Theorem 2
in which the conditions of the theorem are only required to hold approximately. When
applied to Example 3 with the set Π := Ψ−1

Q of priors generated instead by the uni-
form prior Q restricted to the truncated moment space, Theorem 3.3 of [46] establishes
that, although the prior value satisfies U(Π) = 1

2 , the posterior value satisfies

(5) 1− 4e
(2kδ
e

) 1
2k+1 ≤ U

(
Π|Bδ

)
≤ 1 .

Consequently, regardless of the number of moment constraints k and the location of
a single data point, for δ smaller than an elementary known function of k, we have
brittleness. This result also holds for arbitrary multiple samples. Remark 4.18 of [47]
also suggests that brittleness would persist if the hard bound δ to specify measurement
uncertainty were replaced by a level of noise with variance decreasing with δ.

Mechanism Causing Brittleness. We will now illustrate one mechanism causing
brittleness with a simple example derived from the proof of Theorem 1. In this
example we are interested in estimating Φ(μ†) = Eμ† [X ], where μ† is an unknown
distribution on the unit interval (X = [0, 1]) based on the observation of a single data
point d1 = 1

2 up to resolution δ (i.e., we observe d1 ∈ Bδ(x1) with x1 = 1
2 ).

Consider the following two models μa(θ) and μb(θ) on the unit interval [0, 1],
parameterized by θ ∈ (0, 1) and with densities fa and f b given by

fa(x, θ) = (1− θ)
(
1 + 1

θ

)
(1 − x)

1
θ + θ

(
1 + 1

1−θ

)
x

1
1−θ ,

f b(x, θ) =

{
fa(x, θ) 1

Z

(
�{x �∈(x1− δc

2 ,x1+
δc
2 )} + 10−9

�{x∈(x1− δc
2 ,x1+

δc
2 )}
)

if θ < 0.999,

fa(x, θ) if θ ≥ 0.999,

where Z is a normalization constant (close to one) chosen so that
∫
[0,1]

f b(x, θ) dx = 1.

See Figure 2 for an illustration of these densities.
Observe that the density of model b is that of model a besides the small gap of

width δc > 0 created around the data point for model b (if θ < 0.999, see Figure 2);
since the data point is fixed at x1 = 1

2 , the TV distance ρTV

(
μa(θ), μb(θ)

)
between the

two models is, uniformly over θ ∈ (0, 1), bounded by a constant times δc. Assuming
that the prior distribution on θ is the uniform distribution on (0, 1), observe that
the prior value of the quantity of interest Eμ[X ] under both models (a and b) is
approximately 1

2 . Now, when θ is close to 1 (zero), the density of model a puts most
of its mass toward 1 (zero). Observe also that the density of model b behaves in
a similar way, with the important exception that the probability of observing the
data under model b is infinitesimally small for θ < 0.999. Therefore, for δ < δc, the
posterior value of the quantity of interest Eμ[X ] under model a is 1

2 , whereas it is
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ON THE BRITTLENESS OF BAYESIAN INFERENCE 575

(a) fa(x, θ) (b) fb(x, θ)

Fig. 2 Illustration of the densities fa(x, θ) of model a and fb(x, θ) of model b.

close to 1 under model b. Observe also that a perturbed model c analogous to b can
be constructed to lead to a posterior value close to zero.

The mechanism described here is generic and μb(θ) is a simple example of what
worst priors can look like after a classical Bayesian sensitivity analysis over a class of
priors specified via constraints on the TV or Prokhorov distance or the distribution
of a finite number of moments.

Can these worst priors be dismissed because they depend on the data? The
problem with this argument is that, in the context of Bayesian sensitivity analysis,
worst priors always depend on (or are preadapted to) the data. Therefore, the same
argument would lead to a dismissal of Bayesian sensitivity analysis and therefore
the framework of robust Bayesian inference. In some sense, the brittleness results
reported here can be seen as extreme occurrences of the dilation property [59] which,
in robust Bayesian inference, refers to the enlargement of optimal bounds caused by
the data dependence of worst priors. Indeed, even if perturbations are quantified in
KL divergence, the local sensitivity analysis (in the sense of Fréchet derivatives) of
posterior values [27] shows infinite sensitivity as the number of data points goes to
infinity (and this result is valid for the broader class of divergences that includes the
Hellinger distance).

Can these worst priors be dismissed because they can “look unrealistic” and make
the probability of observing the data very small? The problem with this argument is
that these worst priors are not “isolated pathologies” but directions of instability (of
Bayesian conditioning) increasing with the number of data points and the complexity
of the system under investigation. We will illustrate this point with another simple
example that also shows that these instabilities are the price to pay for the learning
potential of Bayesian inference.

Learning and Robustness Are Antagonistic Properties. In this example we are
interested in estimating Φ(μ†) = μ†[a, 1] for some a ∈ (0, 1), where μ† is an unknown
distribution on the unit interval (X = [0, 1]) based on the observation of n data
points d1, . . . , dn up to resolution δ (i.e., we observe di ∈ Bδ(xi) with xi ∈ [0, 1] for
i = 1, . . . , n). Our purpose is to examine the sensitivity of the Bayesian answer to
this problem with respect to the choice of a particular prior. Consider the model class
A := M([0, 1]) and the class of priors

Π :=
{
π ∈ M(A)

∣∣Eμ∼π

[
Eμ[X ]

]
= m

}
.

Observe that Π corresponds to the assumption that μ† is the realization of a random
measure on [0, 1] whose mean is on average m.
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576 HOUMAN OWHADI, CLINT SCOVEL, AND TIM SULLIVAN

As in the previous example, the finite codimensional class of priors Π leads to
brittleness in the sense that the least upper bound on prior values is U(Π) = m

a ,
whereas (for δ � 1/n) the least upper bound on posterior values is the deterministic
supremum of the quantity of interest (over A), i.e., U(Π|Bn

δ ) = 1. Furthermore, worst
priors are obtained by selecting priors for which the probability of observing the
data μn[Bn

δ ] is arbitrarily close to zero except when Φ(μ) is close to its deterministic
supremum.

Can this brittleness be avoided by adding a uniform constraint on the probability
of observing the data in the model class? To investigate this question, let us introduce
α ≥ 1 and a probability measure μ0 on [0, 1] with strictly positive Lebesgue density
(with μ0 being the uniform measure on [0, 1] as a prototypical example) and consider
the (new) model class

(6) A(α) :=

{
μ ∈ M[0, 1]

∣∣∣∣ 1αμn
0 [B

n
δ ] ≤ μn[Bn

δ ] ≤ αμn
0 [B

n
δ ]

}

and the (new) class of priors

Π(α) :=
{
π ∈ M(A(α))

∣∣Eμ∼π

[
Eμ[X ]

]
= m

}
,

where, in (6), Bn
δ :=

∏n
i=1 Bδ(xi) and (x1, . . . , xn) ∈ [0, 1]n is fixed.

Note that, for the model class A(α), the probability of observing the data is uni-
formly bounded from below by 1

αμ
n
0 [B

n
δ ] and from above by αμn

0 [B
n
δ ]. Therefore, for

α = 1, the probability of observing the data is uniform in the model class, prior val-
ues are equal to posterior values, and the method is robust but learning is impossible.
On the other hand, if α slightly deviates from 1, then the calculus developed in [47]
(Theorems 4.8 and 4.13) gives

(7) lim
δ→0

U
(
Π(α)|Bn

δ

)
=

1

1 + 1
α2

a−m
m

=
m

a
α2 +m(1 − 1

α2 )
.

Note that the right-hand side of (7) is equal to m/a for α = 1 (when the proba-
bility of the data is constant on the model class) and quickly converges toward 1 as
α increases. As a numerical application observe that for a = 3

4 and m = a
2 = 3

8 , we
have limδ→0 U

(
Π(α)

)
= 1

2 and

lim
δ→0

U
(
Π(α)|Bn

δ

)
=

1

1 + 1
α2

.

Therefore, for α = 2, we have (irrespective of the number of data points)

lim
δ→0

U
(
Π(2)|Bn

δ

)
= 0.8

and, for α = 10, we have (irrespective of the number of data points)

lim
δ→0

U
(
Π(10)|Bn

δ

)
≈ 0.99.

Moreover, if α is derived by assuming the probability of each data point to be
known up to some tolerance γ, i.e., if the model class A(α) is replaced by

(8) Aγ :=

{
μ ∈ M[0, 1]

∣∣∣∣ 1γ μ0[Bδ(xi)] ≤ μ[Bδ(xi)] ≤ γμ0[Bδ(xi)], i = 1, . . . , n

}

© 2015 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

07
/1

9/
17

 to
 1

31
.2

15
.2

25
.9

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
C

C
B

Y
 li

ce
ns

e 



ON THE BRITTLENESS OF BAYESIAN INFERENCE 577

for some γ > 1, then it can be shown that

lim
δ→0

U(Π|Bn
δ ) =

1

1 + 1
γ2n

,

which exponentially converges toward 1 as the number n of data points goes to infinity.
In conclusion, the effects of a uniform constraint on the probability of the data

under finite information in the model class shows that learning ability comes at the
price of loss in stability in the following sense: when α = 1, the data is equiprobable
under all measures in the model class, posterior values are equal to prior values, and
the method is robust but learning is not possible. As α deviates from 1, the learning
ability increases as robustness decreases, and when α is large, learning is possible but
the method is brittle.

Qualitative Robustness and Consistency. Since the data dependence of worst
priors is inherent to classical Bayesian sensitivity analysis, one might ask whether ro-
bustness could be established under finite information by leaving the strict framework
of robust Bayesian inference and computing the sensitivity of posterior conclusions in-
dependently of the specific value of the data. Indeed, in the current classical Bayesian
sensitivity analysis framework, given a class of priors Π and the observation d ∈ Bn

δ (x),
we compute

sup
π,π′∈Π

∣∣∣Eμ∼π

[
Φ(μ)|d ∈ Bn

δ (x)
]
− Eμ∼π′

[
Φ(μ)|d ∈ Bn

δ (x)
]∣∣∣,

which corresponds to the sensitivity of posterior values (given the value of the data)
with respect to the particular choice of prior π ∈ Π. Therefore, the interpretation of
the brittleness mechanisms discussed above should be limited to the significance of
such optimal bounds, which are not the sole measure of robustness of a Bayesian esti-
mation. An alternative analysis could be to quantify the sensitivity of the distribution
of posterior values. For instance, given a class of priors Π ⊂ M(X ) over a model class
A ⊆ M(X ), the value of

sup
π,π′∈Π,ν∈A

Px∼νn

[∣∣Eμ∼π

[
Φ(μ)|d ∈ Bn

δ (x)
]
− Eμ∼π′

[
Φ(μ)|d ∈ Bn

δ (x)
]∣∣ ≥ ε

]

is the least upper bound on the probability that posterior values derived from π, π′ ∈ Π
and randomized through an admissible candidate ν ∈ A for the distribution of the
data deviate by at least ε > 0. This form of analysis is directly related to Hampel
[30] and Cuevas’ [16] notion of qualitative robustness, which requires closeness in dis-
tributions of the posterior distribution rather than in posterior distributions. More
precisely, given a metric ρ2 on M(M(A)), a qualitative sensitivity analysis would
seek to bound ρ2(π∗νn, π′

∗ν
n) (over π, π′ ∈ Π and ν ∈ A), where π∗νn ∈ M(M(A))

is the distribution of the posterior distribution of the prior π ∈ M(A) when the
data d = (d1, . . . , dn) is randomized through νn. If, unlike Hampel and Cuevas who
require “closeness for all n,” we follow Huber [33] and Mizera [44] in only requir-
ing closeness “for large enough n” (i.e., in the limit as the number of data points
tends to infinity), then we obtain [45] a notion of qualitative robustness, where the
notion of consistency (i.e., the property that posterior distributions convergence to-
ward the data-generating distribution) plays an important role. Although consistency
is primarily a frequentist notion, according to Blackwell and Dubins [10] and Diaco-
nis and Freedman [17], consistency is equivalent to intersubjective agreement, which
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578 HOUMAN OWHADI, CLINT SCOVEL, AND TIM SULLIVAN

means that two Bayesians will ultimately have very close predictive distributions.
Fortunately, not only are there mild conditions which guarantee consistency, but the
posterior distributions can be shown to contract/concentrate at an exponential rate
around the data-generating distribution (see [55] for rates of contraction of posterior
distributions based on Gaussian process priors) and the Bernstein–von Mises theorem
goes further in providing mild conditions under which the posterior is asymptotically
normal [13, 14]. The most famous of these are Doob [19], Le Cam and Schwartz [39],
and Schwartz [50, Thm. 6.1].

Unfortunately, the conditions ensuring consistency (e.g., the condition that the
prior has KL support at the parameter value generating the data5) are such that
arbitrarily small (TV or Prokhorov) local perturbations of the prior distribution (near
the data-generating distribution) may result in consistency or non-consistency, and
therefore may have large impacts on the asymptotic behavior of posterior distributions
[45]. A simple illustration of this mechanism is as follows [45]. Suppose that the data-
generating distribution ν is at distance τ > 0 from the support of the prior π. Let
π1 be a prior distribution with all of its mass on or around ν (having KL support at
ν). Take π′ := (1− ε)π + επ1. The TV distance from π′ to π is bounded by ε, which
can be chosen to be arbitrarily small. Furthermore, π′ inherits the KL support of π1
at ν and by Schwartz’s consistency theorem [50] its posterior distribution converges
(almost surely) toward a Dirac concentrated at ν as n→ ∞. On the other hand, the
distance between the support of the posterior distribution of π and ν remains bounded
by τ . This simple example exposes a serious challenge to proving robustness in the
TV metric or any weaker metric, such as those used in the convergence of MCMC.

Of course, in a parametric setting, if the parameter space Θ is compact and
the model well-specified (the data generated from a parameter in that space), then
choosing a prior satisfying Cromwell’s rule (putting mass in the KL neighborhood
of all parameters) ensures qualitative robustness (and the degree of robustness is
a function of how much mass is placed in each neighborhood). However, if Θ is
compact and the model is misspecified, then, even if the prior is nice and smooth,
the mechanism discussed above suggests that it is not qualitatively robust (with a
degree of nonrobustness corresponding to the degree of misspecification; the prior
does not need to look “unrealistic” to be nonqualitatively-robust). Note also that if
Θ is noncompact, then the prior cannot be qualitatively robust (because no matter
how small ε is, one can always find a neighborhood of the parameter space with mass
smaller than ε).

In a nonparametric setting, consistent priors (such as the ones analyzed in [55]
with bounds on convergence rates) remain good/natural choices when their posterior
distributions can be computed. However, consistency and robustness are to some
degree conflicting requirements [16, 45] from the point of view of a numerical ana-
lyst. Consider, for instance, the problem of using a sophisticated numerical Bayesian
model to predict the climate where Bayes rule is applied iteratively and posterior
values become prior values for the next iteration. How do we make sure that our
predictions are robust, not only with respect to the choice of prior but also with re-
spect to numerical instabilities arising in the iterative application of the Bayes rule?
The nonrobustness mechanisms discussed here suggest that, unless the prior is chosen
carefully, and unless we have a tight control on numerical instabilities, errors, and
approximations at each step of the iteration, our final predictions might be unstable.

5π ∈ M(M(X )) is said to have KL support at ν ∈ M(X ) if π{μ ∈ M(X ) | ∫X dν
dμ

dν ≤ ε} is

strictly positive for all ε > 0
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ON THE BRITTLENESS OF BAYESIAN INFERENCE 579

Note that, often, these posterior distributions (which are later on used as prior dis-
tributions) are only approximated (e.g., via MCMC methods), and so how do we go
about ensuring the stability of our method in such situations? The brittleness results
discussed here suggest that having strong convergence of our MCMC method in TV
would not be enough to ensure stability. Note in particular that although quantifying
perturbations in KL ensures qualitative robustness, it would also require controlling
the convergence of the MCMC method in KL or in a stronger metric.

Conclusion and Perspectives. It is possible that an analogy can be made be-
tween the brittleness and robustness properties of Bayesian inference and the numer-
ical analysis of PDEs, for which many pathologies and also many necessary and/or
sufficient stability conditions are known. However, in contrast to conditions such as
the well-known CFL condition for PDEs, the question of the existence and nature of a
stability condition when using Bayesian inference under finite information remains to
be resolved. Although numerical schemes that do not satisfy the CFL condition may
look grossly inadequate, the existence of such perverse examples certainly does not
imply the dismissal of the necessity of a stability condition. Similarly, although one
can, as in the example provided in Figure 2, exhibit grossly perverse worst priors, the
existence of such priors does not invalidate the need for a study of stability conditions
when using Bayesian inference under finite information. The example provided in
(7) suggests that, in the framework of Bayesian sensitivity analysis, such a stability
condition would depend on (i) how well the probability of the data is known or con-
strained in the model class, and (ii) the resolution at which the quantity of interest
is conditioned upon the data. Note that the independence of the brittleness thresh-
old δc from the number of data points n in Theorem 1 suggests that taking δ fixed
and n→ ∞ does not prevent brittleness in the classical Bayesian sensitivity analysis
framework (it only leads to more directions of instabilities). On the other hand, for
a fixed δ, (5) suggests that brittleness results do not persist in that same framework
when the number of moment constraints k (on the class of priors) is large enough.
Furthermore, taking δ > 0 fixed (or discretizing space at a resolution δ > 0) enables
the construction of classes of qualitatively robust priors (to TV perturbations) that
are nearly consistent as n → ∞ (some degree of consistency is lost due to the dis-
cretization). At a higher level, the mechanisms discussed here appear to suggest that
robust inference (in a continuous world under finite information) should perhaps be
done with reduced/coarse models rather than highly sophisticated/complex models
(with a level of “coarseness/reduction” depending on the available “finite informa-
tion”). In the context of deterministic modeling versus uncertainty quantification,
Stuart [53] asked, “should future increased computer resources be invested in further
model resolution, or in more detailed study of uncertainty?” The results reported
here suggest that the answer is the latter, at least in the context of Bayesian mod-
eling versus robustness studies, because posterior conclusions become nonrobust if
model resolution is pushed beyond a threshold defined by model uncertainties.

A close inspection of some of the cases where Bayesian inference has been suc-
cessful suggests the existence of a non-Bayesian feedback loop on the evaluation of
its performance [43, 51, 42]. Therefore, one natural question is whether the missing
stability condition could also be derived by exiting the strictly Bayesian framework, as
proposed in [21]. One example of such an approach could be using posterior predictive
checking [26], [25, p. 159], whose rationale is to detect model mismatch by generating
replicate data from the model, and comparing this replicate data to the original data
using statistics related to the quantity of interest.
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580 HOUMAN OWHADI, CLINT SCOVEL, AND TIM SULLIVAN

It is natural to expect that robustness and stability questions will increase in im-
portance as Bayesian methods become more popular with the availability of compu-
tational methodologies and environments to compute the posteriors. Another strong
motivation for considering Bayesian methods and investigating such questions is the
complete class theorem, which, in the adversarial game theoretic setting of decision
theory [57], asserts that optimal statistical estimators (leading to optimal decisions as
defined by a convex loss function on a compact parameter space) live in the Bayesian
class of estimators [57, 22].
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