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Abstract. We propose a rigorous framework for uncertainty quantification (UQ) in which the UQ ob-
jectives and its assumptions/information set are brought to the forefront. This framework,
which we call optimal uncertainty quantification (OUQ), is based on the observation that,
given a set of assumptions and information about the problem, there exist optimal bounds
on uncertainties: these are obtained as values of well-defined optimization problems corre-
sponding to extremizing probabilities of failure, or of deviations, subject to the constraints
imposed by the scenarios compatible with the assumptions and information. In particular,
this framework does not implicitly impose inappropriate assumptions, nor does it repudiate
relevant information. Although OUQ optimization problems are extremely large, we show
that under general conditions they have finite-dimensional reductions. As an application,
we develop optimal concentration inequalities (OCI) of Hoeffding and McDiarmid type.
Surprisingly, these results show that uncertainties in input parameters, which propagate to
output uncertainties in the classical sensitivity analysis paradigm, may fail to do so if the
transfer functions (or probability distributions) are imperfectly known. We show how, for
hierarchical structures, this phenomenon may lead to the nonpropagation of uncertainties
or information across scales. In addition, a general algorithmic framework is developed for
OUQ and is tested on the Caltech surrogate model for hypervelocity impact and on the
seismic safety assessment of truss structures, suggesting the feasibility of the framework
for important complex systems. The introduction of this paper provides both an overview
of the paper and a self-contained minitutorial on the basic concepts and issues of UQ.
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1. Introduction.

1.1. The UQ Problem. This paper sets out a rigorous and unified framework
for the statement and solution of uncertainty quantification (UQ) problems centered
on the notion of available information. In general, UQ refers to any attempt to quan-
titatively understand the relationships among uncertain parameters and processes in
physical processes, or in mathematical and computational models for them; such un-
derstanding may be deterministic or probabilistic in nature. However, to make the
discussion specific, we start the description of the proposed framework as it applies
to the certification problem; section 3 gives a broader description of the purpose, mo-
tivation, and applications of UQ in the proposed framework and a comparison with
current methods.

By certification we mean the problem of showing that, with probability at least
1 − ε, the real-valued response function G of a given physical system will not exceed
a given safety threshold a. That is, we wish to show that

(1.1) P[G(X) ≥ a] ≤ ε.

In practice, the event [G(X) ≥ a] may represent the crash of an aircraft, the failure of a
weapons system, or the average surface temperature on the earth being too high. The
symbol P denotes the probability measure associated with the randomness of (some
of) the input variables X of G (commonly referred to as “aleatoric uncertainty”).

Specific examples of values of ε used in practice are 10−9 in the aviation industry
(for the maximum probability of a catastrophic event per flight hour; see [84, p.
581] and [15]), 0 in the seismic design of nuclear power plants [28, 23], and 0.05
for the collapse of soil embankments in surface mining [36, p. 358]. In structural
engineering [31], the maximum permissible probability of failure (due to any cause)
is 10−4Ksnd/nr (this is an example of ε), where nd is the design life (in years),
nr is the number of people at risk in the event of failure, and Ks is given by the
following values (with 1/year units): 0.005 for places of public safety (including dams);
0.05 for domestic, office, or trade and industry structures; 0.5 for bridges; and 5
for towers, masts, and offshore structures. In U.S. environmental legislation, the
maximum acceptable increased lifetime chance of developing cancer due to lifetime
exposure to a substance is 10−6 [53], although [44] draws attention to the fact that
“there is no sound scientific, social, economic, or other basis for the selection of the
threshold 10−6 as a cleanup goal for hazardous waste sites.”

One of the most challenging aspects of UQ lies in the fact that in practical ap-
plications, the measure P and the response function G are not known a priori. This
lack of information, commonly referred to as “epistemic uncertainty,” can be de-
scribed precisely by introducing A, the set of all admissible scenarios (f, μ) for the
unknown—or partially known—reality (G,P). More precisely, in those applications,
the available information does not determine (G,P) uniquely, but instead determines
a set A such that any (f, μ) ∈ A could a priori be (G,P). Hence, A is a (possibly
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infinite-dimensional) set of measures and functions defining explicitly information on
and assumptions about G and P. In practice, this set is obtained from physical laws,
experimental data, and expert judgment. It then follows from (G,P) ∈ A that

(1.2) inf
(f,μ)∈A

μ[f(X) ≥ a] ≤ P[G(X) ≥ a] ≤ sup
(f,μ)∈A

μ[f(X) ≥ a].

Moreover, it is elementary to observe that
• the quantities on the right- and left-hand sides of (1.2) are extreme values of
optimization problems and elements of [0, 1], and

• both the right- and left-hand sides inequalities are optimal in the sense that
they are the sharpest bounds for P[G(X) ≥ a] that are consistent with the
information and assumptions A.

More importantly, in Proposition 2.1, we show that these two inequalities provide
sufficient information to produce an optimal solution to the certification problem.

Example 1.1. To give a very simple example of the effect of information and
optimal bounds over a class A, consider the certification problem (1.1) when Y :=
G(X) is a real-valued random variable taking values in the interval [0, 1] and a ∈ (0, 1);
to further simplify the exposition, we consider only the upper bound problem, suppress
dependence upon G and X , and focus solely on the question of which probability
measures ν on R are admissible scenarios for the probability distribution of Y . So
far, any probability measure on [0, 1] is admissible,

A = {ν | ν is a probability measure on [0, 1]},
and so the optimal upper bound in (1.2) is simply

P[Y ≥ a] ≤ sup
ν∈A

ν[Y ≥ a] = 1.

Now suppose that we are given an additional piece of information: the expected value
of Y equals m ∈ (0, a). These are, in fact, the assumptions corresponding to an
elementary Markov inequality, and the corresponding admissible set is

AMrkv =

{
ν

∣∣∣∣ ν is a probability measure on [0, 1],
Eν [Y ] = m

}
.

The least upper bound on P[Y ≥ a] corresponding to the admissible set AMrkv is the
solution of the infinite-dimensional optimization problem

(1.3) sup
ν∈AMrkv

ν[Y ≥ a].

Formulating (1.3) as a mechanical optimization problem (see Figure 1.1), it is easy
to observe that the extremum of (1.3) can be found by restricting attention to the
situation where ν is the weighted sum of a point mass at 0 (with weight 1− p) and a
point mass at a (with weight p). It follows that (1.3) can be reduced to the following
simple (one-dimensional) optimization problem: Maximize p subject to ap = m. It
follows that Markov’s inequality is the optimal bound for the admissible set AMrkv:

(1.4) P[Y ≥ a] ≤ sup
ν∈AMrkv

ν[Y ≥ a] = m
a .

In some sense, the optimal uncertainty quantification framework that we present in
this paper is the the extension of this procedure to situations in which the admissible
class A is complicated enough that a closed-form inequality such as Markov’s inequal-
ity is unavailable, but optimal bounds can nevertheless be computed using reduction
properties analogous to the one illustrated in Figure 1.1.
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Fig. 1.1 You are given one pound of play-dough and a seesaw balanced around m. How much mass
can you put on the right-hand side of a while keeping the seesaw balanced around m? The
solution of this optimization problem can be found by placing any mass p on the right-hand
side of a, exactly at a (to place mass on [a, 1] with minimum turning moment toward the
right-hand side of the seesaw), and mass 1− p on the left-hand side of a, exactly at 0 (for
maximum leverage toward the left-hand side of the seesaw).

1.2. Motivating Physical Example and Outline of the Paper. Section 2 gives a
formal description of the optimal uncertainty quantification (OUQ) framework. In or-
der to aid intuition, we will illustrate and motivate our abstract definitions and results
with a practical example: an analytical surrogate model for hypervelocity impact.

The physical system of interest is one in which a 440C steel ball (440C is a stan-
dard, i.e., a grade of steel) of diameter Dp = 1.778mm impacts a 440C steel plate of
thickness h (expressed in mm) at speed v (expressed in km · s−1) at obliquity θ from
the plate normal. The physical experiments were performed at the California Institute
of Technology SPHIR (Small Particle Hypervelocity Impact Range) facility (see Fig-
ure 1.2). An analytical surrogate model was developed to approximate the perforation
area (in mm2) caused by this impact event. The surrogate response function is

(1.5) H(h, θ, v) = K

(
h

Dp

)p
(cos θ)u

(
tanh

(
v

vbl
− 1

))m
+

,

where, for t ∈ R, t+ := max(θ, t), and the ballistic limit velocity (the speed below
which no perforation area occurs) is given by

(1.6) vbl := H0

(
h

(cos θ)n

)s
.

The seven quantities H0, s, n, K, p, u, and m are fitting parameters that are chosen
to minimize the least-squares error between the surrogate and a set of 56 experimental
data points; they take the values

H0 = 0.5794 km · s−1, s = 1.4004, n = 0.4482, K = 10.3936mm2,

p = 0.4757, u = 1.0275, m = 0.4682.

Hence, in this illustrative example, H(h, θ, v) will represent our response function
G(X1, X2, X3), and we will consider cases in which H is perfectly and imperfectly
known. In section 7, we will apply the OUQ framework to the seismic safety assess-
ment of structures and consider a more complex example involving a large number of
variables.

1.2.1. Formulation of the Admissible Set and Reduction Theorems. For the
example considered here, we will assume that the input parameters h, θ, and v are
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Fig. 1.2 Experimental setup. (a) Stainless steel spherical projectiles and nylon sabots. (b) Target
plate held at the end of the gun barrel. (c) Perforation of the target plate. (d) General view
of the SPHIR Facility at Caltech. (e) Plate thickness h, plate obliquity θ, and projectile
velocity v.

random variables of unknown probability distribution P and of given range

(h, θ, v) ∈ X := X1 ×X2 ×X3,

h ∈ X1 := [1.524, 2.667]mm = [60, 105]mils,

θ ∈ X2 := [0, π6 ],

v ∈ X3 := [2.1, 2.8] km · s−1.

(1.7)

We will measure lengths in both mm and mils (recall that 1mm = 39.4mils).
We will adopt the “gunner’s perspective” that failure consists of not perforat-

ing the plate, and therefore seek to obtain an optimal bound on the probability of
nonperforation, i.e., P[H ≤ 0], with possibly incomplete information on P and H .

Assuming H to be known, if the information on P is limited to the knowledge that
velocity, impact obliquity, and plate thickness are independent random variables and
that the mean perforation area lies in a prescribed range [m1,m2] := [5.5, 7.5]mm2,
then this information describes the admissible set AH , defined by

(1.8) AH :=

⎧⎨
⎩(H,μ)

∣∣∣∣∣∣
H given by (1.5),
μ = μ1 ⊗ μ2 ⊗ μ3,

m1 = 5.5mm2 ≤ Eμ[H ] ≤ m2 = 7.5mm2

⎫⎬
⎭ .

If the information on H is limited to values of Osci(H), the componentwise os-
cillations (defined below, the least upper bound on how a change in variable i affects
the response function), and if the information on P is as above, then the correspond-
ing admissible set is AMcD, which corresponds to the assumptions of McDiarmid’s
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inequality [58] and is defined by

(1.9) AMcD :=

⎧⎨
⎩(f, μ)

∣∣∣∣∣∣
μ = μ1 ⊗ μ2 ⊗ μ3,

m1 = 5.5mm2 ≤ Eμ[f ] ≤ m2 = 7.5mm2,
Osci(f) ≤ Osci(H) for i = 1, 2, 3

⎫⎬
⎭ .

Definition 1.1. Let X := X1 × · · · × Xm and consider a function f : X → R.
For i = 1, . . . ,m, we define the componentwise oscillations by

(1.10) Osci(f) := sup
(x1,...,xm)∈X

sup
x′
i∈Xi

|f(. . . , xi, . . .)− f(. . . , x′i, . . .)| .

Thus, Osci(f) measures the maximum oscillation of f in the ith factor.
Remark 1.2. The explicit expression (1.5) of H and the ranges (1.7) allow us to

compute the componentwise oscillations Osci(H), which are, respectively, 8.86mm2,
4.17mm2, and 7.20mm2 for thickness, obliquity, and velocity.

In general, for any admissible set A of function/measure pairs for the perforation
problem, we define

(1.11) U(A) := sup
(f,μ)∈A

μ[f(h, θ, v) ≤ 0].

In this notation, the optimal upper bounds on the probability of nonperforation, given
the information contained in AH and AMcD, are U(AH) and U(AMcD), respectively.

In AH the response function is exactly known, whereas in AMcD it is imperfectly
known (the information on the response function is limited to its componentwise
oscillations Osci(H)). Both AH and AMcD describe epistemic uncertainties (since in
AH the probability distributions of thickness, obliquity, and velocity are imperfectly
known). AMcD is the set of response functions f and probability measures μ that
could be H and P given the information contained in (i.e., the constraints imposed
by) Osci(H), the independence of the input variables, and the bounds m1 and m2

on the mean perforation area. U(AMcD) quantifies the worst-case scenario, i.e., the
largest-probability of nonperforation given H and P.

Reduction Theorems. The optimization variables associated with U(AH) are
tensorizations of probability measures on thickness h, on obliquity θ, and on velocity
v. This problem is not directly computationally tractable since finding the optimum
appears to require a search over the spaces of probability measures on the intervals
[1.524, 2.667]mm, [0, π6 ], and [2.1, 2.8] km · s−1. However, in section 4 (Theorem 4.1
and Corollary 4.4) we show that, since the constraint m1 ≤ Eμ[H ] ≤ m2 is multi-
linear in μ1, μ2, and μ3, the optimum U(AH) can be achieved by searching among
those measures μ whose marginal distributions on each of the three input parameter
ranges have support on at most two points. That is,

(1.12) U(AH) = U(AΔ),

where the reduced feasible set AΔ is given by

(1.13) AΔ :=

⎧⎪⎪⎨
⎪⎪⎩(H,μ)

∣∣∣∣∣∣∣∣
H given by (1.5),
μ = μ1 ⊗ μ2 ⊗ μ3,

μi ∈ Δ1(Xi) for i = 1, 2, 3,
m1 ≤ Eμ[H ] ≤ m2

⎫⎪⎪⎬
⎪⎪⎭ ,D

ow
nl

oa
de

d 
07

/1
9/

17
 to

 1
31

.2
15

.2
48

.1
12

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

278 H. OWHADI, T. J. SULLIVAN, M. MCKERNS, M. ORTIZ, AND C. SCOVEL

where

Δ1(Xi) :=
{
αδx0 + (1− α)δx1

∣∣xj ∈ Xi for j = 0, 1 and α ∈ [0, 1]
}

denotes the set of binary convex combinations of Dirac masses on Xi.
More generally, although the OUQ optimization problems (1.2) are extremely

large, we show in section 4 that an important subclass enjoys significant and practical
finite-dimensional reduction properties. More precisely, although the optimization
variables (f, μ) live in a product space of functions and probability measures, for
OUQ problems governed by linear inequality constraints on generalized moments we
demonstrate in Theorem 4.1 and Corollary 4.4 that the search can be reduced to one
over probability measures that are products of finite convex combinations of Dirac
masses with explicit upper bounds on the number of Dirac masses. Moreover, all the
results in this paper can be extended to sets of extreme points (extremal measures)
more general than Dirac masses, such as those described by Dynkin [24]; we have
phrased the results in terms of Dirac masses for simplicity.

Furthermore, when all constraints are generalized moments of functions of f ,
the search over admissible functions reduces to a search over functions on an m-fold
product of finite discrete spaces, and the search over m-fold products of finite convex
combinations of Dirac masses reduces to the products of probability measures on this
m-fold product of finite discrete spaces. This latter reduction, presented in Theorem
4.7, completely eliminates dependency on the coordinate positions of the Dirac masses.
With this result, the optimization variables of U(AMcD) can be reduced to functions
and products of probability measures on {0, 1}3.

1.2.2. Optimal Concentration Inequalities. Concentration-of-measure inequal-
ities can be used to obtain upper bounds on U(AH) and U(AMcD); in that sense, they
lead to suboptimal methods. Indeed, according to McDiarmid’s inequality [58, 59],
for all functions f of m independent variables, one must have

(1.14) μ
[
f(X1, . . . , Xm)− Eμ[f ] ≥ a

] ≤ exp

(
−2

a2∑m
i=1(Osci(f))2

)
.

Application of this inequality to (1.9) (using Eμ[f ] ≥ m1 = 5.5mm2) yields the bound

(1.15) U(AMcD) ≤ exp

(
− 2m2

1∑3
i=1 Osci(H)2

)
= 66.4%.

Note that U(AMcD) := sup(f,μ)∈AMcD
μ[f ≤ 0] is the least upper bound on the prob-

ability of nonperforation P[H = 0] given the information contained in the admissible
set (1.9).

In section 5, the reduction techniques of section 4 are applied to obtain opti-
mal McDiarmid and Hoeffding inequalities, i.e., optimal concentration-of-measure
inequalities with the assumptions of McDiarmid’s inequality [58] or Hoeffding’s in-
equality [35]. In particular, Theorems 5.1, 5.2, and 5.4 provide analytic solutions to
the McDiarmid problem for dimension m = 1, 2, 3, and Proposition 5.7 provides a re-
cursive formula for general m, thereby providing an optimal McDiarmid inequality in
these cases. In Theorems 5.11 and 5.13, we give analytic solutions under Hoeffding’s
assumptions. A noteworthy result is that the optimal bounds associated with McDi-
armid’s and Hoeffding’s assumptions are the same for m = 2 but may be distinct for
m = 3, and so, in some sense, information about the linearity or nonlinearity of the re-
sponse function has a different effect depending upon the dimensionm of the problem.
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Nonpropagation of Uncertainties. For m = 2, define A2 to be the space of all
functions f and measure μ such that μ = μ1 ⊗ μ2 and Osci(f) ≤ Di. The optimal
concentration-of-measure inequality with the assumptions of McDiarmid’s inequality,
Theorem 5.2, states that
(1.16)

sup
(f,μ)∈A2

μ
[
f(X1, X2)−Eμ[f ] ≥ a

]
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if D1 +D2 ≥ a,

(D1 +D2 − a)2

4D1D2
if |D1 −D2| ≤ a ≤ D1 +D2,

1− a

max(D1, D2)
if 0 ≤ a ≤ |D1 −D2|.

Observe that if D2 + a ≤ D1, then the optimal bound does not depend on D2 and,
therefore, any decrease in D2 does not improve the inequality. These explicit bounds
show that, although uncertainties may propagate for the true values of G and P (as
expected from the sensitivity analysis paradigm), they may fail to do so when the
information is incomplete on G and P and the objective is the maximum of μ[f ≥ a]
compatible with the given information. The nonpropagation of input uncertainties is
a nontrivial observation related to the fact that some of the constraints defining the
range of the input variables may not be realized by the worst-case scenario (extremum
of the OUQ problem). We have further illustrated this point in section 8, where
we show that for systems characterized by multiple scales or hierarchical structures,
information or uncertainties may not propagate across scales. Note that the m = 2
case does not apply to the SPHIR example (since (1.9) involves three variables, i.e.,
it requires m = 3).

Application to the SPHIR Facility Admissible Set (1.9). For m = 3, the “op-
timal McDiarmid inequality” of Theorem 5.4 and Remark 4.2 provides the upper
bound

(1.17) U(AMcD) = 43.7%.

Remark 5.6 also shows that reducing the uncertainty in obliquity (described by the
constraint Osci(f) ≤ Osci(H) in (1.9) for i = obliquity) does not affect the least
upper bound (1.17). Recall that U(AMcD) is the least upper bound on the probability
that the perforation is zero given that the mean perforation area is between 5.5mm2

and 7.5mm2 and given the constraints imposed by the independence, ranges, and
componentwise oscillations associated with the input random variables.

The difference between (1.15) and (1.17) lies in the fact that 66.4% is nonoptimal,
whereas 43.7% is the least upper bound on the probability of nonperforation given
the information contained in AMcD. 43.7% is a direct function of the information
contained in AMcD and section 2 shows how admissible sets with higher information
content lead to smaller least upper bounds on the probability of nonperforation. Sec-
tion 2 also shows how such admissible sets can be constructed, in the OUQ framework,
via the optimal selection of experiments.

1.2.3. Computational Framework. With access to H , not just its component-
wise oscillations, even sharper bounds on the probability of nonperforation can be
calculated. Although we do not have an analytical formula for U(AH), its calculation
is made possible by the identity (1.12) derived from the reduction results of section 4.
A numerical optimization over the finite-dimensional reduced feasible set AΔ using
a differential evolution [73] optimization algorithm implemented in the mystic frame-
work [61] (see section 6.3) yields the following optimal upper bound on the probability
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(a) support points at iteration 0 (b) support points at iteration 150

(c) support points at iteration 200 (d) support points at iteration 1000

Fig. 1.3 For #supp(μi) ≤ 2, i = 1, 2, 3, the maximizers of the OUQ problem (1.12) associated with
the information set (1.8) collapse to two-point (as opposed to eight-point) support. Veloc-
ity and obliquity marginals each collapse to a single Dirac mass, while the plate thickness
marginal collapses to having support on the extremes of its range. Note the perhaps surpris-
ing result that the probability of nonperforation is maximized by a distribution supported
on the minimal, not maximal, impact obliquity.

of nonperforation:

P[H = 0] ≤ U(AH) = U(AΔ)
num
= 37.9%.

Observe that “P[H = 0] ≤ U(A) = U(AΔ)” is a theorem, whereas “U(AΔ)
num
= 37.9%”

is the output of an algorithm (in this case, a genetic algorithm implemented in the
mystic framework described in section 6.3). In particular, its validity is correlated

with the efficiency of the specific algorithm. We have introduced the symbol
num
= to

emphasize the distinction between mathematical (in)equalities and numerical outputs.
Although we do not have a theorem associated with the convergence of the nu-

merical optimization algorithm, we have robust control over its efficiency because it
is applied to the finite-dimensional problem U(AΔ) instead of the infinite optimiza-
tion problem associated with U(AH) (thanks to the reduction theorems obtained in
section 4).

We also observe that the maximizer U(AH) can be of significantly smaller di-
mension than that of the elements of U(AΔ). Indeed, for #supp(μi) ≤ 2, i = 1, 2, 3
(where #supp(μi) is the number of points forming the support of μi), Figure 1.3 shows
that numerical simulations collapse to two-point support: the velocity and obliquity
marginals each collapse to a single Dirac mass, and the plate thickness marginal col-
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(a) convergence for thickness (b) convergence for thickness weight

(c) convergence for obliquity (d) convergence for obliquity weight

(e) convergence for velocity (f) c onvergence for velocity weight

Fig. 1.4 Time evolution of the genetic algorithm search for the OUQ problem (1.12) associated
with the information set (1.8) ( (1.13) after reduction) for #supp(μi) ≤ 2 for i = 1, 2, 3,
as optimized by mystic. Thickness quickly converges to the extremes of its range, with a
weight of 0.621 at 60mils and a weight of 0.379 at 105mils. The degeneracy in obliquity
at 0 causes the fluctuations seen in the convergence of obliquity weight. Similarly, velocity
converges to a single support point at 2.289 km · s−1, the ballistic limit velocity for thickness
105mils and obliquity 0 (see (1.6)).

lapses to having support on the two extremes of its range. See Figure 1.4 for plots of
the locations and weights of the Dirac masses forming each marginal μi as functions
of the number of iterations. Note that the lines for thickness and thickness weight are
of the same color if they correspond to the same support point for the measure.
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In section 6 we observe that, even when a wider search is performed (i.e., over
measures with more than two-point support per marginal), the calculated maximiz-
ers for these problems maintain two-point support. This observation suggests that
the extreme points of the reduced OUQ problems are, in some sense, attractors and
that adequate numerical implementation of OUQ problems can detect and use “hid-
den” reduction properties even in the absence of theorems proving them to be true.
Based on these observations, we propose, in section 6, an OUQ optimization algo-
rithm for arbitrary constraints based on a coagulation/fragmentation of probability
distributions.

The simulations of Figures 1.3 and 1.4 show that extremizers are singular and that
their support points identify key players, i.e., weak points of the system. In particular,
for U(AH), the location of the two-point support extremizer shows that reducing
maximum obliquity and the range of velocity will not decrease the optimal bound
on the probability of nonperforation, and it suggests that reducing the uncertainty in
thickness will decrease this bound. In section 2, we will show that the OUQ framework
allows the development of an OUQ loop that can be used for experimental design.
In particular, we will show that the problem of predicting optimal bounds on the
results of experiments under the assumption that the system is safe (or unsafe) is
well-posed and benefits from similar reduction properties as the certification problem.
The best experiments are then naturally identified as those whose predicted ranges
have minimal overlap between safe and unsafe systems.

1.2.4. Outline of the Paper. Section 2 formally describes the OUQ framework
and what it means to give optimal bounds on the probability of failure in (1.1) given
(limited) information/assumptions about the system of interest, and hence how to
rigorously certify or decertify that system. Section 3 shows that many important
UQ problems, such as prediction, verification, and validation, can be formulated as
certification problems. Section 3 also gives a comparison of OUQ with other widely
used UQ methods. Section 4 shows that although OUQ optimization problems (1.2)
are (a priori) infinite-dimensional, they can (in general) be reduced to equivalent
finite-dimensional problems in which the optimization is over the extremal scenarios
of A and that the dimension of the reduced problem is a function of the number of
probabilistic inequalities that describe A. Just as a linear program finds its extreme
value at the extremal points of a convex domain in R

n, OUQ problems reduce to
searches over finite-dimensional families of extremal scenarios. Section 5 applies the
results of section 4 to obtain optimal concentration inequalities under the assumptions
of McDiarmid’s inequality and Hoeffding’s inequality. Those inequalities show that,
although uncertainties may propagate for the true values of G and P, they might not
when the information is incomplete on G and P. Section 6 discusses the numerical
implementation of OUQ algorithms for the analytical surrogate model (1.5) for hyper-
velocity impact. Section 7 assesses the feasibility of the OUQ formalism by means of
an application to the safety assessment of truss structures subjected to ground motion
excitation. This application contains many of the features that both motivate and
challenge UQ, including imperfect knowledge of random inputs of high dimensionality,
a time-dependent and complex response of the system, and the need to make high-
consequence decisions pertaining to the safety of the system. Section 8 applies the
OUQ framework and the reduction theorems of sections 4 and 5 to divergence-form
elliptic PDEs. A striking observation of section 8 is that with incomplete information
on the probability distribution of the microstructure, uncertainties or information do
not necessarily propagate across scales. Section 9 emphasizes that the “UQ problem”
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(as it is treated in common practice today) appears to have all the symptoms of an
ill-posed problem, and that, at the very least, it lacks a coherent general presen-
tation, much like the state of probability theory before its rigorous formulation by
Kolmogorov in the 1930s. It also stresses that OUQ is not the definitive answer to
the UQ problem, but an opening gambit. Section 10 gives the proofs of our main
results.

2. Optimal Uncertainty Quantification. In this section, we describe more for-
mally the OUQ framework. In particular, we describe what it means to give optimal
bounds on the probability of failure in (1.1) given information/assumptions about the
system of interest, and hence how to rigorously certify or decertify that system.

For the sake of clarity, we will start the description of OUQ with deterministic in-
formation and assumptions (when A is a deterministic set of functions and probability
measures).

2.1. First Description. In the OUQ paradigm, information and assumptions lie
at the core of UQ: the available information and assumptions describe sets of admissi-
ble scenarios over which optimizations will be performed. As noted by Hoeffding [34],
assumptions about the system of interest play a central and sensitive role in any sta-
tistical decision problem, even though the assumptions are often only approximations
of reality.

A simple example of an information/assumptions set is given by constraining
the mean and range of the response function. For example, let M(X ) be the set
of probability measures on the set X , and let A1 be the set of pairs of probability
measures μ ∈ M(X ) and real-valued measurable functions f on X such that the mean
value of f with respect to μ is b and the diameter of the range of f is at most D:

(2.1) A1 :=

⎧⎪⎪⎨
⎪⎪⎩(f, μ)

∣∣∣∣∣∣∣∣
f : X → R,
μ ∈ M(X ),
Eμ[f ] = b,

(sup f − inf f) ≤ D

⎫⎪⎪⎬
⎪⎪⎭ .

Let us assume that all that we know about the “reality” (G,P) is that (G,P) ∈ A1.
Then any other pair (f, μ) ∈ A1 constitutes an admissible scenario representing a
valid possibility for the “reality” (G,P). If asked to bound P[G(X) ≥ a], should we
apply different methods and obtain different bounds on P[G(X) ≥ a]? Since some
methods will distort this information set and others only use part of it, we instead
view the set A1 as a feasible set for an optimization problem.

The General OUQ Framework. In the general case, we regard the response
function G as an unknown measurable function, with some possibly known charac-
teristics, from one measurable space X of inputs to a second measurable space Y of
values. The input variables are generated randomly according to an unknown random
variable X with values in X according to a law P ∈ M(X ), also with some possibly
known characteristics. We let a measurable subset Y0 ⊆ Y define the failure region;
in the example given above, Y = R and Y0 = [a,+∞). When there is no danger of
confusion, we shall simply write [G fails] for the event [G(X) ∈ Y0].

Let ε ∈ [0, 1] denote the greatest acceptable probability of failure. We say that
the system is safe if P[G fails] ≤ ε and the system is unsafe if P[G fails] > ε. By
information, or a set of assumptions, we mean a subset

(2.2) A ⊆
{
(f, μ)

∣∣∣∣ f : X → Y is measurable,
μ ∈ M(X )
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that contains, at the least, (G,P). The set A encodes all the information that we
have about the real system (G,P), information that may come from known physical
laws, past experimental data, or expert opinion. In the example A1 above, the only
information that we have is that the mean response of the system is b and that the
diameter of its range is at most D; any pair (f, μ) that satisfies these two criteria is an
admissible scenario for the unknown reality (G,P). Since some admissible scenarios
may be safe (i.e., have μ[f fails] ≤ ε), whereas other admissible scenarios may be
unsafe (i.e., have μ[f fails] > ε), we decompose A into the disjoint union A = Asafe,ε	
Aunsafe,ε, where

Asafe,ε := {(f, μ) ∈ A | μ[f fails] ≤ ε},(2.3a)

Aunsafe,ε := {(f, μ) ∈ A | μ[f fails] > ε}.(2.3b)

Now observe that, given such an information/assumptions setA, there exist upper
and lower bounds on P[G(X) ≥ a] corresponding to the scenarios compatible with
assumptions, i.e., the values L(A) and U(A) of the optimization problems

L(A) := inf
(f,μ)∈A

μ[f fails],(2.4a)

U(A) := sup
(f,μ)∈A

μ[f fails].(2.4b)

Since L(A) and U(A) are well-defined in [0, 1], and approximations are sufficient for
most purposes and are necessary in general, the difference between sup and max
should not be much of an issue. Of course, some of the work that follows is concerned
with the attainment of maximizers and whether those maximizers have any simple
structure that can be exploited for the sake of computational efficiency, and this is
the topic of section 4. For the moment, however, simply assume that L(A) and U(A)
can indeed be computed on demand. Now, since (G,P) ∈ A, it follows that

L(A) ≤ P[G fails] ≤ U(A).

Moreover, the upper bound U(A) is optimal in the sense that

μ[f fails] ≤ U(A) for all (f, μ) ∈ A
and, if U ′ < U(A), then there is an admissible scenario (f, μ) ∈ A such that

U ′ < μ[f fails] ≤ U(A).

That is, although P[G fails] may be much smaller than U(A), there is a pair (f, μ)
which satisfies the same assumptions/information about (G,P) such that μ[f fails] is
approximately equal to U(A). Similar remarks apply for the lower bound L(A).

Moreover, the values L(A) and U(A) defined in (2.4) can be used to construct
a solution to the certification problem. Let the certification problem be defined by
an error function that gives an error whenever (1) the certification process produces
“safe” and there exists an admissible scenario that is unsafe, (2) the certification
process produces “unsafe” and there exists an admissible scenario that is safe, or (3)
the certification process produces “cannot decide” and all admissible scenarios are
safe or all admissible points are unsafe; otherwise, the certification process produces
no error. The following proposition demonstrates that, except in the special case
L(A) = ε, these values determine an optimal solution to this certification problem.
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Table 2.1 The OUQ certification process provides a rigorous certification criterion whose outcomes
are of three types: “certify,” “decertify,” and “cannot decide.”

L(A) := inf
(f,μ)∈A

μ
[
f(X) ≥ a

] U(A) := sup
(f,μ)∈A

μ
[
f(X) ≥ a

]

≤ ε
Cannot decide

Insufficient information
Certify

Safe even in the worst case

> ε
Decertify

Unsafe even in the best case
Cannot decide

Insufficient information

Proposition 2.1. If (G,P) ∈ A and
• U(A) ≤ ε, then P[G fails] ≤ ε;
• ε < L(A), then P[G fails] > ε;
• L(A) < ε < U(A), then there exist (f1, μ1) ∈ A and (f2, μ2) ∈ A such that
μ1[f1 fails] < ε < μ2[f2 fails].

In other words, provided that the information set A is valid (in the sense that
(G,P) ∈ A), then if U(A) ≤ ε, then the system is provably safe; if ε < L(A), then
the system is provably unsafe; and if L(A) < ε < U(A), then the safety of the system
cannot be decided due to lack of information. The corresponding certification process
and its optimality are represented in Table 2.1. Hence, solving the optimization
problems (2.4) determines an optimal solution to the certification problem, under
the condition that L(A) 
= ε. When L(A) = ε we can still produce an optimal
solution if we obtain further information. That is, when L(A) = ε = U(A), then
the optimal process produces “safe.” On the other hand, when L(A) = ε < U(A),
the optimal solution depends on whether or not there exists a minimizer (f, μ) ∈ A
such that μ[f fails] = L(A); if so, the optimal process should declare “cannot decide”;
otherwise, the optimal process should declare “unsafe.” Observe that, in Table 2.1,
we have classified L(A) = ε < U(A) as “cannot decide.” This “nearly optimal”
solution appears natural and conservative without knowledge of the attainment or
nonattainment of extreme values.

Example 2.1. The bounds L(A) and U(A) can be computed exactly—and are
nontrivial—in the case of the simple example A1 given in (2.1). Indeed, writing
x+ := max(x, 0), the optimal upper bound is given by

(2.5) U(A1) = pmax :=

(
1− (a− b)+

D

)
+

,

where the maximum is achieved by taking the measure of probability of the random
variable f(X) to be the weighted sum of two weighted Dirac delta masses1

pmaxδa + (1− pmax)δa−D.

This simple example demonstrates an extremely important point: even if the function
G is extremely expensive to evaluate, in the presence of suitable information such as b
andD, certification can be accomplished without recourse to the expensive evaluations
of G. Furthermore, the simple structure of the maximizers motivates the reduction
theorems later in section 4.

1δz is the Dirac delta mass on z, i.e., the measure of probability on Borel subsets A ⊂ R such
that δz(A) = 1 if z ∈ A and δz(A) = 0 otherwise. The first Dirac delta mass is located at the
minimum of the interval [a,∞] (since we are interested in maximizing the probability of the event
μ[f(X) ≥ a]). The second Dirac delta mass is located at z = a − D because we seek to maximize
pmax under the constraints pmaxa+ (1 − pmax)z ≤ b and a − z ≤ D.
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Example 2.2. As shown in (1.14), concentration-of-measure inequalities lead to
suboptimal methods in the sense that they can be used to obtain upper bounds on
U(A) and lower bounds on L(A). Observe that McDiarmid’s inequality (1.14) required
an information/assumptions set AMcD, where the space X is a product space with
X = (X1, X2, . . . , Xm), the mean performance satisfies E[G(X)] ≤ b, the m inputs
X1, . . . , Xm are independent, and the componentwise oscillations of G (see (1.10)) are
bounded, Osci(G) ≤ Di. It follows from McDiarmid’s inequality (1.14) that, under
the assumptions AMcD,

U(AMcD) ≤ exp

(
−2

(a− b)2+∑m
i=1D

2
i

)
.

This example shows how existing techniques such as concentration-of-measure in-
equalities can be incorporated into OUQ. In section 4, we will show how to reduce
U(AMcD) to a finite-dimensional optimization problem. Based on this reduction, in
section 5, we provide analytic solutions to the optimization problem U(AMcD) for
m = 1, 2, 3. In practice, the computation of the bounds Di requires the resolution of
an optimization problem; see [52, 46, 1] for practical methods. We refer the reader to
[52, 46, 1, 79] for illustrations of UQ through concentration-of-measure inequalities.
In particular, since Osci(G) is a seminorm, a (possibly numerical) model can be used
to compute bounds on componentwise oscillations of G via the triangular inequality
Osci(G) ≤ Osci(F ) + Osci(G − F ) (we refer the reader to [52, 46, 1] for details; the
idea here is that an accurate model leads to a reduced number of experiments for
the computation of Osci(G− F ), while the computation of Osci(F ) does not involve
experiments). In what follows we will refer to Di,G := Osci(G) (for i = 1, . . . ,m) as
the subdiameters of G and to

(2.6) DG :=

√√√√ m∑
i=1

D2
i,G

as the diameter of G. Bounds on Osci(G) are useful because they constitute a form of
nonlinear sensitivity analysis and, combined with independence constraints, they lead
to the concentration-of-measure phenomenon. The OUQ framework can also handle
constraints of the type ‖G − F‖ < C (which are not sufficient to take advantage of
the concentration-of-measure effect) and G(xi) = zi [90].

Example 2.3. For the setAH given in (1.8), the inclusion of additional information
further reduces the upper bound U(AH). Indeed, the addition of assumptions leads to
a smaller admissible set AH �→ A′ ⊂ AH , and therefore U decreases and L increases.
For example, if the median of the third input parameter (velocity) is known to lie
at the midpoint of its range, and this information is used to provide an additional
constraint, then the least upper bound on the probability of nonperforation drops to
30.0%. See Table 2.2 for a summary of the bounds presented in the hypervelocity
impact example introduced in section 1.2 and for further examples of the effect of
additional information/constraints. The bounds given in Table 2.2 were obtained by
using the reduction theorems of section 4 and the computational framework described
in section 6.

Remark 2.2. The numbers of iterations and evaluations of H associated with
Table 2.2 are 600 iterations and 15300 H-evaluations (second row), 822 iterations
and 22700 H-evaluations (third row), 515 iterations and 14550 H-evaluations (fourth
row), and 760 iterations and 18000 H-evaluations (fifth row). Half of these numbers
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Table 2.2 Summary of the upper bounds on the probability of nonperforation for Example (1.8)
obtained by various methods and assumptions. Note that OUQ calculations using mystic
(described in section 6) involve evaluations of the function H, whereas McDiarmid’s
inequality and the optimal bound given the assumptions of McDiarmid’s inequality use
only the mean of H and its McDiarmid subdiameters, not H itself. Note also that the
incorporation of additional information/assumptions, e.g., on impact obliquity, always
reduces the OUQ upper bound on the probability of failure, since this corresponds to a
restriction to a subset of the original feasible set AH for the optimization problem.

Admissible scenarios, A U(A) Method

AMcD: independence, oscillation, and mean ≤ 66.4% McDiarmid’s inequality
constraints as given by (1.9) = 43.7% Theorem 5.4

AH as given by (1.8)
num
= 37.9% mystic, H known

AH ∩
{
(H, μ)

∣∣∣∣μ-median velocity

= 2.45 km · s−1

}
num
= 30.0% mystic, H known

AH ∩ {
(H,μ)

∣∣μ-median obliquity = π
12

} num
= 36.5% mystic, H known

AH ∩ {
(H, μ)

∣∣ obliquity = π
6
μ-a.s.

} num
= 28.0% mystic, H known

of iterations are usually sufficient to obtain the extrema with 4 digits of accuracy (for
the third row, for instance, 365 iterations and 9350 H-evaluations are sufficient to
obtain the first 4 decimal points of the optimum value).

On the Selectiveness of the Information Set A. Observe that, except for the
bound obtained from McDiarmid’s inequality, the bounds obtained in Table 2.2 are
the best possible given the information contained in A. If the unknown distribution
P is completely specified, say, by restricting to the feasible set Aunif for which the
only admissible measure is the uniform probability measure on the cube X (in which
case the mean perforation area is E[H ] = 6.58mm2), then the probability of nonper-

foration is U(Aunif) = L(Aunif)
num
= 3.8%. One might argue that there is a large gap

between the fifth (28%) row of Table 2.2 and 3.8%, but observe that 3.8% relies on
the exact knowledge of G (called H here) and P, whereas 28% relies on the limited
knowledge contained in AH ∩ {(H,μ) ∣∣ obliquity = π

6 μ-a.s.
}

with respect to which
28% is optimal. In particular, the gap between those two values is not caused by
a lack of tightness of the method, but by a lack of selectiveness of the information
contained in AH ∩ {(H,μ) ∣∣ obliquity = π

6 μ-a.s.
}
. The (mis)use of the terms “tight”

and “sharp” without reference to available information (and in the presence of asym-
metric information) can be the source of much confusion, something that we hope is
cleared up by the present work. Given prior knowledge of G and P, it would be an
easy task to construct a set AP,G containing (G,P) such that U(AP,G) ≈ 4% (if the
probability of failure under (G,P) is 3.8%), but doing so would be delaying an honest
discussion of one of the issues at the core of UQ: How do we construct A without prior
knowledge of G and P? In other words, how do we improve the “selectiveness” of A
or how to design experiments leading to “narrow” A’s? We will now show how this
question can be addressed within the OUQ framework.

2.2. The Optimal UQ Loop. In the previous subsection we discussed how the
basic inequality

L(A) ≤ P[G ≥ a] ≤ U(A)
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Selection of New Experiments

Experimental Data
(Legacy / On-Demand)

Expert Judgement

Physical
Laws

Assumptions / Admissible Set, A

Extreme Scale Optimizer: Calculate
L(A) := inf{μ[f fails] | (f, μ) ∈ A}
U(A) := sup{μ[f fails] | (f, μ) ∈ A}

Certification
Process

Sensitivity / Robustness
Analysis w.r.t. A

Decertify
(i.e., System is

Unsafe)

Cannot
Decide

Certify
(i.e., System is

Safe)

Fig. 2.1 OUQ Loop.

provides rigorous optimal certification criteria. The certification process should not
be confused with its three possible outcomes (see Table 2.1), which we call “certify”
(we assert that the system is safe), “decertify” (we assert that the system is unsafe),
and “cannot decide” (the system’s safety or lack thereof is undecidable given the
information/assumption set A). Indeed, in the case

L(A) ≤ ε < U(A)

there exist admissible scenarios under which the system is safe, and other admissi-
ble scenarios under which it is unsafe. Consequently, it follows that we can make
no definite certification statement for (G,P) without introducing further informa-
tion/assumptions. If no further information can be obtained, we conclude that we
“cannot decide” (this state could also be called “do not decide,” because we could
(arbitrarily) decide that the system is unsafe due to lack of information, for instance,
but do not).

However, if sufficient resources exist to gather additional information, then we
enter what may be called the OUQ loop, illustrated in Figure 2.1. The admissible setA
draws on three principal sources of information: known physical laws, expert opinion,
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and experimental data. Once the set A has been constructed, the calculations of the
lower and upper bounds L(A) and U(A) are well-posed optimization problems. If the
results of these optimization problems lead to certification or decertification, then we
are done; if not, then new experiments should be designed and expert opinion sought
in order to validate or invalidate the extremal scenarios that cause the inequality

L(A) ≤ ε < U(A)

to hold. The addition of information means further constraints on the collection of
admissible scenarios; that is, the original admissible set A is reduced to a smaller one
A′ ⊂ A, thereby providing sharper bounds on the probability of failure:

L(A) ≤ L(A′) ≤ P[G(X) ≥ a] ≤ U(A′) ≤ U(A).

The sharper bounds may meet the “certify” or “decertify” criteria of Table 2.1. If not,
and there are still resources for gathering additional information, then the loop should
be repeated. This process is the feedback arrow on the left-hand side of Figure 2.1.

The right-hand side of Figure 2.1 constitutes another aspect of the OUQ loop. The
bounds L(A) and U(A) are only useful insofar as the assumptions A are accurate.
It is possible that the sources of information that informed A may have been in
error: physical laws may have been extended outside their range of validity (e.g.,
Newtonian physics may have been applied in the relativistic regime), there may have
been difficulties with the experiments or the results misinterpreted, or expert opinion
may have been erroneous. Therefore, a vital part of OUQ is to examine the sensitivity
and robustness of the bounds L(A) and U(A) with respect to the assumption set
A. If the bounds L(A) and U(A) are found to depend sensitively on one particular
assumption (say, the mean performance of one component of the system), then it
would be advisable to expend resources investigating the validity of this assumption.

The loop illustrated in Figure 2.1 differs from the loop used to solve the numerical
optimization problem as described in section 6.3 and Remark 6.3.

Experimental Design and Selection of the Most Decisive Experiment. An
important aspect of the OUQ loop is the selection of new experiments. Suppose that
a number of possible experiments Ei are proposed, each of which will determine some
functional Φi(G,P) of G and P. For example, Φ1(G,P) could be EP[G], Φ2(G,P)
could be P[X ∈ A] for some subset A ⊆ X of the input parameter space, and so on.
Suppose that there are insufficient experimental resources to run all of these proposed
experiments. Let us now consider which experiment should be run for the certification
problem. Recall that the admissible set A is partitioned into safe and unsafe subsets
as in (2.3). Define Jsafe,ε(Φi) to be the closed interval spanned by the possible values
for the functional Φi over the safe admissible scenarios (i.e., the closed convex hull of
the range of Φi on Asafe,ε): that is, let

Jsafe,ε(Φi) :=

[
inf

(f,μ)∈Asafe,ε

Φi(f, μ), sup
(f,μ)∈Asafe,ε

Φi(f, μ)

]
,(2.7a)

Junsafe,ε(Φi) :=

[
inf

(f,μ)∈Aunsafe,ε

Φi(f, μ), sup
(f,μ)∈Aunsafe,ε

Φi(f, μ)

]
.(2.7b)

Note that, in general, these two intervals may be disjoint or may have nonempty
intersection; the size of their intersection provides a measure of usefulness of the
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R

Junsafe,ε(Φ1)

Jsafe,ε(Φ1)

R

Junsafe,ε(Φ2)

Jsafe,ε(Φ2)

R

Junsafe,ε(Φ3)

Jsafe,ε(Φ3)

R

Junsafe,ε(Φ4)

Jsafe,ε(Φ4)

Fig. 2.2 A schematic representation of the intervals Junsafe,ε(Φi) (in red) and Jsafe,ε(Φi) (in blue)
as defined by (2.7) for four functionals Φi that might be the subject of an experiment.
Φ1 is a good candidate for experiment effort, since the intervals do not overlap and hence
experimental determination of Φ1(G,P) will certify or decertify the system; Φ4 is not worth
investigating, since it cannot distinguish safe scenarios from unsafe ones; Φ2 and Φ3 are
intermediate cases, and Φ2 is a better prospect than Φ3.

proposed experiment Ei. Observe that if experiment Ei were run, yielding the value
Φi(G,P), then the following conclusions could be drawn:

Φi(G,P) ∈ Jsafe,ε(Φi) ∩ Junsafe,ε(Φi) =⇒ no conclusion,

Φi(G,P) ∈ Jsafe,ε(Φi) \ Junsafe,ε(Φi) =⇒ the system is safe,

Φi(G,P) ∈ Junsafe,ε(Φi) \ Jsafe,ε(Φi) =⇒ the system is unsafe,

Φi(G,P) /∈ Jsafe,ε(Φi) ∪ Junsafe,ε(Φi) =⇒ faulty assumptions,

where the last assertion (faulty assumptions) means that (G,P) /∈ A and follows from
the fact that Φi(G,P) /∈ Jsafe,ε(Φi) ∪ Junsafe,ε(Φi) is a contradiction. The validity of
the first three assertions is based on the supposition that (G,P) ∈ A.

In this way, the computational optimization exercise of finding Jsafe,ε(Φi) and
Junsafe,ε(Φi) for each proposed experiment Ei provides an objective assessment of
which experiments are worth performing: those for which Jsafe,ε(Φi) and Junsafe,ε(Φi)
are nearly disjoint intervals are worth performing since they are likely to yield con-
clusive results vis-à-vis (de)certification and conversely, if the intervals Jsafe,ε(Φi) and
Junsafe,ε(Φi) have a large overlap, then experiment Ei is not worth performing since it
is unlikely to yield conclusive results. Furthermore, the fourth possibility above shows
how experiments can rigorously establish that one’s assumptions A are incorrect. See
Figure 2.2 for an illustration.

Remark 2.3. For the sake of clarity, we have started this description by defining
experiments as functionals Φi of P and G. In practice, some experiments may be
functionals not of P and G but of related objects. Consider, for instance, the situation
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where (X1, X2) is a two-dimensional Gaussian vector with zero mean and covariance
matrix C, P is the probability distribution of X1, the experiment E2 determines the
variance of X2, and the information set A is C ∈ B, where B is a subset of symmetric
positive definite 2×2 matrices. The outcome of the experiment E2 is not a function of
the probability distribution P; however, the knowledge of P restricts the range of possi-
ble outcomes of E2. Hence, for some experiments Ei, the knowledge of (G,P) does not
determine the outcome of the experiment, but only the set of possible outcomes. For
those experiments, the description given above can be generalized to situations where
Φi is a multivalued functional of (G,P) determining the set of possible outcomes of
the experiment Ei. This picture can be generalized further by introducing measure-
ment noise, in which case (G,P) may not determine a deterministic set of possible
outcomes, but instead a measure of probability on a set of possible outcomes.

Example 2.4 (computational solution of the experimental selection problem). We
will now consider again the admissible setAH as given by (1.8). The following example
shows that the notion of “best” experiment depends on the admissible safety threshold
ε for P[G ≥ a]. Suppose that an experiment E is proposed that will determine
the probability mass of the upper half of the velocity range, [2.45, 2.8] km · s−1; the
corresponding functional Φ of study is

Φ(μ) := μ[v ≥ 2.45 km · s−1],

and the proposed experiment E will determine Φ(P) (approximate determinations
including measurement and sampling errors can also be handled, but the exact de-
termination is done here for simplicity). The corresponding intervals Jsafe,ε(Φ) and
Junsafe,ε(Φ) as defined by (2.7) and (2.3) are reported in Table 2.3 for various ac-
ceptable probabilities of failure ε. Note that, for larger values of ε, E is a “better”
experiment in the sense that it can distinguish safe scenarios from unsafe ones (see
also Figure 2.2); for smaller values of ε, E is a poor experiment. In any case, since
the intersection Jsafe,ε(Φ) ∩ Junsafe,ε(Φ) is not empty, E is not an ideal experiment.

It is important to note that the optimization calculations necessary to compute
the intervals Jsafe,ε(Φ) and Junsafe,ε(Φ) are simplified by the application of Theorem

Table 2.3 The results of the calculation of the intervals Jsafe,ε(Φ) and Junsafe,ε(Φ) for the func-

tional Φ(μ) := μ[v ≥ 2.45 km · s−1]. Note that, as the acceptable probability of system
failure, ε, increases, the two intervals overlap less, so experimental determination of Φ(P)
would be more likely to yield a decisive conservative certification of the system as safe
or unsafe; the computational cost of this increased decisiveness is a greater number of
function evaluations in the optimization calculations. All computational cost figures are
approximate.

Jsafe,ε(Φ) Junsafe,ε(Φ)
inf sup inf sup

ε = 0.100 0.000 1.000 0.000 0.900
Iterations until numerical convergence 40 40 40 300

Total evaluations of H 1000 1000 1000 8000

ε = 0.200 0.000 1.000 0.000 0.800
Iterations until numerical convergence 40 40 40 400

Total evaluations of H 1000 1000 1000 12000

ε = 0.300 0.000 1.000 0.000 0.599
Iterations until numerical convergence 40 40 40 1000

Total evaluations of H 1000 1000 1000 33000
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4.1: in this case, the objective function of μ is μ[v ≥ 2.45] instead of μ[H = 0],
but the constraints are once again linear inequalities on generalized moments of the
optimization variable μ.

On the Number of Total Evaluations on H. Recall that, for simplicity, we have
assumed the response function G to be known and given by H . A large number of
evaluations of H has been used in Table 2.3 to ensure convergence toward the global
optimum. It is important to observe that those evaluations of H are not (actual,
costly) experiments but (cheap) numerical evaluations of (1.5). More precisely, the
method for selecting new best experiments does not require new experiments; i.e., it
relies entirely on the information set A (which contains the information gathered from
previous experiments). Hence those evaluations should not be viewed as “information
gained from Monte Carlo samples” but as “pure CPU processing time.” In situations
where the numerical evaluation of H is expensive, one can introduce its cost in the
optimization loop. An investigation of the best algorithm to perform the numerical
optimization with the least number of function evaluations is a worthwhile subject but
is beyond the scope of the present paper. Observe also that the method proposed in
section 2 does not rely on the exact knowledge of the response function G. More pre-
cisely, in situations where the response function is unknown, the selection of next best
experiments is still entirely computational and based upon previous data/information
gathered on G enforced as constraints in a numerical optimization algorithm. More
precisely, in those situations, the optimization algorithm may require the numerical
evaluation of a large number of admissible functions f (compatible with the prior
information available on G), but it does not require any new evaluation of G.

In situations where H is (numerically) expensive to evaluate, one would have to
include the cost of these evaluations in the optimization loop and use fast algorithms
exploiting the multilinear structures associated with the computation of safe and
unsafe intervals. Here we have used a genetic algorithm because of its robustness. This
algorithm typically converges at 10% of the total number of evaluations of H given
in the last row of Table 2.3, but we have increased the number of iterations tenfold
to guarantee a robust result. The investigation of efficient optimization algorithms
exploiting the multilinear structures of OUQ optimization problems is of great interest
and beyond the immediate scope of this paper.

Selection of the Most Predictive Experiment. The computation of safe and
unsafe intervals described in the previous paragraph allows for the selection of the most
selective experiment. If our objective is an “accurate” prediction of P[G(X) ≥ a], in
the sense that U(A)−L(A) is small, then one can proceed as follows. Let AE,c denote
those scenarios in A that are compatible with obtaining outcome c from experiment
E. An experiment E∗ that is most predictive, even in the worst case, is defined by a
minmax criterion: we seek (see Figure 2.3)

(2.8) E∗ ∈ argmin
experiments E

(
sup

outcomes c

(U(AE,c)− L(AE,c)
))
.

The idea is that, although we cannot predict the precise outcome c of an experiment
E, we can compute a worst-case scenario with respect to c and obtain an optimal
bound for the minimum decrease in our prediction interval for P[G(X) ≥ a] based on
the (yet unknown) information gained from experiment E. Again, the theorems given
in this paper can be applied to reduce this kind of problem. Finding E∗ is a bigger
problem than just calculating L(A) and U(A), but the presumption is that computer
time is cheaper than experimental effort.
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Fig. 2.3 A schematic representation of the size of the prediction intervals supoutcomes c

(U(AE,c)−
L(AE,c)

)
in the worst case with respect to outcome c. E4 is the most predictive experiment.

Planning of Campaigns of Experiments. The idea of experimental selection can
be extended to plan several experiments in advance, i.e., to plan campaigns of exper-
iments. This aspect can be used to assess the safety or the design of complex systems
in a minimal number of experiments (and also to predict bounds on the total number
of required experiments). Just as a good chess player thinks several moves ahead, our
framework allows for the design of increasingly sophisticated and optimal sequences of
experiments that can be performed to measure key system variables. The implemen-
tation of this strategy corresponds to a minmax game “played against the universe”
(see Figure 2.4(a)). The well-known games of Clue/Cluedo and Twenty Questions are
better analogies than chess for this kind of information game. In that sense, the plan-
ning of campaigns of experiments is an infinite-dimensional Clue, played on spaces of
admissible scenarios, against our lack of perfect information about reality, and made
tractable by the reduction theorems. This aspect calls for more investigation since
it has the potential to provide a new approach to the current scientific investigation
paradigm, which is based on intuition, expert judgment, and guessing.

Example 2.5 (let’s play Clue). In Figures 2.4(b), 2.4(c), and 2.4(d) we consider
again the admissible set AH as given by (1.8) and select the three most predictive
experiments, sequentially, choosing the second one after having observed the outcome
of the first one. The list of possible experiments corresponds to measuring the mean
or variance of thickness h, obliquity θ, or velocity v. Figures 2.4(b), 2.4(c), and 2.4(d)
show U(AH,E,c) for each of these experiments as a function of the re-normalized out-
come value c. Since, in this example, we always have L(AH,E,c) = 0, U(AH,E,c)
corresponds to the size of the prediction interval for the probability of nonperforation
given the information that the outcome of experiment E is c. Given the results shown
in Figure 2.4(b), we select to measure the variance of thickness as our first best ex-
periment. Note that this selection does not require knowledge of what the experiment
will yield, but only knowledge of what the experiment can yield: we identify as the
optimal next experiment the one that is most informative in the minimax sense, i.e.,
of all its possible outcomes (this does not require the knowledge of what the exper-
iment will yield), its least informative outcome is more informative than the least
informative outcome of any other candidate experiment. Although not necessary, this
selection can, possibly, be guided by a model of reality (i.e., in this case a model
for the probability distributions of h, θ, v). Used in this manner, an accurate model
will reduce the number of experiments required for certification and an inaccurate
model will lead to a relatively greater number of experiments (but not to erroneous
bounds). Figure 2.4(c) is based on the information contained in AH and bounds on
the variance of thickness (obtained from the first experiment). Our selection as the
second experiment is to measure the mean of thickness (leading to Figure 2.4(d)).
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(a) Playing Chess against the universe (b) Let’s play Clue, Round 1

(c) Let’s play Clue, Round 2 (d) Let’s play Clue, Round 3

Fig. 2.4 (a) Playing chess against the universe. We choose which experiment E to perform and
the universe selects the outcome c. Our objective is to minimize U(A)−L(A). In the first
round our possible moves correspond to a choice between experiments E1, E2, E3, and E4.
We perform experiment E4; the outcome c of that experiment (selected by the universe)
transforms the admissible into AE4,c. In the second round, our possible moves correspond
to a choice between experiments F1, F2, and F3. As in the game of chess, several moves
can be planned in advance by solving minmax optimization problems, and the exponential
increase of the number of branches of the game tree can be kept under control by exploring
only a subset of (best) moves. Figures (b), (c), and (d): Let’s play Clue.

3. Generalizations and Comparisons.

3.1. Prediction, Extrapolation, Verification, and Validation. In the previous
section, the OUQ framework was described as it applies to the certification problem
(1.1). We will now show that many important UQ problems, such as prediction, veri-
fication, and validation, can be formulated as certification problems. This is similar to
the point of view of [5], in which formulations of many problem objectives in reliability
are shown to be representable in a unified framework.

A prediction problem can be formulated as, given ε and (possibly incomplete)
information on P and G, finding a smallest b− a such that

(3.1) P[a ≤ G(X) ≤ b] ≥ 1− ε,

which, given the admissible set A, is equivalent to solving

(3.2) inf

{
b− a

∣∣∣∣ inf
(f,μ)∈A

μ[a ≤ f(X) ≤ b] ≥ 1− ε

}
.
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Observe that [a, b] can be interpreted as an optimal interval of confidence for G(X)
(although b − a is minimal, [a, b] may not be unique), in particular, with probability
at least 1− ε, G(X) ∈ [a, b].

In many applications the regime where experimental data can be taken is dif-
ferent than the deployment regime where prediction or certification is sought, and
this is commonly referred to as the extrapolation problem. For example, in materi-
als modeling, experimental tests are performed on materials and the model run is
for comparison, but the desire is that these results tell us something about where
experimental tests are impossible or extremely expensive to obtain.

In most applications, the response function G may be approximated via a (pos-
sibly numerical) model F . Information on the relationship between the model F
and the response function G that it is designed to represent (i.e., information on
(x, F (x), G(x))) can be used to restrict (constrain) the set A of admissible scenarios
(G,P). This information may take the form of a bound on some distance between F
and G or a bound on some complex functional of F and G [52, 79]. Observe that, in
the context of the certification problem (1.1), the value of the model can be measured
by changes induced on the optimal bounds L(A) and U(A). The problem of quantify-
ing the relationship (possibly the distance) between F and G is commonly referred to
as the validation problem. In some situations F may be a numerical model involving
millions of lines of code and (possibly) space-time discretization. The quantification
of the uncertainty associated with the possible presence of bugs and discretization ap-
proximations is commonly referred to as the verification problem. Both the validation
and the verification problem can be addressed in the OUQ framework by introducing
information sets describing relationships between G, F , and the code.

3.2. Comparisons with Other UQ Methods. We will now compare OUQ with
other widely used UQ methods and consider the certification problem (1.1) to be
specific.

• Assume that n independent samples Y1, . . . , Yn of the random variable G(X)
are available (i.e., n independent observations of the random variable G(X),
all distributed according to the measure of probability P). If �[Yi ≥ a] denotes
the random variable equal to 1 if Yi ≥ a and equal to zero otherwise, then

(3.3) pn :=

∑n
i=1 �[Yi ≥ a]

n

is an unbiased estimator of P[G(X) ≥ a]. Furthermore, as a result of Hoeff-
ding’s concentration inequality [33], the probability that pn deviates from
P[G(X) ≥ n] (its mean) by at least ε/2 is bounded from above by exp(−n

2 ε
2).

It follows that if the number of samples n is large enough (of the order of
1
ε2 log

1
ε ), then the certification of (1.1) can be obtained through a Monte

Carlo estimate (using pn). As this example shows, Monte Carlo strategies
[50] are simple to implement and do not necessitate prior information on
the response function G and the measure P (other than the i.i.d. samples).
However, they require a large number of (independent) samples of G(X),
which is a severe limitation for the certification of rare events (the ε = 10−9 of
the aviation industry would [84, 15] necessitate O(1018) samples). Additional
information on G and P can, in principle, be included (in a limited fashion) in
Monte Carlo strategies via importance and weighted sampling [50] to reduce
the number of required samples.
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• The number of required samples can also be reduced to 1
ε (ln

1
ε )

d using quasi-
Monte Carlo methods. We refer in particular to the Koksma–Hlawka inequal-
ity [65], to [83] for multiple integration based on lattice rules, and to [82]
for a recent review. We observe that these methods require some regularity
(differentiability) condition on the response function G and the possibility
of sampling G at predetermined points X . Furthermore, the number of re-
quired samples blowsup at an exponential rate with the dimension d of the
input vector X .

• If G is regular enough and can be sampled at predetermined points, and if X
has a known distribution, then stochastic expansion methods [30, 29, 101, 4,
26, 19] can reduce the number of required samples even further (depending
on the regularity of G) provided that the dimension of X is not too high
[94, 14]. However, in most applications, only incomplete information on P

and G is available and the number of available samples on G is small or zero.
X may be of high dimension, and may include uncontrollable variables and
unknown unknowns (unknown input parameters of the response function G).
G may not be the solution of a PDE and may involve interactions between
singular and complex processes such as (for instance) dislocation, fragmen-
tation, phase transitions, physical phenomena in untested regimes, and even
human decisions. We observe that in many applications of stochastic expan-
sion methods G and P are assumed to be perfectly known and UQ reduces
to computing the push forward of the measure P via the response (transfer)
function I≥a ◦ G (where I≥a is the indicator function of the set [a,∞), in
those situations L(A) = P[G ≥ a] = U(A)).

• The investigation of variations of the response function G under variations of
the input parametersXi, commonly referred to as sensitivity analysis [76, 77],
allows for the identification of critical input parameters. Although helpful in
estimating the robustness of conclusions made based on specific assumptions
on input parameters, sensitivity analysis, in its most general form, has not
been targeted at obtaining rigorous upper bounds on probabilities of failures
associated with certification problems (1.1). However, single parameter os-
cillations of the function G (as defined by (1.10)) can be seen as a form of
nonlinear sensitivity analysis leading to bounds on P[G ≥ a] via McDiarmid’s
concentration inequality [58, 59]. These bounds can be made sharp by parti-
tioning the input parameter space along maximum oscillation directions and
computing subdiameters on subdomains [91].

• If A is expressed probabilistically through a prior (an a priori measure of
probability) on the set of possible scenarios (f, μ), then Bayesian inference
[48, 7] could in principle be used to estimate P[G ≥ a] using the posterior mea-
sure of probability on (f, μ). This combination of OUQ and Bayesian methods
avoids the necessity for solving the possibly large optimization problems (2.4),
and it also greatly simplifies the incorporation of sampled data thanks to the
Bayes rule. However, oftentimes, priors are not available or their choice in-
volves some degree of arbitrariness that is incompatible with the certification
of rare events. Priors may become asymptotically irrelevant (in the limit of
large data sets), but, for small ε, the number of required samples can be of
the same order as the number required by Monte Carlo methods [80].
When unknown parameters are estimated using priors and sampled data, it
is important to observe that the convergence of the Bayesian method may
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fail if the underlying probability mechanism allows an infinite number of pos-
sible outcomes (e.g., estimation of an unknown probability on N, the set of
all natural numbers) [17]. In fact, in these infinite-dimensional situations,
this lack of convergence (commonly referred to as inconsistency) is the rule
rather than the exception [18]. As emphasized in [17], as more data comes
in, some Bayesian statisticians will become more and more convinced of the
wrong answer.
We also observe that, for complex systems, the computation of posterior
probabilities has been made possible thanks to advances in computer science.
We refer the reader to [89] for a (recent) general (Gaussian) framework for
Bayesian inverse problems and to [6] for a rigorous UQ framework based on
probability logic with Bayesian updating. Just as Bayesian methods would
have been considered computationally infeasible 50 years ago but are now
common practice, OUQ methods are now becoming feasible and will only
increase in feasibility with the passage of time and advances in computing.

• The combination of structural optimization (in various fields of engineering)
to produce an optimal design given the (deterministic) worst-case scenario has
been referred to as optimization and antioptimization [27] (we also refer the
reader to critical excitation in seismic engineering [21]). The main difference
between OUQ and antioptimization lies in the fact that the former is based
on an optimization over (admissible) functions and measures (f, μ), while the
latter involves only an optimization over f . Because of its robustness, many
engineers have adopted the (deterministic) worst-case scenario approach to
UQ (see Chapter 10 of [27]) when a high reliability is required. It is noted in
[27] that the reason why probabilistic methods do not find appreciation among
theoreticians and practitioners alike lies in the fact that “probabilistic reliabil-
ity studies involve assumptions on the probability densities, whose knowledge
regarding relevant input quantities is central.” It is also observed that strong
assumptions on P may lead to GIGO (“garbage in, garbage out”) situations
for small certification thresholds ε when reliability estimates and probabilities
of failure are very sensitive to small deviations in probability densities. On
the other hand, UQ methods based on deterministic worst-case scenarios are
often “too pessimistic to be practical” [21, 27]. We suggest that by allowing
for very weak assumptions on probability measures, OUQ methods can lead
to bounds on probabilities of failure that are both reliable and practical. In-
deed, when applied to complex systems involving a large number of variables,
deterministic worst-case methods do not take into account the improbability
that these (possibly independent or weakly correlated) variables conspire to
produce a failure event.

The certification problem (1.1) exhibits one of the main difficulties that face UQ
practitioners: many theoretical methods are available, but they require assumptions
or conditions that are often not satisfied by the application. More precisely, the char-
acteristic elements distinguishing these different methods are the assumptions upon
which they are based, and some methods will be more efficient than others depending
on the validity of those assumptions. UQ applications are also characterized by a set
of assumptions/information on the response function G and measure P, which varies
from application to application. Hence, on the one hand, we have a list of theoret-
ical methods that are applicable or efficient under very specific assumptions; on the
other hand, most applications are characterized by an information set or assumptions
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that, in general, do not match those required by these theoretical methods. It is
hence natural to pursue the development of a rigorous framework that does not add
inappropriate assumptions or discard information.

We also observe that the effectiveness of different UQ methods cannot be com-
pared without reference to the available information (some methods will be more
efficient than others depending on those assumptions). For the hypervelocity impact
example of section 1.2, none of the methods mentioned above can be used without
adding (arbitrary) assumptions on probability densities or discarding information on
the mean value or independence of the input parameters. We also observe that it is
by placing information at the center of UQ that the proposed OUQ framework allows
for the identification of best experiments. Without focus on the available information,
UQ methods are faced with the risk of propagating inappropriate assumptions and
producing a sophisticated answer to the wrong question. These distortions of the
information set may have limited impact on the certification of common events, but
they are also of critical importance for the certification of rare events.

3.3. OUQ with Random Sample Data. For the sake of clarity, we have started
the description of OUQ with deterministic information and assumptions (i.e., when
A is a deterministic set of functions and probability measures). In many applications,
however, some of the information arrives in the form of random samples. The addition
of such sample data to the available information and assumptions leads to nontrivial
theoretical questions that are of practical importance beyond their fundamental con-
nections with information theory and nonparametric statistics. In particular, while
the notion of an optimal bound (2.4) is transparent and unambiguous, the notion of
an optimal bound on P[G(X) ≥ a] in the presence of sample data is not immediately
obvious and should be treated with care. This is a very delicate topic, a full treatment
of which we shall defer to a future work.

4. Reduction of OUQ Optimization Problems. In general, the lower and upper
values

L(A) := inf
(f,μ)∈A

μ[f(X) ≥ a],

U(A) := sup
(f,μ)∈A

μ[f(X) ≥ a]

are each defined by a nonconvex and infinite-dimensional optimization problem, the
solution of which poses significant computational challenges. These optimization prob-
lems can be considered to be a generalization of Chebyshev inequalities. The history
of the classical inequalities can be found in [42], and some generalizations in [13] and
[98]; in the latter works, the connection between Chebyshev inequalities and optimiza-
tion theory is developed based on the work of Mulholland and Rogers [63], Godwin
[32], Isii [37, 38, 39], Olkin and Pratt [66], Marshall and Olkin [54], and the classi-
cal Markov–Krein theorem [42, pp. 82 and 157], among others. The Chebyshev-type
inequalities defined by L(A) and U(A) are a further generalization to independence
assumptions, more general domains, more general systems of moments, and the inclu-
sion of classes of functions, in addition to the probability measures, in the optimization
problem. Moreover, although our goal is the computation of these values and not an
analytic expression for them, the study of probability inequalities should be useful in
their reduction and approximation. Without providing a survey of this large body of
work, we mention the field of majorization, as discussed in Marshall and Olkin [55],
the inequalities of Anderson [3], Hoeffding [33], Joe [40], Bentkus, Geuze, and van
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Zuijlen [11], Bentkus [9, 10], Pinelis [70, 71], and Boucheron, Lugosi, and Massart
[16]. Moreover, the solution of the resulting nonconvex optimization problems should
benefit from duality theories for nonconvex optimization problems such as that of
Rockafellar [75] and the development of convex envelopes for them, as can be found,
for example, in Rikun [74] and Sherali [81]. Finally, since Pardalos and Vavasis [68]
show that quadratic programming with one negative eigenvalue is NP-hard, we expect
that some OUQ problems may be difficult to solve.

Let us now return to the earlier simple example of an admissible set A1 in (2.1):
the (nonunique) extremizers of the OUQ problem with the admissible set A1 all have
the property that the support of the push-forward measure f∗μ on R contains at most
two points, i.e., f∗μ is a convex combination of at most two Dirac delta measures (we
recall that #supp(f∗μ) is the number of points forming the support of f∗μ):

sup
(f,μ)∈A1

μ[f(X) ≥ a] = sup
(f,μ)∈A1

#supp(f∗μ)≤2

μ[f(X) ≥ a].

The optimization problem on the left-hand side is an infinite-dimensional one, whereas
the optimization problem on the right-hand side is amenable to finite-dimensional
parameterization for each f . Furthermore, for each f , only the two values of f at
the support points of the two Dirac measures are relevant to the problem. The aim
of this section is to show that a large class of OUQ problems—those governed by
independence and linear inequality constraints on the moments—are amenable to a
similar finite-dimensional reduction, and that a priori upper bounds can be given on
the number of Dirac delta masses that the reduction requires.

To begin with, we first show that an important class of optimization problems over
the space of m-fold product measures can be reduced to optimization over products
of finite convex combinations of Dirac masses (m is the number of random input
variables). Consequently, we then show in Corollary 4.4 that OUQ optimization
problems where the admissible set is defined as a subset of function-measure pairs
(f, μ) that satisfy generalized moment constraints Gf (μ) ≤ 0 can also be reduced
from the space of measures to the products of finite convex combinations of Dirac
masses. Theorem 4.7 shows that, when all the constraints are generalized moments of
functions of f , the search space G of functions can be further reduced to a search over
functions on an m-fold product of finite discrete spaces, and the search over m-fold
products of finite convex combinations of Dirac masses can be reduced to a search
over the products of probability measures on this m-fold product of finite discrete
spaces. This latter reduction completely eliminates dependency on the coordinate
positions in X . Theorem 4.7 is then used in Proposition 4.8 to obtain an optimal
McDiarmid inequality through the formulation of an appropriate OUQ optimization
problem followed by the above-mentioned reductions to an optimization problem on
the product of functions on {0, 1}m with the m-fold products of measures on {0, 1}m.
This problem is then further reduced, by Theorem 4.9, to an optimization problem on
the product of the space of subsets (power set) of {0, 1}m with the product measures
on {0, 1}m. Finally, we obtain analytic solutions to this last problem for m = 1, 2, 3,
thereby obtaining an optimal McDiarmid inequality in these cases. We also obtain
an asymptotic formula for general m. Moreover, the solution for m = 2 provides
important information regarding the diameter parameters D1 and D2 (see Example
2.2). For example, if D2 is sufficiently smaller than D1, then the optimal bound only
depends on D1 and, therefore, any decrease in D2 does not improve the inequality.
See section 10.1 for the proofs of the results in this section.
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4.1. Reduction of OUQ. For a topological space X , let FX (or simply F) denote
the space of real-valued (Borel) measurable functions on X , and let M(X ) denote the
set of Borel probability measures on X . Denote the process of integration with respect
to a measure μ by Eμ, and let

Δk(X ) :=

⎧⎨
⎩

k∑
j=0

αjδxj

∣∣∣∣∣∣ xj ∈ X , αj ≥ 0 for j = 0, . . . , k and

k∑
j=0

αj = 1

⎫⎬
⎭

denote the set of (k+1)-fold convex combinations of Dirac masses. When X =
∏m

i=1 Xi

is a product of topological spaces and we speak of measurable functions on the product
X , we mean measurable with respect to the product σ-algebra and not the Borel σ-
algebra of the product. For more discussion of this delicate topic, see, e.g., [41].
The linear equality and inequality constraints on our optimization problems will be
encoded in the measurable functions

g′j : X → R for j = 1, . . . , n′,

and, for each i = 1, . . . ,m,

gij : Xi → R for j = 1, . . . , ni.

Let MG ⊆ Mm(X ) denote the set of products of Borel measures for which all these
functions are integrable with finite integrals. We use the compact notation G(μ) ≤ 0
to indicate that μ ∈ MG and that

Eμ[g
′
j ] ≤ 0 for all j = 1, . . . , n′,

Eμ[g
i
j ] ≤ 0, j = 1, . . . , ni, for all i = 1, . . . ,m .

Moreover, let r : X → R be integrable for all μ ∈ MG (possibly with values +∞ or
−∞). For any set M ⊆ MG, let

U(M) := sup
μ∈M

Eμ[r],

with the convention that the supremum of the empty set is −∞.
For a measurable function f , the map μ �→ Eμ[f ] may not be defined, since

f may not be absolutely integrable with respect to μ. If it is defined, then it is
continuous in the strong topology on measures; however, this topology is too strong
to provide any compactness. Moreover, although [2, Theorem 14.5] shows that if
f is a bounded upper semicontinuous function on a metric space, then integration
is upper semicontinuous in the weak-∗ topology, we consider the case in which X
may not be metric or compact, and the functions f may be unbounded and lack
continuity properties. The following results heavily use results of Winkler [100]—
which follow from an extension of Choquet theory (see, e.g., [69]) by von Weizsäcker
and Winkler [99, Corollary 3] to sets of probability measures with generalized moment
constraints—and a result of Kendall [45] characterizing cones, which are lattice cones
in their own order. These results generalize a result of Karr [43] that requires X to be
compact, the constraint functions to be bounded and continuous, and the constraints
to be equalities. The results that follow are remarkable in that they make extremely
weak assumptions on X and no assumptions on the functions f . Recall that a Suslin
space is the continuous image of a Polish space.
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Theorem 4.1. Let X =
∏m

i=1 Xi be a product of Suslin spaces and let

Mm(X ) :=

m⊗
i=1

M(Xi)

denote the set of products of Borel probability measures on the spaces Xi. As above,
consider the generalized moment functions G and the corresponding finite moment set
MG. Suppose that r : X → R is integrable for all μ ∈ MG (possibly with values +∞
or −∞). Define the reduced admissible set

MΔ :=

{
μ ∈

m⊗
i=1

Δni+n′(Xi)

∣∣∣∣∣G(μ) ≤ 0

}
.

Then it holds that

U(MG) = U(MΔ).

Theorem 4.1 says that, on a product X of very general spaces Xi, optimization
problems constrained by n′ linear moment constraints on X and ni linear moment con-
straints on each factor space Xi achieve their optima among those product measures
whose ith marginal has support on at most n′ + ni + 1 points of Xi.

Remark 4.2. Using [99, Corollary 3], this theorem and its consequences below
easily generalize from the situation where Eμ[gk] ≤ 0 for each k to that in which
Eμ[gk] ∈ Ik for each k, where k indexes the constraint functions and where each Ik is a
closed interval. Consequently, such pairs of linear constraints introduce a requirement
for only one Dirac mass, not the two masses that one might expect. Moreover, observe
that the condition that the function r is integrable (possibly with values +∞ or −∞)
for all μ ∈ MG is satisfied if r is nonnegative. In particular, this holds when r is an
indicator function of a set, which is our main application in this paper.

Remark 4.3. Theorem 4.1 and its consequents below can be expressed more
generally in terms of extreme points of sets of measures, whereas, in the above case,
the extreme points are the Dirac masses. To that end, Dynkin [24] describes more
general sets of measures and their extreme points, which can be useful in applications.
In particular, one could consider

1. sets of measures that are invariant under a transformation (the extreme points
are the ergodic measures);

2. symmetric measures on an infinite product space (the extreme points are the
simple product measures);

3. the set of stationary distributions for a given Markov transition function;
4. the set of all Markov processes with a given transition function.

We now apply Theorem 4.1 to obtain the same type of reduction for an admissible
set A ⊆ F ×Mm(X ) consisting of pairs of functions and product measures—this is
the case for the OUQ optimization problems L(A) and U(A). Let G ⊆ F denote
a subset of real-valued measurable functions on X and consider an admissible set
A ⊆ G × Mm(X ) defined in the following way. For each f ∈ G, let G(f, ·) denote
a family of constraints as in Theorem 4.1 and Remark 4.2. For each f ∈ G, let
MGf ⊆ Mm(X ) denote those product probability measures μ such that the moments
G(f, μ) are well-defined. Moreover, for each f ∈ G, let rf : X → R be integrable for
all μ ∈ MGf (possibly with values +∞ or −∞). Define the admissible set

(4.1) A := {(f, μ) ∈ G ×Mm(X ) |G(f, μ) ≤ 0}
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and define the OUQ optimization problem to be

(4.2) U(A) := sup
(f,μ)∈A

Eμ[rf ].

Corollary 4.4. Consider the OUQ optimization problem (4.2) and define the
reduced admissible set AΔ ⊆ A by

(4.3) AΔ :=

{
(f, μ) ∈ G ×

m⊗
i=1

Δni+n′(Xi)

∣∣∣∣∣G(f, μ) ≤ 0

}
.

Then it holds that

U(A) = U(AΔ).

Remark 4.5. Corollary 4.4 is easily generalized to the case where for each f ∈ G,
i, and fixed μj , j 
= i, G(f, μ1, . . . , μi, . . . , μm) has affine dimension at most mi as μi

varies. In this case

AΔ :=

{
(f, μ) ∈ G ×

m⊗
i=1

Δmi(Xi)

∣∣∣∣∣G(f, μ) ≤ 0

}
.

Remark 4.6. Linear moment constraints on the factor spaces Xi allow us to
consider information sets with independent random variables X1, . . . , Xm and weak
constraints on the probability measure of the variables Xi. An example of such an
admissible set is the one associated with Bernstein inequalities [12], in which a priori
bounds are given on the variances of the variables Xi.

4.2. Generalized Moments of the Response Function. We now consider the
case where the function rf := r ◦ f is defined through composition with a measurable
function r and all n constraints are determined by compositions g′j := gj ◦ f , with
j = 1, . . . , n, of the function f . Hence, the symbol G(f, μ) will mean that all functions
gj ◦ f are μ integrable and will represent the values Eμ[gj ◦ f ] for j = 1, . . . , n. That
is, we have the admissible set

(4.4) A := {(f, μ) ∈ G ×Mm(X ) |G(f, μ) ≤ 0}

and the optimization problem

(4.5) U(A) := sup
(f,μ)∈A

Eμ[r ◦ f ]

as in (4.2). However, in this case, the fact that the criterion function r ◦ f and
the constraint functions gj ◦ f are compositions of the function f permits a finite-
dimensional reduction of the space of functions G to a space of functions on {0, . . . , n}m
and a reduction of the space of m-fold products of finite convex combinations of Dirac
masses to the space of product measures on {0, . . . , n}m. This reduction completely
eliminates dependency on the coordinate positions in X .

Formulating this result precisely will require some additional notation. By the
well-ordering theorem, there exists a well-ordering of each Xi. Suppose that a total
ordering of the elements of the spaces Xi for i = 1, . . . ,m is specified. Let N :=
{0, . . . , n} and D := {0, . . . , n}m = Nm. Every element μ ∈ ⊗m

i=1 Δn(Xi) is a
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product μ =
⊗m

i=1 μi where each factor μi is a convex sum of n + 1 Dirac masses
indexed according to the ordering; that is,

μi =

n∑
k=0

αi
kδxk

i

for some αi
1, . . . , α

i
n ≥ 0 with unit sum and some x1i , . . . , x

n
i ∈ Xi such that, with

respect to the given ordering of Xi,

x1i ≤ x2i ≤ · · · ≤ xni .

Let FD denote the real linear space of real functions on D = {0, . . . , n}m and consider
the mapping

F : F ×
m⊗
i=1

Δn(Xi) → FD

defined by

(F(f, μ)) (i1, i2, . . . , im) = f(xi11 , x
i2
2 , . . . , x

im
m ), ik ∈ N , k = 1, . . . ,m.

F represents the values of the function f at the Dirac masses in μ, but does not carry
information regarding the positions of the Dirac masses or their weights.

Theorem 4.7. Consider the admissible set A and optimization problem U(A)
defined in (4.4) and (4.5), where r ◦ f is integrable (possibly with values +∞ or −∞)
for all product measures. For a subset GD ⊆ FD, define the admissible set

(4.6) AD = {(h, α) ∈ GD ×Mm(D) |Eα[gi ◦ h] ≤ 0 for all j = 1, . . . , n}

and the optimization problem

U(AD) := sup
(h,α)∈AD

Eα[r ◦ h].

If

F

(
G ×

m⊗
i=1

Δn(Xi)

)
= GD,

then it holds that

U(A) = U(AD).

When the constraint set also includes functions which are not compositions with
f , then Theorem 4.7 does not apply. Although it does appear that results similar to
Theorem 4.7 can be obtained, we leave that as a topic for future work.

4.3. Application to McDiarmid’s Inequality. Theorem 4.7 can be applied to the
situation of McDiarmid’s inequality in order to obtain an optimal solution for that
problem. Let Di ≥ 0 for i = 1, . . . ,m and define

(4.7) G := {f ∈ F | Osci(f) ≤ Di for each i = 1, . . . ,m},
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where

Osci(f) := sup
(x1,...,xm)∈X

sup
x′
i∈Xi

|f(. . . , xi, . . .)− f(. . . , x′i, . . .)| .

We have a product probability measure P on X and a measurable function H : X → R

such that H ∈ G. Suppose that we have an upper bound

(4.8) P[H − EP[H ] ≥ a] ≤ H(a,G) for all H ∈ G.
It follows that if H ∈ G and EP[H ] ≤ 0, then

P[H ≥ a] ≤ P[H − EP[H ] ≥ a] ≤ H(a,G) for all H ∈ G with EP[H ] ≤ 0.

On the other hand, suppose that

(4.9) P[H ≥ a] ≤ H
′(a,G) for all H ∈ G with EP[H ] ≤ 0.

It follows that

P[H ≥ a] ≤ H
′(a,G) for all H ∈ G with EP[H ] = 0.

Since the constraints G and the event H − EP[H ] ≥ a are invariant under scalar
translation H �→ H + c, it follows that

P[H − EP[H ] ≥ a] ≤ H
′(a,G) for all H ∈ G.

That is, the inequalities (4.8) and (4.9) are equivalent.

McDiarmid’s inequality [58, 59] provides the bound H(a,G) := exp(− 2a2

D2 ) for
(4.8) and its equivalent (4.9), with

(4.10) D2 :=

m∑
i=1

D2
i .

Define the admissible set corresponding to the assumptions of McDiarmid’s inequality,

(4.11) AMcD = {(f, μ) ∈ G ×Mm(X ) |Eμ[f ] ≤ 0} ,
and define the optimization problem

(4.12) U(AMcD) := sup
(f,μ)∈AMcD

μ[f ≥ a].

Since (H,P) ∈ AMcD and McDiarmid’s inequality μ[f ≥ a] ≤ exp(− 2a2

D2 ) is satisfied
for all (f, μ) ∈ AMcD, it follows that

P[H ≥ a] ≤ U(AMcD) ≤ exp

(
−2a2

D2

)
.

Moreover, the inequality on the left is optimal in the sense that, for every ε > 0,
there exists a McDiarmid-admissible scenario (f, μ) satisfying the same assumptions
as (H,P) such that μ[f ≥ a] ≥ U(AMcD)− ε.

To apply the previous results to computing U(AMcD), let D := {0, 1}m and define

GD := {h ∈ FD | Osck(h) ≤ Dk for each k = 1, . . . ,m},
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where the inequality Osck(h) ≤ Dk for h ∈ FD means that

(4.13) |h(s1, . . . , sk, . . . , sm)− h(s1, . . . , sk′ , . . . , sm)| ≤ Di

for all sj ∈ {0, 1}, j = 1, . . . ,m, and all sk′ ∈ {0, 1}. Define the corresponding
admissible set

(4.14) AD = {(h, α) ∈ GD ×M({0, 1})m |Eα[h] ≤ 0}

and the optimization problem

(4.15) U(AD) := sup
(h,α)∈AD

α[h ≥ a].

Proposition 4.8. It holds that

(4.16) U(AMcD) = U(AD).

We now provide a further reduction of U(AMcD) by reducing U(AD). To that
end, for two vertices s and t of D = {0, 1}m, let I(s, t) be the set of indices i such
that si 
= ti. For s ∈ D, define the function hs ∈ FD by

hs(t) = a−
∑

i∈I(s,t)

Di.

For C ⊆ D, define hC ∈ FD by

(4.17) hC(t) := max
s∈C

hs(t) = a−min
s∈C

∑
i∈I(s,t)

Di.

Let C := {C | C ⊆ D} be the power set of D (the set of all subsets of D), define the
admissible set AC by

(4.18) AC :=
{
(C,α) ∈ C ×M({0, 1})m ∣∣Eα[h

C ] ≤ 0
}
,

and consider the optimization problem

(4.19) U(AC) := sup
(C,α)∈AC

α(hC ≥ a).

Theorem 4.9. It holds that

(4.20) U(AD) = U(AC).

Remark 4.10. The proof of this reduction theorem utilizes the standard lattice
structure of the space of functions FD in a substantial way. To begin with, the reduc-
tion to maxh = a is attained through lattice invariance. Moreover, we have a lattice
FD, with sublattice GD, and for each C ∈ C, the set CD := {h ∈ FD | {s | h(s) = a} =
C}} of functions with value a precisely on the set C is a sublattice. For a clipped h,
let C(h) := {s ∈ D | h(s) = a} be the set where h has the value a. If for each C the
set ⋂

h:C(h)=C

{f ≤ h} ∩CD ∩ GD
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is nonempty, then we obtain a reduction. However, not only is the set nonempty, but
the map C �→ hC is a simple algorithm that produces a point in this intersection, and
is therefore an explicit reduction. We suspect that the existence of a simple reduction
algorithm in this case is due to the lattice structures, and that such structures may be
useful in the more general case. Indeed, the condition f ≤ h implies that Eα[f ] ≤ Eα[h]
for any α, and the condition that Eα[f ] ≤ Eα[h] for all α implies that f ≤ h, so that
the above condition is equivalent to the nonemptiness of

⋂
h:C(h)=C

{⋂
α

{Eα[f ] ≤ Eα[h]}
}

∩ CD ∩ GD.

For the more general constraints, we would instead have to solve (i.e., find an element
of)

⋂
h:C(h)=C

{⋂
α

{G(f, α) ≤ G(h, α)}
}

∩CD ∩ GD.

Remark 4.11. The following diagram is a summary of the relationships among
admissible sets A, AΔ, AD, AC , AMcD, the reduction theorems, and their assump-
tions.

AMcD(4.11)

��

A(4.4)

Corollary 4.4

��

(f, μ) ∈ G ×⊗m
i=1 M(Xi), μ = ⊗m

i=1μi

n and ni generalized moment constraints on μ and μi
��

AΔ(4.3)

Theorem 4.7

��

μi reduces to the weighed sum of n+ ni + 1 Diracs

(f, μ) ∈ G ×⊗m
i=1 Δni+n′(Xi)

Quantity of interest r ◦ f , n constraints Eμ[gj ◦ f ] ≤ 0

��

Proposition 4.8
�� (4.6)AD(4.14)

Theorem 4.9

��

f and μ reduce to a function and

a measure on a finite set

(h, α) ∈ GD ×Mm(D), D = {0, . . . , n}m

The space of functions GD has a lattice structure
��

AC(4.18) Functions h can be parameterized by a finite set

(C, α) ∈ C ×M({0, 1})m, C = {C | C ⊆ {0, 1}m}

5. Optimal Concentration Inequalities. In this section, the results of section
4 will be applied to obtain optimal concentration inequalities under the assump-
tions of McDiarmid’s inequality and Hoeffding’s inequality. The following section
gives explicit concentration results under the assumptions of McDiarmid’s inequality,
and section 5.2 gives explicit concentration results under the assumptions of Hoeff-
ding’s inequality.

Surprisingly, these explicit results show that, although input uncertainties may
propagate for the true value of G and P, they might not when the information is
incomplete on G and P.

We refer to section 10.2 for the proofs of the results in this section.

5.1. Explicit Solutions under the Assumptions of McDiarmid’s Inequality. In
this subsection, we will apply Theorem 4.9 to obtain explicit formulae for the OUQ
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problem U(AMcD) (defined in (4.12)) under the assumptions of McDiarmid’s inequal-
ity (4.11). More precisely, we will compute U(AC) defined by (4.19) and use equal-
ities (4.20) and (4.16) to obtain U(AMcD) = U(AC). Observe that all the following
optimization problems possess solutions because they involve the optimization of a
continuous function (with respect to α) in a compact space.

Since the inequalities (4.8) and (4.9) are equivalent, it follows that

U(AMcD) = sup
(f,μ)∈G×Mm

μ
[
f ≥ a+ Eμ[f ]

]
.

In particular, if Eμ[f ] ≤ 0 is replaced by Eμ[f ] ≤ b or Eμ[f ] = b in McDiarmid’s
inequality assumptions (4.11), then the results given in this section remain valid by
replacing a by M := a− b (observe that M plays the role of a margin).

These results should be compared with McDiarmid’s inequality [58, 59], which
provides the bound

(5.1) sup
(f,μ)∈G×Mm

μ
[
f ≥ a+ Eμ[f ]

] ≤ exp

(
− 2a2∑m

i=1D
2
i

)
.

The statements of the theorem will be given assuming that a ≥ 0; in the comple-
mentary case of a < 0, the solution is simply U(AMcD) = 1.

To the best of the authors’ knowledge, the optimal bounds given here are new.
There is a substantial literature relating to the optimization of concentration bounds
and derandomization algorithms (see, for instance, [85] and references therein), but,
as far as the authors know, those bounds were suboptimal because they were obtained
through the moment generating function technique.

5.1.1. Explicit Solutions in Dimensions One and Two.
Theorem 5.1 (explicit solution for m = 1). For m = 1, U(AMcD) is given by

(5.2) U(AMcD) =

⎧⎨
⎩
0 if D1 ≤ a,

1− a

D1
if 0 ≤ a ≤ D1.

Theorem 5.2 (explicit solution for m = 2). For m = 2, U(AMcD) is given by

(5.3) U(AMcD) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if D1 +D2 ≤ a,

(D1 +D2 − a)2

4D1D2
if |D1 −D2| ≤ a ≤ D1 +D2,

1− a

max(D1, D2)
if 0 ≤ a ≤ |D1 −D2|.

See Figures 5.1(a), 5.1(b), and 5.1(c) for illustrations comparing the McDiarmid
and OUQ bounds for m = 2 (as functions of (D1, D2), with mean performance 0
and failure threshold a = 1, the OUQ bound is calculated using the explicit solution
(5.3)). Observe that:

• If a ≤ D1−D2, then a decrease in D2 does not lead to a decrease in the OUQ
bound U(AMcD). In other words, if most of the uncertainty is contained in
the first variable (a + D2 ≤ D1), then the uncertainty associated with the
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Fig. 5.1 Comparison of the McDiarmid and OUQ bounds with zero mean performance and failure
threshold a = 1.

second variable does not affect the global uncertainty; a reduction of the
global uncertainty requires a reduction in D1.

• For D1 + D2 = 2a, the ratio between the OUQ bound and the McDiarmid
bound is minimized near the diagonal.

Remark 5.3. The maximum of (5.3) over D1, D2 under the constraints D1 +
D2 = D and D1 ≥ D2 is achieved at D2 = 0 and is equal to 1− a/D. The minimum
of (5.3) over D1, D2 under the constraints D1 + D2 = D and D1 ≥ D2 is achieved
on the diagonal D1 = D2 and is equal to (1− a/D)2.
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5.1.2. Explicit Solution in Dimension Three. Assume that D1 ≥ D2 ≥ D3.
Write

(5.4) F1 :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if D1 +D2 +D3 ≤ a,

(D1 +D2 +D3 − a)3

27D1D2D3
if D1 +D2 − 2D3 ≤ a ≤ D1 +D2 +D3,

(D1 +D2 − a)2

4D1D2
if D1 −D2 ≤ a ≤ D1 +D2 − 2D3,

1− a

D1
if 0 ≤ a ≤ D1 −D2

and

(5.5) F2 := max
i∈{1,2,3}

φ(γi)ψ(γi),

where

ψ(γ) := γ2
(
2
D2

D3
− 1

)
− 2γ

(
3
D2

D3
− 1

)
+

γ

1 + γ

(
8
D2

D3
− 2

a

D3

)

and γ1, γ2, γ3 are the roots (in γ) of the cubic polynomial

(5.6) (1 + γ)3 −A(1 + γ)2 +B = 0,

where

A :=
5D2 − 2D3

2D2 −D3
and B :=

4D2 − a

2D2 −D3
.

Define a function φ by

φ(γ) :=

{
1 if γ ∈ (0, 1) and θ(γ) ∈ (0, 1),

0 otherwise,

where

θ(γ) := 1− a

D3(1− γ2)
+
D2

D3

1− γ

1 + γ
.

By the standard formula for the roots of a cubic polynomial, the roots of (5.6)
are given by

γ1 := −1− 1

3
(−A+ κ1 + κ2) ,

γ2 := −1− 1

3
(−A+ ω2κ1 + ω1κ2) ,

γ3 := −1− 1

3
(−A+ ω1κ1 + ω2κ2) ,

where

ω1 := −1

2
+

√
3

2
i, ω2 := −1

2
−

√
3

2
i, κ1 :=

(
β1 +

√
β2

2

) 1
3

,

κ2 :=

(
β1 −

√
β2

2

) 1
3

, β1 := −2A3 + 27B and β2 := β2
1 − 4A6.
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Since there are three possible values for each cube root, κ1 and κ2 must be taken so
that they satisfy κ1κ2 = A2.

Theorem 5.4 (explicit solution for m = 3). For m = 3 with D1 ≥ D2 ≥ D3,
U(AMcD) is given by

(5.7) U(AMcD) = max(F1,F2).

Remark 5.5. Figure 5.1(d) compares the McDiarmid and OUQ bounds for m =
3, with zero mean performance, D1 = D2 = D3, and failure threshold a = 1. Figure
5.1(e) shows that that F2 > F1 for D1 large enough. Figure 5.1(f) shows that if
D1 = D2 = 3

2D3, then F2 < F1 for all D1. Therefore, Figures 5.1(e) and 5.1(f)
suggest that the inequality F2 > F1 holds only if D3 ≈ D2 and D2 is large enough
relative to D1.

Remark 5.6. For the application to the (SPHIR facility) admissible set (1.9)
(described in section 1.2.2), the subdiameters of the surrogate H are 8.86mm2 for
thickness (D1), 7.20mm2 for velocity (D2), and 4.17mm2 for obliquity (D3). These
values have been obtained by solving the optimization problems defined by (1.10) with
f = H and i = 1, 2, 3. The application of Theorem 5.4 with these subdiameters and
a = 5.5mm2 leads to F2 = 0.253 and F1 = 0.437 (see (5.4) and (5.5) for the definition
and interpretation of F1 and F2). In particular, since D1−D2 ≤ a ≤ D1+D2−2D3,
it follows from (5.4) that the obliquity subdiameter does not impact F1 (decreasing
D3 to zero does not change the optimal bound 43.7% obtained from the third line of
(5.4)).

5.1.3. Solution in Dimension m. For C0 ∈ C, write
(5.8) U(AC0) = sup

α : (C0,α)∈AC
α[hC0 ≥ a],

where hC0 is defined by (4.17).
Proposition 5.7. Assuming that D1 ≥ · · · ≥ Dm−1 ≥ Dm. For C0 :=

{(1, 1, . . . , 1, 1)}, it holds that
(5.9)

U(AC0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if
∑m

j=1Dj ≤ a,

(
∑m

j=1Dj − a)m

mm
∏m

j=1Dj
if
∑m

j=1Dj −mDm ≤ a ≤∑m
j=1Dj ,

(
∑k

j=1Dj − a)k

kk
∏k

j=1Dj

if, for k ∈ {1, . . . ,m− 1},
∑k

j=1Dj − kDk ≤ a ≤∑k+1
j=1 Dj − (k + 1)Dk+1.

Remark 5.8. The maximum of (5.9) over D1, . . . , Dm under the constraints
D1+· · ·+Dm = D and D1 ≥ · · · ≥ Dm is achieved at D1 = D and is equal to 1−a/D.
The minimum of (5.9) over D1, . . . , Dm under the constraints D1 + · · · + Dm = D
and D1 ≥ · · · ≥ Dm is achieved on the diagonal D1 = · · · = Dm and is equal to
(1− a/D)m.

Proposition 5.9. Assume that D1 ≥ · · · ≥ Dm−1 ≥ Dm. If a ≥∑m−2
j=1 Dj+Dm,

then U(AMcD) is given by (5.9).
Remark 5.10. It follows from the previous proposition that, in arbitrary di-

mension m, the tail of U(AMcD) with respect to a is given by (5.9). Although we

do not have an analytic solution for m ≥ 4 and a <
∑m−2

j=1 Dj + Dm, a numerical
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solution can be obtained by solving the finite-dimensional optimization problem (4.19)
with variables (C,α). Observe that the range of α is [0, 1]m. Although the range of C
is the set of subsets of {0, 1}m, we conjecture (based on symmetry and monotonicity
arguments) that the extremum of (4.19) can be achieved by restricting C to sets Cq

defined by {s ∈ [0, 1]m |∑m
i=1 si ≥ q} (with q ∈ {1, . . . ,m}).

5.2. Explicit Solutions under the Assumptions of Hoeffding’s Inequality. This
subsection treats a further special case of OUQ, where the assumptions are those of
Hoeffding’s inequality [35]. Define the admissible set

(5.10) AHfd :=

⎧⎨
⎩(f, μ)

∣∣∣∣∣∣
f = X1 + · · ·+Xm,

μ ∈⊗m
i=1 M([bi −Di, bi]),
Eμ[f ] ≤ 0

⎫⎬
⎭ ,

and define the optimization problem

U(AHfd) := sup
(f,μ)∈AHfd

μ[f ≥ a].

By Hoeffding’s inequality, for a ≥ 0,

U(AHfd) ≤ exp

(
−2

a2∑m
i=1D

2
i

)
.

Theorem 5.11. If m = 2, then

(5.11) U(AHfd) = U(AMcD).

Remark 5.12. Another proof of Theorem 5.11 can be obtained using entirely
different methods than those presented in section 10.2. Although omitted for brevity,
these methods may be useful in higher dimensions, so we outline them here. We begin
with the reduction to the hypercuse obtained through Proposition 4.8. Whereas the
proof of Theorem 5.11 first applies the reduction of Theorem 4.9 to subsets of the
hypercube, here we instead fix the oscillations in each direction to be 0 ≤ di ≤ Di and
solve the fixed d := (d1, d2) case, using not a Lagrangian-type analysis, but a type of
spectral reduction. We then show that the resulting value U(d) is increasing in d with
respect to the standard (lexicographic) partial order on vectors. The result then easily
follows by taking the supremum over all vectors 0 ≤ d ≤ D.

Theorem 5.13. Let m = 3 and define F1 and F2 as in Theorem 5.4. If F1 ≥ F2,
then

(5.12) U(AHfd) = U(AMcD).

If F1 < F2, then

(5.13) U(AHfd) < U(AMcD).

Under the assumptions of Hoeffding’s inequality, each variable Xi is bounded
from below and from above. Without the upper bounds on the variables Xi, it is
possible to use additional reduction properties and conjecture an explicit form for the
optimal inequality on μ[X1 + · · · + Xm ≥ a]. Here we refer the reader to the work
and conjecture of Samuels [78] (see also [42, p. 542]), which has been proven true for
m = 1, 2, 3.
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Remark 5.14. The optimal Hoeffding inequality can be used for additive models
(with response functions of the form X1 + · · · + Xm), but also to obtain optimal
probabilities of deviations for empirical means. Furthermore, the fact that the optimal
concentration inequalities corresponding to Hoeffding’s or McDiarmid’s assumptions
are the same for m = 2 and possibly distinct for m = 3 is a simple but fundamental
result analogous to Stein’s paradox [25].

6. Computational Implementation. In this section, we discuss the numerical
implementation of OUQ algorithms for the analytical surrogate model for hyperve-
locity impact introduced in section 1.2.

6.1. Extreme Points of Reduced OUQ Problems Are Attractors. We consider
again the computation of the optimal bound U(AH) (where AH is the information
set given by (1.8)) via the identity (1.12) derived from the reduction results of section
4. For #supp(μi) ≤ 2, i = 1, 2, 3, Figure 1.3 has shown that numerical simulations
collapse to two-point support. Figure 6.1 shows that, even when a wider search is
performed (i.e., over measures μ ∈⊗3

i=1 Δk(Xi) for k > 1), the calculated maximizers
for these problems maintain two-point support: the velocity and obliquity marginals
each collapse to a single Dirac mass, and the plate thickness marginal collapses to
having support on the two extremes of its range. As expected, optimization over a

(a) support points at iteration 0 (b) support points at iteration 1000

(c) support points at iteration 3000 (d) support points at iteration 7100

Fig. 6.1 For #supp(μi) ≤ 5, i = 1, 2, 3, the maximizers of the OUQ problem (1.12) associated
with the information set (1.8) collapse to two-point support. Velocity, obliquity, and plate
thickness marginals collapse as in Figure 1.3. At iteration 7100, the thickness support point
at 62.5mils has zero weight, as can be seen in Figure 6.2.
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larger search space is more computationally intensive and takes longer to perform.
This observation suggests that the extreme points of the reduced OUQ problems are,
in some sense, attractors—this point will be revisited in the next subsection.

We also refer the reader to Figures 1.4 and 6.2 for plots of the locations and
weights of the Dirac masses forming each marginal μi as functions of the number of
iterations. Note that the lines for thickness and thickness weight are of the same color
if they correspond to the same support point for the measure. In particular, Figure 6.2
shows that at iteration number 3500 the thickness support point at 62.5mils (shown
in Figure 6.1) has zero weight.

6.2. Coagulation–Fragmentation Algorithm for OUQ. The results of sections
4 and 5 give explicit a priori bounds on the number of Dirac masses sufficient to find
the lower and upper bounds L(A) and U(A) when the admissible set A is given by
independence and linear inequality constraints. However, it is possible that reduction
properties are present for more general admissible sets A. Can such “hidden” reduc-
tion properties be detected by computational means, even in the absence of theorems
that prove their existence?

Consider again the results of the previous subsection. Theorem 4.1 provides an a
priori guarantee that, to find U(A), it is sufficient to search the reduced feasible set
AΔ, which consists of those μ ∈ A whose marginal distributions each have support on
at most two points. However, Figure 6.1 provides numerical evidence that something
much stronger is true: even if we search among measures μ ∈⊗3

i=1 Δk(Xi) for k ≥ 1,
the measures collapse to an optimizer

μ∗ ∈ Δ1(X1)⊗Δ0(X2)⊗Δ0(X3)

(that is, two-point support on the thickness axis and one-point support on the obliq-
uity and velocity axes). In some sense, the (small support) optimizers are attractors
for the optimization process even when the optimization routine is allowed to search
over measures with larger support than that asserted by Theorem 4.1.

Therefore, we propose the following general algorithm for the detection of hidden
reduction properties. Let an admissible set A be given; for k ∈ N, let

Ak := {(f, μ) ∈ A | μ ∈ Δk(X )}

be the collection of admissible scenarios such that μ has support on at most k + 1
points of X .

1. Fix any initial value of k ∈ N.
2. Numerically calculate U(Ak) and obtain a numerical (approximate) maxi-

mizer μ∗ ∈ Ak.
3. Calculate # supp(μ∗) and proceed as follows:

• If # supp(μ∗) < k+1, then the measure has coagulated to have less than
maximally sized support and we terminate the algorithm.

• If # supp(μ∗) = k + 1, then no coagulation/reduction has yet been ob-
served. We enter a fragmentation phase: replace k by any k′ > k and
return to step 2.

Remark 6.1. It would be more accurate to say that the above algorithm is a
sketch of an algorithm, and that its details should be adjusted to fit the circumstances of
application. For example, if the admissible set A includes an independence constraint,
then it would be appropriate to base decisions upon the cardinality of the support of
the marginal distributions of μ∗, not on the cardinality of the support of μ∗ itself. The
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(a) convergence for thickness (b) convergence for thickness weight

(c) convergence for obliquity (d) convergence for obliquity weight

(e) convergence for velocity (f) convergence for velocity weight

Fig. 6.2 Time evolution of the genetic algorithm search for the OUQ problem (1.12) associated with
the information set (1.8) for #supp(μi) ≤ 5 for i = 1, 2, 3, as optimized by mystic. Four of
the five thickness support points quickly converge to the extremes of its range, with weights
0.024, 0.058, and 0.539 at 60mils and weight 0.379 at 105mils. The thickness support point
that does not converge to an extremum has zero weight. Obliquity and velocity each collapse
to a single support point, again with the corresponding weights demonstrating fluctuations
due to degeneracies.

termination of the algorithm if #supp(μ∗) < k + 1 is motivated by the supposition
that a hidden reduction property has been found and that U(A) has an (approximate)
optimizer in Ak.

Remark 6.2. We reiterate the point made in Remark 4.3 that these methods
apply to more general situations than finite convex combinations of Dirac measures;
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finite convex combinations of Dirac measures are simply a well-known class of geo-
metrically extreme probability measures (with respect to which numerical integration
happens to be very easy), and can be replaced by the extremal points of any class of
probability measures as required by the situation being studied. For example, if the
OUQ problem of interest involved the invariant measures for some measurable trans-
formation T : X → X , then each occurrence of Δk(X ) above would be replaced by

ET
k (X ) :=

⎧⎨
⎩

k∑
j=0

αjμj

∣∣∣∣∣∣
for each j = 0, . . . , k, αj ≥ 0,

μj ∈ M(X ) is ergodic with respect to T ,

and
∑k

j=0 αj = 1

⎫⎬
⎭ .

6.3. The OUQ Algorithm in the Mystic Framework. As posed above, OUQ
at the high level is a global optimization of a cost function that satisfies a set of
constraints. This optimization is performed in mystic using the differential evolution
algorithm of Price and Storn [73, 88], with constraints satisfied through a modified
Lagrange multiplier method [61].

The mystic optimization framework [60] provides a collection of optimization al-
gorithms and tools that lowers the barrier to solving complex optimization problems.
Specifically, mystic provides flexibility in specifying the optimization algorithm, con-
straints, and termination conditions. For example, mystic classifies constraints as
either “bounds constraints” (linear inequality constraints that involve precisely one
input variable) or “nonbounds constraints” (constraints between two or more parame-
ters), where either class of constraint modifies the cost function accordingly in attempt
to maximize algorithm accuracy and efficiency. Every mystic optimizer provides the
ability to apply bounds constraints generically and directly to the cost function, so
that the difference between the speeds of bounds-constrained optimization and un-
constrained optimization is minimized. Mystic also enables the user to impose an
arbitrary parameter constraint function on the input of the cost function, allowing
nonbounds constraints to be generically applied in any optimization problem.

Themystic framework was extended for the OUQ algorithm. A modified Lagrange
multiplier method was added, where an internal optimization is used to satisfy the
constraints at each iteration over the cost function [61]. Since evaluation of the cost
function is commonly the most expensive part of the optimization, our implementation
of OUQ in mystic attempts to minimize the number of cost function evaluations
required to find an acceptable solution. By satisfying the constraints within some
tolerance at each iteration, our OUQ algorithm will (likely) numerically converge
much more quickly than if we were to apply constraints by invalidating generated
results (i.e., filtering) at each iteration. In this way, we can use mystic to efficiently
solve for rare events, because the set of input variables produced by the optimizer
at each iteration will also be an admissible point in problem space—this feature is
critical in solving OUQ problems, as tens of thousands of function evaluations may be
required to produce a solution. We refer the reader to [61] for a detailed description
of the implementation of the OUQ algorithm in the mystic framework (see also [62]).

Remark 6.3. Our implementation of the OUQ algorithm in mystic utilizes a
nested optimization (an inner loop) to solve an arbitrary set of parameter constraints
at each evaluation of the cost function. We use evolutionary algorithms because they
are robust and especially suited to the inner loop (i.e., to making sure that the con-
straints are satisfied, which local methods and even some global methods are usually
not good enough for). We also note that the outer loop can be relaxed to other meth-
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ods (leading to a reduction in the total number of function evaluations by an order of
magnitude). Finally, although we observe approximate extremizers that are “compu-
tationally” distinct (Figure 6.2 shows that mass is traded wildly between practically
coincident points), we have not yet observed “mathematically” distinct extrema.

Measures as Data Objects. Theorem 4.1 states that a solution to an OUQ prob-
lem, with linear constraints on marginal distributions, can be expressed in terms of
products of convex linear combinations of Dirac masses. In our OUQ algorithm, the
optimizer’s parameter generator produces new parameters each iteration, and hence
produces new product measures to be evaluated within the cost function. For in-
stance, the response function H , as defined by H(h, θ, v) in (1.5), requires a product
measure of dimension n = 3 for support. In (1.8), the mean perforation area is limited
to [m1,m2] = [5.5, 7.5]mm2, the parameters h, θ, v are bounded by the range provided
by (1.7), and products of convex combinations of Dirac masses are used as the basis
for support. The corresponding OUQ code parameterizes the Dirac masses by their
weights and positions.

More generally, it is worth noting that our computational implementation of OUQ
is expressed in terms of methods that act on a hierarchy of parameterized measure
data objects. Information is thus passed between the different elements of the OUQ
algorithm code as a list of parameters (as required by the optimizer) or as a parameter-
ized measure object. Mystic includes methods to automate the conversion of measure
objects to parameter lists and vice versa, hence the bulk of the OUQ algorithm code
(i.e., an optimization on a product measure) is independent of the selection of the
basis of the product measure itself. In particular, since the measure data objects
can be decoupled from the rest of the algorithm, the product measure representa-
tion can be chosen to best provide support for the model, whether it be a convex
combination of Dirac masses, as required by (1.8), or measures composed of another
basis such as Gaussians. More precisely, this framework can be naturally extended
to Gaussians merely by adding covariance matrices as data object variables and by
estimating integral moments equations (with a Monte Carlo method, for instance).

7. Application to the Seismic Safety Assessment of Structures. In this sec-
tion, we assess the feasibility of the OUQ formalism by means of an application to the
safety assessment of truss structures subjected to ground motion excitation. This ap-
plication contains many of the features that both motivate and challenge UQ, includ-
ing imperfect knowledge of random inputs of high dimensionality, a time-dependent
and complex response of the system, and the need to make high-consequence deci-
sions pertaining to the safety of the system. The main objective of the analysis is to
assess the safety of a structure knowing the maximum magnitude and focal distance
of the earthquakes that it may be subjected to, with limited information and as few
assumptions as possible.

7.1. Formulation in the Time Domain.

7.1.1. Formulation of the Problem. For definiteness, we specifically consider
truss structures undergoing a purely elastic response, whereupon the vibrations of
the structure are governed by the structural dynamics equation

(7.1) Mü(t) + Cu̇(t) +Ku(t) = f(t),

where u(t) ∈ R
N collects the displacements of the joints, M is the mass matrix, C is

the damping matrix, K is the stiffness matrix, and f(t) ∈ RN are externally applied
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forces, such as dead-weight loads, wind loads, and others. The matrices M , C, and
K are of dimension N × N , symmetric, and strictly positive definite. Let T be an
N × 3 matrix such that Tij = 1 if the ith degree of freedom is a displacement in
the jth coordinate direction, and Tij = 0 otherwise. In addition, let u0(t) ∈ R3

be a ground motion. Then Tu0(t) represents the motion obtained by translating
the entire structure rigidly according to the ground motion. We now introduce the
representation

(7.2) u(t) = Tu0(t) + v(t),

where v(t) describes the vibrations of the structure relative to its translated position.
Inserting (7.2) into (7.1) and using KT = 0 and CT = 0 (implied by translation
invariance), we obtain

(7.3) Mv̈(t) + Cv̇(t) +Kv(t) = f(t)−MTü0(t),

where −MTü0(t) may be regarded as the effective forces induced in the structure
by the ground motion (we start from rest). We shall assume that the structure is
required to remain in the elastic domain for purposes of certification. Suppose that
the structure has J members and that all the external loads are applied to the joints
of the structure. Let L be a J ×N matrix such that the entries of the vector Lv give
the axial strains of the members. The certification condition is, therefore,

(7.4) ‖Liv‖∞ < Si, i = 1, . . . , J,

where Si is the yield strain of the ith member and ‖f‖∞ := ess sup |f | is the L∞-norm
of a function f : R → R. In what follows we will write

(7.5) Yi = Liv, i = 1, . . . , J,

for the member strains. Due to the linearity of the structure, a general solution of
(7.3) may be formally obtained by means of a modal analysis. Thus, let qα ∈ RN and
ωα > 0, α = 1, . . . , N , be the eigenvectors and eigenfrequencies corresponding to the
symmetric eigenvalue problem (K − ω2

αM)qα = 0, normalized by qTαMqα = 1. Let

(7.6) v(t) =
N∑

α=1

vα(t)qα

be the modal decomposition of v(t). Using this representation, the equation of motion
(7.3) decomposes into the modal equations

(7.7) v̈α(t) + 2ζαωαv̇α(t) + ω2
αvα(t) = qTα

(
f(t)−MTü0(t)),

where we have assumed that the eigenmodes qα are also eigenvectors of C and ζα is
the damping ratio for mode i. The solution of (7.7) is given by the hereditary integral

(7.8) vα(t) = −
∫ t

0

e−ζαωα(t−τ) sin[ωα(t− τ)]
(
qTαMTü0(τ)

) dτ
ωα

,

where, for simplicity, we set f = 0 and assume that the structure starts from rest and
without deformation at time t = 0. We can now regard structures oscillating under
the action of a ground motion as systems that take the ground motion acceleration
ü0(t) as input and whose performance measures of interest are the member strains
Yi, i = 1, . . . , J . The response function F mapping the former to the latter is given
by composing (7.8), (7.6), and (7.5).
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7.1.2. Formulation of the Information Set. In order to properly define the cer-
tification problem, we proceed to define constraints on the inputs, i.e., the information
set associated with the ground motion acceleration. As in [87], we regard the ground
motion at the site of the structure as a combination of two factors: the earthquake
source s and the earth structure through which the seismic waves propagate; this
structure is characterized by a transfer function ψ. Let � denote the convolution
operator; the ground motion acceleration is then given by

(7.9) ü0(t) := (ψ � s)(t).

We assume that s is a sum of boxcar time impulses (see page 230 of [87]) whose
amplitudes and durations are random, independent, not identically distributed, and
of unknown distribution. More precisely, we assume that

(7.10) s(t) :=

B∑
i=1

Xi si(t),

where X1, . . . , XB are independent (not necessarily identically distributed) random
variables with unknown distribution with support in [−amax, amax]

3 (si, B, and amax

are defined below) and such that E[Xi] = 0. We also assume the components
(Xi,1, Xi,2, Xi,3) of the vectors Xi to be independent. Since we wish to bound the
probability that a structure will fail when it is struck by an earthquake of magnitude
ML in the Richter (local magnitude) scale and hypocentral distance R, we adopt the
semiempirical expression proposed by Esteva [28] (see also [64]) for the maximum
ground acceleration,

(7.11) amax :=
a0e

λML

(R0 +R)2
,

where a0, λ, and R0 are constants. For earthquakes on firm ground, Esteva [28] gives
a0 = 12.3 · 106m3 · s−2, λ = 0.8, and R0 = 25 · 103m.

The functions si are step functions with si(t) equal to 1 for
∑i−1

j=1 τj ≤ t <
∑i

j=1 τj
and equal to zero elsewhere, where the durations τ1, . . . , τB are independent (not
necessarily identically distributed) random variables with unknown distribution with
support in [0, τmax] and such that τ̄1 ≤ E[τi] ≤ τ̄2. Observing that the average

duration of the earthquake is
∑B

i=1 E[τi], and keeping in mind the significant effect of
this duration on structural reliability [97], we select τ̄1 = 1 s, τ̄2 = 2 s, τmax = 6 s, and
B = 20.

The propagation through the earth structure gives rise to focusing, defocusing,
reflection, refraction, and anelastic attenuation (which is caused by the conversion
of wave energy to heat) [87]. We do not assume the earth structure to be known;
henceforth we assume that ψ is a random transfer function of unknown distribution.
More precisely, we assume that the transfer function is given by

(7.12) ψ(t) :=

√
q

τ ′

q∑
i=1

ci ϕi(t),

where q := 20, τ ′ = 10 s, c is a random vector of unknown distribution with support
in {x ∈ [−1, 1]q | ∑q

i=1 x
2
i ≤ 1 and

∑q
i=1 xi = 0}, and ϕi is a piecewise linear basis

nodal element on the discretization t1, . . . , tq of [−τ ′/2, τ ′/2] with ti+1 − ti = τ ′/q
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(ϕi(tj) = δij with δij = 1 if i = j and zero otherwise). ψ has the dimension
of 1/time and the constraint

∑q
i=1 c

2
i ≤ 1 is equivalent to the assumption that(

1
τ ′
∫ τ ′/2
−τ ′/2 |ψ|2(t) dt

) 1
2 is, with probability 1, bounded by a constant of order 1/τ ′.

Analogous to the Green function of the wave operator, ψ can take both positive and
negative values (in time, for a fixed site and source). Observe also that the constraint
on the time integral of ψ2 leads to a bound on the Arias intensity (i.e., the time
integral of (ü0)

2), which is a popular measure of ground motion strength used as a
predictor of the likelihood of damage to short-period structures [86]. The constraint∑q

i=1 ci = 0 ensures that the residual velocity is zero at the end of the earthquake.
Observe also that, since the maximum amplitude of s already contains the dampening
factor associated with the distance R to the center of the earthquake (in 1/(R0+R)

2,
via (7.11)), ψ has to be interpreted as a normalized transfer function. Since propa-
gation in anisotropic structures can lead to changes in the direction of displacements,
the coefficients ci should, for full generality, be assumed to be tensors. Although we
have assumed those coefficients to be scalars for the clarity and conciseness of the
presentation, the method and reduction theorems proposed in this paper still apply
when those coefficients are tensors.

7.1.3. The OUQ Optimization Problem. The optimal bound on the probabil-
ity that the structure will fail is therefore the solution of the optimization problem

(7.13) U(A) := sup
(F,μ)∈A

μ[F ≤ 0],

where A is the set of pairs (F, μ) such that (1) F is the mapping of the ground
acceleration t �→ ü0(t) onto the margin mini=1,...,J(Si − ‖Yi‖∞) via (7.8), (7.6), and
(7.5), and (2) μ is a probability measure on the ground acceleration t → ü0(t) with
support on accelerations defined by (7.9), (7.10), and (7.12) (with B = 20). Under this
measure, X1, . . . , XB, τ1, . . . , τB, and c are independent (not necessarily identically
distributed) random variables. For i = 1, . . . , B, Xi has zero mean and independent
(not necessarily identically distributed) components (Xi,1, Xi,2, Xi,3) with support in
[−amax, amax], and the measure of τi is constrained by τ̄1 ≤ E[τi] ≤ τ̄2 and has support
in [0, τmax]. The support of the measure on c is a subset of {x ∈ [−1, 1]q :

∑q
i=1 x

2
i ≤ 1

and
∑q

i=1 xi = 0}.
7.1.4. Reduction of the Optimization Problem. Problem (7.13) is not compu-

tationally tractable since the optimization variables take values in infinite-dimensional
spaces of measures. However, thanks to Corollary 4.4, we know that the optimum
of problem (7.13) can be achieved by (1) handling c as a deterministic optimization
variable taking values in {x ∈ [−1, 1]q :

∑q
i=1 x

2
i ≤ 1 and

∑q
i=1 xi = 0} (since no

constraints are given on the measure of c), (2) assuming that the measure on each
Xi,j (Xi = (Xi,1, Xi,2, Xi,3)) is the tensorization of two Dirac masses in [−amax, amax]
(since E[Xi,j ] = 0 is one linear constraint), and (3) assuming that the measure on each
τi is the convex linear combination of two Dirac masses in [0, τmax] (τ̄1 ≤ E[τi] ≤ τ̄2
counts as one linear constraint).

Observe that this reduced problem is of finite dimension (8B+q = 180) (counting
the scalar position of the Dirac masses and their weights and subtracting the number
of scalar equality constraints).

7.1.5. Numerical Results. The truss structure is the electrical tower shown in
Figure 7.1(a). This structure has 198 elements, and we refer the reader to [56] for
precise numerical values associated with its geometry. The material used for this
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(a) The truss structure (b) Maximum PoF vs ML

Fig. 7.1 Numerical results associated with the information set defined in section 7.1.2.

structure is steel. The corresponding material properties are 7860 kg/m3 for density,
2.1 · 1011N/m2 for the Young’s modulus, 2.5 · 108N/m2 for the yield stress, and
ζ = 0.07 for the (uniform) damping ratio. Calculations were performed with time
step Δt := 5.0 · 10−2 s. See Figure 7.2(a) for a graph of the optimal bound on the
probability of failure (7.13) versus the maximum ground acceleration 7.11 (in m ·s−2).
Using Esteva’s semiempirical formula (7.11) with a hypocentral distance R equal to
25 km, we obtain Figure 7.1(b), the graph of the optimal bound on the probability of
failure (7.13) versus an earthquake of magnitude ML in the Richter (local magnitude)
scale at hypocentral distance R (the difference ΔML between two consecutive points is
0.25). The “S” shape of the graph is typical of vulnerability curves [51]. We select one
of the points in the transition region for further analysis—the point corresponding to
a probability of failure of 0.631, a maximum ground acceleration of 0.892m · s−2, and
an earthquake of magnitude 6.5. The vulnerability curve undergoes a sharp transition
(from small probabilities of failure to unitary probabilities of failure) around maximum
ground acceleration amax = 0.892m · s−2. This transition becomes smoother as the
number of independent variables in the description of the admissible set is increased
(results not shown).

For amax = 0.892m · s−2 (ML = 6.5), Figures 7.2(b) and 7.2(c) show the (de-
terministic) transfer function ψ (the units in the x-axis are seconds) and three inde-
pendent realizations of the earthquake source s(t) sampled from the measure μ0.892

maximizing the probability of failure. For this measure, Figure 7.2(f) shows the axial
strain of all elements versus time (in seconds) and Figure 7.1(a) identifies the ten
weakest elements for the most probable earthquake (the axial strains of these ele-
ments are 0.00142317, 0.00125928, 0.00099657, 0.00081897, 0.00076223, 0.00075958,
0.00072190, 0.00068266, 0.00062919, and 0.00061361)—the weakest two elements ex-
ceed the yield strain of 0.00119048 (shown in red in the figure). Figures 7.2(d) and
7.2(e) show three independent horizontal ground accelerations and a power spectrum
sampled from μ0.892. The units in Figure 7.2(e) are cycles per second for the x-axis
and m · s−2 for the y-axis. The units in Figure 7.2(d) are seconds for the x-axis and
m · s−2 for the y-axis.

A quantitative analysis of the numerical results also shows that all the constraints
are active at the extremum (i.e., the generalized moments inequality constraints on μ
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(a) Maximum PoF vs. amax (b) Transfer function ψ

(c) Earthquake source s(t) (d) Ground acceleration

(e) Power spectrum (f) Elements strain

Fig. 7.2 Numerical results associated with the information set defined in section 7.1.2.

defining the information set introduced in section 7.1.2 are equalities or near equali-
ties at the extremum). The positions and weights of the Dirac masses associated with
durations and transfer coefficients do not appear to show any discernible trend. How-
ever, the positions and weights of the Dirac masses associated with the amplitudes
X1, . . . , XM show a trend (as a function of the earthquake magnitude ML) illustrated
in Figure 7.3. This trend suggests that for strong earthquakes, probabilities of failure
are maximized via (the possibility of) large amplitude impulses.

D
ow

nl
oa

de
d 

07
/1

9/
17

 to
 1

31
.2

15
.2

48
.1

12
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

322 H. OWHADI, T. J. SULLIVAN, M. MCKERNS, M. ORTIZ, AND C. SCOVEL

(a) ML = 6 (b) ML = 6.5 (c) ML = 7

Fig. 7.3 Positions (abscissa, in m ·s−2) and weights (ordinates) of the Dirac masses associated with
the measure of probability on X1, . . . ,XB at the extremum for earthquakes of magnitude
ML = 6, ML = 6.5, and ML = 7. Note that the positions in the abscissa correspond to the
possible amplitudes of the impulses Xi.

(a) Estimated maximum PoF vs. iterations (b) Dirac positions vs. iterations

Fig. 7.4 (a) Estimated maximum probability of failure versus number of iterations for an earthquake
of magnitude ML = 6.5 (this corresponds to the point in the transition region of Figure
7.1(b)). (b) Renormalized positions of the Dirac masses for ML = 6.5.

On the Numerical Optimization Algorithm. Global search algorithms often
require hundreds of iterations and thousands of function evaluations to find a global
optimum, due to their stochastic nature. Local methods, like Powell’s method [72],
may require orders of magnitude fewer iterations and evaluations, but do not gener-
ally converge to a global optimum in a complex parameter space. To compute the
probability of failure, we use a differential evolution algorithm [73, 88] that has been
modified to utilize large-scale parallel computing resources [60]. Each iteration, the
optimizer prepares m points in parameter space, with each new point derived through
random mutations from the “best” point in the previous iteration. We select m = 40,
which is of modest size compared to the dimensionality of the problem—however, we
chose this modest size because populations larger than m = 40 only modestly increase
the efficiency of the algorithm. Each of these m evaluations is performed in paral-
lel on a computer cluster, such that the time required for a single iteration equals
the time required for a single function evaluation. After n iterations are completed,
the optimal probability of failure for the product measure is returned (convergence is
observed around n ≈ 200 and we select n ≈ 2000 for the robustness of the result).

Only one iteration is required for values of ground acceleration on the extremes
of the range (such as ML = 2 and ML = 9). The number of iterations required for
convergence for points in the transition region (around ML = 6.5) is between 30 and
50 (which corresponds to 2400 to 4000 function evaluations). See Figure 7.4 for an
illustration of the convergence of the optimization algorithm for ML = 6.5.

Each function evaluation takes approximately 0.5 s on a high-performance com-
puting cluster (such as the high-performance computing clusters used at the National
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Labs). With each iteration utilizing m = 40 parallel processors, the OUQ calculation
takes roughly 24 hours.

Approximately 1000 time steps are required for accuracy in the strain calcula-
tions, and each function evaluation requires two convolutions over time. Because of
the size of the truss structure (198 elements), eigenvalues have to be computed with
high accuracy. Because of the size of the product measure associated with the numer-
ical optimization iterates, the probability of failure (associated with these iterates)
should be estimated with a controlled (and adapted) tolerance rather than computed
exactly—we use a sampling size of 5000 points.

7.2. OUQ and Critical Excitation. Without constraints on ground acceleration,
the ground motion yielding the maximum peak response (maximum damage in a de-
terministic setting) has been referred to as the critical excitation [20]. Drenick himself
pointed out that a seismic design based on critical excitation could be “far too pes-
simistic to be practical” [21]. He later suggested that the combination of probabilistic
approaches with worst-case analysis should be employed to make the seismic resistant
design robust [22]. Practical applications and extensions of critical excitation methods
have since been extensively developed, and we refer the reader to [92] and [93] for re-
cent reviews. The probabilities of failure obtained from stochastic approaches depend
on particular choices of probability distribution functions. Because of the scarcity of
recorded time-histories, these choices involve some degree of arbitrariness [87, 92] that
may be incompatible with the certification of critical structures and rare events [23].
We suggest that by allowing for very weak assumptions on probability measures, the
reduction theorems associated with the OUQ framework could lead to certifications
methods that are both robust (reliable) and practical (not overly pessimistic). Of
course, this does require the identification of a reliable and narrow information set.
The set A used in this paper does not include all the available information on earth-
quakes. We also suggest that the method of selecting next best experiments could
help in this endeavor.

Observe also that without constraints, worst-case scenarios correspond to focus-
ing the energy of the earthquake in modes of resonances of the structure. Without
correlations in the ground motion these scenarios correspond to rare events where
independent random variables must conspire to strongly excite a specific resonance
mode. The lack of information on the transfer function ψ and the mean values E[τi]
permits scenarios characterized by strong correlations in ground motion, where the
energy of the earthquake can be focused in the above-mentioned modes of resonance.

7.3. Alternative Formulation in the Frequency Domain. A popular method
for modeling and synthesizing seismic ground motion is to use (deterministic) shape
functions and envelopes in the frequency domain (see [96] for a review).

In this subsection, we evaluate the safety of the electrical tower shown in Figure
7.1(a) using an admissible set AF defined from weak information on the probability
distribution of the power spectrum of the seismic ground motion.

7.3.1. Formulation of the Information Set. We assume that the (three-dimen-
sional) ground motion acceleration is given by
(7.14)

ü0(t) :=

W∑
k=1

(
(A6k−5, A6k−4, A6k−3) cos(2πωkt) + (A6k−2, A6k−1, A6k) sin(2πωkt)

)
,

where the Fourier coefficients Aj are random variables (in R) of unknown distribution.

D
ow

nl
oa

de
d 

07
/1

9/
17

 to
 1

31
.2

15
.2

48
.1

12
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

324 H. OWHADI, T. J. SULLIVAN, M. MCKERNS, M. ORTIZ, AND C. SCOVEL

We assume that W := 100 and that ωk := k/τd with τd = 20 s. Writing A :=
(A1, . . . , A6W ), we assume that

(7.15) P
[
A ∈ B(0, amax) \B(0, amax

2 )
]
= 1,

where amax is given by Esteva’s semiempirical expression (7.11) and B(0, amax) \
B(0, amax

2 ) is the Euclidean ball of R6W of center 0 and radius amax minus the Eu-
clidean ball of center 0 and radius amax

2 .
Although different earthquakes have different power spectral densities, it is empir-

ically observed that “on average” their power spectra follow specific shape functions
that may depend on the ground structure of the site where the earthquake is occur-
ring [47]. Based on this observation, synthetic seismograms are produced by filtering
the Fourier spectrum of white noise with these specific shape functions [47]. In this
subsection, our information on the distribution of A will be limited to the shape
of the mean value of its power spectrum. More precisely, we will assume that, for
k ∈ {1, . . . ,W} and j ∈ {0, . . . , 5},

(7.16) E[A2
6k−j ] =

a2max

12

s(ωk)

s0
,

where s is the Matsuda–Asano shape function [57] given by

(7.17) s(ω) :=
ω2
gω

2

(ω2
g − ω2)2 + 4ξ2gω

2
g , ω

2
,

where ωg and ξg are the natural frequency and natural damping factor of the site and

(7.18) s0 :=
W∑
k=1

s(ωk).

We will use the numerical values ωg = 6.24Hz and ξg = 0.662 associated with the
January 24, 1980, Livermore earthquake (see [49]; observe that we are measuring
frequency in cycles per seconds instead of radians per seconds). The purpose of the
normalization factor (7.18) is to enforce the following mean constraint:

(7.19) E

[
1

τd

∫ τd

0

|ü0(t)|2 dt
]
=

1

2
E
[|A|2] = a2max

4
.

Observe also that (7.15) implies that, with probability 1,

(7.20)
a2max

8
≤ 1

τd

∫ τd

0

|ü0(t)|2 dt ≤ a2max

2
.

We write AF for the set of probability measures μ on A satisfying (7.15) and (7.16).

7.3.2. OUQ Objectives. Let (Y1, . . . , YJ) and (S1, . . . , SJ) be the axial and yield
strains introduced in section 7.1.1. Writing S := [−S1, S1]×· · ·× [−SJ , SJ ] (this is the
safe domain for the axial strains), we are interested in computing optimal (maximal
and minimal with respect to measures μ ∈ AF ) bounds on the probability (under μ)
that Y (t) 
∈ S for some t ∈ [0, τd] (defined as the probability of failure). From the
linearity of (7.3), the strain of member i (i ∈ {1, . . . , J}) at time t can be written

(7.21) Yi(t) =

6W∑
j=1

Ψij(t)Aj .
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Let Ψ(t) be the J × (6W ) tensor (Ψij(t)) and observe that (7.21) can also be written
Y (t) = Ψ(t)A. Let F be the subset of R6W defined as the elements x of B(0, amax) \
B(0, amax

2 ) such that Ψ(t)x /∈ [−S1, S1]× · · · × [−SJ , SJ ] for some t ∈ [0, τd], i.e.,

(7.22) F :=

{
x ∈ B(0, amax) \B

(
0,
amax

2

) ∣∣∣∣Ψ(t)x 
∈ S for some t ∈ [0, τd]

}
.

Observe that F corresponds to the set of vectors A (in (7.14)) that leads to a failure
of the structure. Henceforth, our objective can be formulated as computing

(7.23) sup
μ∈AF

μ
[
A ∈ F] and inf

μ∈AF

μ
[
A ∈ F],

where AF is the set of probability measures μ such that μ
[
A ∈ B(0, amax)\B(0, amax

2 )
]

= 1, and that

(7.24) Eμ[A
2
j ] = bj with bj :=

a2max

12

s(ω	(j+5)/6
)
s0

.

In other words, AF is an infinite-dimensional polytope defined as the set of prob-
ability measures on ground acceleration that have the Matsuda–Asano average power
spectra (7.17). It is important to observe that with the filtered white noise method
the safety of the structure is assessed for a single measure μ0 ∈ AF , whereas in the
proposed OUQ framework we compute best- and worst-case scenarios with respect to
all measures in AF .

7.3.3. Reduction of the Optimization Problem with Dirac Masses. Since (7.24)
corresponds to 6W global linear constraints on μ, Theorem 4.1 implies that the ex-
trema of problem (7.23) can be achieved by assuming μ to be a weighted sum of

Dirac masses
∑6W+1

j=1 pjδZ.,j , where Z.,j ∈ B(0, amax) \ B(0, amax

2 ), pj ≥ 0, and∑6W+1
j=1 pj = 1. The constraints (7.24) can then be written as follows: for i ∈

{1, . . . , 6W},∑6W+1
j=1 Z2

i,jpj = bi. Furthermore, μ
[
A ∈ F] =∑j :Z.,j∈F pj .

7.3.4. Reduction of the Optimization Problem Based on Strong Duality. Be-
cause the information contained in AF is limited to constraints on the moments of A,
strong duality can be employed to obtain an alternative reduction of (7.23). Indeed,
Theorem 2.2 of [13] implies that

(7.25) sup
μ∈AF

μ
[
A ∈ F] = inf

(H0,H)∈R6W+1
H0 +

6W∑
i=1

Hibi,

where the minimization problem (over the vector (H0, H) := (H0, H1, . . . , H6W ) ∈
R6W+1) in the right-hand side of (7.25) is subject to

(7.26)

6W∑
i=1

Hix
2
i +H0 ≥ χ(x) on B(0, amax)

/
B
(
0,
amax

2

)
,

where χ(x) is the function equal to 1 on F and 0 on (F)c ((F)c is the complement of
F , i.e., the set of x in R6W that are not elements of F). Similarly,

(7.27) inf
μ∈AF

μ
[
A ∈ F] = sup

(H0,H)∈R6W+1

H0 +

6W∑
i=1

Hibi,
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where the maximization problem in the right-hand side of (7.27) is subject to

(7.28)

6W∑
i=1

Hix
2
i +H0 ≤ χ(x) on B(0, amax)

/
B
(
0,
amax

2

)
.

We conclude from these equations (by optimizing first with respect to H0) that the
optimal upper bound on the probability of failure (defined as the probability that the
displacement Y (t) does not belong to the safe region S for all time t in the interval
[0, τd]) is

(7.29) sup
μ∈AF

μ
[
A ∈ F] = inf

H∈R6W
sup

x∈B(0,amax)/B(0, amax
2 )

χ(x) +

6W∑
i=1

Hi(bi − x2i ),

whereas the optimal lower bound is

(7.30) inf
μ∈AF

μ
[
A ∈ F] = sup

H∈R6W

inf
x∈B(0,amax)/B(0, amax

2 )
χ(x) +

6W∑
i=1

Hi(bi − x2i ).

Observe that problem (7.29) is convex inH ∈ R6W , whereas problem (7.30) is concave.

7.3.5. Numerical Results. The optimal bounds (7.23) can be computed using
the reduction to Dirac masses described in section 7.3.3 or strong duality as described
in section 7.3.4. While the latter does not identify the extremal measures, it leads
to a smaller optimization problem than the former (i.e., to optimization variables in
R12W instead of R(6W+1)×(6W+1)). The simplification is allowed by the facts that the
response function is well identified, there are no independence constraints, and the
information on A is limited to 6W (scalar) moment constraints. The vulnerability
curves of Figure 7.5 have been computed using strong duality as described in section

Fig. 7.5 Maximum and minimum probability of failure of the structure (as defined in (7.23)) versus
the earthquake of magnitude ML in the Richter (local magnitude) scale at hypocentral dis-
tance R = 25 km (amax is given by Esteva’s semiempirical expression (7.11) as a function
of ML). The curve corresponding to the maximum probability of failure is not the same as
the one given in Figure 7.1(b) because it is based on a different information set.
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7.3.4 (an identification of extremal measures would require using the method described
in section 7.3.3). Observe that to decrease the gap between the maximum probability
of failure and the minimum probability of failure, one would have to refine the in-
formation on the probability distribution of ground motion (by, for instance, adding
constraints involving the correlation between the amplitudes Ai of different Fourier
modes). To solve optimization problems (7.29) and (7.30) we use the modified differ-
ential evolution algorithm described in section 7.1.5. Equation (7.29) is implemented
as a minimization over H where a nested maximization over x is used to solve for
supx∈B(0,amax)/B(0,amax

2 ) χ(x)−
∑6W

i=1Hix
2
i at each function evaluation. Both the min-

imization over H and the maximization over x use the differential evolution algorithm
described above, where the optimizer configuration itself differs only in that for the
nested optimization termination occurs when the maximization over x does not im-
prove by more than 10−6 in 20 iterations, while the outer optimization is terminated
when there is not more than 10−6 improvement over 100 iterations. The optimization
over H is performed in parallel, as described in section 7.1.5, where each of the nested
optimizations over x is distributed across nodes of a high-performance computing
cluster. Each of the (nested) optimizations over x requires only a few seconds on
average, and thus they are performed serially. Convergence, on average, takes about
15 hours and is obtained in roughly 2000 iterations (over H), corresponding to 35000
to 50000 function evaluations. Each function evaluation is a nested optimization over
x, which takes a few seconds on a high-performance computing cluster.

8. Application to Transport in Porous Media. We now apply the OUQ frame-
work and reduction theorems to divergence-form elliptic PDEs and consider the situa-
tion where coefficients (corresponding to microstructure and source terms) are random
and have imperfectly known probability distributions. Treating those distributions as
optimization variables (in an infinite-dimensional space) we obtain optimal bounds on
probabilities of deviation of solutions. Surprisingly, explicit and optimal bounds show
that, with incomplete information on the probability distribution of the microstruc-
ture, uncertainties or information do not necessarily propagate across scales.

To make this more precise in a simple setting, let D ⊆ R be a bounded domain
and consider u(x, ω), the solution of the stochastic elliptic PDE

(8.1)

{
− div(κ(x, ω)∇u(x, ω)) = f(x, ω), x ∈ D,
u(x, ω) = 0, x ∈ ∂D,

with random microstructure κ and random (positive) source term f . Physically, u can
be interpreted as the pressure (or head) in a medium of permeability κ with source
f ; the fluid velocity is given by ∇u. For a given point x0 in the interior of D, we
are interested in computing the least upper bound on the probability of an unsafe
supercritical pressure at x0:

(8.2) U(A) := sup
μ∈A

Eμ

[
log u(x0, ω) ≥ Eμ[log u(x0, ω)] + a

]
,

where A is a set of probability measures on (κ, f). In this section we will focus on
the two admissible sets A described below.

Let D1, D2 ≥ 0, K,F ∈ L∞(D) be such that essinfDK > 0, F ≥ 0, and
∫
D F > 0.

Define

(8.3) Aκ,f :=

⎧⎨
⎩μ
∣∣∣∣∣∣
κ, f independent under μ,

K(x) ≤ κ(x, ω) ≤ eD1K(x),

F (x) ≤ f(x, ω) ≤ eD2F (x)

⎫⎬
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We say that a function g defined on D is periodic of period δ if, for all x ∈ D, it holds
that g(x) = g(x+ δ) whenever x+ δ ∈ D. We now define

(8.4) Aκ1κ2 :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
μ

∣∣∣∣∣∣∣∣∣∣∣∣

κ = κ1κ2,
κ1, κ2 independent under μ,

‖∇κ1‖L∞ ≤ eD1‖∇K1‖L∞ ,
κ2 periodic of period δ,

K1(x) ≤ κ1(x, ω) ≤ eD1K1(x),

K2(x) ≤ κ2(x, ω) ≤ eD2K2(x)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
,

where 0 < δ � 1, K2 ∈ L∞(D) is uniformly elliptic over D and periodic of period δ,
and K1 is smooth and uniformly elliptic over D.

PDEs of the form (8.1) have become a benchmark for stochastic expansion meth-
ods [29, 101, 4, 26, 19, 94, 14], and we also refer the reader to [30] for their importance
for transport in porous media.

These PDEs have also been studied as classical examples in the UQ literature on
the basis that the randomness in the coefficients (with a perfectly known probability
distribution on the coefficients (κ, f)) is an adequate model of the lack of information
on the microstructure κ. In these situations the quantification of uncertainties is
equivalent to a push forward of the measure probability on (κ, f).

However, in practical situations the probability distribution on the coefficients
(κ, f) may not be known a priori and the sole randomness in coefficients may not
constitute a complete characterization of uncertainties. This is our motivation for
considering the problem described in this section. We have also introduced the ad-
missible set (8.4) as a simple illustration of uncertainty quantification with multiple
scales and incomplete information on probability distributions. To relate this example
to classical homogenization [8], we have assumed κ2 to be periodic of small period
δ � 1.

Theorem 8.1. We have

(8.5) U(Aκ,f ) = U(Aκ1κ2) = U(AMcD),

with

(8.6) U(AMcD) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if D1 +D2 ≤ a,

(D1 +D2 − a)2

4D1D2
if |D1 −D2| ≤ a ≤ D1 +D2,

1− a

max(D1, D2)
if 0 ≤ a ≤ |D1 −D2|.

Before giving the proof of Theorem 8.1, we make a few important observations.
It follows from Theorem 8.1 that if D2 ≥ a + D1, then U(Aκ,f )(a,D1, D2) =

U(Aκ,f )(a, 0, D2). In other words, if the uncertainty on the source term f is dominant,
then the uncertainty associated with the microstructure, κ, does not propagate to the
uncertainty corresponding to the probability of deviation of log u(x0, ω) from its mean.

Now consider Aκ1κ2 . Since κ1 is constrained to be smooth and κ2 periodic with
period δ � 1, one would expect the microstructure κ2 to appear in the probability of
deviation in a homogenized form. However, Theorem 8.1 shows that if D1 ≥ a+D2,
then U(Aκ1κ2)(a,D1, D2) = U(Aκ1κ2)(a,D1, 0). More precisely, if the uncertainty
associated with the background κ1 is dominant, then the uncertainty associated with
the microstructure κ2 does not propagate to the uncertainty corresponding to the
probability of deviation of log u(x0, ω) from its mean.
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This simple but generic example suggests that for structures characterized by
multiple scales or multiple modules, information or uncertainties may not propagate
across modules or scales. This phenomenon can be explained by the fact that, with
incomplete information, scales or modules may not communicate certain types of
information. Henceforth, the global uncertainty of a modular system cannot be re-
duced without decreasing local dominant uncertainties. In particular, for modular or
multiscale systems, one can identify (possibly large) accuracy thresholds (in terms of
numerical solutions of PDEs or stochastic PDEs) below which the global uncertainty
of the system does not decrease.

Proof of Theorem 8.1. Let us now prove Theorem 8.1 with the admissible set
Aκ,f (the proof with the set Aκ1κ2 is similar). It follows from Theorem 2.11 and
Proposition 2.13 of [67] that the maximum oscillation of log u(x0, ω) with respect to
κ and f is bounded by D1 and D2 and we obtain that

(8.7) U(Aκ,f ) ≤ U(AMcD),

where U(AMcD) is defined in (4.12) (we consider the case m = 2).
Next, from the proof of Theorem 5.2, we observe that the bound U(AMcD) can be

achieved using Aκ,f by considering measures μ that are tensorizations of two weighted
Dirac masses in κ (placed atK and eD1K) and two weighted Dirac masses in f (placed
at F and eD1F ). This concludes the proof.

9. Conclusions.

The UQ Problem—A Problem with UQ?. The 2003 Columbia space shuttle
accident and the 2010 Icelandic volcanic ash cloud crisis demonstrated two sides of
the same problem: discarding information may lead to disaster, whereas overconser-
vative safety certification may result in unnecessary economic loss and supplier-client
conflict. Furthermore, while everyone agrees that UQ is a fundamental component of
objective science (because, for instance, objective assertions of the validity of a model
or the certification of a physical system require UQ), it appears that not only is there
no universally accepted notion of the objectives of UQ, there is also no universally
accepted framework for the communication of UQ results. At present, the “UQ prob-
lem” appears to have all the symptoms of an ill-posed problem; at the very least, it
lacks a coherent general presentation, much like the state of probability theory before
its rigorous formulation by Kolmogorov in the 1930s.

• At present, UQ is an umbrella term that encompasses a large spectrum of
methods: Bayesian methods, Latin hypercube sampling, polynomial chaos
expansions, stochastic finite-element methods, Monte Carlo, etc. Most (if
not all) of these methods are characterized by a list of assumptions required
for their application or efficiency. For example, Monte Carlo methods require
a large number of samples to estimate rare events; stochastic finite-element
methods require the precise knowledge of probability density functions and
some regularity (in terms of decays in spectrum) for their efficiency; and
concentration-of-measure inequalities require uncorrelated (or weakly corre-
lated) random variables.

• There is a disconnect between theoretical UQ methods and complex systems
of importance requiring UQ in the sense that the assumptions of the meth-
ods do not match the assumption/information set of the application. This
disconnect means that often a specific method adds inappropriate implicit or
explicit assumptions (for instance, when the knowledge of probability den-
sity functions is required for polynomial chaos expansions, but is unavailable)
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and/or the repudiation of relevant information (for instance, the monotonic-
ity of a response function in a given variable) that the method is not designed
to incorporate.

OUQ as an Opening Gambit. OUQ is not the definitive answer to the UQ
problem, but we hope that it will help to stimulate discussion on the development
of a rigorous and well-posed UQ framework analogous to that surrounding the de-
velopment of probability theory. The reduction theorems of section 4, the optimal
concentration inequalities and nonpropagation of input uncertainties of section 5, the
possibility of the selection of optimal experiments described at the end of section 2,
and the numerical evidence of section 6 that (singular, i.e., low-dimensional) opti-
mizers are also attractors, suggest that such a discussion may lead to nontrivial and
worthwhile questions and results at the interface of optimization theory, probability
theory, computer science, and statistics.

In particular, many questions and issues raised by the OUQ formulation remain
to be investigated. A few of those questions and issues are as follows:

• Any (possibly numerical) method that finds admissible states (f, μ) ∈ A leads
to rigorous lower bounds on U(A). It is known that duality techniques lead
to upper bounds on (f, μ) ∈ A provided that the associated Lagrangians
can be computed. Are there interesting classes of problems for which those
Lagrangians can be rigorously estimated or bounded from above?

• The reduction theorems of section 4 are limited to linear constraints on prob-
ability distribution marginals and the introduction of sample data may lead
to other situations of interest (for instance, relative-entropy-type constraints).

• Although general in its range of application, the algorithmic framework in-
troduced in section 6 still lacks general convergence theorems.

• The introduction of sample data appears to render the OUQ optimization
problem even more complex. Can this optimization problem be made equiva-
lent to applying the deterministic setting to an information set A randomized
by the sample data?

• In the presence of sample data, instead of doing theoretical analysis to de-
scribe the optimal statistical test, one formulation of the OUQ approach
provides an optimization problem that must be solved to determine the test.
Is this optimization problem reducible?

10. Appendix: Proofs.

10.1. Proofs for Section 4.
Proof of Theorem 4.1. In this proof, we use (μ1, . . . , μm) as a synonym for the

product μ1 ⊗ · · · ⊗ μm. For μ =
⊗m

i=1 μi ∈ MG, consider the optimization problem

maximize E(μ′
1,μ2,...,μm)[r]

subject to μ′
1 ∈ M(X1),

G(μ′
1, μ2, . . . , μm) ≤ 0.

By Fubini’s theorem,

E(μ′
1,μ2,...,μm)[r] = Eμ′

1

[
E(μ2,...,μm)[r]

]
,

where E(μ2,...,μm)[r] is a Borel-measurable function on X1 and, for j = 1, . . . , n, it
holds that

E(μ′
1,μ2,...,μm)[g

′
j] = Eμ′

1

[
E(μ2,...,μm)[g

′
j ]
]
,
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where E(μ2,...,μm)g
′
j is a Borel-measurable function on X1. In the same way, we see

that

E(μ′
1,μ2,...,μm)[g

1
j ] = Eμ′

1
[g1j ]

and, for k = 2, . . . ,m and j = 1, . . . , nk, it holds that

E(μ′
1,μ2,...,μm)[g

k
j ] = Eμk

[gkj ],

which are constant in μ′
1.

Since each Xi is Suslin, it follows that all the measures in M(Xi) are regular.
Consequently, by [95, Theorem 11.1], the extreme set of M(Xi) is the set of Dirac
masses. For fixed (μ2, . . . , μm), let G1 ⊆ M(X1) denote those measures that satisfy
the constraints G(μ′

1, μ2, . . . , μm) ≤ 0. Consequently, since for k = 2, . . . ,m and
j = 1, . . . , nk E(μ′

1,μ2,...,μm)[g
k
j ] is constant in μ′

1, it follows from [100, Theorem 2.1]
that the extreme set ex(G1) ⊆ M(X1) of the constraint set consists only of elements
of Δn1+n′(X1). In addition, von Weizsäcker and Winkler [99, Corollary 3] show that
a Choquet theorem holds: let μ′ satisfy the constraints; then

μ′(B) =

∫
ex(G1)

ν(B) dp(ν)

for all Borel sets B ⊆ X1, where p is a probability measure on the extreme set ex(G1).
According to Winkler, an extended real-valued functionK onG1 is calledmeasure

affine if it satisfies the barycentric formula

K(μ′) =
∫
ex(G1)

K(ν) dp(ν).

When K is measure affine, [100, Theorem 3.2] asserts that

sup
μ′∈G1

K(μ′) = sup
ν∈ex(G1)

K(ν),

and so we conclude that

sup
μ′∈G1

K(μ′) = sup
ν∈ex(G1)

K(ν) ≤ sup
ν∈Δn1+n′(X1)∩G1

K(ν).

However, since

sup
ν∈Δn1+n′(X1)∩G1

K(ν) ≤ sup
ν∈G1

K(ν),

it follows that

sup
μ′∈G1

K(μ′) = sup
ν∈Δn1+n′(X1)∩G1

K(ν).

To apply this result, observe that [100, Proposition 3.1] asserts that the evaluation
function

μ′
1 �→ Eμ′

1

[
E(μ2,...,μm)[r]
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is measure affine. Therefore,

(10.1) sup
μ′
1∈M(X1)

G(μ′
1,μ2,...,μm)≤0

E(μ′
1,μ2,...,μm)[r] = sup

μ′
1∈Δn1+n′(Xi)

G(μ′
1,μ2,...,μm)≤0

E(μ′
1,μ2,...,μm)[r].

Now let ε > 0 and let μ∗
1 ∈ Δn1+n′(X1) be ε-suboptimal for the right-hand side of

(10.1); that is, G(μ∗
1, μ2, . . . , μm) ≤ 0 and

E(μ∗
1 ,μ2,...,μm)[r] ≥ sup

μ′
1∈Δn1+n′(Xi)

G(μ′
1,μ2,...,μm)≤0

E(μ′
1,μ2,...,μm)[r]− ε.

Hence, by (10.1),

E(μ∗
1 ,μ2,...,μm)[r] ≥ sup

μ′
1∈M(X1)

G(μ′
1,μ2,...,μm)≤0

E(μ′
1,μ2,...,μm)[r]− ε ≥ E(μ1,μ2,...,μm)[r] − ε.

Consequently, the first component of μ can be replaced by some element of Δn1+n′(X1)
to produce a feasible point μ′ ∈ MG without decreasing E[r] by more than ε. By
repeating this argument, it follows that for every point μ ∈ MG there exists a μ′ ∈
MΔ such that

Eμ′ [r] ≥ Eμ[r]−mε.

Since ε was arbitrary, the result follows.
Proof of Corollary 4.4. Simply use the identity

U(A) = sup
(f,μ)∈A

Eμ[rf ] = sup
f∈G

sup
μ∈Mm(X )
G(f,μ)≤0

Eμ[rf ]

and then apply Theorem 4.1 to the inner supremum.
Proof of Theorem 4.7. Corollary 4.4 implies that U(A) = U(AΔ), where

AΔ :=

{
(f, μ) ∈ G ×

m⊗
i=1

Δn(Xi)

∣∣∣∣∣Eμ[gi ◦ f ] ≤ 0 for all j = 1, . . . , n

}
.

For each i = 1, . . . ,m, the indexing of the Dirac masses pushes forward the measure
μi with weights αi

k, k = 0, . . . , n, to a measure αi on N with weights αi
k, k = 0, . . . , n.

Let α :=
⊗m

i=1 α
i denote the corresponding product measure on D = Nm; that is, we

have a map

A :
m⊗
i=1

Δn(Xi) → Mm(D)

and the product map

F× A : G ×
m⊗
i=1

Δn(Xi) → FD ×Mm(D).

Since, for any function g : R → R, we have F(g ◦ f, μ) = g ◦F(f, μ), it follows that
for any (f, μ) ∈ F ×⊗m

i=1 Δn(Xi),

Eμ[g ◦ f ] = Eαμ [F(g ◦ f, μ)] = Eαμ [g ◦ F(f, μ)] .
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Consequently, with the function RD : FD ×Mm(D) → R defined by

RD(h, α) := Eα[r ◦ h]

and, for each j = 1, . . . , n, the functions GD
j : FD ×Mm(D) → R defined by

GN
j (h, α) := Eα[gi ◦ h],

we have that, for all (f, μ) ∈ F ×⊗m
i=1 Δn(Xi),

(10.2) R(f, μ) = RD(F(f, μ), αμ)

and, for all j = 1, . . . , n and all (f, μ) ∈ FD ×⊗m
i=1 Δn(Xi),

(10.3) Gj(f, μ) = GD
j (F(f, μ), αμ),

where αμ := A(μ).
That is,

R = RD ◦ (F× A) ,

Gj = GD
j ◦ (F× A) for each j = 1, . . . , n.

Consequently, any (f, μ) ∈ AΔ is mapped by F × A to a point in F ×Mm(D) that
preserves the criterion value and the constraint, and by the assumption it must lie in
GD ×Mm(D). This establishes U(AΔ) ≤ U(AD).

To obtain equality, consider (h, α) ∈ AD. By assumption, there exists an (f, μ) ∈
G ×⊗m

i=1 Δn(Xi) such that F(f, μ) = h. If we adjust the weights on μ so that
A(μ) = α, we still maintain F(f, μ) = h. By (10.2) and (10.3), this point has the same
criterion value and satisfies the integral constraints ofAΔ. The proof is finished.

Proof of Proposition 4.8. Let I := �[a,∞) be the indicator function and consider
rf := I ◦ f so that μ[f ≥ a] = Eμ[I ◦ f ]. Since I ◦ f is integrable for all μ ∈ Mm(X )
and we have one constraint Eμ[f ] ≤ 0, the result follows from Theorem 4.7, provided
that we have

F

(
G ×

m⊗
i=1

Δ1(Xi)

)
= GD.

To establish this, consider f ∈ G and observe that for all μ ∈ ⊗m
i=1 Δ1(Xi) it holds

that F(f, μ) ∈ GD. Therefore, we conclude that F (G ×⊗m
i=1 Δ1(Xi)) ⊆ GD. On

the other hand, for any h ∈ GD we can choose a measurable product partition of X
dividing each Xi into two cells. We pull back the function h to a function f ∈ F that
has the correct constant values in the partition cells and place the Dirac masses into
the correct cells. Set the weights to any nonzero values. It is easy to see that f ∈ G.
Moreover, we have a measure μ which satisfies F(f, μ) = h. Therefore, we conclude
that F (G ×⊗m

i=1 Δ1(Xi)) ⊇ GD. This completes the proof.
Proof of Theorem 4.9. First, observe that GD is a sublattice of FD in the usual

lattice structure on functions. That is, if h1, h2 ∈ GD, then it follows that both
min(h1, h2) ∈ GD and max(h1, h2) ∈ GD. Therefore, for any admissible (h, α) ∈ AD,
it follows that clipping h at a to min(h, a) produces an admissible (min(h, a), α) and
does not change the criterion value α[h ≥ a]. Consequently, we can reduce to functions
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with maximum value a. Moreover, since each function hs is in the sublattice GD, it
follows that hC ∈ GD, C ∈ C. For C ∈ C, define the sublattice

CD := {h ∈ FD | {s | h(s) = a} = C}}
of functions with value a precisely on the set C. Now, consider a function h ∈ GD
such that h ≤ a and let C be the set where h = a. It follows that hC ≤ h, hC ∈ GD,
and hC ∈ CD. Since hC ≤ h implies that Eα[h

C ] ≤ Eα[h] for all α, it follows that
replacing (h, α) by (hC , α) keeps it admissible, and α[hC ≥ a] = α[h ≥ a]. The proof
is finished.

10.2. Proofs for Section 5. The proofs given in this subsection are direct appli-
cations of Theorem 4.9. In particular, they are based on an analytical calculation of
(4.19). Because Proposition 5.7 is fundamental to all the other results of the section,
its proof will be given first.

Proof of Proposition 5.7. When nonambiguous, we will use the notation E[hC0 ]
for Eα[h

C0 ] and P[hC0 ≥ a] for α[hC0 ≥ a]. First, observe that, if
∑m

j=1Dj ≤ a, then

min(hC0) ≥ 0 and the constraint E[hC0 ] ≤ 0 imply P[hC0 = 0] = 1. This proves the
first equation of (5.9). Now, assume a <

∑m
j=1Dj and observe that

hC0(s) = a−
m∑
j=1

(1− sj)Dj .

It follows that

(10.4) Eα[h
C0 ] = a−

m∑
j=1

(1− αj)Dj .

If Dm = 0, then the optimum is achieved on the boundary of [0, 1]m (i.e., by taking
αm = 1 since C0 = {(1, . . . , 1)} and since hC0 does not depend on sm) and the
optimization reduces to an (m − 1)-dimensional problem. For that reason, we will
assume in all of the proofs of the results given in this section that all the Di’s are
strictly positive. The statements of these results remain valid even if one or more of
the Di’s are equal to zero.

The condition Dm > 0 implies that min(D1, . . . , Dm) > 0 and that

(10.5) α[hC0 ≥ a] =

m∏
j=1

αj .

If the optimum in α is achieved in the interior of the hypercube [0, 1]m, then at that
optimum the gradients of (10.4) and (10.5) are collinear. Hence, in that case, there
exists λ ∈ R such that, for all i ∈ {1, . . . ,m},

(10.6)

∏m
j=1 αj

αi
= λDi.

Since α[hC0 ≥ a] is increasing in each αj , the optimum is achieved at Eα[h
C0 ] = 0.

Substitution of (10.6) into the equation Eα[h
C0 ] = 0 yields that

λ =
m
∏m

j=1 αj∑m
j=1Dj − a
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and, hence,

(10.7) αi =

∑m
j=1Dj − a

mDi
.

For all i ∈ {1, . . . ,m}, the condition 0 < αi < 1 is equivalent to a <
∑m

j=1Dj and

(10.8)

m∑
j=1

Dj < a+mDi.

It follows that, for
∑m

j=1Dj −mDm < a <
∑m

j=1Dj , the α defined by (10.7) lies in
the interior of [0, 1]m and satisfies

α[hC0 ≥ a] =

(∑m
j=1Dj − a

)m
mm
∏m

j=1Dj
.

If a ≤ ∑m
j=1Dj − mDm, then the optimum is achieved on the boundary of [0, 1]m

(i.e., by taking αm = 1, since C0 = {(1, . . . , 1)}), and the optimization reduces to an
(m− 1)-dimensional problem.

To complete the proof, we use an induction. Observe in particular that, for
k ≤ m− 1,

(
∑k

j=1Dj − a)k

kk
∏k

j=1Dj

=
(
∑k+1

j=1 Dj − a)k+1

(k + 1)k+1
∏k+1

j=1 Dj

for a =
∑k+1

j=1 Dj − (k + 1)Dk+1 and that

(10.9)
(
∑k

j=1Dj − a)k

kk
∏k

j=1Dj

≤ (
∑k+1

j=1 Dj − a)k+1

(k + 1)k+1
∏k+1

j=1 Dj

is equivalent to a ≥ ∑k+1
j=1 Dj − (k + 1)Dk+1. Indeed, writing a =

∑k+1
j=1 Dj − (k +

1)Dk+1 + b, (10.9) is equivalent to

(
1− b

kDk+1

)k
≤
(
1− b

(k + 1)Dk+1

)k+1

.

The function f given by f(x) :=
(
1 − y

x

)x
is increasing in x (for 0 < y < x): simply

examine the derivative of log f and use the elementary inequality

log(1− z) +
z

1− z
≥ 0 for 0 < z < 1.

We will now give the outline of the induction. It is trivial to obtain that (5.9) is
true for m = 1. Assume that it is true for m = q − 1 and consider the case m = q.
Equation (10.7) isolates the only potential optimizer αq, which is not on the boundary
of [0, 1]q (not (q − 1)-dimensional).

One obtains that (5.9) holds for m = q by comparing the value of α[hC0 ≥ a]
at locations α isolated by (10.7) and (10.8) with those isolated at step q − 1. This
comparison is performed via (10.9).
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Fig. 10.1 For m = 2, the optimum associated with U(AC) can be achieved with C = {(1, 1)}. For
that specific value of C, the linearity of hC(s) = a − D1(1 − s1) − D2(1 − s2) implies
U(AHfd) = U(AMcD).

More precisely, if αq (the candidate for the optimizer in α isolated by the previous
paragraph) is not an optimum, then the optimum must lie in the boundary of [0, 1]q.
Hence, the optimum must be achieved by taking αi = 1 for some i ∈ {1, . . . , q}.
Observing that U(AC0) is increasing in each Di, and since Dq = mini∈{1,...,q}Di,
that optimum can be achieved by taking i = q, which leads to computing U(AC0)
with (D1, . . . , Dq−1), where we can use the (q − 1)-step of the induction. Using
(10.9) for k = q − 1, we obtain that αq is an optimum for a ≥ ∑q

j=1Dj − qDq and

that, for a ≤ ∑q
j=1Dj − qDq, the optimum is achieved by calculating U(AC0) with

q − 1 variables and (D1, . . . , Dq−1). This finishes the proof by using the induction
assumption (see formula (5.9)).

The following two lemmas illustrate simplifications that can be made using the
symmetries of the hypercube.

Lemma 10.1. Let C0 ∈ C. If C0 is symmetric with respect to the hyperplane
containing the center of the hypercube and normal to the direction i, then the optimum
of (5.8) can be achieved by taking αi = 1.

Proof. The proof follows by observing that if C0 is symmetric with respect to the
hyperplane containing the center of the hypercube and normal to the direction i, then
hC0(s) does not depend on the variable si.

The following lemma is trivial.
Lemma 10.2. Let (α,C) be an optimizer of (4.19). Then the images of (α,C)

by reflections with respect to hyperplanes containing the center of the hypercube and
normal to its faces are also optimizers of (4.19).

The proofs of the remaining theorems now follow in the order that the results
were stated in the main part of the paper.

Proof of Theorem 5.1. The calculation of U(AC) for m = 1 is trivial and also
follows from Proposition 5.7.

Proof of Theorem 5.2. Write C1 = {(1, 1)} (see Figure 10.1). Theorem 5.2 is a
consequence of the following inequality:

(10.10) max
C0∈C

U(AC0) ≤ U(AC1).

Assuming (10.10) to be true, (5.3) is obtained by calculating U(AC1) from Proposition
5.7 with m = 2. Let us now prove (10.10). Let C0 ∈ C; we need to prove that

(10.11) U(AC0) ≤ U(AC1).

By symmetry (using Lemma 10.2), there is no loss of generality in assuming that
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(a) C1 (b) C2

Fig. 10.2 For m = 3, the optimum associated with U(AC) can be achieved with C1 = {(1, 1, 1)}
(leading to F1) or C2 = {(1, 1, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0)} (leading to F2). The linearity
of hC1(s) = a−D1(1− s1)−D2(1− s2)−D3(1− s3) implies that U(AHfd) = U(AMcD)
when F1 ≥ F2. Similarly, the nonlinearity of hC2 leads to U(AHfd) < U(AMcD) when
F1 < F2.

(1, 1) ∈ C0. By Lemma 10.1, the optima for C0 = {(1, 1), (1, 0)} and C0 = {(1, 1), (0, 1)}
can be achieved with C1 by taking α1 = 1 or α2 = 1.

The case C0 = {(1, 1); (1, 0); (0, 1); (0, 0)} is infeasible.
For C0 = {(1, 1), (1, 0), (0, 1)}, we have P[hC0 = a] = β and E[hC0 ] = a − (1 −

β)min(D1, D2) with β = 1 − (1 − α1)(1 − α2) (recall that h
C0 is defined by (4.17)).

Hence, at the optimum (in α),

(10.12) P[hC0 = a] =

{
1− a/min(D1, D2) if a < min(D1, D2),

0 if a ≥ min(D1, D2).

Equation (10.11) then holds by observing that one always has both

1− a

min(D1, D2)
≤ 1− a

max(D1, D2)

and

1− a

min(D1, D2)
≤ (D1 +D2 − a)2

4D1D2
.

The last inequality is equivalent to (D1 − D2 + a)2 ≥ 0, which is always true. The
case C0 = {(1, 1), (0, 0)} is bounded by the previous one since P[hC0 = a] = β and
E[hC0 ] = aβ − (1 − β)min(D1, D2) with β = α1α2 + (1 − α1)(1 − α2). This finishes
the proof.

Proof of Theorem 5.4. Recall that

U(AMcD) = max
C0∈C

U(AC0).

It follows from Proposition 5.7 that F1 corresponds to U(AC1) with C1 = {(1, 1, 1)}.
Write C2 = {(1, 1, 1), (0, 1, 1), (1, 0, 1), (1, 1, 0)} (see Figure 10.2). Let us now calculate
U(AC2) (F2 corresponds to U(AC2), which is the optimum, and is achieved in the
interior of [0, 1]3). We have P[hC2 = a] = α2α3 + α1α3 + α1α2 − 2α1α2α3 and

E[hC2 ] = a−D2(1− α1)(1− α2)−D3 ((1− α2)(1 − α3) + (1− α1)α2(1− α3)) .
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An internal optimal point α must satisfy, for some λ ∈ R,

α2 + α3 − 2α2α3 = λ (D2(1− α2) +D3α2(1 − α3)) ,(10.13a)

α1 + α3 − 2α1α3 = λ (D2(1− α1) +D3α1(1 − α3)) ,(10.13b)

α1 + α2 − 2α1α2 = λ (D3(1− α1α2)) .(10.13c)

If we multiply the first equation by α1 and subtract the second equation multiplied
by α2, then we obtain that

(α1 − α2)α3 = λD2(α1 − α2),

which implies that either α1 = α2 or α3 = λD2.
Suppose that α1 
= α2, so that α3 = λD2. Subtraction of the second equation in

(10.13) from the first yields

(α2 − α1)(1− 2α3) = λ (−D2(α2 − α1) +D3(α2 − α1)(1 − α3)) ,

which implies that either α1 = α2 or

1− 2α3 = λ (−D2 +D3(1− α3)) .

Since α3 = λD2, this becomes

1− α3 =
α3D3

D2
(1− α3),

which implies, since α3 
= 1, that α3 = D2

D3
. Therefore, λ = 1

D3
. Therefore, the third

equation in (10.13) becomes

α1 + α2 − 2α1α2 = λ (D3(1− α1α2)) = 1− α1α2,

which amounts to

α1 + α2 − α1α2 = 1,

which in turn amounts to α1(1 − α2) = 1 − α2. Since α2 
= 1, we conclude that
α1 = 1, contradicting the supposition that α is an interior point. Therefore, α1 = α2

and (10.13), with α := α1 = α2, become

α+ α3 − 2αα3 =λ (D2(1− α) +D3α(1− α3)) ,(10.14a)

2α− 2α2 = λ
(
D3(1− α2)

)
.(10.14b)

Hence,

(10.15) P[hC2 = a] = 2αα3 + α2 − 2α2α3

and

E[hC2 ] = a−D2(1− α)2 −D3

(
(1 − α2)(1 − α3)

)
.

The hypothesis that the optimum is not achieved on the boundary requires that

D3, 0 < α < 1, D2 +D3 > a, and E[hC2 ] = 0.
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The condition E[hC2 ] = 0 is required because (10.15) is strictly increasing along the
direction α = α3.

Suppose that those conditions are satisfied. The condition E[hC2 ] = 0 implies
that

1− α3 =
a

D3(1− α2)
− D2(1 − α)

D3(1 + α)
,

which in turns implies that

(10.16) α3 = 1− a

D3(1− α2)
+
D2(1 − α)

D3(1 + α)
.

Substitution of (10.16) into (10.15) yields that P[hC2 = a] = Ψ(α), with

Ψ(α) = α2 + 2(α− α2)

(
1− a

D3

1

(1− α2)
+
D2

D3

1− α

1 + α

)
.

Hence,

Ψ(α) = 2α− α2 − 2
a

D3

α

1 + α
+ 2

D2

D3
α
(1 − α)2

1 + α
.

Ψ(α) can be simplified using polynomial division. In particular, using

α
(1 − α)2

1 + α
= (1− α)2 − (1− α)2

1 + α
,

α
(1 − α)2

1 + α
= α2 + 1− 2α− (1 + α) + 4− 4

1 + α
,

where the last step is obtained from

(1− α)2 = (α+ 1− 2)2 = (α+ 1)2 − 4(1 + α) + 4,

we obtain that

Ψ(α) = 2α− α2 − 2
a

D3

α

1 + α
+ 2

D2

D3

(
4 + α2 − 3α− 4

1 + α

)
.

Therefore,

Ψ(α) = α2

(
2
D2

D3
− 1

)
− 2a

D3

α

1 + α
+ 2α

(
1− 3

D2

D3

)
+ 8

D2

D3

α

1 + α

and

(10.17) Ψ(α) = α2

(
2
D2

D3
− 1

)
− 2α

(
3
D2

D3
− 1

)
+

α

1 + α

(
8
D2

D3
− 2

a

D3

)
.

Equation (10.17) implies that

D3Ψ
′(α) = 2α(2D2 −D3) + 2(D3 − 3D2)− 1

(1 + α)2
(2a− 8D2).
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The equation Ψ′(α) = 0 is equivalent to (5.6). An interior optimum requires the
existence of an α ∈ (0, 1) such that Ψ′(α) = 0 and α3 ∈ (0, 1), which leads to the
definition of F2. This establishes the theorem for the F2 case.

Next, using symmetries of the hypercube and through direct computation (as in
the m = 2 case), we obtain that

(10.18) C0 
= C2 =⇒ U(AC0) ≤ U(AC1).

For the sake of concision, we will give the detailed proof of (10.18) only for

C3 = {(1, 1, 1), (0, 1, 1), (1, 0, 1)}.

This proof will give an illustration of generic reduction properties used in other cases.
To address all the symmetric transformations of C3, we will give the proof without
assuming that D1, D2, and D3 are ordered. Let us now consider the C3 scenario. If
the optimum in α is achieved on the boundary of [0, 1]3, then equation (10.10) implies
U(AC3) ≤ U(AC1). Let us assume that the optimum is not achieved on the boundary
of [0, 1]3. Observe that

(10.19) hC3(s1, s2, 0) = hC3(s1, s2, 1)−D3.

Combining (10.19) with

E[hC3 ] = α3E[h
C3(s1, s2, 1)] + (1− α3)E[h

C3(s1, s2, 0)]

implies that

E[hC3 ] = E[hC3(s1, s2, 1)]− (1− α3)D3.

Furthermore,

(10.20) P[hC3 = a] = α3P[h
C3(s1, s2, 1) = a].

Maximizing (10.20) with respect to α3 under the constraint E[hC3 ] ≤ 0 leads to
E[hC3 ] = 0 (because P[hC3 = a] and E[hC3 ] are linear in α3) and

(10.21) α3 = 1− E[hC3(s1, s2, 1)]

D3
.

Observe that the condition α3 < 1 requires E[hC3(s1, s2, 1)] > 0. If E[hC3(s1, s2, 1)] ≤
0, then α3 = 1 and the optimum is achieved on the boundary of [0, 1]3.

The maximization of P[hC3(s1, s2, 1) = a] under the constraint E[hC3(s1, s2, 1)] ≤
E (where E is a slack optimization variable) leads to (using the m = 2 result)

P[hC3(s1, s2, 1) = a] = 1− (a− E)

min(D1, D2)

if a − E ≤ min(D1, D2), and P[hC3(s1, s2, 1) = a] = 0 otherwise. It follows from
(10.21) and (10.20) that if the optimum is achieved at an interior point, then the
optimal value of P[hC3 = a] is achieved by taking the maximum of

P[hC3 = a] =

(
1− E

D3

)(
1− a− E

min(D1, D2)
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with respect to E with the constraints 0 ≤ E ≤ D3 and a−min(D1, D2) ≤ E. If the
optimum is not achieved on the boundary of [0, 1]3, then one must have

E =
D3 +min(D1, D2)− a

2
,

which leads to

(10.22) P[hC3 = a] =

(
D3 +min(D1, D2)− a

)2
4D3 min(D1, D2)

.

Comparison of (10.22) and (5.3) implies that U(AC3) ≤ U(AC1), by Proposition
5.7.

Proof of Proposition 5.9. The idea of the proof is to show that hC can be chosen
so that C contains only one vertex of the hypercube, in which case we have the explicit
formula obtained in Proposition 5.7.

First, observe that if a >
∑m−1

j=1 Dj, then it is not possible to satisfy the constraint

Eα[h
C ] ≤ 0 whenever C contains two or more vertices of the hypercube. Next, if C

contains two vertices s1, s2 of the hypercube, and the Hamming distance between those
points is 1, then C is symmetric with respect to a hyperplane containing the center of
the hypercube and normal to one of its faces, and the problem reduces to dimension
m − 1. It follows from Lemma 10.1 that the optimum of (5.8) can be achieved by a
C that has only one element. If C contains two vertices of the hypercube, and the
Hamming distance between those points is at least 2, then the constraint Eα[h

C ] ≤ 0

is infeasible if a >
∑m−2

j=1 Dj + Dm (because hC > 0 in that case). Therefore, we
conclude using Proposition 5.7.

Proof of Theorem 5.11. First, we observe that we always have

(10.23) U(AHfd) ≤ U(AMcD).

We observe from (10.10) that the maximizer (hC) of U(AMcD) is linear (see Figure
10.1), and hence is also an admissible function under U(AHfd). This finishes the
proof.

Proof of Theorem 5.13. Just as for m = 2, (10.23) is always satisfied. Next,
observing that F1 in Theorem 5.4 is associated with a linear maximizer hC (see
Figure 10.2), we deduce that

F1 ≤ U(AHfd) ≤ max(F1,F2).

This finishes the proof for equation (5.12). Let us now prove equation (5.13). Assum-
ing that U(AHfd) = U(AMcD), it follows that U(AMcD) can be achieved by a linear
function h0. Since at the optimum we must have E[h0] = 0, and since min(h0, a) is
also a maximizer of U(AMcD), it follows that min(h0, a) = h0. Using the linearity
of h0 and the lattice structure of the set of functions in U(AMcD), we deduce that
h0 = hC , where C contains only one vertex of the cube. It follows that F1 ≥ F2. This
finishes the proof.
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