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Abstract. This paper addresses the issue of the homogenization of linear divergence form
parabolic operators in situations where no ergodicity and no scale separation in time or space are
available. Namely, we consider divergence form linear parabolic operators in Ω ⊂ R

n with L∞(Ω ×
(0, T ))-coefficients. It appears that the inverse operator maps the unit ball of L2(Ω × (0, T )) into a
space of functions which at small (time and space) scales are close in H1 norm to a functional space
of dimension n. It follows that once one has solved these equations at least n times it is possible
to homogenize them both in space and in time, reducing the number of operation counts necessary
to obtain further solutions. In practice we show under a Cordes-type condition that the first order
time derivatives and second order space derivatives of the solution of these operators with respect
to caloric coordinates are in L2 (instead of H−1 with Euclidean coordinates). If the medium is
time-independent, then it is sufficient to solve n times the associated elliptic equation in order to
homogenize the parabolic equation.
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1. Introduction and main results. Let Ω be a bounded and convex domain
of class C2 of Rn. Let T > 0. Consider the following parabolic PDE:

(1.1)

{
∂tu = div

(
a(x, t)∇u(x, t)

)
+ g in Ω × (0, T ),

u(x, t) = 0 for (x, t) ∈
(
∂Ω × (0, T )

)
∪
(
Ω × {t = 0}

)
.

Write ΩT := Ω× (0, T ). g is a function in L2(ΩT ). (x, t) → a(x, t) is a mapping from
ΩT into the space of symmetric positive definite matrices with entries in L∞(ΩT ).
Assume a to be uniformly elliptic on the closure of ΩT . This paper addresses the issue
of the homogenization of (1.1) in space and time in situations where scale separation
and ergodicity at small scales are not available (see [16], [43], [4] for an introduction
to classical homogenization theory).

We will introduce in subsection 1.1 theorems establishing under Cordes-type con-
ditions the increase of regularity of solutions of (1.1) when derivatives are taken with
respect to caloric coordinates instead of Euclidean coordinates. In subsections 1.2
and 1.3 these results will be used to homogenize (1.1) in space and in time. More
precisely, assume a to be written on a fine tessellation with N degrees of freedom.
If a is time-independent, then by solving n times an elliptic boundary value problem
associated to (1.1) (at a cost of O(N(lnN)n+3) operations, using the hierarchical
matrix method [11] or in O(N) operations using iterative methods (see [76], [77]) it
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2 HOUMAN OWHADI AND LEI ZHANG

is possible to approximate the solutions of (1.1) by solving an homogenized operator
with Nα degrees of freedom (α < 1, α = 0.2, for instance) or with a fixed num-
ber M of degrees of freedom (numerical experiments given at the end of this paper
have been conducted with N = 16641 and M = 9). Therefore, in the case of time-
independent a, it is possible to reduce the number of operations even if we solve the
problem (1.1) only once by using large time steps. If a is also characterized by a con-
tinuum of time scales, then the method presented here does not reduce the number
of operation counts necessary to solve (1.1) only one time. However, if one needs to
solve (1.1) K (K > n) times (with different right-hand sides), then by solving (1.1)
n times it is possible to obtain an approximation of the solutions of (1.1) by solving
an homogenized (in space and time) parabolic equation written on a coarse tessella-
tion with coarse time steps. From a broader point of view, this paper suggests that,
when one is trying to solve the linear problem Ax = y with many different y (where
A is a matrix associated to a divergence form operator), one should never compute
A−1.

In [60] the authors have addressed the issue of the homogenization of divergence
form elliptic equations with a continuum of space scales; however, this paper is not a
technical extension of the previous one. Indeed the presence of temporal scales adds
strong difficulties through the fact that for parabolic equations finite element methods
are no longer optimal. The main difference when the coefficients are rough in both
space and time lies in the fact that we have to introduce time-dependent elements
and use dual methods for controlling the numerical homogenization errors instead of
simply relying on the increased regularity. Furthermore the numerical scheme has to
be implicit in time.

Numerical results given in section 3 show that the method can be implemented and
work in practice. The idea to use a change of coordinates for a finite element method
for divergence form elliptic equations with rough coefficients can be traced back to the
work of Babuška et al. [9, 8] (in dimension two with coefficients depending only on one
parameter). The idea to use a global change of coordinates to homogenize transport
equations is currently being implemented in the industry and has been shown to
give accurate results when local methods fail. For instance, we refer to [75], [74] for
reservoir modeling in geophysics; in this situation the porosity of the medium is time-
independent, and one has to solve an elliptic equation only at t = 0 to upscale the
transport equations. Observe also that using an implicit method to solve divergence
form parabolic equations with time-independent rough coefficients implies solving an
elliptic problem at each time step. The method presented in this paper implies that
these elliptic problems can be solved with an “homogenized” operator leading to a
sharp improvement of the computational cost.

Although we use the term “homogenization” in this paper for lack of a better
word, the method presented in this paper is more general than homogenization. Ho-
mogenization is typically associated with the limit points of a sequence of operators.
Here we are speaking of a fixed operator.

1.1. Compensation phenomenon. Let F be the solution of the following
parabolic equation:

(1.2)

⎧⎪⎪⎨
⎪⎪⎩
∂tF = div

(
a(x, t)∇F (x, t)

)
in ΩT ,

F (x, t) = x for (x, t) ∈
(
∂Ω × (0, T )

)
,

div
(
a(x, 0)∇F (x, 0)

)
= 0 in Ω.
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HOMOGENIZATION OF PARABOLIC EQUATIONS 3

By (1.2) we mean that F := (F1, . . . , Fn) is a n-dimensional vector field such that
each of its entries satisfies

(1.3)

⎧⎪⎨
⎪⎩
∂tFi = div

(
a(x, t)∇Fi(x, t)

)
in ΩT ,

Fi(x, t) = xi for (x, t) ∈
(
∂Ω × (0, T )

)
,

div
(
a(x, 0)∇Fi(x, 0)

)
= 0 in Ω.

In the literature F is also called a caloric coordinate associated to (1.1). Observe that
if a is time-independent, then F is the solution of an elliptic boundary value problem.

Definition 1.1. Write

(1.4) σ := t∇Fa∇F.

Write βσ as the Cordes parameter associated to σ defined by

(1.5) βσ := esssup(x,t)∈ΩT

(
n−

(
Trace[σ]

)2
Trace[tσσ]

)
.

Observe that since

(1.6) βσ = esssup(x,t)∈ΩT

(
n−

(∑n
i=1 λi,σ(x,t)

)2∑n
i=1 λ

2
i,σ(x,t)

)
,

where (λi,M ) denotes the eigenvalues of M , βσ is a measure of the anisotropy of σ.
The greater βσ is, the more anisotropic σ is, and βσ = 0 corresponds to an isotropic σ.

1.1.1. Time-independent medium. In this subsection we assume that a does
not depend on time t. Write for p ≥ 2, W 2,p

D (D for Dirichlet boundary condition)

the Banach space W 2,p(Ω) ∩W 1,p
0 (Ω). Equip W 2,p

D (Ω) with the norm

(1.7) ‖v‖p
W 2,p

D (Ω)
:=

∫
Ω

(∑
i,j

(∂i∂jv)
2

) p
2

.

Equip the space Lp(0, T,W 2,p
D (Ω)) with the norm

(1.8) ‖v‖p
Lp(0,T,W 2,p

D (Ω))
=

∫ T

0

∫
Ω

(∑
i,j

(∂i∂jv)
2

) p
2

dx dt.

Theorem 1.1. Assume that ∂ta ≡ 0, g ∈ L2(ΩT ), Ω is convex, βσ < 1, and
(Trace[σ])

n
4 −1 ∈ L∞(Ω); then u ◦ F−1 ∈ L2(0, T,W 2,2

D (Ω)) and

(1.9) ‖u ◦ F−1‖L2(0,T,W 2,2
D (Ω)) ≤

C

1 − β
1
2
σ

‖g‖L2(ΩT ).

Remark 1.1. The constant C can be written

C =
Cn

(λmin(a))
n
4

∥∥(Trace[σ])
n
4 −1

∥∥
L∞(Ω)

.

Throughout this paper, we write

(1.10) λmin(a) := inf
(x,t)∈ΩT

inf
l∈Rn,|l|=1

tl.a(x, t).l.
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4 HOUMAN OWHADI AND LEI ZHANG

All of the results are stated in a finite time interval [0, T]. T is just any given finite
time, and it is easy to observe that if ‖g‖L2(Ω∞) < ∞, then one can take T = ∞.

Remark 1.2. According to Theorem 1.1 although the second order derivatives
of u with respect to Euclidean coordinates are only in L2(0, T,H−1(Ω)), they are
in L2(ΩT ) with respect to harmonic coordinates. The proof of that theorem (given
in subsection 2.1.1) lies on the fact u ◦ F−1 satisfies nondivergence form parabolic
equations, and the solutions of these equations are known to have a higher regularity
under a Cordes-type condition on the coefficients and under a convexity assumption
on the domain. One can obtain a similar result without the convexity assumption on
the domain (Theorem 2.6), but the Cordes-type condition on the coefficients would
have to be stronger.

Remark 1.3. Observe that if a is time-independent, then F and σ are time-
independent, and F is the solution of the following elliptic problem:

(1.11)

{
div a∇F = 0 in Ω,

F (x) = x on ∂Ω.

In dimension one F is trivially a homeomorphism. In dimension two this property
follows from the convexity of the domain [3] (even with ai,j ∈ L∞(Ω)), [6] (one can
also deduce from [6] that for n = 2, if a is smooth, then the conditions βσ < 1
and (Trace[σ])−1 ∈ L∞(Ω) are satisfied). In dimension three and higher F can be
nonbijective even if a is smooth; we refer to [6], [22]. However in dimension three the
assumption (Trace[σ])

n
4 −1 ∈ L∞(ΩT ) implies that F is a homeomorphism. If n ≥ 4,

we need to assume that F is a homeomorphism to prove the theorem.
Remark 1.4. In fact the condition (Trace(σ))−1 ∈ Lp(ΩT ), for p < ∞ depending

on n, is sufficient to obtain Theorem 1.1 and the following compensation theorems.
For the sake of clarity this paper has been restricted to (Trace(σ))−1 ∈ L∞(ΩT ).

Remark 1.5. Write

(1.12) μσ := esssupΩT

λmax(σ)

λmin(σ)
.

It is easy to check that μσ is bounded by an increasing function of (1− βσ)−1, and in
dimension two βσ < 1 is equivalent to μσ < ∞.

Remark 1.6. Theorem 1.1 has been called the compensation phenomenon because
the composition by F−1 increases the regularity of u ∈ L2(0, T,H1

0 (Ω)). The choice
of this name has been motivated by Murat and Tartar’s work on H-convergence [54]
which is also based on a regularization property called compensated compactness or
the div-curl lemma introduced in the 1970s by Murat and Tartar [53], [70] (we also
refer to [26] for refinements of the div-curl lemma).

The compensation phenomena presented in this subsection can be observed nu-
merically. We consider the time-independent site percolation, and the value of a is
set to be equal to 1 or 100 with probability 1/2 on each triangle of a fine mesh char-
acterized by 16641 nodes and 32768 triangles. (1.1) has been solved numerically on
that mesh with g = 1. u, u ◦ F−1, ∂xu, and ∂x(u ◦ F−1) are plotted at time t = 1 in
Figure 1.1.

It is easy to check that if a = e(x)S(t), where e, is a time-independent symmetric
uniformly elliptic matrix with L∞(Ω) entries and S is a smooth uniformly positive
function, then the results given in this subsection and the homogenization schemes of
subsection 1.2 remain valid with the time-independent harmonic coordinates associ-
ated to e, i.e., solution of −div e∇F = 0.
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HOMOGENIZATION OF PARABOLIC EQUATIONS 5

(a) u. (b) u ◦ F−1.

(c) ∂xu. (d) ∂x(u ◦ F−1).

Fig. 1.1. u, u ◦ F−1, ∂xu, and ∂x(u ◦ F−1) at time t = 1 for the time-independent site
percolating medium.

1.1.2. Medium with a continuum of time scales. In this subsection the
entries of a are merely in L∞(ΩT ). We need to introduce the following Cordes-type
condition.

Condition 1.1. We say that Condition 1.1 is satisfied if and only if there exists
δ ∈ (0,∞) and ε > 0 such that

(1.13) esssupΩT

δ2 Trace[tσσ] + 1(
δTrace[σ] + 1

)2 ≤ 1

n + ε
.

Remark 1.7. This remark is due to Gyrya and Berlyand. Equation (1.13) can be
written in terms of the Cordes parameter by

(1.14) esssupΩT

{
n−

(
Trace(σ) + δ−1

)2
Trace(σtσ) + δ−2

}
≤ −ε.

An alternative way of interpreting the Cordes-type condition is by rewriting (1.14)
as follows:

(1.15) βσ̂(δ) = esssupΩT

{
(n + 1) −

(
Trace(σ) + δ−1

)2
Trace(σtσ) + δ−2

}
≤ 1 − ε,
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6 HOUMAN OWHADI AND LEI ZHANG

where

σ̂(δ) =

⎡
⎢⎢⎢⎣

δ−1 0 . . . 0
0
...
0

σ

⎤
⎥⎥⎥⎦ .

Write

(1.16) zσ := esssupΩT
n

Trace[tσσ]

(Trace[σ])2
.

Observe that zσ is a measure of anisotropy of σ, in particular, 1 ≤ zσ ≤ n and zσ = 1
if σ is isotropic. Write

(1.17) yσ := ‖Trace[σ]‖L∞(ΩT )

∥∥(Trace[σ])−1
∥∥
L∞(ΩT )

.

Proposition 1.1. If ‖Trace[σ]‖L∞(ΩT ) < ∞ and
∥∥(Trace[σ])−1

∥∥
L∞(ΩT )

< ∞,

then Condition 1.1 is satisfied with

(1.18) δ := n
∥∥(Trace[σ])−1

∥∥
L∞(ΩT )

and with ε := 2nyσ−n
2ny2

σ
provided that zσ ≤ 1 + ε

n .

Remark 1.8. Observe that in dimension one zσ = 1, and thus for n = 1 Condition
1.1 is satisfied if Trace[σ] ∈ L∞(ΩT ) and (Trace[σ])−1 ∈ L∞(ΩT ).

We have the following compensation theorem for a time-dependent medium.
Theorem 1.2. Assume that Ω is convex, and Condition 1.1 is satisfied, then

u ◦ F−1 ∈ L2(0, T,W 2,2
D (Ω)), ∂t(u ◦ F−1) ∈ L2(ΩT ), and

(1.19) ‖u ◦ F−1‖L2(0,T,W 2,2
D (Ω)) + ‖∂t(u ◦ F−1)‖L2(ΩT ) ≤ C‖g‖L2(ΩT ),

where C depends on Ω, n, δ, and ε.
Remark 1.9. According to Theorem 1.2 although the second order space deriva-

tives and first order time derivatives of u with respect to Euclidean coordinates are
only in L2(0, T,H−1(Ω)), they are in L2(ΩT ) with respect to caloric coordinates. As
in the time-independent, the proof (given in subsection 2.1.2) lies on the fact that
u ◦ F−1 satisfies a nondivergence form parabolic equation.

The compensation phenomena can be observed numerically. We consider in di-
mension n = 2

a(x, y, t) =
1

6

(
5∑

i=1

1.1 + sin(2πx′/εi)

1.1 + sin(2πy′/εi)
+ sin(4x′2y′2) + 1

)
,(1.20)

with x′ = x+
√

2t, y′ = y−
√

2t, ε1 = 1
5 , ε2 = 1

13 , ε3 = 1
17 , ε4 = 1

31 , and ε5 = 1
65 . This

medium has been plotted in Figure 1.2 at time 0 (observe that λmax(a)/λmin(a) ∼
100).

Equation (1.1) has been solved numerically on that mesh with g ≡ 1 on the fine
mesh with 16641 nodes and 32768 triangles. Figure 1.3 shows ∂xu and ∂x(u ◦ F−1)
at time 0.3. In Figures 1.4 and 1.5, the value of x0 is set to x0 := (0.75,−0.25), and
the curves t → u(x0, t), u◦F−1(x0, t),∇u(x0, t), and ∇u◦F−1(x0, t) are plotted from
t = 0 to t = 0.3.
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HOMOGENIZATION OF PARABOLIC EQUATIONS 7

Fig. 1.2. a at time 0.
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(a) ∂xu.
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−0.5

0
0.5

1
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−0.5

0
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1
−0.4

−0.2

0

0.2

0.4

(b) ∂x(u ◦ F−1).

Fig. 1.3. ∂xu and ∂x(u ◦F−1) at time t = 0.3 for the multiscale trigonometric time-dependent
medium.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
the point is (0.75,−0.25)

 

 
u

u°F−1

(a) u and u ◦ F−1.

Fig. 1.4. t → u(x0, t), u ◦ F−1(x0, t) from t = 0 to t = 0.3, with x0 := (0.75,−0.25).
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8 HOUMAN OWHADI AND LEI ZHANG

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
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−0.2

−0.15

−0.1

−0.05

0

0.05

0.1
the point is (0.75,−0.25)

 

 
u

x

(u°F−1)
x

(a) ∂xu and ∂x(u ◦ F−1).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
the point is (0.75,−0.25)

 

 
u

y

(u°F−1)
y

(b) ∂yu and ∂y(u ◦ F−1).

Fig. 1.5. t → ∇u(x0, t),∇u ◦ F−1(x0, t) from t = 0 to t = 0.3, with x0 := (0.75,−0.25).

1.2. Numerical homogenization in space. Let Xh be a finite-dimensional
subspace of H1

0 (Ω) ∩W 1,∞(Ω) (W 1,∞ is the usual space of uniformly Lipschitz con-
tinuous functions) with the following approximation property: There exists a constant
CX such that for all f ∈ W 2,2

D (Ω)

(1.21) inf
v∈Xh

‖f − v‖H1
0 (Ω) ≤ CXh‖f‖W 2,2

D (Ω).

It is known and easy to check that the set of piecewise linear functions on a
triangulation of Ω satisfies condition (1.21) provided that the length of the edges of
the triangles are bounded by h (CX in (1.21) being given by the aspect ratio of the
triangles).

For media characterized by a continuum of time scales we will consider twice
differentiable elements satisfying the following usual inverse inequalities (see section
1.7 of [30]): For v ∈ Xh,

(1.22) ‖v‖W 2,2
D (Ω) ≤ CXh−1‖v‖H1

0 (Ω).

and

(1.23) ‖v‖H1
0 (Ω) ≤ CXh−1‖v‖L2(Ω).

In this paper we will use splines to ensure that condition (1.22) is satisfied (observe
that it requires the quasi uniformity of the (coarse) mesh, i.e., a bound on the aspect
ratio of the (coarse) triangles).

For t ∈ (0, T ) let us define

(1.24) Vh(t) :=
{
ϕ ◦ F (x, t) : ϕ ∈ Xh

}
.

Write L2(0, T ;H1
0 (Ω)), the usual Sobolev space associated to the norm

(1.25) ‖v‖2
L2(0,T ;H1

0 (Ω)) :=

∫ T

0

∥∥v(., t)∥∥2

H1
0 (Ω)

dt.
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HOMOGENIZATION OF PARABOLIC EQUATIONS 9

Define Y h
T , the subspace of L2(0, T ;H1

0 (Ω)), as

(1.26) Y h
T := {v ∈ L2

(
0, T ;H1

0 (Ω)
)

: v(x, t) ∈ Vh(t) ∀t ∈ [0, T ]}.

Write uh, the solution in Y h
T of the following system of ordinary differential

equations:

(1.27)

{
(ψ, ∂tuh)L2(Ω) + a[ψ, uh] = (ψ, g)L2(Ω) for all t ∈ (0, T ) and ψ ∈ Vh(t),

uh(x, 0) = 0.

Write

(1.28) a[v, w] :=

∫
Ω

t∇v(x, t)a(x, t)∇w(x, t) dx.

1.2.1. Time-independent domain. We have the following theorem.
Theorem 1.3. Assume that ∂ta ≡ 0, Ω is convex, βσ < 1, and (Trace[σ])−1 ∈

L∞(ΩT ); then

(1.29)
∥∥(u− uh)(., T )

∥∥
L2(Ω)

+
∥∥u− uh

∥∥
L2(0,T ;H1

0 (Ω))
≤ Ch‖g‖L2(ΩT ).

Remark 1.10. The constant C depends on CX , n, Ω,λmin(a), and ‖(Trace[σ])−1‖L∞(ΩT).
If n ≥ 5, it also depends on ‖Trace[σ]‖L∞(ΩT ), and if n = 1, it also depends on
λmax(a).

1.2.2. Medium with a continuum of time scales.
Theorem 1.4. Assume that Ω is convex, and Condition 1.1 is satisfied; then∥∥(u− uh)(T )

∥∥
L2(Ω)

+
∥∥u− uh

∥∥
L2(0,T,H1

0 (Ω))
≤ Ch‖g‖L2(ΩT ).(1.30)

Remark 1.11. The constant C depends on CX , n, Ω, δ, ε, λmin(a), and λmax(a).
The system of ordinary differential equations (1.27) is still characterized by a

continuum of time scales in situations where the entries of a merely belong to L∞(ΩT ).
They need to be discretized (homogenized) in time in order to be solved numerically.
This will be the object of the next subsection. Loosely speaking, although (1.1) is
associated to a fine tessellation and fine time steps, it is possible to approximate its
operator on a coarse tessellation with coarse time steps.

1.3. Numerical homogenization in space and time. Let M ∈ N, and {tn =
n T

M }0≤n≤M is a discretization of [0, T ]. Assume (ϕi) is a basis of Xh. Write Zh
T , the

subspace of Y h
T , such that

Zh
T =

{
w ∈ Y h

T : w(x, t) =
∑
i

ci(t)ϕi

(
F (x, t)

)
, ci(t) are constants on

(tn, tn+1]

}
.

(1.31)

Write Uh
T , the subspace of Y h

T , such that

(1.32) Uh
T =

{
ψ ∈ Y h

T : ψ(x, t) =
∑
i

diϕi

(
F (x, t)

)
, di are constants on [0, T ]

}
.

For w ∈ Y h
T , define wn ∈ Uh

T by

(1.33) wn(x, t) :=
∑
i

ci(tn)ϕi(F (x, t)).

D
ow

nl
oa

de
d 

07
/1

9/
17

 to
 1

31
.2

15
.2

48
.1

12
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

10 HOUMAN OWHADI AND LEI ZHANG

Write v, the solution in Zh
T of the following system of implicit weak formulation (such

that v(x, 0) ≡ 0): For n ∈ {0, . . . ,M − 1} and ψ ∈ V ,(
ψ(tn+1), vn+1(tn+1)

)
L2(Ω)

=
(
ψ(tn), vn(tn)

)
L2(Ω)

+

∫ tn+1

tn

((
∂tψ(t), vn+1(t)

)
L2(Ω)

− a
[
ψ(t), vn+1(t)] +

(
ψ(t), g(t)

)
L2(Ω)

)
dt.

(1.34)

The following theorem shows the stability of the implicit scheme (1.34).
Theorem 1.5. Let v ∈ ZT be the solution of (1.34). We have∥∥v(T )

∥∥
L2(Ω)

+ ‖v‖L2(0,T,H1
0 (Ω)) ≤ C‖g‖L2(ΩT ).(1.35)

Remark 1.12. The constant C depends on n, Ω, and λmin(a).
The following theorem gives an error bound on the accuracy of time discretization

scheme (1.34) when a does not depend on time.
Theorem 1.6. Let v ∈ ZT be the solution of (1.34) and uh be the solution of

(1.27). Assume that ∂ta ≡ 0. We have∥∥(uh − v)(T )
∥∥
L2(Ω)

+‖uh − v‖L2(0,T,H1
0 (Ω)) ≤ C|Δt|(

‖∂tg‖L2(0,T,H−1(Ω)) +
∥∥g(., 0)

∥∥
L2(Ω)

)
.

(1.36)

Remark 1.13. The constant C depends on n, Ω, and λmin(a).
Remark 1.14. Observe that the combination of Theorem 1.6 with Theorem 1.3

leads to the following inequality:∥∥(u− uh)(., T )
∥∥
L2(Ω)

+
∥∥u− uh

∥∥
L2(0,T ;H1

0 (Ω))
≤ C(h + Δt)(

‖g‖L2(ΩT ) + ‖∂tg‖L2(0,T,H−1(Ω)) +
∥∥g(., 0)

∥∥
L2(Ω)

)
.

(1.37)

Hence the accuracy of the method is controlled by max(h,Δt).
The following theorem gives an error bound on the accuracy of the time discretiza-

tion scheme (1.34) when a has no bounded time derivatives.
Theorem 1.7. Assume that Ω is convex, and Condition 1.1 is satisfied. Let

v ∈ ZT be the solution of (1.34) and uh be the solution of (1.27), and we have

∥∥(uh − v)(T )
∥∥
L2(Ω)

+ ‖uh − v‖L2(0,T,H1
0 (Ω)) ≤ C

|Δt|
h

‖g‖L2(ΩT ),(1.38)

where C depends on Ω, n, δ, ε, λmin(a), and λmax(a).
Remark 1.15. Observe that the accuracy of the time discretization scheme (1.34)

requires that |Δt| << h when a has no bounded time derivatives. Indeed the combi-
nation of Theorem 1.7 with (1.30) leads to the following inequality:

∥∥(u− uh)(., T )
∥∥
L2(Ω)

+
∥∥u− uh

∥∥
L2(0,T ;H1

0 (Ω))
≤ C

(
h +

Δt

h

)
‖g‖L2(ΩT ).

(1.39)

Hence the accuracy of the method is controlled by h if one chooses Δt ∼ h2. The
fact that one must chose Δt ∼ h2 for optimal accuracy is a standard phenomenon for
parabolic equations, and we refer to [48] for a reminder.

We refer to section 3 for numerical experiments.
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HOMOGENIZATION OF PARABOLIC EQUATIONS 11

1.4. Remarks on caloric coordinates F . In numerical simulations a is given
as mapping from a fine mesh triangulation Ω into the set of positive definite symmetric
matrices. In other words (in the time-independent case, for instance), a is a constant
matrix in each triangle of a given fine mesh. In the time-dependent case on each fine
mesh triangle a is a step function from [0, T ] into the set of positive definite symmetric
matrices.

The caloric coordinates F have been computed on the same fine triangulation of
Ω associated to a through a standard finite element method.

The homogenization results given above assume an underlying continuous medium
and that F is a function on that continuous medium. As has been mentioned in [60]
the proofs given in this paper can be extended to the case where the underlying
medium is discrete. Indeed the core of those proofs is based on Theorems 2.1 and 2.2,
which are straightforward adaptations of Theorem 1.2.1 of [52], and those theorems
can be extended to the discrete case.

A similar issue lies in the fact that a may be a mapping from the continuous
medium Ω. In that case the equation solved in practice is not (1.1) but a discretization
of (1.1) associated to a discretization of a over a fine mesh triangulation of Ω. The
control of the error between the solution of (1.1) and the discrete counterpart of (1.1)
is standard.

1.5. Literature and further remarks. For early works on homogenization
with random mixing coefficients we refer to [62], [45], [61], [64], [78], [46], [47], [37].
Papanicolaou, Stroock, and Varadhan [63] have considered a two-component Markov
process (x(t), y(t)), where y(t) is rapidly varying (and is not assumed to be ergodic
in dimension one) and enters in the coefficients of the stochastic process driving x(t).
They have studied the convergence properties of x(t) as the fluctuations of y(t) be-
comes more rapid using the martingale approach to diffusion, developed by Stroock
and Varadhan [67], [66], [69], [68].

Methods dealing with problems involving multiple scales are numerous and not
limited to the ones cited in this paper. As an example of a different approach, we refer
to [2], where the concept of Young measure on micropatterns is introduced to study
variational problems leading to multiple small scales involving a small parameter.

The numerical homogenization method implemented in this paper is a finite el-
ement method. The idea of using oscillating test functions can be tracked back to
the work of Murat and Tartar on homogenization and H-convergence; we refer in
particular to [71] and [54]. Those papers also contain convergence proofs for the fi-
nite element method in an abstract setting for a sequence of H-converging elliptic
operators (recall that the framework of H-convergence is independent from ergodicity
or scale separation assumptions and is based on the compactness of any sequence of
solutions of −div aε∇uε = g, with uniformly bounded and elliptic conductivities aε;
we also refer to the initial work of Spagnolo [65] for G-convergence).

The numerical implementation and practical application of oscillating test func-
tions in numerical finite element homogenization have been called multiscale finite
element methods and have been studied by several authors [8], [29], [55], [41], [40],
[35], [39], [5]. The work of Hou and Wu [41] has been a large source of inspiration
in numerical applications (particularly for reservoir modeling in geophysics; we refer
to [74], [49], [1], [75] for recent developments) since it was leading to a coarse scale
operator while keeping the fine scale structures of the solutions. The construction of
the base functions is decoupled from element to element, leading to a scheme adapted
to parallel computers. A proof of the convergence of the method is given in periodic
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12 HOUMAN OWHADI AND LEI ZHANG

settings when the size of the heterogeneities is smaller than the grid size, and an
oversampling technique is proposed to remove the so-called cell resonance error [42]
when the size of the heterogeneities is comparable to the grid size.

Allaire and Brizzi [5] have introduced the composition rule in the formulation of
a multiscale finite element and observed that a multiscale finite element method with
higher order Lagrange polynomials would have a better accuracy. In fact, Babuska
et al. introduced a so-called change of variable technique in the general setting of the
partition of unity method using a p-version of finite elements. In [8], a special class
of second order elliptic problems with essentially one-dimensional rough coefficients
a(x, y) = a(x) was considered. In [56], [57], conformal mapping was used to map the
rough solution to a smoother function for elliptic problems in two dimensions with
corners or interfaces.

In [60], we proved that if u is the solution of the divergence form elliptic equation

(1.40)

{
−div

(
a(x)∇u(x)

)
= g in Ω,

u = 0 in ∂Ω,

and F are caloric coordinates defined by

(1.41)

{
div a∇F = 0 in Ω,

F (x) = x on ∂Ω,

then, under the Cordes-type condition βσ < 1 on σ given by (1.4), one has for some
p > 2

(1.42) ‖u ◦ F−1‖W 2,p(Ω) ≤ C‖g‖Lp(Ω).

It has been deduced from this compensation phenomenon that numerical homoge-
nization methods based on oscillating finite elements can converge in the presence of
a continuum of scales if one uses global caloric coordinates to obtain the test func-
tions instead of solutions of a local cell problem [60]. In dimension three and higher
it has been known since the work of Fenchenko and Khruslov [34], [44] that the ho-
mogenization of divergence form elliptic operators −div aε∇uε = g can lead to a
nonlocal homogenized operator if the sequence of matrices aε is uniformly elliptic but
with entries uniformly bounded only in L1(Ω). From a numerical point of view these
nonlocal effects imply that a nonlocal numerical homogenization method cannot be
avoided to obtain accuracy. Hence in [60], it is shown that the accuracy of local
methods depends on the aspect ratio of the triangles of the tessellation with respect
to caloric coordinates (which is not the case if one uses nonlocal finite elements; we
refer to [60] for further discussions on the apparition of nonlocal effects in numerical
homogenization). Recently Briane has shown [21] that this nonlocal effect is absent
in dimension two in the H-convergence setting.

The phenomenon is similar here; however, observe that, if one has solved the initial
parabolic equation at least n times and those solutions are (locally) linearly indepen-
dent, it is also possible to use them as new coordinates for numerical homogenization.
Observe that in dimension higher than three the caloric coordinates are not always
invertible; an idea to bypass this difficulty could be either to choose the change of coor-
dinates locally and adaptively or to enrich the coordinates by writing down the initial
equations as degenerate equations in a space of higher dimension [72]; these points
have not been explored. For divergence form elliptic equations, recall that fast meth-
ods based on hierarchical matrices are available [14], [13], [12], [10], [11] for solving
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HOMOGENIZATION OF PARABOLIC EQUATIONS 13

(1.40) and (1.41) in O
(
N(lnN)n+3

)
operations (or in O(N) operations using iterative

methods (see [76], [77]), N being the number of interior nodes of the fine mesh).
The issue of numerical homogenization partial differential equations with hetero-

geneous coefficients has received a great deal of attention, and many methods have
been proposed. A few of them are cited below.

• multiscale finite volume methods [50];
• heterogeneous multiscale methods [28], [24];
• wavelet-based homogenization [38], [27], [25], [17], [7], [19];
• residual-free bubble methods [20];
• discontinuous enrichment methods [33], [32];
• partition of unity methods [36];
• energy-minimizing multigrid methods [73].

Following [60], it is possible to implement a finite volume method based on the
compensation theorems given in this paper. The elements given in this paper contain
the fine scale structure of F , and has been done in [60], and it is possible to approx-
imate the initial parabolic operator by a homogenized parabolic operator associated
to the coarse mesh (the test functions in this case would be piecewise linear on the
coarse mesh, and the approximation error associated to the homogenized operator
would depend on the aspect ratio of the triangles of the coarse mesh in the metric
induced by F ).

In this paper a has been assumed to be bounded and uniformly elliptic. Without
these assumptions the diffusion associated to a homogenized operator can be anoma-
lously slow [15], [58] or fast (superdiffusive) [59]. If a has an unbounded skew symmet-
ric component, the homogenization of (1.1) can give rise to a degenerate operator [59].

2. Proofs.

2.1. Compensation.

2.1.1. Time-independent medium: Proof of Theorem 1.1. We will need
the following lemmas. Let AT be the bilinear form on L2

(
0, T ;H1

0 (Ω)
)

defined by

(2.1) AT [v, w] :=

∫ T

0

a[v, w](t) dt,

where

(2.2) a[v, u](t) :=

∫
Ω

t∇v(x, t)a(x, t)∇u(x, t) dx.

We write AT [u] := AT [u, u]. The following lemmas are standard energy estimates,
and we refer to [31, section 7.1.2] for a reminder.

Lemma 2.1. We have

(2.3)
∥∥u(., T )

∥∥2

L2(Ω)
+ AT [u] ≤ Cn,Ω

λmin(a)
‖g‖2

L2(ΩT ).

Lemma 2.2. Assume ∂ta ≡ 0, and we have∥∥∂tu∥∥2

L2(ΩT )
+ a

[
u(., T )

]
≤
∥∥g∥∥2

L2(ΩT )
.(2.4)

Lemma 2.3. Assume ∂ta ≡ 0, and we have

∥∥∂tu(., T )
∥∥2

L2(Ω)
+ AT [∂tu] ≤ Cn,Ω

λmin(a)
‖∂tg‖2

L2(0,T,H−1(Ω)) +
∥∥g(., 0)

∥∥2

L2(Ω)
.(2.5)
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14 HOUMAN OWHADI AND LEI ZHANG

We now need a variation of Campanato’s result [23] on nondivergence form elliptic
operators. Let us write for a symmetric matrix M

(2.6) νM :=
Trace(M)

Trace(tMM)
.

We consider the following Dirichlet problem:

(2.7) LMv = f,

with LM :=
∑n

i,j=1 Mij(x)∂i∂j . The following Theorems 2.1 and 2.2 are straight-
forward adaptations of Theorem 1.2.1 of [52]. They are proven in [52] under the
assumption that M is bounded and elliptic. It is easy to check that the conditions
βM < 1 and νM ∈ L∞(Ω) are sufficient for the validity of those theorems. We refer
to [60] for that adaptation.

Theorem 2.1. Assume that βM < 1, νM ∈ L∞(Ω), and Ω is convex. Then if
f ∈ L2(Ω), the Dirichlet problem (2.7) has a unique solution satisfying

(2.8) ‖v‖W 2,2
D (Ω) ≤

C

1 − β
1
2

M

‖νMf‖L2(Ω).

Remark 2.1. βM is the Cordes parameter associated to M .
Theorem 2.2. Assume that βM < 1, νM ∈ L∞(Ω), and Ω is convex. Then

there exists a real number p0 > 2 depending only on n,Ω, and βM such that for each
f ∈ Lp(Ω), 2 ≤ p < p0, the Dirichlet problem (2.7) has a unique solution satisfying

(2.9) ‖v‖W 2,p
D (Ω) ≤

Cn,Ω,p

1 − β
1
2

M

‖νMf‖Lp(Ω).

Let us now prove the compensation theorems. Choose

(2.10) M :=
σ

|det(∇F )| 12
◦ F−1.

It is easy to check that βσ < 1 implies that F is a homeomorphism from Ω onto Ω,
and thus (2.10) is well defined. Moreover observe that βM = βσ and

(2.11) ‖νM‖2
L∞(ΩT ) ≤

Cn

(λmin(a))
n
2

∥∥(Trace[σ])
n
4 −1

∥∥2

L∞(ΩT )
.

Fix t ∈ [0, T ]. Choose

f :=
(∂tu− g)

|det(∇F )| 12
◦ F−1.(2.12)

Observe that by the change of variable y = F (x) one obtains that, if ∂ta ≡ 0 (which
implies that F is time-independent), ∂tu ∈ L2(Ω), and g(., t) ∈ L2(Ω), f ∈ L2(Ω) and

‖f‖L2(Ω) ≤ ‖∂tu‖L2(Ω) + ‖g‖L2(Ω).(2.13)

It follows from Theorem 2.1 that there exists a unique v ∈ W 2,2
D (Ω) satisfying

(2.14) ‖v‖2
W 2,2

D (Ω)
≤

C‖νM‖2
L∞(ΩT )

(1 − β
1
2
σ )2

(
‖∂tu‖2

L2(Ω) + ‖g‖2
L2(Ω)
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HOMOGENIZATION OF PARABOLIC EQUATIONS 15

and the following equation:

∂tû(y, t) =
∑
i,j

(
σ(F−1(y, t), t)

)
i,j
∂i∂jv(y, t) + ĝ(y, t).(2.15)

We use the notation ĝ := g ◦ F−1 and û := u ◦ F−1. Using the change of variable
y = F (x) and using the property div a∇F = 0 when ∂ta ≡ 0, we obtain that (2.15)
can be written

∂tu = div
(
a∇(v ◦ F )

)
+ g.(2.16)

If ∂tu ∈ L2(Ω) and g(., t) ∈ L2(Ω), we can use the uniqueness property of the solution
of the divergence form elliptic Dirichlet problem

div
(
a∇w

)
= ∂tu− g(2.17)

to obtain that v ◦F = u. Assume that g ∈ L2(ΩT ) and ∂tu ∈ L2(ΩT ). It follows that,
for t ∈ [0, T ] − B, g(., t) ∈ L2(Ω) and ∂tu(., t) ∈ L2(Ω), where B is a subset of [0, T ]
of 0-Lebesgue measure. It follows from the previous arguments that, on [0, T ] − B,
u ◦ F−1(., t) ∈ W 2,2

D (Ω) and satisfies

(2.18) ‖u ◦ F−1(., t)‖2
W 2,2

D (Ω)
≤

C‖νM‖2
L∞(ΩT )

(1 − β
1
2
σ )2

(
‖∂tu(., t)‖2

L2(Ω) + ‖g(., t)‖2
L2(Ω)

)
.

Integrating (2.18) with respect to time we obtain that u ◦ F−1 ∈ L2(0, T,W 2,2
D (Ω))

and that

(2.19) ‖u ◦ F−1‖2
L2(0,T,W 2,2

D (Ω))
≤

C‖νM‖2
L∞(ΩT )

(1 − β
1
2
σ )2

(
‖∂tu‖2

L2(ΩT ) + ‖g‖2
L2(ΩT )

)
.

Thus using Lemma 2.2 we have obtained Theorem 1.1.
In situations where g ∈ L∞(0, T, L2(Ω)), ∂tg ∈ L2(0, T,H−1(Ω)), or g ∈ Lp(ΩT ),

with p > 2, one can obtain a higher regularity for u ◦ F−1. This is the object of the
following theorems.

Theorem 2.3. Assume that Ω is convex, g ∈L∞(0, T, L2(Ω)), ∂tg ∈L2(0, T,H−1(Ω)),
∂ta ≡ 0, βσ < 1, and (Trace[σ])

n
4 −1 ∈ L∞(ΩT ); then for all t ∈ [0, T ], u ◦ F−1(., t) ∈

W 2,2
D (Ω) and

(2.20) ‖u ◦ F−1(., t)‖W 2,2
D (Ω) ≤

C

1 − β
1
2
σ

(∥∥g∥∥
L∞(0,T,L2(Ω))

+ ‖∂tg‖L2(0,T,H−1(Ω))

)
.

Remark 2.2. The constant C can be written

C =
Cn,Ω

(λmin(a))
n
4

∥∥(Trace[σ])
n
4 −1

∥∥
L∞(ΩT )

(
1 +

1

λmin(a)

) 1
2

.

Theorem 2.4. Assume that Ω is convex, g(., 0) ∈ L2(Ω), ∂tg ∈ L2(0, T,H−1(Ω)),
g ∈ Lp(ΩT ), ∂ta ≡ 0, βσ < 1, and (Trace[σ])

n
4 −1 ∈ L∞(ΩT ); then there exists a

real number p0 > 2 depending only on n,Ω, and βσ such that for each p such that
2 ≤ p < p0 one has

‖u ◦ F−1‖Lp(0,T,W 2,p
D (Ω)) ≤

C

1 − β
1
2
σ

(
‖g‖Lp(ΩT )

+
∥∥g(., 0)

∥∥
L2(Ω)

+ ‖∂tg‖L2(0,T,H−1(Ω))

)
.
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16 HOUMAN OWHADI AND LEI ZHANG

Remark 2.3. The constant C can be written

C =
Cn,Ω,p

(λmin(a))
n
4

∥∥(Trace[σ])
n
4 −1

∥∥
L∞(ΩT )

(
1 +

1

λmin(a)

) 1
2

.

Write

‖v‖Cγ(Ω) := sup
x,y∈Ω,x �=y

|v(x) − v(y)|
|x− y|γ .(2.22)

Theorem 2.5. Assume that n ≤ 2, Ω is convex, g(., 0) ∈ L2(Ω), ∂tg ∈ L2(0,
T,H−1(Ω)), g ∈ Lp(ΩT ), ∂ta ≡ 0, βσ < 1, (Trace[σ])−1 ∈ L∞(ΩT ), and g ∈
L2[0, T ;Lp∗

(Ω)], with 2 < p∗. Then there exists p ∈ (2, p∗] and γ(p) > 0 such that

(∫ T

0

∥∥∇(u ◦ F−1)(., t)
∥∥2

Cγ(Ω)
dt

) 1
2

≤ C

1 − β
1
2
σ

(
‖g‖Lp(ΩT )

+
∥∥g(., 0)

∥∥
L2(Ω)

+ ‖∂tg‖L2(0,T,H−1(Ω))

)
.

(2.23)

Remark 2.4. The constant C in (2.23) depends on n, p, Ω, λmin(a), and
‖(Trace(σ))−1‖L∞(ΩT ). It is easy to check that if n = 1, then the theorem is valid
with γ = 1/2.

Using Lemma 2.3 we can prove Theorem 2.3.
Let us now prove Theorem 2.4. Assume that there exists q0 > 2 such that,

for 2 ≤ p < q0, ∂tu ∈ Lp(ΩT ) and g ∈ Lp(ΩT ). Let us now apply Theorem 2.2
with p < min(p0, q0), M given by (2.10), and f given by (2.12). It follows that, for
t ∈ [0, T ] − B (where B is a subset of [0, T ] of 0-Lebesgue measure), g(., t) ∈ Lp(Ω)
and ∂tu(., t) ∈ Lp(Ω). We deduce from Theorem 2.2 and the argumentation related
to (2.17) that, on [0, T ] −B, u ◦ F−1(., t) ∈ W 2,p

D (Ω) and

(2.24) ‖u ◦F−1(., t)‖p
W 2,p

D (Ω)
≤

Cn,p,Ω‖νM‖pL∞(ΩT )

(1 − β
1
2
σ )p

(
‖∂tu(., t)‖pLp(Ω) + ‖g(., t)‖pLp(Ω)

)
.

Integrating (2.24) with respect to time, we have u ◦F−1 ∈ Lp(0, T,W 2,p
D (Ω)) and

(2.25) ‖u ◦ F−1‖Lp(0,T,W 2,p
D (Ω)) ≤

Cn,p,Ω‖νM‖L∞(ΩT )

1 − β
1
2
σ

(
‖∂tu‖Lp(ΩT ) + ‖g‖Lp(ΩT )

)
.

It remains to show that, under the assumptions of Theorem 2.4, ∂tu ∈ Lp(ΩT ).
In order to bound

∥∥∂tu(., t)
∥∥
Lp(Ω)

we use general Sobolev inequalities (chapter

5.6 of [31]).
• If n ≥ 3, write p∗ = 2n/(n− 2). We have for 2 < p ≤ p∗

(2.26)

(∫
Ω

(∂tu)p dx

) 2
p

≤ Cn,Ω

(∫
Ω

(∂tu)p
∗
dx

) 2
p∗

,

and thus, using the Gagliardo–Nirenberg–Sobolev inequality,

(2.27)

(∫
Ω

(∂tu)p dx

) 2
p

≤ Cn,p,Ω
1

λmin(a)
a[∂tu].
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HOMOGENIZATION OF PARABOLIC EQUATIONS 17

• If n = 2, we write, for (x1, x2, x3) ∈ Ω × (0, 1), v(x1, x2, x3) := ∂tu(x1, x2).
Using the Gagliardo–Nirenberg–Sobolev inequality in dimension three we ob-
tain that for 2 < p ≤ 6

(2.28)

(∫
Ω

(∂tu)p dx

) 2
p

≤ Cn,p,Ω

∫
Ω

(∇∂tu)2 dx,

which leads us to (2.27).
• If n = 1, then using Morrey’s inequality we obtain that, with γ := 1/2,

(2.29) ‖∂tu‖2
C0,γ(Ω) ≤ CΩ

1

λmin(a)
a[∂tu].

We conclude the proof of Theorem 2.4 by using Lemma 2.3.
We deduce Theorem 2.5 from Morrey’s inequality and Theorem 2.4.
Hölder continuity for n ≥ 3 or nonconvexity of Ω. In this paragraph we will not

assume Ω to be convex. Let Np,λ(Ω) (1 < p < ∞, 0 < λ < n) be the weighted Morrey
space formed by the functions v : Ω → R such that ‖v‖Np,λ(Ω) < ∞, with

(2.30) ‖v‖Np,λ(Ω) := sup
x0∈Ω

(∫
Ω

|x− x0|−λ|v(x)|p
) 1

p

.

To obtain the Hölder continuity of u◦F−1 in dimension n ≥ 3 we use Corollary 4.1 of
[51]. We give the result of Leonardi below in a form adapted to our context. Consider
the Dirichlet problem (2.7). We write W 2,p,λ(Ω), the functions in W 2,p

D (Ω), such that
their second order derivatives belong to Np,λ(Ω).

Theorem 2.6. There exist a constant C∗ = C∗(n, p, λ, ∂Ω) > 0 such that if
βM < C∗ and f ∈ Np,λ(Ω), then the Dirichlet problem (2.7) has a unique solution in
W 2,p,λ ∩W 1,p

0 (Ω). Moreover, if 0 < λ < n < p, then ∇v ∈ Cα(Ω), with α = 1 − n/p
and

(2.31) ‖∇v‖Cα(Ω) ≤
C

λmin(M)
‖f‖Np,λ(Ω),

where C = C(n, p, λ, ∂Ω).
Now we have the compensation theorem in the nonconvex case.
Theorem 2.7. Assume n ≥ 2 and ∂ta ≡ 0. Let p > 2. There exists a constant

C∗ = C∗(n, ∂Ω) > 0, a real number γ > 0, depending only on n,Ω, and p such that if
βσ < C∗, then(∫ T

0

∥∥∇(u ◦ F−1)(., t)
∥∥2

Cγ(Ω)
dt

) 1
2

≤ C
(
‖g‖Lp(ΩT ) +

∥∥g(., 0)
∥∥
L2(Ω)

+ ‖∂tg‖L2(0,T,H−1(Ω))

)
.

(2.32)

Remark 2.5. The constant C in (2.32) depends on n, γ, Ω, C∗, λmin(a), and∥∥(Trace(σ))
n
2p−1

∥∥
L∞(ΩT )

.

Remark 2.6. Compared with the convex case, we have to assume F is an auto-
morphism. Theorem 2.7 shows that convexity is not needed, but without convexity
the Cordes-type assumption βσ < C∗ is stronger than βσ < 1.

The proof of Theorem 2.7 is an application of Theorem 2.6. We just need to
observe that from the Hölder inequality we have for 0 < ε < 0.5

(2.33) ‖f‖Np,ε(Ω) ≤ Cn,p,Ω,ε‖f‖Lp(1+ε)(Ω).

From this point the proof is similar to the proof of Theorem 2.4.
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18 HOUMAN OWHADI AND LEI ZHANG

2.1.2. Medium with a continuum of time scales: Proof of Theorem 1.2.
We will need Theorems 1.6.2 and 1.6.3 of [52]. For the sake of completeness we will
recall those theorems below in a version adapted to our framework. Consider the
following parabolic problem:

(2.34) ∂tv =

n∑
i,j=1

Mij(x)∂i∂jv + f.

We assume M to be symmetric bounded and elliptic and v = 0 at t = 0 and on the
boundary ∂Ω. Write

(2.35) ηM := sup
x∈ΩT

Trace[tMM ] + 1(
Trace[M ] + 1

)2
and

(2.36) αM := sup
x∈ΩT

Trace[M ] + 1

Trace[tMM ] + 1
.

Write for p ≥ 2

(2.37) Sp(ΩT ) :=
{
v ∈ Lp

(
0, T,W 2,p

D (Ω)
)
; ∂tv ∈ Lp(ΩT ); v(., 0) ≡ 0

}
and

(2.38) ‖v‖pSp(ΩT ) :=

∫
ΩT

(∑
i,j

(∂i∂jv)
2 + (∂tv)

2

) p
2

dy dt.

Theorem 2.8. Assume Ω to be convex and that there exists ε ∈ (0, 1) such that
ηM ≤ 1/(n+ε); then for each f ∈ L2(ΩT ) the Cauchy–Dirichlet problem (2.34) admits
a unique solution in S2(ΩT ) which satisfies the bound

(2.39) ‖v‖S2(ΩT ) ≤
αM

1 −
√

1 − ε
‖f‖L2(ΩT ).

Theorem 2.9. Assume Ω to be convex and that there exists ε ∈ (0, 1) such that
ηM ≤ 1/(n + ε); then there exists a number p0 > 2 depending on Ω, n, ε such that for
each f ∈ Lp(ΩT ) the Cauchy–Dirichlet problem (2.34) admits a unique solution in
Sp(ΩT ) which satisfies the bound

(2.40) ‖v‖Sp(ΩT ) ≤ Cp
αM

1 −
√

1 − ε
‖f‖Lp(ΩT ).

Remark 2.7. In fact Theorem 1.6.3 of [52] is written with 1−C(p)
√

1 − ε in the
denominator of (2.40), but it is easy to modify it to obtain (2.40) by lowering the
value of p0 and changing the value of Cp.

Let δ > 0. Let us now prove Proposition 1.1. Write x = Trace[σ] and z =

n Trace[tσσ]
(Trace[σ])2 (observe that 1 ≤ z ≤ n). It is easy to check that Condition 1.1 can be

written

(2.41) −δ2x2

(
ε + n

n
z − 1

)
+ 2xδ − (n + ε− 1) ≥ 0.
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HOMOGENIZATION OF PARABOLIC EQUATIONS 19

Choose δ = n
∥∥(Trace[σ])−1

∥∥
L∞(ΩT )

. Observing that δx ≥ n and δx = nyσ it is easy

to conclude the proof of Proposition 1.1. Similarly one obtains the following lemma
by straightforward computation from (2.41).

Lemma 2.4. Assume that Condition 1.1 is satisfied; then μσ < C(n, ε, δ)

(2.42)
∥∥(Trace[σ])−1

∥∥
L∞(ΩT )

≤ C(n, ε, δ)

and

(2.43)
∥∥Trace[σ]

∥∥
L∞(ΩT )

≤ C(n, ε, δ).

Let us now apply Theorem 2.8 on [0, T/δ] with

(2.44) M := δσ ◦ F−1(y, δt)

and

(2.45) f := δ(g ◦ F−1)(y, δt).

Observe that if Condition 1.1 is satisfied, then F is a homeomorphism and M is
well-defined, bounded, and elliptic. Moreover ηM < ∞ and αM < ∞ since

(2.46) esssupΩT
δ

Trace[tMM ] + 1(
Trace[M ] + 1

)2 = esssupΩT

δ2 Trace[tσσ] + 1(
δTrace[σ] + 1

)2 .

It follows that the following equation admits a unique solution in S2(ΩT
δ
):

∂tw(y, t) =
∑
i,j

Mi,j(y, t)∂i∂jw(y, t) + k(y, t),(2.47)

with k(y, t) = δĝ(y, δt). We also have

(2.48)

∫ T
δ

0

∫
Ω

(
(∂tw)2 +

∑
i,j

(∂i∂jw)2

)
dy dt ≤ C

(1 −
√

1 − ε)2
‖f‖L2(ΩT

δ
).

Using the change of variables t → δt and writing

(2.49) w(y, t) := v(y, δt),

we obtain that v satisfies the following equation on ΩT :

∂tv(y, t) =
∑
i,j

(
σ(F−1(y, t), t)

)
i,j
∂i∂jv(y, t) + ĝ(y, t).(2.50)

Using the change of variable y = F (x) and observing that ∂tF = div a∇F , we obtain
that v ◦ F satisfies

∂t(v ◦ F ) = div
(
a∇(v ◦ F )

)
+ g.(2.51)

It follows from the uniqueness of the solution of (2.51) that u = v ◦ F . In resume we
have obtained Theorem 1.2 (we use Lemma 2.4 to control the constants).
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20 HOUMAN OWHADI AND LEI ZHANG

Similarly we obtain the following theorems in situations where g ∈ Lp(ΩT ), with
p > 2.

Theorem 2.10. Assume that Ω is convex and Condition 1.1 is satisfied; then
there exists a number p0 > 2 depending on n,Ω, ε such that, for p ∈ (2, p0), u ◦F−1 ∈
Lp(0, T,W 2,p

D (Ω)), ∂t(u ◦ F−1) ∈ Lp(ΩT ), and

(2.52) ‖u ◦ F−1‖Lp(0,T,W 2,p
D (Ω)) + ‖∂t(u ◦ F−1)‖Lp(ΩT ) ≤ C‖g‖Lp(ΩT ),

where C depends on Ω, n, δ, and ε.
Theorem 2.11. Assume that Ω is convex and Condition 1.1 is satisfied; then

there exists a number α0 > 2 depending on n,Ω, ε, p such that, for α ∈ (0, α0), ∇(u ◦
F−1) ∈ L2(0, T, Cα(Ω)) and

(2.53) ‖∇(u ◦ F−1)‖L2(0,T,Cα(Ω)) ≤ C‖g‖Lp(ΩT ),

where C depends on Ω, δ, n, and ε.
The proof of Theorem 2.10 is similar and based on Theorem 2.9. The proof of

Theorem 2.11 follows from Theorem 2.10 and Morrey’s inequality.

2.2. Convergence of the numerical homogenization. Write Rh, the pro-
jection operator mapping L2

(
0, T ;H1

0 (Ω)
)

onto Y h
T defined by: For all v ∈ Y h

T

(2.54) AT [v, u−Rhu] = 0.

Write ρ := u−Rhu and θ := Rhu− uh. By a standard energy estimate, we have
the following lemmas without proof.

Lemma 2.5.

(2.55)
1

2

∥∥(u− uh)(T )
∥∥2

L2(Ω)
+ AT [u− uh] =

∫
ΩT

ρ∂t(u− uh) + AT [ρ, u− uh].

Proof. Subtracting (1.1) (integrated against ψ) and (1.27) we obtain that

(2.56)
(
ψ, ∂t(u− uh)

)
+ a[ψ, u− uh] = 0 for all ψ ∈ Vh(t).

Integrating by parts with respect to time we deduce that

(2.57)
(
ψ, (u− uh)(., t)

)
+ a[ψ, u− uh] =

∫
Ωt

∂tψ(u− uh).

Taking ψ = θ in (2.57) we deduce that

∥∥(u− uh)(., t)
∥∥2

L2(Ω)
+ At[u− uh] =

∫
Ωt

∂tθ(u− uh) +
(
ρ, (u− uh)(., t)

)
+ At[ρ, u− uh].

(2.58)

Observing that∫ t

0

(
∂tθ, u− uh

)
+
(
ρ, (u− uh)(., t)

)
=

1

2

∥∥(u− uh)(., t)
∥∥2

L2(Ω)

+

∫ t

0

(ρ, ∂t(u− uh))

(2.59)

we deduce the lemma.
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2.2.1. Time-independent medium: Proof of Theorem 1.3.
Lemma 2.6.∥∥(u− uh)(T )

∥∥2

L2(Ω)
+ AT [u− uh] ≤ 2

(
‖ρ‖L2(ΩT )‖∂tu− ∂tuh‖L2(ΩT )

+ AT [ρ]
)
.

(2.60)

Proof. Lemma 2.6 is a straightforward consequence of Lemma 2.5 and Cauchy–
Schwartz and Minkowski inequalities.

Similar to Lemmas 2.1 and 2.2, we have the following energy estimate for uh.
Lemma 2.7. Assume ∂ta ≡ 0, and we have

(2.61)
∥∥uh(., T )

∥∥2

L2(Ω)
+ AT [uh] ≤ Cn,Ω

λmin(a)
‖g‖2

L2(ΩT ).

Lemma 2.8. Assume ∂ta ≡ 0, and we have∥∥∂tuh

∥∥2

L2(ΩT )
+ a

[
uh(., T )

]
≤
∥∥g∥∥2

L2(ΩT )
.(2.62)

Let t ∈ [0, T ] and v ∈ H1
0 (Ω), and we will write Rh,tv(., t), the solution of

(2.63)

∫
Ω

t∇ψa(x, t)(ψ, v −Rh,tv) dx = 0 for all ψ ∈ Vh(t).

We will need the following lemma.
Lemma 2.9. Assume the mapping x → F (x, t) to be invertible, and then for

v ∈ H1
0 (Ω) we have
• for n = 1,

(2.64)
(
a[v −Rh,tv]

) 1
2 ≤ CXh‖v ◦ F−1(., t)‖W 2,2

D
‖a∇F‖

1
2

L∞(ΩT );

• for n ≥ 2,

(
a[v −Rh,tv]

) 1
2 ≤CXh‖v ◦ F−1(., t)‖W 2,2

D

× Cnμ
n−1

4
σ

∥∥(Trace[σ])−1
∥∥n−2

4

L∞(ΩT )
.

(2.65)

Remark 2.8. Recall that μσ is given by (1.12), and it is easy to check that μσ is
bounded by an increasing function of (1 − βσ)−1.

Proof. Using the change of coordinates y = F (x, t) we obtain that (we write
v̂ := v ◦ F−1)

(2.66) a[v] = Q[v̂],

with

(2.67) Q[w] :=

∫
Ω

t∇w(y, t)Q(y, t)∇w(y, t) dy

and

(2.68) Q(y, t) :=
σ

det(∇F )
◦ F−1.

D
ow

nl
oa

de
d 

07
/1

9/
17

 to
 1

31
.2

15
.2

48
.1

12
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

22 HOUMAN OWHADI AND LEI ZHANG

Using the definition of Rh,tv we obtain that

(2.69) Q[v̂ − R̂h,tv] = inf
ϕ∈Xh

Q[v̂ − ϕ].

Using property (1.21) we obtain that

(2.70) Q[v̂ − R̂h,tv] ≤ λmax(Q)C2
Xh2‖v̂‖2

W 2,2
D (T )

.

It is easy to obtain that
• for n = 1,

(2.71) λmax(Q) ≤ ‖a∇F‖L∞(ΩT );

• for n ≥ 2,

(2.72) λmax(Q) ≤ Cnμ
n−1

2
σ

∥∥(Trace[σ])−1
∥∥n

2 −1

L∞(ΩT )
.

Lemma 2.10. Assume that ∂ta ≡ 0, Ω is convex, βσ < 1, and (Trace[σ])−1 ∈
L∞(ΩT ), and then

(2.73) AT [ρ] ≤ Ch2‖g‖2
L2(ΩT ).

Remark 2.9. The constant C depends on CX , n, Ω, λmin(a), and ‖(Trace[σ])−1‖L∞(ΩT ).
If n ≥ 5 it also depends on ‖Trace[σ]‖L∞(ΩT ), and if n = 1 it also depends on λmax(a).

Proof. The proof is a straightforward application of Lemma 2.9 and Theorem 1.1.
Observe that in dimension one a∇F = (

∫
Ω
a−1)−1.

Lemma 2.11. Assume that ∂ta ≡ 0, Ω is convex, βσ < 1, and (Trace[σ])−1 ∈
L∞(ΩT ), and then

(2.74) ‖ρ‖L2(ΩT ) ≤ Ch2‖g‖L2(ΩT ).

Remark 2.10. The constant C depends on CX , n, Ω, λmin(a), and ‖(Trace[σ])−1‖L∞(ΩT ).
If n ≥ 5 it also depends on ‖Trace[σ]‖L∞(ΩT ), and if n = 1 it also depends on λmax(a).

Proof. The proof follows from standard duality techniques (see, for instance,
Theorem 5.7.6 of [18]). We choose v ∈ L2(0, T,H1

0 (Ω)) to be the solution of the
following linear problem: For all w ∈ L2(0, T,H1

0 (Ω))

(2.75) AT [w, v] = (w, ρ)L2(ΩT ).

Choosing w = ρ in (2.75) we deduce that

(2.76) ‖ρ‖2
L2(ΩT )) = AT [ρ, v −Rh,tv].

Using the Cauchy–Schwartz inequality we deduce that

(2.77) ‖ρ‖2
L2(ΩT ) ≤

(
AT [ρ]

) 1
2
(
AT [v −Rh,tv]

) 1
2 .

Using Theorem 1.1 we obtain that

(2.78) ‖v̂‖L2(0,T,W 2,2
D (Ω)) ≤ C‖ρ‖L2(ΩT ).
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HOMOGENIZATION OF PARABOLIC EQUATIONS 23

Using Lemma 2.9 we obtain that

(2.79)
(
AT [v −Rh,tv]

) 1
2 ≤ Ch‖ρ‖L2(ΩT ).

It follows that

(2.80) ‖ρ‖L2(ΩT ) ≤ Ch
(
AT [ρ]

) 1
2 .

We deduce the lemma by applying Lemma 2.10 to bound AT [ρ].
The proof of Theorem 1.3 is a straightforward application of Lemmas 2.2, 2.6,

2.8, 2.10, and 2.11.

2.2.2. Medium with a continuum of time scales: Proof of Theorem 1.4.
In this subsection we will assume that the finite elements are in H2(Ω) ∩H1

0 (Ω) and
satisfy inverse inequality (1.22).

Lemma 2.12.

1

2

∥∥(u− uh)(t)
∥∥2

L2(Ω)
+ At[u− uh] =

∫
Ωt

ρ̂

|det∇F | ◦ F−1⎛
⎝ĝ +

n∑
i,j=1

σi,j ◦ F−1∂i∂j ûh − ∂tûh

⎞
⎠ .

(2.81)

Proof. Consider (2.55). We have

(2.82)

∫
Ωt

ρ∂t(u−uh) =

∫
Ωt

ρ̂

|det∇F | ◦ F−1
∂t(û− ûh)+

∫
Ωt

ρ∂tF (∇F )−1∇(u−uh).

Using (1.2) we obtain that

(2.83)

∫
Ωt

ρ∂tF (∇F )−1∇(u−uh) = −At[ρ, u−uh]−
n∑

i,j=1

∫
Ωt

ρ̂Qi,j∂i∂j(û−ûh).

Lemma 2.13.

(2.84)

∥∥∥∥ ∂tûh

|det(∇F )| 12 ◦ F−1

∥∥∥∥
L2(ΩT )

≤ 2‖g‖L2(ΩT ) + C‖ûh‖L2(0,T,W 2,2
D (Ω)),

where the constant C depends on n, λmax(a), ‖Trace[σ]‖L∞(ΩT ), and μσ.
Proof. Using the change of variable y = F (x, t) in (1.27) we obtain that for all

ϕ ∈ Xh

(2.85)

⎧⎪⎨
⎪⎩

(ϕ, ∂tûh

| det(∇F )|◦F−1 )L2(Ω) =
∑n

i,j=1

∫
Ω
(ϕ,Qi,j∂i∂j ûh)L2(Ω)

+(ϕ, ĝ
| det(∇F )|◦F−1 )L2(Ω),

ûh(x, 0) = 0.

Recall that Q is given by (2.68). We choose ϕ = ∂tû and observe that

(2.86)
σ

|det∇F | 12
=

σ

|detσ| 14
|det a| 14 .

Thus

(2.87)

∥∥∥∥ σ

|det∇F | 12

∥∥∥∥ ≤ C
(
n, λmax(a), ‖Trace[σ]‖L∞(ΩT ), μσ

)
.

We deduce the lemma by the Minkowski inequality.
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24 HOUMAN OWHADI AND LEI ZHANG

Combining Lemmas 2.12 and 2.13 we obtain the following lemma.
Lemma 2.14.

1

2

∥∥(u− uh)(T )
∥∥2

L2(Ω)
+ AT [u− uh] ≤‖ρ‖L2(ΩT )

(
‖g‖L2(ΩT )

+ C‖ûh‖L2(0,T,W 2,2
D (Ω))

)
,

(2.88)

where the constant C depends on n, λmax(a), ‖Trace[σ]‖L∞(ΩT ), and μσ.
Lemma 2.15. Assume that Ω is convex and Condition 1.1 is satisfied; then

(2.89) ‖ρ‖L2(ΩT ) ≤ Ch2‖g‖L2(ΩT ).

Remark 2.11. The constant C depends on CX , n, Ω, δ, ε, λmin(a), and λmax(a).
Proof. The proof is similar to the proof of Lemma 2.11. As in the proof of Lemma

2.11 we choose v ∈ L2(0, T,H1
0 (Ω)) to be the solution of the following linear problem:

For all w ∈ L2(0, T,H1
0 (Ω))

(2.90) AT [w, v] = (w, ρ)L2(ΩT ).

Choosing w = ρ in (2.90) we deduce that

(2.91) ‖ρ‖2
L2(ΩT )) = AT [ρ, v −Rh,tv].

Using the Cauchy–Schwartz inequality we deduce that

(2.92) ‖ρ‖2
L2(ΩT ) ≤

(
AT [ρ]

) 1
2
(
AT [v −Rh,tv]

) 1
2 .

Using Theorem 1.2 we obtain that

(2.93) ‖v̂‖L2(0,T,W 2,2
D (Ω)) ≤ C‖ρ‖L2(ΩT ).

Using Lemma 2.9 we obtain that

(2.94)
(
AT [v −Rh,tv]

) 1
2 ≤ Ch‖ρ‖L2(ΩT ).

It follows that

(2.95) ‖ρ‖L2(Ω) ≤ Ch
(
AT [ρ]

) 1
2 .

We deduce the lemma by applying Lemma 2.9 and Theorem 1.2 to bound AT [ρ].
Lemma 2.16. Assume that Ω is convex and that Trace[σ] ∈ L∞(ΩT ).

(2.96) ‖ûh‖L2(0,T,W 2,2
D (Ω)) ≤

C

h
‖g‖L2(ΩT ).

Remark 2.12. The constant C depends on CX , n, Ω, λmin(a), λmax(a), and
‖Trace[σ]‖L∞(ΩT ).

Proof. Using the inverse inequality (1.22) of the finite elements we obtain that

(2.97) ‖ûh‖L2(0,T,W 2,2
D (Ω)) ≤

CX

h
‖∇ûh‖L2(0,T,W 2,2

D (Ω)).

Using the change of variables y = F (x) we obtain that

(2.98) ‖∇ûh‖2
L2(0,T,W 2,2

D (Ω))
≤ CAT [uh],

where C depends on n, λmin(a), and ‖Trace[σ]‖L∞(ΩT ). We deduce the lemma by
using Lemma 2.7.
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HOMOGENIZATION OF PARABOLIC EQUATIONS 25

The proof of Theorem 1.4 is a straightforward application of Lemmas 2.14, 2.15,
and 2.16.

2.2.3. Numerical homogenization in time and space: Proof of Theo-
rems 1.5–1.7. We use the notation of subsection 1.3. First we will prove Theorem
1.5; let us observe that the numerical scheme associated to (1.34) is stable. Indeed
choosing ψ = vn+1 one gets∣∣vn+1(tn+1)

∣∣2
L2(Ω)

=
(
vn+1(tn), vn(tn)

)
L2(Ω)

+
1

2

(∣∣vn+1(tn+1)
∣∣2
L2(Ω)

−
∣∣vn+1(tn)

∣∣2
L2(Ω)

)
−
∫ tn+1

tn

(
a
[
vn+1(t)] +

(
vn+1(t), g(t)

)
L2(Ω)

)
dt.

(2.99)

It follows by the Cauchy–Schwartz inequality that

1

2

∣∣vn+1(tn+1)
∣∣2
L2(Ω)

≤1

2

∣∣vn(tn)
∣∣2
L2(Ω)

−
∫ tn+1

tn

(
a
[
vn+1(t)] +

(
vn+1(t), g(t)

)
L2(Ω)

)
dt.

(2.100)

Hence using Poincaré and Minkowski inequalities one obtains that

∣∣vn+1(tn+1)
∣∣2
L2(Ω)

+

∫ tn+1

tn

a
[
vn+1(t)] dt ≤

∣∣vn(tn)
∣∣2
L2(Ω)

+
Cn,Ω

λmin(a)

∫ tn+1

tn

∣∣g(t)∣∣2
L2(Ω)

dt,

(2.101)

which implies Theorem 1.5 and the stability of the scheme.
Integrating (1.27) with respect to time we obtain that, for ψ ∈ Uh

T ,(
ψ(tn+1), uh(tn+1)

)
L2(Ω)

=
(
ψ(tn), uh(tn)

)
L2(Ω)

+

∫ tn+1

tn

((
∂tψ(t), uh(t)

)
L2(Ω)

− a
[
ψ(t), uh(t)] +

(
ψ(t), g(t)

)
L2(Ω)

)
dt.

(2.102)

Let us write (ui) the coordinates of uh associated to the basis (ϕi ◦ F ), i.e.,

(2.103) uh(x, t) :=
∑
i

ui(t)ϕi(F (x, t)),

and define

(2.104) un(x, t) :=
∑
i

ui(tn)ϕi(F (x, t)).

Subtracting (2.102) and (1.34) we obtain that, for ψ ∈ ZT ,

(
ψ(tn+1), (un+1 − vn+1)(tn+1)

)
L2(Ω)

=
(
ψ(tn), (un − vn)(tn)

)
L2(Ω)

+

∫ tn+1

tn

((
∂tψ(t), (uh − vn+1)(t)

)
L2(Ω)

− a
[
ψ(t), (uh − vn+1)(t)]

)
dt.

(2.105)
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26 HOUMAN OWHADI AND LEI ZHANG

Choosing ψ = un+1 − vn+1 we deduce using the Cauchy–Schwartz inequality that

1

2

∣∣(un+1 − vn+1)(tn+1)
∣∣2
L2(Ω)

+

∫ tn+1

tn

a
[
(un+1 − vn+1)(t)] dt

≤ 1

2

∣∣(un − vn)(tn)
∣∣2
L2(Ω)

+

∫ tn+1

tn

((
∂t(un+1 − vn+1)(t), (uh − un+1)(t)

)
L2(Ω)

− a
[
(un+1 − vn+1)(t), (uh − un+1)(t)]

)
dt.

(2.106)

Time-independent medium. Observe that if the medium is time-independent, then
(2.106) can be written

1

2

∣∣(un+1 − vn+1)(tn+1)
∣∣2
L2(Ω)

+

∫ tn+1

tn

a
[
(un+1 − vn+1)(t)] dt

≤ 1

2

∣∣(un − vn)(tn)
∣∣2
L2(Ω)

−
∫ tn+1

tn

a
[
(un+1 − vn+1)(t), (uh − un+1)(t)] dt,

(2.107)

which leads us to

1

2

∣∣(un+1 − vn+1)(tn+1)
∣∣2
L2(Ω)

+

∫ tn+1

tn

a
[
(un+1 − vn+1)(t)] dt

≤ 1

2

∣∣(un − vn)(tn)
∣∣2
L2(Ω)

+

∫ tn+1

tn

∫ tn+1

tn

1(t < s) a
[
(un+1 − vn+1)(t), ∂suh(s)] ds dt.

(2.108)

Write Δt := tn+1 − tn. Using the Minkowski inequality we obtain that

a
[
(un+1 − vn+1)(t), ∂suh(s)] ≤ 1

2Δt
a
[
(un+1 − vn+1)(t)]

+
1

2
Δta

[
∂suh(s)].

(2.109)

It follows from (2.108) that

∣∣(un+1 − vn+1)(tn+1)
∣∣2
L2(Ω)

+

∫ tn+1

tn

a
[
(un+1 − vn+1)(t)] dt

≤
∣∣(un − vn)(tn)

∣∣2
L2(Ω)

+ |Δt|2
∫ tn+1

tn

a
[
∂suh(s)] ds.

(2.110)

Observing that

∫ tn+1

tn

a
[
(un+1 − vn+1)(t)] dt ≥ 0.5

∫ tn+1

tn

a
[
(uh − vn+1)(t)] dt

−
∫ tn+1

tn

a
[
(uh − un+1)(t)] dt

(2.111)
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HOMOGENIZATION OF PARABOLIC EQUATIONS 27

and

∫ tn+1

tn

a
[
(uh − un+1)(t)] dt ≤ |Δt|2

∫ tn+1

tn

a
[
∂suh(s)] ds,(2.112)

we obtain that

∣∣(un+1 − vn+1)(tn+1)
∣∣2
L2(Ω)

+ 0.5

∫ tn+1

tn

a
[
(uh − vn+1)(t)] dt

≤
∣∣(un − vn)(tn)

∣∣2
L2(Ω)

+
3

2
|Δt|2

∫ tn+1

tn

a
[
∂suh(s)] ds.

(2.113)

In conclusion we have obtained the following lemma.
Lemma 2.17. Let v ∈ ZT be the solution of (1.34). We have

∥∥(uh − v)(T )
∥∥2

L2(Ω)
+

∫ T

0

a
[
(uh − v)(t)] dt ≤ 3|Δt|2

∫ T

0

a
[
∂suh(s)] ds.(2.114)

Combining Lemma 2.3 with Lemma 2.17 we obtain Theorem 1.6.
Time-dependent medium. Observe that

∂t(un+1 − vn+1) = ∂tF (∇F )−1∇(un+1 − vn+1).

It follows after writing ∂tF = div a∇F , integration by parts, and using the change of
variables y = F (x, t) in (2.106) that

1

2

∣∣(un+1 − vn+1)(tn+1)
∣∣2
L2(Ω)

+

∫ tn+1

tn

a
[
(un+1 − vn+1)(t)] dt

≤ 1

2

∣∣(un − vn)(tn)
∣∣2
L2(Ω)

− 2

∫ tn+1

tn

a
[
(un+1 − vn+1)(t), (uh − un+1)(t)

]
dt

−
∑
i,j

∫ tn+1

tn

∫
Ω

(ûh − ûn+1)Qi,j∂i∂j(ûn+1 − v̂n+1) dt dy.

(2.115)

Hence using the Minkowski inequality we obtain that

∣∣(un+1 − vn+1)(tn+1)
∣∣2
L2(Ω)

+

∫ tn+1

tn

a
[
(un+1 − vn+1)(t)] dt

≤
∣∣(un − vn)(tn)

∣∣2
L2(Ω)

+ 4

∫ tn+1

tn

a
[
(uh − un+1)(t)

]
dt

− 2
∑
i,j

∫ tn+1

tn

∫
Ω

(ûh − ûn+1)Qi,j∂i∂j(ûn+1 − v̂n+1) dt dy.

(2.116)
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28 HOUMAN OWHADI AND LEI ZHANG

Using the Minkowski inequality we obtain that∣∣∣∣∣
∑
i,j

∫ tn+1

tn

∫
Ω

(ûh − ûn+1)Qi,j∂i∂j(ûn+1 − v̂n+1) dt dy

∣∣∣∣∣
≤ CAn

2

∫ tn+1

tn

∫
Ω

|ûh − ûn+1|2 dt dy

+
λmax(Q)

CA

∫ tn+1

tn

∑
i,j

∫
Ω

|∂i∂j(ûn+1 − v̂n+1)|2 dt dy.

(2.117)

Using the inverse inequality (1.22) and the change of variable y = F (x) we obtain
that ∫ tn+1

tn

∑
i,j

∫
Ω

|∂i∂j(ûn+1 − v̂n+1)|2 dt dy ≤ CX

h2λmin(Q)∫ tn+1

tn

a
[
(un+1 − vn+1)(t)] dt.

(2.118)

In resume, choosing CA = 4CXλmax(Q)
h2λmin(Q) we have obtained that

∣∣(un+1 − vn+1)(tn+1)
∣∣2
L2(Ω)

+ 0.5

∫ tn+1

tn

a
[
(un+1 − vn+1)(t)] dt

≤
∣∣(un − vn)(tn)

∣∣2
L2(Ω)

+ 8

∫ tn+1

tn

a
[
(uh − un+1)(t)

]
dt

+
8CXλmax(Q)

h2λmin(Q)
n2

∫ tn+1

tn

∫
Ω

|ûh − ûn+1|2 dt dy.

(2.119)

A computation similar to the one leading to (2.109) gives us

∣∣(un+1 − vn+1)(tn+1)
∣∣2
L2(Ω)

+
1

4

∫ tn+1

tn

a
[
(uh − vn+1)(t)] dt

≤
∣∣(un − vn)(tn)

∣∣2
L2(Ω)

+ 9

∫ tn+1

tn

a
[
(uh − un+1)(t)

]
dt

+
8CXλmax(Q)

h2λmin(Q)
n2

∫ tn+1

tn

∫
Ω

|ûh − ûn+1|2 dt dy.

(2.120)

Moreover using the change of variables F (x) = y and the inverse inequality (1.23) we
obtain that∫ tn+1

tn

a
[
(uh − un+1)(t)

]
dt ≤ CXλmax(Q)

h2

∫ tn+1

tn

∫
Ω

|ûh − ûn+1|2 dt dy.(2.121)

Let us also observe that∫ tn+1

tn

∫
Ω

|ûh − ûn+1|2 dt dy ≤ |Δt|2
∫ tn+1

tn

∫
Ω

|∂tûh|2 dt dy.(2.122)D
ow

nl
oa

de
d 

07
/1

9/
17

 to
 1

31
.2

15
.2

48
.1

12
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HOMOGENIZATION OF PARABOLIC EQUATIONS 29

It follows that

∣∣(un+1 − vn+1)(tn+1)
∣∣2
L2(Ω)

+
1

4

∫ tn+1

tn

a
[
(uh − vn+1)(t)] dt

≤
∣∣(un − vn)(tn)

∣∣2
L2(Ω)

+ CB
|Δt|2
h2

∫ tn+1

tn

∫
Ω

|∂tûh|2 dt dy,
(2.123)

with

CB = CnCXλmax(Q)

(
1 +

1

λmin(Q)

)
.(2.124)

We deduce that

∥∥(uh − v)(T )
∥∥2

L2(Ω)
+

1

4

∫ T

0

a
[
(uh − v)(t)] dt ≤ CB

|Δt|2
h2

∫
ΩT

|∂tûh|2 dt dy.(2.125)

Using Lemma 2.4 to control CB and combining (2.125) with Theorem 1.2 we obtain
Theorem 1.7.

3. Numerical experiments. The purpose of this section is to give several il-
lustrations of the implementation and performance of the numerical method. The
computational domain is the unit square in dimension two. Equation (1.1) is solved
on a fine tessellation characterized by 16129 interior nodes (degrees of freedom).

Three different coarse tessellations with 9, 49, and 225 degrees of freedoms are
considered.

The parabolic operator associated to (1.1) has been homogenized onto these coarse
meshes using the method presented in subsection 1.3. We have chosen splines to be
the space Xh in subsection 1.2.

3.1. Time-independent examples.
Example 3.1 (time-independent site percolation). In this example we consider the

site-percolating medium. a is set to be equal to 1 or 100 with probability 1/2 on each
triangle of a fine mesh. (1.1) has been solved with g = 1 and g = sin(2.4x−1.8y+2πt).
Figure 3.1 shows u computed on 16641 interior nodes and uh computed on 9 interior
nodes in the case g = 1 at time 1. The fine mesh and coarse mesh errors are given in
Table 3.1.

(a) u. (b) uh.

Fig. 3.1. u computed on 16641 interior nodes and uh computed on 9 interior nodes.
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Table 3.1

Experiment dof L1 L∞ L2 H1

Coarse mesh error. 9 0.0142 0.0389 0.0168 0.0366
Time-independent percolation 49 0.0077 0.0450 0.0101 0.0482

with g = 1. 225 0.0035 0.0228 0.0060 0.0293

Fine mesh error. 9 0.0196 0.0843 0.0251 0.1193
Time-independent percolation 49 0.0136 0.0698 0.0184 0.1028

with g = 1. 225 0.0040 0.0243 0.0070 0.0485

Coarse mesh error. 9 0.0236 0.0569 0.0262 0.0477
Time-independent percolation 49 0.0181 0.0571 0.0215 0.0558

with g = sin(2.4x− 1.8y + 2πt). 225 0.0119 0.0774 0.0167 0.0939

Fine mesh error. 9 0.0424 0.1099 0.0512 0.1712
Time-independent percolation 49 0.0277 0.0985 0.0348 0.1451

with g = sin(2.4x− 1.8y + 2πt). 225 0.0174 0.0886 0.0242 0.1192

Coarse mesh error. Multiscale 9 0.0018 0.0045 0.0019 0.0039
trigonometric time-dependent. g = 1. 49 0.0012 0.0054 0.0015 0.0060

Fine mesh error. Multiscale 9 0.0031 0.0096 0.0034 0.0242
trigonometric time-dependent. g = 1. 49 0.0014 0.0059 0.0016 0.0166

Coarse mesh error. Multiscale trigonometric 9 0.0043 0.0087 0.0044 0.0085
time-dependent. g = sin(2.4x− 1.8y + 2πt). 49 0.0033 0.0079 0.0035 0.0084

Fine mesh error. Multiscale trigonometric 9 0.0082 0.0199 0.0087 0.0379
time-dependent medium. g = sin(2.4x− 1.8y + 2πt). 49 0.0038 0.0104 0.0040 0.0244

Coarse mesh error. 9 0.0046 0.0074 0.0052 0.0065
Time-dependent random fractal. 49 0.0036 0.0046 0.0036 0.0059

Fine mesh error. 9 0.0039 0.0082 0.0043 0.0222
Time-dependent random fractal. 49 0.0033 0.0054 0.0034 0.0168

3.2. Time-dependent examples. In the following examples we consider media
characterized by a continuum of time scales.

Example 3.2 (Time-dependent multiscale trigonometric). In this example a is
given by (1.20). Although the number of fine time steps to solve (1.1) is 2663, only
134 coarse time steps have been used to solve the homogenized equation. Hence if
one also takes into account homogenization in space, the compression factor is of the
order of 35000 for the coarse mesh with 9 interior nodes.

Figure 3.2 shows the curves of t → a(x0, t) and t → F (x0, t) for a given x0 ∈ Ω
and the coarse and fine mesh relative to L2 and H1 errors with respect to time. The
initial increase of the relative error is due to the initial value u(x, 0) ≡ 0.

The coarse and fine meshes errors at t = 0.1 are given in Table 3.1 for g = 1. The
errors at t = 0.1 are given for g = sin(2.4x− 1.8y + 2πt).

Example 3.3 (Time-dependent random fractal). In this case, a is given by a
product of discontinuous functions oscillating randomly at different scales: a(x, t) =
a1(x, t)a2(x, t) . . . an(x, t) and ai(x, t) = cpq for x ∈ [ p

2i ,
p+1
2i ) × [ q

2i ,
q+1
2i ) in the time

interval 0.1× [ k
4i ,

k+1
4i ). cpq is uniformly random in [ 1

γ , γ], n = 6, and γ = 0.7. In this

example, we have λmax(a)
λmin(a) = 160.3295. The number of fine time steps is 3482, and the

number of coarse time steps is 175.
a and the map (F1, F2) are drawn in Figure 3.3. L2 and H1 errors are given in

Figure 3.4. Coarse and fine mesh errors at t = 0.1 are given in Table 3.1. We have
chosen g = 1 in this numerical experiment, and one obtains similar results by choosing
g = sin(2.4x− 1.8y + 2πt).
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(c) Coarse mesh L2 error.
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(d) Fine Mesh L2 error.
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(e) Coarse Mesh H1 error.
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(f) Fine Mesh H1 error.

Fig. 3.2. Multiscale time-dependent trigonometric medium.
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(a) a at t = 0.
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(b) (F1, F2) at t = 0.

(c) a at t = 0.1.
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(d) (F1, F2) at t = 0.1.

Fig. 3.3. a and (F1, F2) at time t = 0, t = 0.1 for the time-dependent random fractal medium.
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(a) coarse mesh L2 error.
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(b) Fine Mesh L2 error.
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(c) coarse Mesh H1 error.
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(d) fine Mesh H1 error.

Fig. 3.4. Time-dependent random fractal medium at t = 0.1.
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