The worst case approach to UQ Houman Owhadi

"The gods to-day stand friendly, that we may, Lovers of peace, lead on our days to age! But, since the affairs of men rests still uncertain, Let's reason with the worst that may befall."

Julius Caesar, Act 5, Scene 1
William Shakespeare (1564-1616)

You want to certify that

$$
\mathbb{P}[G(X) \geq a] \leq \epsilon
$$

Problem

- You don't know G.
 and
 - You don't know \mathbb{P}

You want to certify that

$$
\mathbb{P}[G(X) \geq a] \leq \epsilon
$$

Problem

- You don't know G.
and
- You don't know \mathbb{P}

You only know

$$
\mathcal{A} \subset\left\{\begin{array}{l|l}
(f, \mu) & \begin{array}{l}
f: \mathcal{X} \rightarrow \mathbb{R}, \\
\mu \in \mathcal{P}(\mathcal{X})
\end{array}
\end{array}\right\}
$$

Compute Worst and best case

optimal bounds $\mathbb{P}[G(X) \geq a]$
given available information.

$$
\mathcal{L}(\mathcal{A}):=\inf _{(f, \mu) \in \mathcal{A}} \mu[f(X) \geq a]
$$

$$
\mathcal{L}(\mathcal{A}) \leq \mathbb{P}[G(X) \geq a] \leq \mathcal{U}(\mathcal{A})
$$

$$
\begin{aligned}
& \mathcal{U}(\mathcal{A}) \leq \epsilon: \text { Safe even in worst case. } \\
& \epsilon<\mathcal{L}(\mathcal{A}): \text { Unsafe even in best case. } \\
& \mathcal{L}(\mathcal{A}) \leq \epsilon<\mathcal{U}(\mathcal{A}): \text { Cannot decide. } \\
& \quad \text { Unsafe due to lack of information. }
\end{aligned}
$$

Optimal Uncertainty Quantification

H. Owhadi, C. Scovel, T. J. Sullivan, M. McKerns, and M. Ortiz. Optimal Uncertainty Quantification. SIAM Review, 55(2):271-345, 2013.

Robust Optimization

A. Ben-Tal, L. El Ghaoui, and A.Nemirovski. Robust optimization. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ, 2009
D. Bertsimas, D. B. Brown, and C. Caramanis. Theory and applications of robust optimization. SIAM Rev., 53(3):464-501, 2011
A. Ben-Tal and A. Nemirovski. Robust convex optimization. Math. Oper. Res., 23(4):769-805, 1998
I. Elishakoff and M. Ohsaki. Optimization and Anti-Optimization of Structures Under Uncertainty. World Scientific, London, 2010.

Global Sensitivity Analysis

Saltelli, A.; Ratto, M.; Andres, T.; Campolongo, F.; Cariboni, J.; Gatelli, D.; Saisana, M.; Tarantola, S. (2008). Global Sensitivity Analysis: The Primer. John Wiley \& Sons.

Set based design in the aerospace industry

Bernstein JI (1998) Design methods in the aerospace industry: looking for evidence of set-based practices.
Master's thesis. Massachusetts Institute of Technology, Cambridge, MA.

Set based design/analysis

Bernstein, J. I., 1998, Design Methods in the Aerospace Industry: Looking for Evidence of SetBased Practices, Master of Science Thesis, Massachusetts Institute of Technology, 1998.

David J. Singer, PhD., Captain Norbert Doerry, PhD., and Michael E. Buckley," What is Set-Based Design? ," Presented at ASNE DAY 2009, National Harbor, MD., April 8-9, 2009. Also published in ASNE Naval Engineers Journal, 2009 Vol 121 No 4, pp. 31-43.
B. Rustem and Howe M. Algorithms for Worst-Case Design and Applications to Risk Management. Princeton University Press, Princeton, 2002.

$\sup \mu[f(X) \geq a]$ $(f, \mu) \in \mathcal{A}$

Optimization problems are a priori infinite dimensional, non-convex and highly constrained but as in linear programming, under general conditions, they can be reduced to finite dimensional families of extremal scenarios of \mathcal{A} and the dimension of the reduced problem is proportional to the number of probabilistic inequalities describing \mathcal{A}

You are given one pound of playdoh, how much mass can you put above a while keeping the seesaw balanced around m ?

P. L. Chebyshev 1821-1894

A. A. Markov 1856-1922

M. G. Krein 1907-1989

\section*{Answer
 | m |
| :--- |
| a |}

What is the least upper bound on $\mathbb{P}[X \geq a]$ if all that you know is that \mathbb{P} is an unknown distribution on $[0,1]$ having mean less than m

$$
\begin{aligned}
& 0 \quad \frac{m}{} \quad a \quad 1 \\
& \mathcal{A}=\left\{\mu \in \mathcal{M}([0,1]) \mid \mathbb{E}_{\mu}[X] \leq m\right\}
\end{aligned}
$$

Markov's inequality

Answer

$$
\sup _{\mu \in \mathcal{A}} \mu[X \geq a]=\frac{m}{a}
$$

$$
\sup _{(f, \mu) \in \mathcal{A}} \mu[f(X) \geq a]
$$

Can be considered as a generalization of classical Chebyshev inequalities

History of classical inequalities

S. Karlin and W. J. Studden. Tchebycheff Systems: With Applications in Analysis and Statistics. Pure and Applied Mathematics, Vol. XV. Interscience Publishers John Wiley \& Sons, New York-London-Sydney, 1966.

Classical Markov-Krein theorem and classical works of Krein, Markov and Chebyshev
M. G. Krein. The ideas of P. L. Cebysev and A. A. Markov in the theory of limiting values of integrals and their further development. In E. B. Dynkin, editor, Eleven papers on Analysis, Probability, and Topology, American Mathematical Society Translations, Series 2, Volume 12, pages 1-122. American Mathematical Society, New York, 1959.

Theory of majorization

A. W. Marshall and I. Olkin. Inequalities: Theory of Majorization and its Applications, volume 143 of Mathematics in Science and Engineering. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1979

Connections between Chebyshev inequalities and optimization theory

H. J. Godwin. On generalizations of Tchebychef's inequality. J. Amer. Statist. Assoc., 50(271):923-945, 1955.
K. Isii. On a method for generalizations of Tchebycheff's inequality. Ann. Inst. Statist. Math. Tokyo, 10(2):65-88, 1959.
K. Isii. On sharpness of Tchebycheff-type inequalities. Ann. Inst. Statist. Math., 14(1):185-197, 1962/1963.
K. Isii. The extrema of probability determined by generalized moments. I. Bounded random variables. Ann. Inst. Statist. Math., 12(2):119-134; errata, 280, 1960.
I. Olkin and J. W. Pratt. A multivariate Tchebycheff inequality. Ann. Math. Statist, 29(1):226-234, 1958.
A. W. Marshall and I. Olkin. Multivariate Chebyshev inequalities. Ann. Math. Statist., 31(4):1001-1014, 1960.
A. W. Marshall and I. Olkin. Inequalities: Theory of Majorization and its Applications, volume 143 of Mathematics in Science and Engineering. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1979

Connection between Chebyshev inequalities and optimization theory

E. B. Dynkin. Sufficient statistics and extreme points. Ann. Prob., 6(5):705-730, 1978.
A. F. Karr. Extreme points of certain sets of probability measures, with applications. Math. Oper. Res., 8(1):74-85, 1983.
H. Joe. Majorization, randomness and dependence for multivariate distributions.

Ann. Probab., 15(3):1217-1225, 1987.
J. E. Smith. Generalized Chebychev inequalities: theory and applications in decision analysis. Oper. Res., 43(5):807-825, 1995.
D. Bertsimas and I. Popescu. Optimal inequalities in probability theory: a convex optimization approach. SIAM J. Optim., 15(3):780-804 (electronic), 2005.
L. Vandenberghe, S. Boyd, and K. Comanor. Generalized Chebyshev bounds via semidefinite programming. SIAM Rev., 49(1):52-64 (electronic), 2007

Stochastic linear programming and Stochastic Optimization

G. B. Dantzig. Linear programming under uncertainty. Management Sci., 1:197206, 1955.
A. Madansky. Bounds on the expectation of a convex function of a multivariate random variable. The Annals of Mathematical Statistics, pages 743-746, 1959
A. Madansky. Inequalities for stochastic linear programming problems. Management science, 6(2):197-204, 1960.
J. Zjackovja. On minimax solutions of stochastic linear programming problems. Casopis Pest. Mat., 91:423-430, 1966.
C. C. Huang, W. T. Ziemba, and A. Ben-Tal. Bounds on the expectation of a convex function of a random variable: With applications to stochastic programming. Operations Research, 25(2):315-325, 1977.
P. Kall. Stochastric programming with recourse: upper bounds and moment problems: a review. Mathematical research, 45:86-103, 1988
Y. Ermoliev, A. Gaivoronski, and C. Nedeva. Stochastic optimization problems with incomplete information on distribution functions. SIAM Journal on Control and Optimization, 23(5):697-716, 1985
J. R. Birge and R. J.-B. Wets. Designing approximation schemes for stochastic optimization problems, in particular for stochastic programs with recourse. Math. Prog. Stud., 27:54-102, 1986

Chance constrained/distributionally robust optimization

A. A. Gaivoronski. A numerical method for solving stochastic programming problems with moment constraints on a distribution function. Annals of Operations Research, 31(1):347-369, 1991.
R. I. Bot N. Lorenz, and G. Wanka. Duality for linear chance-constrained optimization problems. J. Korean Math. Soc., 47(1):17-28, 2010.
J. Goh and M. Sim. Distributionally robust optimization and its tractable approximations. Oper. Res., 58(4, part 1):902-917, 2010
S. Zymler, D. Kuhn, and B. Rustem. Distributionally robust joint chance constraints with second-order moment information. Math. Program., 137(1-2, Ser.A):167-198, 2013.
$\mathrm{L} . \mathrm{Xu}, \mathrm{B} . \mathrm{Yu}$, and W. Liu. The distributionally robust optimization reformulation for stochastic complementarity problems. Abstr. Appl. Anal., pages 7, 2014.
W. Wiesemann, D. Kuhn, and M. Sim. Distributionally robust convex optimization. Oper. Res., 62(6):1358-1376, 2014.
G. A. Hanasusanto, V. Roitch, D. Kuhn, and W. Wiesemann. A distributionally robust perspective on uncertainty quantification and chance constrained programming. Mathematical Programming, 151(1):35-62, 2015

Value at Risk

Artzner, P.; Delbaen, F.; Eber, J. M.; Heath, D. (1999). Coherent Measures of Risk.
Mathematical Finance 9 (3): 203.
W. Chen, M. Sim, J. Sun, and C.-P. Teo. From CVaR to uncertainty set: implications in joint chance-constrained optimization. Oper. Res., 58(2):470-485, 2010.

Optimal Uncertainty Quantification

H. Owhadi, C. Scovel, T. J. Sullivan, M. McKerns, and M. Ortiz.

Optimal Uncertainty Quantification. SIAM Review, 55(2):271-345, 2013.
T. J. Sullivan, M. McKerns, D. Meyer, F. Theil, H. Owhadi, and M. Ortiz. Optimal uncertainty quantification for legacy data observations of Lipschitz functions. ESAIM Math. Model. Numer. Anal., 47(6):1657-1689, 2013.
S. Han, U. Topcu, M. Tao, H. Owhadi, and R. Murray. Convex optimal uncertainty quantification: Algorithms and a case study in energy storage placement for power grids. In American Control Conference (ACC), 2013, pages 1130-1137. IEEE, 2013
S. Han, M. Tao, U. Topcu, H. Owhadi, and R. M. Murray. Convex optimal uncertainty quantification. SIAM Journal on Optimization, 25(23):1368-1387, 2015.

J Chen, MD Flood, R Sowers. Measuring the Unmeasurable: An Application of Uncertainty Quantification to Financial Portfolios, OFR WP, 2015

L Ming, W Chenglin. An improved algorithm for convex optimal uncertainty quantification with polytopic canonical form. Control Conference (CCC), 2015
H. Owhadi, C. Scovel and T. Sullivan. Brittleness of Bayesian Inference under Finite Information in a Continuous World. Electronic Journal of Statistics, vol 9, pp 1-79, 2015. arXiv:1304.6772
H. Owhadi and Clint Scovel. Extreme points of a ball about a measure with finite support (2015). arXiv:1504.06745

Our proof relies on

- Winkler (1988, Extreme points of moment sets)
- Follows from an extension of Choquet theory (Phelps 2001, lectures on Choquet's theorem) by Von Weizsacker \& Winkler (1979, Integral representation in the set of solutions of a generalized moment problem)
- Kendall (1962, Simplexes \& Vector lattices)
G. Winkler. On the integral representation in convex noncompact sets of tight measures. Mathematische Zeitschrift, 158(1):71-77, 1978
G. Winkler. Extreme points of moment sets. Math. Oper. Res., 13(4):581-587, 1988.
H. von Weizsacker and G. Winkler. Integral representation in the set of solutions of a generalized moment problem. Math. Ann., 246(1):23-32, 1979/80.
D. G. Kendall. Simplexes and vector lattices. J. London Math. Soc., 37(1):365-371, 1962.
H. Owhadi, C. Scovel, T. J. Sullivan, M. McKerns, and M. Ortiz.

Optimal Uncertainty Quantification. SIAM Review, 55(2):271-345, 2013.

$$
\mathcal{A}=\left\{\begin{array}{l|l}
(f, \mu) & \begin{array}{c}
f: \mathcal{X}_{1} \times \cdots \times \mathcal{X}_{m} \rightarrow \mathbb{R}, \\
\mu=\mu_{1} \otimes \cdots \otimes \mu_{m}, \\
\mathcal{G}(f, \mu) \leq 0
\end{array}
\end{array}\right\}
$$

$\mathcal{G}(f, \mu) \leq 0 \Leftrightarrow \begin{cases}n^{\prime} \text { generalized moment constraints on } \mu, & \mathbb{E}_{\mu}\left[\varphi_{j}^{f}\right] \leq 0 \\ n_{k} \text { generalized moment constraints on } \mu_{k}, & \mathbb{E}_{\mu_{k}}\left[\psi_{k, j}^{f}\right] \leq 0\end{cases}$

Theorem
$\sup _{(f, \mu) \in \mathcal{A}} \mathbb{E}_{\mu}\left[q_{f}\right]=\sup _{(f, \mu) \in \mathcal{A}_{\Delta}} \mathbb{E}_{\mu}\left[q_{f}\right]$

$$
\mathcal{A}_{\Delta}=\left\{\begin{array}{l|l}
(f, \mu) \in \mathcal{A} & \begin{array}{c}
\mu_{k} \text { is a sum of at most } \\
n^{\prime}+n_{k}+1 \text { weighted } \\
\text { Dirac measures on } \chi_{k}
\end{array}
\end{array}\right\}
$$

Further Reduction of optimization variables

$$
\begin{gathered}
\{f: \mathcal{X} \rightarrow \mathbb{R}, \mu \in \mathcal{P}(\mathcal{X})\} \\
\left\{f: \mathcal{X} \rightarrow \mathbb{R}, \mu \in \mathcal{P}(\mathcal{X}) \mid \mu=\sum_{i=1}^{k} \alpha_{k} \delta_{x_{k}}\right\} \\
\{f:\{1,2, \ldots, n\} \rightarrow \mathbb{R}, \mu \in \mathcal{P}(\{1,2, \ldots, n\})\} \\
\{\{1,2, \ldots, q\}, \mu \in \mathcal{P}(\{1,2, \ldots, n\})\}
\end{gathered}
$$

Another example: Optimal concentration inequality

H. Owhadi, C. Scovel, T. J. Sullivan, M. McKerns, and M. Ortiz.

Optimal Uncertainty Quantification. SIAM Review, 55(2):271-345, 2013.

$$
\mathcal{A}_{M D}:=\left\{\begin{array}{l|c}
(f, \mu) & \begin{array}{c}
f: \mathcal{X}_{1} \times \cdots \times \mathcal{X}_{m} \rightarrow \mathbb{R}, \\
\mu \in \mathcal{M}\left(\mathcal{X}_{1}\right) \otimes \cdots \otimes \mathcal{M}\left(\mathcal{X}_{m}\right), \\
\mathbb{E}_{\mu}[f] \leq 0, \\
\operatorname{Osc}_{i}(f) \leq D_{i}
\end{array}
\end{array}\right\}
$$

$$
\operatorname{Osc}_{i}(f):=\sup _{\left(x_{1}, \ldots, x_{m}\right) \in \mathcal{X}} \sup _{x_{i}^{\prime} \in \mathcal{X}_{i}}\left(f\left(\ldots, x_{i}, \ldots\right)-f\left(\ldots, x_{i}^{\prime}, \ldots\right)\right) .
$$

$$
\mathcal{U}\left(\mathcal{A}_{M D}\right):=\quad \sup \quad \mu[f(X) \geq a]
$$

$$
(f, \mu) \in \mathcal{A}_{M D}
$$

McDiarmid inequality's

$$
\mathcal{U}\left(\mathcal{A}_{M D}\right) \leq \exp \left(-2 \frac{a^{2}}{\sum_{i=1}^{m} D_{i}^{2}}\right)
$$

Reduction of optimization variables

$$
\begin{aligned}
& \mathcal{A}_{\mathcal{C}}:=\left\{(C, \alpha) \left\lvert\, \begin{array}{c}
C \subset\{0,1\}^{m}, \\
\alpha \in \otimes_{i=1}^{m} \mathcal{M}(\{0,1\}), \\
\mathbb{E}_{\alpha}\left[h^{C}\right] \leq 0
\end{array}\right.\right\} \\
& h^{C}:\{0,1\}^{m} \longrightarrow \mathbb{R} \\
& t \longrightarrow a-\min _{s \in C} \sum_{i: s_{i} \neq t_{i}} D_{i} \\
& \mathcal{U}\left(\mathcal{A}_{\mathcal{C}}\right):=\sup _{(C, \alpha) \in \mathcal{A}_{\mathcal{C}}} \alpha\left[h^{C} \geq a\right]
\end{aligned}
$$

Theorem

$$
\mathcal{U}\left(\mathcal{A}_{M D}\right)=\mathcal{U}\left(\mathcal{A}_{\mathcal{C}}\right)
$$

Explicit Solution $\mathbf{m}=\mathbf{2}$

Theorem $\quad m=2$
$\mathcal{U}\left(\mathcal{A}_{M D}\right)=\left\{\begin{array}{lll}0 & \text { if } & D_{1}+D_{2} \leq a \\ \frac{\left(D_{1}+D_{2}-a\right)^{2}}{4 D_{1} D_{2}} & \text { if } & \left|D_{1}-D_{2}\right| \leq a \leq D_{1}+D_{2} \\ 1-\frac{a}{\max \left(D_{1}, D_{2}\right)} & \text { if } & 0 \leq a \leq\left|D_{1}-D_{2}\right| \\ \hline\end{array}\right.$

$$
C=\{(1,1)\}
$$

$$
h^{C}(s)=a-\left(1-s_{1}\right) D_{1}-\left(1-s_{2}\right) D_{2}
$$

Explicit Solution $\mathbf{m}=\mathbf{2}$

Theorem $\quad m=2$
$\mathcal{U}\left(\mathcal{A}_{M D}\right)=\left\{\begin{array}{lll}0 & \text { if } & D_{1}+D_{2} \leq a \\ \frac{\left(D_{1}+D_{2}-a\right)^{2}}{4 D_{1} D_{2}} & \text { if } & \left|D_{1}-D_{2}\right| \leq a \leq D_{1}+D_{2} \\ 1-\frac{a}{\max \left(D_{1}, D_{2}\right)} & \text { if } & 0 \leq a \leq\left|D_{1}-D_{2}\right| \\ \hline\end{array}\right.$

Corollary If $D_{1} \geq a+D_{2}$, then

$$
\mathcal{U}\left(\mathcal{A}_{M D}\right)\left(a, D_{1}, D_{2}\right)=\mathcal{U}\left(\mathcal{A}_{M D}\right)\left(a, D_{1}, 0\right)
$$

Each piece of information is a constraint on an optimization problem.

Optimization concepts (binding, active) transfer to UQ concepts

Optimal Hoeffding= Optimal McDiarmid for m=2

$$
\mathcal{A}_{M D}:=\left\{\begin{array}{c|c}
& (f, \mu) \left\lvert\, \begin{array}{c}
f: \mathcal{X}_{1} \times \cdots \times \mathcal{X}_{m} \rightarrow \mathbb{R} \\
\mu \in \mathcal{M}\left(\mathcal{X}_{1}\right) \otimes \cdots \otimes \mathcal{M}\left(\mathcal{X}_{m}\right) \\
\mathbb{E}_{\mu}[f] \leq 0 \\
\operatorname{Osc}_{i}(f) \leq D_{i}
\end{array}\right.
\end{array}\right.
$$

$\mathcal{U}\left(\mathcal{A}_{\mathrm{MD}}\right)=\mathcal{U}\left(\mathcal{A}_{\mathrm{Hfd}}\right)$

$\mathcal{A}_{\mathrm{Hfd}}:=\left\{\begin{array}{l|l}(f, \mu) & \left.\begin{array}{c}f=X_{1}+\cdots+X_{m} \\ \mu \in \bigotimes_{i=1}^{m} \mathcal{M}\left(\left[b_{i}-D_{i}, b_{i}\right]\right.\end{array}\right) \\ \mathbb{E}_{\mu}[f] \leq 0\end{array}\right\}$

Explicit Solution $\mathbf{m}=3$

Theorem $\quad m=3$

Seismic Safety Assessment of a Truss Structure

We want to certify that

$$
\mathbb{P}[F(a) \leq 0] \leq \epsilon
$$

Power Spectrum

Power Spectrum

Power Spectrum

Filtered White Noise Model

White noise

I

Filter

Ground acceleration

N. Lama, J. Wilsona, and G. Hutchinsona.

Generation of synthetic earthquake accelograms using seismological modeling: a review. Journal of Earthquake Engineering, 4(3):321-354, 2000.

Identification of the weakest elements

H. Owhadi, C. Scovel, T. J. Sullivan, M. McKerns, and M. Ortiz. Optimal Uncertainty Quantification. SIAM Review, 55(2):271-345, 2013.

Caltech Small Particle Hypervelocity Impact Range

(h, α, v)

Plate thickness

$G(h, \alpha, v)$
Perforation area

Plate Obliquity
We want to certify that
Projectile velocity

$$
\mathbb{P}[G=0] \leq \epsilon
$$

Problem
We don't know G nor \mathbb{P}.

What do we know?

Plate thickness $h \in \mathcal{X}_{1}:=[1.524,2.667] \mathrm{mm}$,
Plate Obliquity $\alpha \in \mathcal{X}_{2}:=\left[0, \frac{\pi}{6}\right]$,
Projectile velocity $v \in \mathcal{X}_{3}:=[2.1,2.8] \mathrm{km} \cdot \mathrm{s}^{-1}$.
Thickness, obliquity, velocity: independent random variables
Mean perforation area: in between 5.5 and $7.5 \mathrm{~mm}^{\wedge} 2$

$$
m_{1} \leq \mathbb{E}[G] \leq m_{2}
$$

Bounds on the sensitivity of the response function w.r. to each variable

$$
\mathrm{Osc}_{i} G \leq D_{i}
$$

$\mathrm{Osc}_{i} G:=\sup \left\{\left|G(x)-G\left(x^{\prime}\right)\right| \mid x_{j}=x_{j}^{\prime}\right.$ for $\left.j \neq i\right\}$

We only know

Worst case bound

$$
\mathbb{P}[G \leq 0] \leq \mathcal{U}(\mathcal{A}):=\sup _{(f, \mu) \in \mathcal{A}} \mu[f(X) \leq 0]
$$

Reduction calculus

$$
\mathcal{U}(\mathcal{A})=43.7 \%
$$

What if we know the response function?

What if we know $G=H$?

Deterministic surrogate model for the perforation area (in mm^2)

$$
H(h, \alpha, v)=K\left(\frac{h}{D_{\mathrm{p}}}\right)^{p}(\cos \alpha)^{u}\left(\tanh \left(\frac{v}{v_{\mathrm{bl}}}-1\right)\right)_{+}^{m}
$$

Optimal bound on the probability of non perforation

$$
\begin{array}{r}
\mathcal{U}(\mathcal{A}):=\sup _{(f, \mu) \in \mathcal{A}} \mu[f(X) \leq 0] \\
\mathcal{A}:=\left\{(f, \mu) \left\lvert\, \begin{array}{c}
\mu=\mu_{1} \otimes \mu_{2} \otimes \mu_{3}, \\
5.5 m^{2} \leq \mathbb{E}_{\mu}[f] \leq 7.5 m^{2}, \\
f=H
\end{array}\right.\right\}
\end{array}
$$

Application of the reduction calculus

$$
\mathcal{U}(\mathcal{A})=\mathcal{U}\left(\mathcal{A}_{\Delta}\right)
$$

$\mathcal{A}_{\Delta}:=\left\{(f, \mu) \in \mathcal{A} \mid \mu_{k}\right.$ has support at only 2 points $\}$
The measure of probability can be reduced to the tensorization of
2 Dirac masses on thickness, obliquity and velocity

$$
\mathcal{U}(\mathcal{A}) \stackrel{\mathrm{num}}{=} 37.9 \%
$$

The optimization variables can be reduced to the tensorization of 2 Dirac masses on thickness, obliquity and velocity

Support Points at iteration 0

Numerical optimization

Support Points at iteration 150

Numerical optimization

Support Points at iteration 200

Velocity and obliquity marginals each collapse to a single Dirac mass. The plate thickness marginal collapses to have support on the extremes of its range.

Iteration
1000

Probability non-perforation maximized by distribution supported on minimal, not maximal, impact obliquity. Dirac on velocity at a non extreme value.

Important observations

Extremizers are singular

They identify key players i.e. vulnerabilities of the physical system

Extremizers are attractors

Initialization with 3 support points per marginal

Support Points at iteration 0

Initialization with 3 support points per marginal

Support Points at iteration 500

Initialization with 3 support points per marginal

Support Points at iteration 1000

Initialization with 3 support points per marginal

Support Points at iteration 2155

Initialization with 5 support points per marginal

Support Points at iteration 0

Initialization with 5 support points per marginal

Support Points at iteration 1000

Initialization with 5 support points per marginal

Support Points at iteration 3000

Initialization with 5 support points per marginal

Support Points at iteration 7100

Unknown response function G + Legacy data

Objective

We want least upper bound on $\mathbb{P}[G(h, \alpha, v) \leq \theta]$
Constraints on input variables
$h, \alpha, v:$ independent
$(h, \alpha, v) \in[0.062,0.125]$ in $\times[0,30] \operatorname{deg} \times[2300,3200] \mathrm{m} /$

Constraint on the mean perf. area
$\mathbb{E}[G(h, \alpha, v)] \geq 11.0 \mathrm{~mm}^{2}$

Modified Lipschitz continuity constraints on response function

$$
\begin{aligned}
& \left|G(h, \alpha, v)-G\left(h^{\prime}, \alpha^{\prime}, v^{\prime}\right)\right| \leq d_{L}\left((h, \alpha, v),\left(h^{\prime}, \alpha^{\prime}, v^{\prime}\right)\right)+T \\
& d_{L}\left((h, \alpha, v),\left(h^{\prime}, \alpha^{\prime}, v^{\prime}\right)\right):=L_{h}\left|h-h^{\prime}\right|+L_{\alpha}\left|\alpha-\alpha^{\prime}\right|+L_{v}\left|v-v^{\prime}\right| \\
& L:=\left(L_{h}, L_{\alpha}, L_{v}\right), \quad T:=1.0 \mathrm{~mm}^{2} \\
& L_{h}:=175.0 \mathrm{~mm}^{2} / \mathrm{in}, \quad L_{\alpha}:=0.075 \mathrm{~mm}^{2} / \mathrm{deg}, \quad L_{v}:=0.1 \mathrm{~mm}^{2} /(\mathrm{m} / \mathrm{s})
\end{aligned}
$$

Legacy Data

32 data points

(steel-on-aluminium shots A48-A81) from summer 2010 at Caltech's SPHIR facility:

These constrain the value of G at 32 points

T. J. Sullivan, M. McKerns, D. Meyer, F. Theil, H. Owhadi, and M. Ortiz. Optimal uncertainty quantification for legacy data observations of Lipschitz functions. ESAIM Math. Model. Numer. Anal., 47(6):1657-1689, 2013.

ID	h (inches)	α $($ degrees $)$	v $(\mathrm{~m} / \mathrm{s})$	$G(h, \alpha, v)$ $\left(\mathrm{mm}^{2}\right)$
A48	0.062	0.0	2288.0	7.73
A49	0.125	30.0	2840.0	13.38
A50	0.125	0.0	2556.0	11.83
A51	0.062	30.0	2329.0	6.31
A52	0.062	0.0	2363.0	7.78
A53	0.125	0.0	2326.0	9.26
A54	0.125	30.0	3235.0	15.98
A55	0.062	0.0	2686.0	9.86
A56	0.062	30.0	2728.0	11.35
A57	0.062	30.0	2627.0	12.09
A58	0.125	30.0	2531.0	11.24
A60	0.125	0.0	2363.0	9.93
A61	0.062	0.0	2707.0	9.96
A62	0.062	30.0	2756.0	11.07
A63	0.062	0.0	2614.0	9.02
A64	0.125	0.0	2439.0	10.52
A65	0.062	0.0	2485.0	8.56
A66	0.125	0.0	2607.0	12.46
A67	0.125	30.0	3036.0	15.36
A68	0.125	30.0	2325.0	8.15
A69	0.062	30.0	2702.0	10.81
A70	0.062	30.0	2473.0	9.52
A71	0.121	30.0	2520.0	9.47
A72	0.121	0.0	2439.0	10.19
A73	0.121	30.0	2366.0	9.42
A74	0.121	30.0	2402.0	8.68
A75	0.062	30.0	2413.0	9.19
A77	0.062	30.0	2756.0	11.32
A78	0.121	30.0	2432.0	10.00
A79	0.062	30.0	2393.0	9.29
A80	0.121	30.0	2479.0	9.53
A81	0.060	30.0	2356.0	8.27

Least upper bound on $\mathbb{P}[G(h, \alpha, v) \leq \theta]$
The numerical results demonstrate agreement with the Markov bound

$$
\begin{gathered}
\mathbb{P}[G(h, \alpha, v) \leq \theta] \leq \frac{M-m}{M-\theta} \\
M:=\sup _{(h, \alpha, v) \in \mathcal{X}} \inf _{z \in \mathcal{O}}\left(G(z)+d_{L}(z,(h, \alpha, v))+T\right) \approx 39.895 \mathrm{~mm}^{2}
\end{gathered}
$$

Only 2 data points out of $\mathbf{3 2}$ carry information about the optimal bound

Legacy Data

32 data points

(steel-on-aluminium shots A48-A81) from summer 2010 at Caltech's SPHIR facility:

Only A54 and A67 carry information

The other 30 data points carry no information about least upper bound and could have be ignored.
T. J. Sullivan, M. McKerns, D. Meyer, F. Theil, H. Owhadi, and M. Ortiz. Optimal uncertainty quantification for legacy data observations of Lipschitz functions. ESAIM Math. Model. Numer. Anal., 47(6):1657-1689, 2013.

ID	h (inches)	α $($ degrees $)$	v $(\mathrm{~m} / \mathrm{s})$	$G(h, \alpha, v)$ $\left(\mathrm{mm}^{2}\right)$
A48	0.062	0.0	2288.0	7.73
A49	0.125	30.0	2840.0	13.38
A50	0.125	0.0	2556.0	11.83
A51	0.062	30.0	2329.0	6.31
A52	0.062	0.0	2363.0	7.78
A53	0.125	0.0	2326.0	9.26
A54	0.125	30.0	3235.0	15.98
A55	0.062	0.0	2686.0	9.86
A56	0.062	30.0	2728.0	11.35
A57	0.062	30.0	2627.0	12.09
A58	0.125	30.0	2531.0	11.24
A60	0.125	0.0	2363.0	9.93
A61	0.062	0.0	2707.0	9.96
A62	0.062	30.0	2756.0	11.07
A63	0.062	0.0	2614.0	9.02
A64	0.125	0.0	2439.0	10.52
A65	0.062	0.0	2485.0	8.56
A66	0.125	0.0	2607.0	12.46
A67	0.125	30.0	3036.0	15.36
A68	0.125	30.0	2325.0	8.15
A69	0.062	30.0	2702.0	10.81
A70	0.062	30.0	2473.0	9.52
A71	0.121	30.0	2520.0	9.47
A72	0.121	0.0	2439.0	10.19
A73	0.121	30.0	2366.0	9.42
A74	0.121	30.0	2402.0	8.68
A75	0.062	30.0	2413.0	9.19
A77	0.062	30.0	2756.0	11.32
A78	0.121	30.0	2432.0	10.00
A79	0.062	30.0	2393.0	9.29
A80	0.121	30.0	2479.0	9.53
A81	0.060	30.0	2356.0	8.27

What if we have model uncertainty?

What do we want?
Least upper bound on $\mathbb{P}[G(h, v) \leq \theta]$
What do we know?
Numerical model $(h, v) \rightarrow F(h, v)$
59 noisy data/experimental points $G\left(h_{i}, v_{i}\right)$
Expert judgement (+data points): $\mathbb{E}[G(h, v)] \geq 12 \mathrm{~mm}^{2}$
h and v are independent random variables
$(h, v) \in[0.5,3.0] \mathrm{mm} \times[4.5,7.0] \mathrm{km} / \mathrm{s}$

PSAAP numerical model

Plate Obliquity=0

Plate thickness
Perforation area
Projectile velocity
new_model

59 data/experimental points

Plate Obliquity=0

Plate thickness
Projectile velocity

Confidence sausage around the model

With probability p_{1} we have $\mathbb{P}\left[|G-F| \leq C_{y}\right] \geq p_{2}\left(p_{1}, C_{y}\right.$, data $)$
$C y$ at prob. 0.78 at prob. 0.85 at prob. 0.94

3	0.3991	0.3822	0.3483
5	0.5325	0.5155	0.4816
7	0.6325	0.6155	0.5816
9	0.8325	0.8155	0.7816

Admissible set

$$
\mathcal{A}:=\left\{\begin{array}{c|c}
g: \mathcal{X} \rightarrow \mathcal{Y}, \\
& (g, \mu) \left\lvert\, \begin{array}{c}
\mu=\mu_{h} \otimes \mu_{v}, \\
\\
\\
\\
\mathcal{X}:=[0.5,3.0] \mathrm{mm} \times[4.5,7.0] \mathrm{km} / \mathrm{s}, \\
\mathbb{E}_{\mu}[g(h, v, \alpha)] \geq 12.0 \mathrm{~mm}^{2}, \\
\|g-F\|_{\infty} \leq C_{y}
\end{array}\right.
\end{array}\right.
$$

Confidence sausage

With probability p_{1} we have

$$
\mathbb{P}\left[|G-F| \leq C_{y}\right] \geq p_{2}\left(p_{1}, C_{y}, \text { data }\right)
$$

For $C_{y}=5$ and $p_{1}=0.85$ we have $p_{2}=0.51$ What we compute
$\sup _{(g, \mu) \in \mathcal{A}} \mu[g \leq \theta]$

$$
\sup _{(g, \mu) \in \mathcal{A}} \mu[g \leq \theta]=\frac{M-m}{M-\theta}
$$

For $C_{y}=3$ and $\theta \geq 8$ the model impacts the least upper bound only through its maximum value M

At the extremum
μ_{v} collapses to a single mass of Dirac

The extremizers led to the identification of a bug in an old model

Caltech PSAAP Center UQ analysis

L. J. Lucas, H. Owhadi, and M. Ortiz. Rigorous verification, validation, uncertainty quantification and certification through concentration-of-measure inequalities. Comput. Methods Appl. Mech. Engrg., 197(51-52):4591-4609, 2008.
M. M. McKerns, L. Strand, T. J. Sullivan, A. Fang, and M. A. G. Aivazis. Building a framework for predictive science. In Proceedings of the 10th Python in Science Conference (SciPy 2011), 2011.
P.-H. T. Kamga, B. Li, M. McKerns, L. H. Nguyen, M. Ortiz, H. Owhadi, and T. J. Sullivan. Optimal uncertainty quantification with model uncertainty and legacy data. Journal of the Mechanics and Physics of Solids, 72:1-19, 2014
A. A. Kidane, A. Lashgari, B. Li, M. McKerns, M. Ortiz, H. Owhadi, G. Ravichandran, M. Stalzer, and T. J. Sullivan. Rigorous model-based uncertainty quantification with application to terminal ballistics. Part I: Systems with controllable inputs and small scatter. Journal of the Mechanics and Physics of Solids, 60(5):983-1001, 2012.
T. J. Sullivan, M. McKerns, D. Meyer, F. Theil, H. Owhadi, and M. Ortiz. Optimal uncertainty quantification for legacy data observations of Lipschitz functions. ESAIM Math. Model. Numer. Anal., 47(6):1657-1689, 2013.
H. Owhadi, C. Scovel, T. J. Sullivan, M. McKerns, and M. Ortiz. Optimal Uncertainty Quantification. SIAM Review, 55(2):271-345, 2013.

Reduced numerical optimization problems solved using

- mystic: http://trac.mystic.cacr.caltech.edu/project/mystic
- a highly-configurable optimization framework
- pathos: http://trac.mystic.cacr.caltech.edu/project/pathos
- a distributed parallel graph execution framework providing a highlevel programmatic interface to heterogeneous computing

Mike McKerns

Important observations

In presence of incomplete information on the distribution of input variables the dependence of the least upper bound on the accuracy of the model is very weak

We need to extract as much information as possible from the sample/experimental data on the underlying distributions

[^0]Quantity of Interest $\quad \Phi\left(\mu^{\dagger}\right)=\mu^{\dagger}[X \geq a]$

$$
\mu^{\dagger}:
$$

Unknown or partially known measure of probability on \mathbb{R}

Youknow $\mu^{\dagger} \in \mathcal{A}$
You observe
Problem:
Find the best estimate of $\Phi\left(\mu^{\dagger}\right)$
$\theta(d)$

Player I

Chooses $\mu \in \mathcal{A}$

$m_{\text {ax }}$

Player II

 Sees $d \sim \mu^{n}$ Chooses θMean squared error

$$
\mathcal{E}(\mu, \theta)=\mathbb{E}_{d \sim \mu^{n}}\left[[\theta(d)-\Phi(\mu)]^{2}\right]
$$

Confidence error

$$
\mathcal{E}(\mu, \theta)=\mathbb{P}_{d \sim \mu^{n}}[|\theta(d)-\Phi(\mu)| \geq r]
$$

Game theory and statistical decision theory

John Von Neumann

Abraham Wald
J. Von Neumann. Zur Theorie der Gesellschaftsspiele. Math. Ann., 100(1):295-320, 1928
J. Von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Princeton University Press, Princeton, New Jersey, 1944.
A. Wald. Contributions to the theory of statistical estimation and testing hypotheses. Ann. Math. Statist., 10(4):299-326, 1939.
A. Wald. Statistical decision functions which minimize the maximum risk. Ann. of Math. (2), 46:265-280, 1945.
A. Wald. An essentially complete class of admissible decision functions. Ann.

Math. Statistics, 18:549-555, 1947.
A. Wald. Statistical decision functions. Ann. Math. Statistics, 20:165-205, 1949.

Deterministic zero sum game

Player I \& II both have a blue and a red marble
At the same time, they show each other a marble
How should I \& II play the game?

Pure strategy solution

II should play blue and loose 1 in the worst case
I should play red and loose 2 in the worst case

Mixed strategy (repeated game) solution

II should play red with probability $3 / 8$ and win $1 / 8$ on average Player I's expected payoff $=3 p q+(1-p)(1-q)-2 p(1-q)-2 q(1-p)$

$$
=1-3 q+p(8 q-3)=-\frac{1}{8} \text { for } q=\frac{3}{8}
$$

I should play red with probability $3 / 8$ and loose $1 / 8$ on average

$\max \min \neq \min \max$

Maximin pure strategy for Player I: Play red and loose at most 2.	Player IIMinimax pure strategy for Player II: Play blue and loose at most 1.

Player I

J. Von Neumann

Player l's payoff
$\max \min =\min \max$
Maximin mixed strategy
for Player I: Play red
with probability $\frac{3}{8}$
and loose exactly $\frac{1}{8}$
on average.

Minimax mixed strategy for Player II: Play red with probability $\frac{3}{8}$
and win exactly $\frac{1}{8}$
on average.

Player I
chooses
$\mu \in \mathcal{A}$

$$
\mathcal{E}(\mu, \theta)
$$

Player II
chooses θ

Pure strategy solution for Player II
Optimal bound on the statistical error

$$
\max _{\mu \in \mathcal{A}} \mathcal{E}(\mu, \theta)
$$

Optimal statistical estimators

$$
\min _{\theta} \max _{\mu \in \mathcal{A}} \mathcal{E}(\mu, \theta)
$$

Not a saddle point: $\min _{\theta} \max _{\mu \in \mathcal{A}} \mathcal{E}(\mu, \theta) \neq \max _{\mu \in \mathcal{A}} \min _{\theta} \mathcal{E}(\mu, \theta)=0$

Player I
chooses
$\mu \in \mathcal{A}$

$$
\mathcal{E}(\mu, \theta)
$$

Mixed strategy (repeated game) solution for Player I

$$
\mu \sim \pi_{I} \in \mathcal{M}(\mathcal{A})
$$

Mixed strategy (repeated game) solution for Player II Choose θ at random and minimize

$$
\mathbb{E}_{\mu \sim \pi_{I}, \hat{\theta}}[\mathcal{E}(\mu, \hat{\theta})]
$$

Saddle point: $\min _{\hat{\theta}} \max _{\pi_{I} \in \mathcal{M}(\mathcal{A})} \mathbb{E}_{\mu \sim \pi_{I}, \hat{\theta}}[\mathcal{E}(\mu, \theta)]=\max _{\pi_{I} \in \mathcal{M}(\mathcal{A})} \min _{\hat{\theta}} \mathbb{E}_{\mu \sim \pi_{I}, \hat{\theta}}[\mathcal{E}(\mu, \theta)]$

Bayesian estimator (with prior $\pi \in \mathcal{M}(\mathcal{A})$)

$$
\theta_{\pi}(d)=\mathbb{E}_{\mu \sim \pi, d^{\prime} \sim \mu^{n}}\left[\Phi(\mu) \mid d^{\prime}=d\right]
$$

Theorem If the loss is quadratic, i.e.

$$
\mathcal{E}(\mu, \theta)=\mathbb{E}_{d \sim \mu^{n}}\left[[\theta(d)-\Phi(\mu)]^{2}\right]
$$

then for all prior $\pi \in \mathcal{M}(\mathcal{A})$

Can we have equality?

Theorem If the loss is quadratic, i.e.

$$
\mathcal{E}(\mu, \theta)=\mathbb{E}_{d \sim \mu^{n}}\left[[\theta(d)-\Phi(\mu)]^{2}\right]
$$

then the optimal $\hat{\theta}$ is non-random and
lives in the (classical) Bayesian class of estimators

$$
\min _{\theta} \max _{\mu} \mathcal{E}(\mu, \theta)=\max _{\pi} \mathbb{E}_{\mu \sim \pi}\left[\mathcal{E}\left(\mu, \theta_{\pi}\right)\right]
$$

The best mixed strategy for I and II = worst prior for II

The best estimator is not random if the loss function is strictly convex A. Dvoretzky, A. Wald, and J. Wolfowitz. Elimination of randomization in certain statistical decision procedures and zero-sum two-person games. Ann. Math. Statist., 22(1):1-21, 1951.

Complete class theorem

Further generalization of Statistical decision theory

L. J. Savage. The theory of statistical decision. Journal of the American Statistical Association, 46:55-67, 1951.
L. Le Cam. An extension of Wald's theory of statistical decision functions. Ann. Math. Statist., 26:69-81, 1955
L. D. Brown. Minimaxity, more or less. In Statistical Decision Theory and Related Topics V, pages 1-18. Springer, 1994.
L. D. Brown. An essay on statistical decision theory. Journal of the American Statistical Association, 95(452):1277-1281, 2000.
I. Gilboa and D. Schmeidler. Maxmin expected utility with non-unique prior. Journal of Mathematical Economics, 18(2):141-153, 1989
A. Shapiro and A. Kleywegt. Minimax analysis of stochastic problems. Optim. Methods Softw., 17(3):523-542, 2002.
M. Sniedovich. The art and science of modeling decision-making under severe uncertainty. Decis. Mak. Manuf. Serv., 1(1-2):111-136, 2007
M. Sniedovich. A classical decision theoretic perspective on worst-case analysis. Appl. Math., 56(5):499-509, 2011.

Impact in econometrics and social sciences

O. Morgenstern. Abraham Wald, 1902-1950. Econometrica: Journal of the Econometric Society, pages 361-367, 1951.
G. Tintner. Abraham Wald's contributions to econometrics. Ann. Math. Statistics, 23:21-28, 1952.
R. Leonard. Von Neumann, Morgenstern, and the Creation of Game Theory: From Chess to Social Science, 1900-1960. Cambridge University Press, 2010.

If we want to make decision theory practical for UQ we need to introduce computational complexity constraints
H. Owhadi and C. Scovel. Towards Machine Wald. Handbook for Uncertainty Quantication, 2016. arXiv:1508.02449.

How do we do that?

Is there a natural relation between game theory, computational complexity and numerical approximations?

A simple approximation problem

Approximate solution x of

$A x=b$

A : Known $n \times n$ symmetric positive definite matrix b : Unknown element of \mathbb{R}^{n}

Based on the information that

$$
\Phi x=y
$$

$$
b^{T} Q^{-1} b \leq 1
$$

Φ : Known $m \times n$
rank m matrix $(m<n)$
y : Known element of \mathbb{R}^{m}
Q : Known $n \times n$ symmetric positive definite matrix

Set of candidates (ambiguity set) for x

$\mathcal{A}=\left\{z \in \mathbb{R}^{n} \mid \Phi z=y\right.$, and $\left.|A z|_{Q^{-1}} \leq 1\right\}$

$$
|b|_{Q^{-1}}:=\sqrt{b^{T} Q^{-1} b}
$$

Classical numerical analysis minimax solution z^{*} minimizing $\min _{z^{*} \in \mathcal{A}} \max _{z \in \mathcal{A}}\left\|z-z^{*}\right\|$

Looks like a game
Player I:
Player II:
Chooses $z \in \mathcal{A}$

$$
\left\|z-z^{*}\right\|
$$

Chooses $z^{*} \in \mathcal{A}$

Classical numerical analysis minimax solution z^{*} minimizing
$\min _{z^{*} \in \mathcal{A}} \max _{z \in \mathcal{A}}\left\|z-z^{*}\right\|$

No saddle point in the numerical analysis formulation!

$$
\begin{aligned}
& \max _{z^{*} \in \mathcal{A}} \min _{z \in \mathcal{A}}\left\|z-z^{*}\right\|=0 \\
& \forall \\
& \min _{z^{*} \in \mathcal{A}} \max _{z \in \mathcal{A}}\left\|z-z^{*}\right\| \neq \max _{z^{*} \in \mathcal{A}} \min _{z \in \mathcal{A}}\left\|z-z^{*}\right\|
\end{aligned}
$$

Why should we care?

Deterministic zero sum game

How should I and II play the game?

Pure strategy (classical numerical analysis) solution

II should play blue and loose 1 in the worst case
I should play red and loose 2 in the worst case

Mixed strategy (repeated game) solution

II should play red with probability $3 / 8$ and win $1 / 8$ on average Player I's expected payoff $=3 p q+(1-p)(1-q)-2 p(1-q)-2 q(1-p)$

$$
=1-3 q+p(8 q-3)=-\frac{1}{8} \text { for } q=\frac{3}{8}
$$

I should play red with probability $3 / 8$ and loose $1 / 8$ on average

Maximin pure strategy
for Player I: Play red
and loose at most 2.

$\min \max \neq \max \min$

Player II

 for Player II: Play blue and loose at most 1.Player I

J. Von Neumann

Player l's payoff

Game theoretic formulation

Player I $\quad A x=b$
chooses
$b \in \mathbb{R}^{n}$
$b^{T} Q^{-1} b \leq 1$

$$
\left\|x-x^{*}\right\|
$$

sees $y=\Phi x$ chooses x^{*}

Best strategy: lift minimax to measures

Player I $\quad A x=b$
chooses
$b \in \mathbb{R}^{n}$
$b^{T} Q^{-1} b \leq 1$

$$
\left\|x-x^{*}\right\|
$$

The best strategy for I is to play at random Player Il's best strategy live in the Bayesian class of estimators

Player Il's mixed strategy

$$
A x=b \Leftrightarrow A X=\xi
$$

Player Il's bet

$$
x^{*}=\mathbb{E}[X \mid \Phi X=\Phi x]
$$

Player II's recovery error on x_{i}

$$
\left|x_{i}-\mathbb{E}\left[X_{i} \mid \Phi X=\Phi x\right]\right| \quad \text { unknown }
$$

Player II's stochastic error assuming that Player I is selecting x at random with the same prior distribution

$$
\left|X_{i}-\mathbb{E}\left[X_{i} \mid \Phi X\right]\right| \quad \begin{aligned}
& \text { random variable with } \\
& \text { known distribution }
\end{aligned}
$$

Player Il's mixed strategy

$$
A x=b \Leftrightarrow A X=\xi
$$

Theorem

$$
\xi \sim \mathcal{N}(0, Q)
$$

$$
\left|x_{i}-\mathbb{E}\left[X_{i} \mid \Phi X=y\right]\right| \leq \sqrt{\mathbb{E}\left[\left|X_{i}-\mathbb{E}\left[X_{i} \mid \Phi X\right]\right|^{2}\right]} b^{T} Q^{-1} b
$$

unknown
deterministic error

$$
\begin{aligned}
& \text { known Standard Deviation } \\
& \text { of stochastic error }
\end{aligned}
$$

known compactnes:
bound on b

Owhadi 2015, Multi-grid with rough coefficients and Multiresolution PDE decomposition from Hierarchical Information Games, arXiv:1503.03467, SIAM Review (to appear)

Main Question

Can we turn the process of discovery of a scalable numerical method into a UQ problem and, to some degree, solve it as such in an automated fashion?

Can we use a computer, not only to implement a numerical method but also to find the method itself?

Example: Find a method for solving (1) as fast as possible to a given accuracy
(1)

$$
\begin{aligned}
& \left\{\begin{array}{rr}
-\operatorname{div}(a \nabla u)=g, & x \in \Omega, \\
u=0, & x \in \partial \Omega
\end{array}\right. \\
& \Omega \subset \mathbb{R}^{d} \quad \partial \Omega \text { is piec. Lip. }
\end{aligned}
$$

a unif. ell.
$a_{i, j} \in L^{\infty}(\Omega)$

Multigrid Methods

Multigrid: [Fedorenko, 1961, Brandt, 1973, Hackbusch, 1978]
Multiresolution/Wavelet based methods
[Brewster and Beylkin, 1995, Beylkin and Coult, 1998, Averbuch et al., 1998]

- Linear complexity with smooth coefficients

Problem Severely affected by lack of smoothness

Robust/Algebraic multigrid

[Mandel et al., 1999,Wan-Chan-Smith, 1999,
Xu and Zikatanov, 2004, Xu and Zhu, 2008], [Ruge-Stüben, 1987]
[Panayot - 2010]
Stabilized Hierarchical bases, Multilevel preconditioners
[Vassilevski - Wang, 1997, 1998]
[Panayot - Vassilevski, 1997]
[Chow - Vassilevski, 2003]
[Aksoylu- Holst, 2010]

- Some degree of robustness but problem remains open with rough coefficients

Why? Interpolation operators are unknown
Don't know how to bridge scales with rough coefficients!

Low Rank Matrix Decomposition methods

Fast Multipole Method: [Greengard and Rokhlin, 1987] Hierarchical Matrix Method: [Hackbusch et al., 2002]
[Bebendorf, 2008]:

$$
N \ln ^{2 d+8} N \text { complexity }
$$

To achieve grid-size accuracy in L^{2}-norm

Common theme between these methods

Their process of discovery is based on intuition, brilliant insight, and guesswork

Can we turn this process of discovery into an algorithm?

Answer: YES Compute fast

Play adversarial Information game

Compute with partial information

Owhadi 2015, Multi-grid with rough coefficients and Multiresolution PDE decomposition from Hierarchical Information Games, arXiv:1503.03467, SIAM Review (to appear)

Resulting method:

This is a theorem

$$
N \ln ^{3 d} N \text { complexity }
$$

To achieve grid-size accuracy in H^{1}-norm
Subsequent solves: $N \ln ^{d+1} N$ complexity

Resulting method:

$$
\left\{\begin{aligned}
-\operatorname{div}(a \nabla u) & =g \text { in } \Omega \\
u & =0 \text { on } \partial \Omega
\end{aligned}\right.
$$

$H_{0}^{1}(\Omega)=\mathfrak{W J}^{(1)} \oplus_{a} \mathfrak{W}^{(2)} \oplus_{a} \cdots \oplus_{a} \mathfrak{W J}^{(k)} \oplus_{a} \cdots$
$<\psi, \chi>_{a}:=\int_{\Omega}(\nabla \psi)^{T} a \nabla \chi=0$ for $(\psi, \chi) \in \mathfrak{W}^{(i)} \times \mathfrak{W}^{(j)}, i \neq j$

Theorem For $v \in \mathfrak{W}^{(k)}$

$$
\frac{C_{1}}{2^{k}} \leq \frac{\|v\|_{a}}{\|\operatorname{div}(a \nabla v)\|_{L^{2}(\Omega)}} \leq \frac{C_{2}}{2^{k}}
$$

$$
\|v\|_{a}^{2}:=<v, v>_{a}=\int_{\Omega}(\nabla v)^{T} a \nabla v
$$

Looks like an eigenspace decomposition

$$
u=w^{(1)}+w^{(2)}+\cdots+w^{(k)}+\cdots
$$

$$
w^{(k)}=\text { F.E. sol. of PDE in } \mathfrak{W}^{(k)}
$$

Can be computed independently

Multiresolution decomposition of solution space

$$
\begin{aligned}
& u=w^{(1)}+w^{(2)}+\cdots+w^{(k)}+\cdots \\
& w^{(k)}=\text { F.E. sol. of PDE in } \mathfrak{W}^{(k)} \\
& \quad \text { Can be computed independently }
\end{aligned}
$$

$B^{(k)}$: Stiffness matrix of PDE in $\mathfrak{W}^{(k)}$

Theorem

$$
\frac{\lambda_{\max }\left(B^{(k)}\right)}{\lambda_{\min }\left(B^{(k)}\right)} \leq C
$$

$$
\downarrow
$$

Just relax in $\mathfrak{W}^{(k)}$ to find $w^{(k)}$
Quacks like an eigenspace decomposition

Application to time dependent problems

[Owhadi-Zhang 2016, From gamblets to near FFT-complexity solvers for wave and parabolic PDEs with rough coefficients]

$$
\begin{aligned}
& \mu(x) \partial_{t}^{2} u-\operatorname{div}(a \nabla u)=g(x, t) \\
& \mu(x) \partial_{t} u-\operatorname{div}(a \nabla u)=g(x, t)
\end{aligned}
$$

Hyperbolic and parabolic PDEs with rough coefficients can be solved in $\mathcal{O}\left(N \ln ^{3 d} N\right.$) (near FFT) complexity

Swims like an eigenspace decomposition

\mathfrak{V} : F.E. space of $H_{0}^{1}(\Omega)$ of dim. N

Theorem The decomposition

$$
\mathfrak{V}=\mathfrak{W}^{(1)} \oplus_{a} \mathfrak{W}^{(2)} \oplus_{a} \cdots \oplus_{a} \mathfrak{W}^{(k)}
$$

Can be performed and stored in

$$
\mathcal{O}\left(N \ln ^{3 d} N\right) \text { operations }
$$

Doesn't have the complexity of an eigenspace decomposition

Basis functions look like and behave like wavelets:
Localized and can be used to compress the operator and locally analyze the solution space

$$
H_{0}^{1}(\Omega) \xrightarrow{\operatorname{div}(a \nabla \cdot)} H^{-1}(\Omega)
$$

u
Reduced operator

g

$\mathbb{R}^{m} \ni u_{m}$ Inverse Problem $g_{m} \in \mathbb{R}^{m}$
Numerical implementation requires computation with partial information.

$$
\begin{gathered}
\phi_{1}, \ldots, \phi_{m} \in L^{2}(\Omega) \\
u_{m}=\left(\int_{\Omega} \phi_{1} u, \ldots, \int_{\Omega} \phi_{m} u\right) \\
u_{m} \in \mathbb{R}^{m \xlongequal{\text { Missing information }}} u \in H_{0}^{1}(\Omega)
\end{gathered}
$$

Discovery process Identify underlying information game

$$
\left\{\begin{aligned}
-\operatorname{div}(a \nabla u) & =g \text { in } \Omega, \\
u & =0 \text { on } \partial \Omega,
\end{aligned}\right.
$$

Measurement functions: $\phi_{1}, \ldots, \phi_{m} \in L^{2}(\Omega)$

Player I

Player II

Chooses
$g \in L^{2}(\Omega)$
Sees $\int_{\Omega} u \phi_{1}, \ldots, \int_{\Omega} u \phi_{m}$
$\|g\|_{L^{2}(\Omega)} \leq 1$
Chooses $u^{*} \in L^{2}(\Omega)$

$$
\left\|u-u^{*}\right\|_{a}
$$

$$
\|f\|_{a}^{2}:=\int_{\Omega}(\nabla f)^{T} a \nabla f
$$

Deterministic zero sum game

Player I \& II both have a blue and a red marble At the same time, they show each other a marble

How should I \& II play the (repeated) game?

Optimal strategies

Game theory

 are mixed strategiesOptimal way to play is at random

Player II

Player I's expected payoff
John Von Neumann

John Nash

$$
\begin{aligned}
& =3 p q+(1-p)(1-q)-2 p(1-q)-2 q(1-p) \\
& =1-3 q+p(8 q-3)=-\frac{1}{8} \quad \text { for } q=\frac{3}{8}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Player A } \\
& \begin{array}{l}
\text { Chooses } \\
g \in L^{2}(\Omega) \\
\|g\|_{L^{2}(\Omega)} \leq 1
\end{array} \quad \text { Sees } \int_{\Omega} u \phi_{1}, \ldots, \int_{\Omega} u \phi_{m} \\
&
\end{aligned}
$$

Continuous game but as in decision theory under compactness it can be approximated by a finite game

Abraham Wald

The best strategy for \mathbf{A} is to play at random Player B's best strategy live in the Bayesian class of estimators

Player Il's class of mixed strategies

Pretend that player I is choosing g at random

$$
g \in L^{2}(\Omega) \Longleftrightarrow \xi: \text { Random field }
$$

$\left\{\begin{aligned}-\operatorname{div}(a \nabla u) & =g \text { in } \Omega, \\ u & =0 \text { on } \partial \Omega,\end{aligned}\right.$

$$
\Longleftrightarrow\left\{\begin{aligned}
-\operatorname{div}(a \nabla v) & =\xi \text { in } \Omega, \\
v & =0 \text { on } \partial \Omega,
\end{aligned}\right.
$$

Player Il's bet
$u^{*}(x):=\mathbb{E}\left[v(x) \mid \int_{\Omega} v(y) \phi_{i}(y) d y=\int_{\Omega} u(y) \phi_{i}(y) d y, \forall i\right]$
Player II's optimal strategy?
Player II's best bet? \Longleftrightarrow min max problem over distribution of ξ

Computational efficiency $\Rightarrow \xi \sim \mathcal{N}(0, \Gamma)$

Elementary gambles form deterministic basis functions for player B's bet

Theorem

$$
u^{*}(x)=\sum_{i=1}^{m} \psi_{i}(x) \int_{\Omega} u(y) \phi_{i}(y) d y
$$

Gamblets

ψ_{i} : Elementary gambles/bets
Player II's bet if $\int_{\Omega} u \phi_{j}=\delta_{i, j}, j=1, \ldots, m$

$$
\psi_{i}(x):=\mathbb{E}_{\xi \sim \mathcal{N}(0, \Gamma)}\left[v(x) \mid \int_{\Omega} v(y) \phi_{j}(y) d y=\delta_{i, j}, j \in\{1, \ldots, m\}\right.
$$

What are these gamblets?
 Depend on

- Γ : Covariance function of ξ (Player B's decision)
- $\left(\phi_{i}\right)_{i=1}^{m}$: Measurements functions (rules of the game)

Example

$$
\begin{aligned}
& \Gamma(x, y)=\delta(x-y) \\
& \phi_{i}(x)=\delta\left(x-x_{i}\right)
\end{aligned}
$$

[Owhadi, SIAM MMS, 2015]
Bayesian Numerical Homogenization

$$
a=I_{d} \Longleftrightarrow \psi_{i}: \text { Polyharmonic splines }
$$

[Harder-Desmarais, 1972] [Duchon 1976, 1977,1978]
$a_{i, j} \in L^{\infty}(\Omega) \Longleftrightarrow \psi_{i}$: Rough Polyharmonic splines [Owhadi-Zhang-Berlyand 2013]

What is Player Il's best strategy?

What is Player Il's best choice for

$$
\Gamma(x, y)=\mathbb{E}[\xi(x) \xi(y)] \quad ?
$$

Why?
See algebraic generalization

The recovery is optimal (Galerkin projection)

Theorem If $\Gamma=\mathcal{L}$ then $u^{*}(x)$ is the F.E. solution of (1) in $\operatorname{span}\left\{\mathcal{L}^{-1} \phi_{i} \mid i=1, \ldots, m\right\}$ $\left\|u-u^{*}\right\|_{a}=\inf _{\psi \in \operatorname{span}\left\{\mathcal{L}^{-1} \phi_{i}: i \in\{1, \ldots, m\}\right\}}\|u-\psi\|_{a}$

$$
\mathcal{L}=-\operatorname{div}(a \nabla \cdot)
$$

(1) $\left\{\begin{array}{rr}-\operatorname{div}(a \nabla u)=g, & x \in \Omega, \\ u=0, & x \in \partial \Omega,\end{array}\right.$

Optimal variational properties

Theorem

$\sum_{i=1}^{m} w_{i} \psi_{i}$ minimizes $\|\psi\|_{a}$
over all ψ such that $\int_{\Omega} \phi_{j} \psi=w_{j}$ for $j=1, \ldots, m$

Variational characterization

Theorem ψ_{i} : Unique minimizer of
$\left\{\begin{array}{l}\text { Minimize } \\ \text { Subject to }\end{array}\right.$
$\|\psi\|_{a}$
Subject to $\quad \psi \in H_{0}^{1}(\Omega)$ and $\int_{\Omega} \phi_{j} \psi=\delta_{i, j}, \quad j=1, \ldots, m$

Selection of measurement functions

Example Indicator functions of a Partition of Ω of resolution H

$$
\phi_{i}=1_{\tau_{i}}
$$

Theorem

$$
\left\|u-u^{*}\right\|_{a} \leq \frac{H}{\lambda_{\min }(a)}\|g\|_{L^{2}(\Omega)}
$$

Elementary gamble

ψ_{i} Your best bet on the value of u given the information that

$$
\int_{\tau_{i}} u=1 \text { and } \int_{\tau_{j}} u=0 \text { for } j \neq i
$$

Exponential decay of gamblets

Theorem

$$
\int_{\Omega \cap\left(B\left(\tau_{i}, r\right)\right)^{c}}\left(\nabla \psi_{i}\right)^{T} a \nabla \psi_{i} \leq e^{-\frac{r}{l H}}\left\|\psi_{i}\right\|_{a}^{2}
$$

Localization of the computation of gamblets

$\psi_{i}^{\text {loc }, r}$: Minimizer of

$$
\begin{cases}\text { Minimize } & \|\psi\|_{a} \\ \text { Subject to } & \psi \in H_{0}^{1}\left(S_{r}\right) \text { and } \int_{S_{r}} \phi_{j} \psi=\delta_{i, j} \\ \text { for } \tau_{j} \in S_{r}\end{cases}
$$

No loss of accuracy if localization $\sim H \ln \frac{1}{H}$

$$
u^{*, \mathrm{loc}}(x)=\sum_{i=1}^{m} \psi_{i}^{\mathrm{loc}, \mathrm{r}}(x) \int_{\Omega} u(y) \phi_{i}(y) d y
$$

Theorem If $r \geq C H \ln \frac{1}{H}$

$$
\left\|u-u^{*, \operatorname{loc}}\right\|_{a} \leq \frac{1}{\sqrt{\lambda_{\min (a)}}} H\|g\|_{L^{2}(\Omega)}
$$

Formulation of the hierarchical game

Hierarchy of nested Measurement functions
$\phi_{i_{1}, \ldots, i_{k}}^{(k)}$ with $k \in\{1, \ldots, q\}$

$$
\phi_{i}^{(k)}=\sum_{j} c_{i, j} \phi_{i, j}^{(k+1)}
$$

Example

$\phi_{i}^{(k)}$: Indicator functions of a hierarchical nested partition of Ω of resolution $H_{k}=2^{-k}$

$$
\phi_{2}^{(1)}=1_{\tau_{2}^{(1)}}
$$

$$
\phi_{2,3}^{(2)}=1_{\tau_{2,3}^{(2)}}
$$

$$
\phi_{2,3,1}^{(3)}=1_{\tau_{2,3,1}^{(3)}}
$$

In the discrete setting simply aggregate elements (as in algebraic multigrid)

Formulation of the hierarchy of games

Player I

Chooses
$g \in L^{2}(\Omega)$
$\|g\|_{L^{2}(\Omega)} \leq 1$

Player II

Sees $\left\{\int_{\Omega} u \phi_{i}^{(k)}, i \in \mathcal{I}_{k}\right\}$
Must predict
u and $\left\{\int_{\Omega} u \phi_{j}^{(k+1)}, j \in \mathcal{I}_{k+1}\right\}$

Player II's best strategy

$$
\xi \sim \mathcal{N}(0, \mathcal{L})
$$

$\left\{\begin{aligned}-\operatorname{div}(a \nabla u) & =g \text { in } \Omega, \\ u & =0 \text { on } \partial \Omega,\end{aligned}\right.$

$$
\left\{\begin{aligned}
-\operatorname{div}(a \nabla v) & =\xi \text { in } \Omega, \\
v & =0 \text { on } \partial \Omega,
\end{aligned}\right.
$$

Player Il's bets

$u^{(k)}(x):=\mathbb{E}\left[v(x) \mid \int_{\Omega} v(y) \phi_{i}^{(k)}(y) d y=\int_{\Omega} u(y) \phi_{i}^{(k)}(y) d y, i \in \mathcal{I}_{k}\right]$
The sequence of approximations forms a martingale under the mixed strategy emerging from the game

$$
\mathcal{F}_{k}=\sigma\left(\int_{\Omega} v \phi_{i}^{(k)}, i \in \mathcal{I}_{k}\right) \quad \begin{array}{|c}
v^{(k)}(x):=\mathbb{E}\left[v(x) \mid \mathcal{F}_{k}\right]
\end{array}
$$

Theorem

$$
\mathcal{F}_{k} \subset \mathcal{F}_{k+1}
$$

$$
v^{(k)}(x):=\mathbb{E}\left[v^{(k+1)}(x) \mid \mathcal{F}_{k}\right]
$$

Player II's best strategy $\quad \xi \sim \mathcal{N}(0, \mathcal{L})$
$\left\{\begin{aligned}-\operatorname{div}(a \nabla u) & =g \text { in } \Omega, \\ u & =0 \text { on } \partial \Omega,\end{aligned} \longleftrightarrow\left\{\begin{array}{r}-\operatorname{div}(a \nabla v)=\xi \text { in } \Omega, \\ v=0 \text { on } \partial \Omega,\end{array}\right.\right.$
Player Il's bets

$$
\begin{aligned}
& u^{(k)}(x):=\mathbb{E}\left[v(x) \mid \int_{\Omega} v(y) \phi_{i}^{(k)}(y) d y=\int_{\Omega} u(y) \phi_{i}^{(k)}(y) d y, i \in \mathcal{I}_{k}\right] \\
& \underbrace{(1)}_{0} U^{(1)}
\end{aligned}
$$

Gamblets Elementary gambles form a hierarchy of deterministic basis functions for player II's hierarchy of bets

Theorem $u^{(k)}(x)=\sum_{i} \psi_{i}^{(k)}(x) \int_{\Omega} u(y) \phi_{i}^{(k)}(y) d y$
$\psi_{i}^{(k)}:$ Elementary gambles/bets at resolution $H_{k}=2^{-k}$

$$
\psi_{i}^{(k)}(x):=\mathbb{E}\left[v(x) \mid \int_{\Omega} v(y) \phi_{j}^{(k)}(y) d y=\delta_{i, j}, j \in \mathcal{I}_{k}\right]
$$

Gamblets are nested

$$
\begin{equation*}
\mathfrak{Y}^{(k)}:=\operatorname{span}\left\{\psi_{i}^{(k)}, i \in \mathcal{I}_{k}\right\} \tag{1}
\end{equation*}
$$

Interpolation/Prolongation operator

$R_{i, j}^{(k)}=\mathbb{E}\left[\int_{\Omega} v(y) \phi_{j}^{(k+1)}(y) d y \mid \int_{\Omega} v(y) \phi_{l}^{(k)}(y) d y=\delta_{i, l}, l \in \mathcal{I}_{k}\right]$
$R_{i, j}^{(k)}$ Your best bet on the value of $\int_{\tau_{j}^{(k+1)}} u$ given the information that

$$
\int_{\tau_{i}^{(k)}} u=1 \text { and } \int_{\tau_{l}} u=0 \text { for } l \neq i
$$

At this stage you can finish with classical multigrid

But we want multiresolution decomposition

Elementary gamble

Your best bet on the value of u given the information that

$$
\int_{\tau_{i}^{(k)}} u=1, \int_{\tau_{i-}^{(k)}} u=-1 \text { and } \int_{\tau_{j}^{(k)}} u=0 \text { for } j \neq i
$$

$$
\chi_{i}^{(k)}=\psi_{i}^{(k)}-\psi_{i^{-}}^{(k)}
$$

$$
i=\left(i_{1}, \ldots, i_{k-1}, i_{k}\right)
$$

$$
\psi_{i_{1}, j_{1}}^{(2)} \psi_{i_{1}, j_{2}}^{(2)} \psi_{i_{1}, j_{3}}^{(2)} \psi_{i_{1}, j_{4}}^{(2)}
$$

$$
i^{-}=\left(i_{1}, \ldots, i_{k-1}, i_{k}-1\right)
$$

$$
-1+1
$$

$$
\chi_{i}^{(k)}=\psi_{i}^{(k)}-\psi_{i^{-}}^{(k)}
$$

Multiresolution decomposition of the solution space

$$
\mathfrak{V}^{(k)}:=\operatorname{span}\left\{\psi_{i}^{(k)}, i \in \mathcal{I}_{k}\right\}
$$

$\mathfrak{W}^{(k)}:=\operatorname{span}\left\{\chi_{i}^{(k)}, i\right\}$
$\mathfrak{W}^{(k+1)}$: Orthogonal complement of $\mathfrak{V}^{(k)}$ in $\mathfrak{V}^{(k+1)}$ with respect to $<\psi, \chi>_{a}:=\int_{\Omega}(\nabla \psi)^{T} a \nabla \chi$

Theorem

$$
H_{0}^{1}(\Omega)=\mathfrak{V}^{(1)} \oplus_{a} \mathfrak{W}^{(2)} \oplus_{a} \cdots \oplus_{a} \mathfrak{W}^{(k)} \oplus_{a} \cdots
$$

Multiresolution decomposition of the solution

Theorem

$$
u^{(k+1)}-u^{(k)}=\text { F.E. sol. of PDE in } \mathfrak{W}^{(k+1)}
$$

Subband solutions $u^{(k+1)}-u^{(k)}$
can be computed independently

Uniformly bounded condition numbers

$$
A_{i, j}^{(k)}:=\left\langle\psi_{i}^{(k)}, \psi_{j}^{(k)}\right\rangle_{a}
$$

$$
B_{i, j}^{(k)}:=\left\langle\chi_{i}^{(k)}, \chi_{j}^{(k)}\right\rangle_{a}
$$

Theorem
4.5

$\mathfrak{V}=\mathfrak{W}^{(1)} \oplus_{a} \mathfrak{W}^{(2)} \oplus_{a} \cdots \oplus_{a} \mathfrak{W}^{(k)}$

Ranges of eigenvalues in \mathfrak{V} and $\mathfrak{W}^{(k)}(k=1, \ldots, 5)$ in log scale

$$
u=\sum_{i} c_{i}^{(1)}\left\|\frac{\psi_{i}^{(i)}}{\left\|\psi_{i}^{(i)}\right\|_{a}}+\sum_{k=2}^{a}=\sum_{j} c_{j}^{(k)}\right\| \frac{\chi_{i}^{(i)}}{\left\|x_{x}^{(i)}\right\|_{a}}
$$

Coefficients of the solution in the gamblet basis

Operator Compression

Gamblets behave like wavelets but they are adapted to the PDE and can compress its solution space

Compression ratio $=105$
Energy norm relative error $=0.07$

Throw 99\% of the coefficients

Fast gamblet transform $\mathcal{O}\left(N \ln ^{3 d} N\right)$ complexity \mid

$$
\text { Nesting } A^{(k)}=\left(R^{(k, k+1)}\right)^{T} A^{(k+1)} R^{(k, k+1)}
$$

Level(k) gamblets and stiffness matrices can be computed from level $(k+1)$ gamblets and stiffness matrices

Well conditioned linear systems

Underlying linear systems have uniformly bounded condition numbers
$\psi_{i}^{(k)}=\psi_{(i, 1)}^{(k+1)}+\sum_{j} C_{i, j}^{(k+1), \chi} \chi_{j}^{(k+1)}$

Localization

$$
\begin{array}{r}
C^{(k+1), \chi}=\left(B^{(k+1)}\right)^{-1} Z^{(k+1)} \\
Z_{j, i}^{(k+1)}:=-\left(e_{j}^{(k+1)}-e_{j^{-}}^{(k+1)}\right)^{T} A^{(k+1)} e_{(i, 1)}^{(k+1)}
\end{array}
$$

The nested computation can be localized without compromising accuracy or condition numbers

Theorem

Localizing $\left(\psi_{i}^{(k)}\right)_{i \in \mathcal{I}_{k}}$ and $\left(\chi_{i}^{(k)}\right)_{i}$ to subdomains of size
$\geq C H_{k} \ln \frac{1}{H_{k}} \Rightarrow$ Cond. No $\left(B^{(k), \text { loc }}\right) \leq C$
$\geq C H_{k}\left(\ln \frac{1}{H_{k}}+\ln \frac{1}{\epsilon}\right) \Rightarrow$
$\left\|u-u^{(1), \text { loc }}-\sum_{k=1}^{q-1}\left(u^{(k+1), \text { loc }}-u^{(k), \text { loc }}\right)\right\|_{a} \leq \epsilon$

Theorem

The number of operations to compute gamblets and achieve accuracy ϵ is $\mathcal{O}\left(N \ln ^{3 d}\left(\max \left(\frac{1}{\epsilon}, N^{1 / d}\right)\right)\right)$ (and $\mathcal{O}\left(N \ln ^{d}\left(N^{1 / d}\right) \ln \frac{1}{\epsilon}\right)$ for subsequent solves)

Complexity

Gamblet $\mathcal{O}\left(N \ln ^{3 d} N\right)$ Linear Transform $\mathcal{O}\left(N \ln ^{3 d} N\right) \left\lvert\, \begin{aligned} & \text { Linear } \\ & \text { Solve }\end{aligned}\right.$
$\mathcal{O}\left(N \ln ^{d+1} N\right)$
$\varphi_{i}, A^{h}, M^{h} \longrightarrow \psi_{i}^{(q)}, A^{(q)} \longrightarrow \chi_{i}^{(q)}, B^{(q)} \longrightarrow u^{(q)}-u^{(q-1)}$

$$
\psi_{i}^{(q-1)}, \overparen{A^{(q-1)}} \xrightarrow{\longrightarrow} \chi_{i}^{(q-1)}, B^{(q-1)} u^{(q-1)}-u^{(q-2)}
$$

Parallel

 operating diagram both in space$$
\longrightarrow u^{(2)}-u^{(1)}
$$ and in

$$
\psi_{i}^{(2)}, A^{(2)} \longrightarrow \chi_{i}^{(2)}, B^{(2)}
$$ frequency

$$
\psi_{i}^{(3)}, A^{(3)} \longrightarrow \chi_{i}^{(3)}, \dot{B}^{(3)} \longrightarrow u^{(3)}-u^{(2)}
$$

$$
\psi_{i}^{(1)}, \widehat{A^{(1)}}
$$

Numerical Homogenization

Harmonic Coordinates Babuska, Caloz, Osborn, 1994
Kozlov, 1979 Allaire Brizzi 2005; Owhadi, Zhang 2005
MsFEM [Hou, Wu: 1997]; [Efendiev, Hou, Wu: 1999]
[Fish - Wagiman, 1993] [Gloria 2010] Arbogast, 2011: Mixed MsFEM
Projection based method Nolen, Papanicolaou, Pironneau, 2008 HMM Engquist, E, Abdulle, Runborg, Schwab, et Al. 2003-...

Flux norm Berlyand, Owhadi 2010; Symes 2012
Localization [Chu-Graham-Hou-2010] (limited inclusions) [Efendiev-Galvis-Wu-2010] (limited inclusions or mask), [Babuska-Lipton 2010] (local boundary eigenvectors)
[Owhadi-Zhang 2011] (localized transfer property)
[Malqvist-Peterseim 2012] Volume averaged interpolation [Owhadi-Zhang-Berlyand 2013] (Rough Polyharmonic Splines) [Owhadi, SIAM MMS, 2015]
Bayesian Numerical Homogenization
[Hou and Liu,DCDS-A, 2016]

Statistical approach to numerical approximation

[Henri Poincaré. Calcul des probabilités. 1896.]
[A. V. Sul'din, Wiener measure and its applications to approximation methods. Matematika 1959]
[A. Sard. Linear approximation. 1963.]
[G. S. Kimeldorf and G. Wahba. A correspondence between Bayesian estimation on stochastic processes and smoothing by splines. 1970]
[F.M. Larkin. Gaussian measure in Hilbert space and applications in numerical analysis. Rocky Mountain J. Math, 1972]
[H. Woźniakowski. Probabilistic setting of information-based complexity. J. Complexity, 1986.]
[E. W. Packel. The algorithm designer versus nature: a game-theoretic approach to information-based complexity. J. Complexity, 1987]
[J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski. Information-based complexity. 1988]

Statistical approach to numerical approximation

[P. Diaconis. Bayesian numerical analysis. In Statistical decision theory and related topics, 1988]
[J. E. H. Shaw. A quasirandom approach to integration in Bayesian statistics. Ann. Statist, 1988.]
[A. O'Hagan. Bayes-Hermite quadrature. J. Statist. Plann. Inference, 29(3):245 260, 1991.]
[A. O'Hagan. Some Bayesian numerical analysis. Bayesian statistics, 1992.]
[Skilling, J. Bayesian solution of ordinary differential equations. 1992.]
[Erich Novak and Henryk Woźniakowski, Tractability of Multivariate Problems, 2008-2010]
[Chkrebtii, O. A., Campbell, D. A., Girolami, M. A. and Calderhead, B. Bayesian uncertainty quantification for differential equations. arXiv:1306.2365. 2013]
[H. Owhadi. Bayesian Numerical Homogenization. SIAM MMS, 2015]
[P. Hennig. Probabilistic interpretation of linear solvers. SIAM Journal on Optimization, 2015.]
[P. Hennig, M. A. Osborne, and M. Girolami. Probabilistic numerics and uncertainty in computations. Journal of the Royal Society A, 2015.]

Some high level remarks

What is the worst?

u^{\dagger} : Unknown element of \mathcal{A}
$\Phi: \mathcal{A} \longrightarrow \mathbb{R}$
$u \longrightarrow \Phi(u) \quad$ Quantity of Interest
What is $\Phi\left(u^{\dagger}\right)$?
$\inf _{u \in \mathcal{A}} \Phi(u) \leq \Phi\left(u^{\dagger}\right) \leq \sup _{u \in \mathcal{A}} \Phi(u)$
Robust Optimization worst case

Game theoretic worst case

Robust Optimization worst case

Failure is not an option. You want to always be right.

Game theoretic worst case

Interpretation depends on the choice of loss function.

Confidence error

You want to be right with high probability.

Quadratic error

You want to be right on average.
Well suited for numerical computation where you need to keep computing with partial information (e.g. invert a $1,000,000$ by 1,000,000 matrix)

Complete class theorem Estimator

Can we approximate the optimal prior?

Numerical robustness of Bayesian inference

$\theta_{\pi}(d)=\mathbb{E}_{\mu \sim \pi, d \sim \mu^{n}}[\Phi(\mu) \mid d]$

$$
\begin{gathered}
\text { Data } \\
\text { Prior } \Rightarrow \stackrel{\circledR \text { Bayes }}{ } \Rightarrow \text { Posterior }
\end{gathered}
$$

Can we numerically approximate the prior when closed form expressions are not available for posterior values?

Prior $\Rightarrow \underset{\text { approximation }}{\substack{\text { Numerical } \\ \text { and } \\ \\ \Rightarrow \\ \text { Prior }}} \begin{aligned} & \text { Prokhorov approximated }\end{aligned}$

Densities $\Rightarrow \underset{\substack{\text { Curse of dimensionality }}}{$| Numerical |
| :--- |
| approximat |$} \stackrel{\text { KL approximated }}{\Rightarrow}$

Here Be
Prokhorov $\longrightarrow \mathrm{TV} \longrightarrow \mathrm{KL}$ DRAGONS
OEA

Robustness of Bayesian conditioning in continuous spaces

- Brittleness of Bayesian Inference under Finite Information in a Continuous World. H. Owhadi, C. Scovel and T. Sullivan. Electronic Journal of Statistics, vol 9, pp 1-79, 2015. arXiv:1304.6772
- Brittleness of Bayesian inference and new Selberg formulas. H. Owhadi and C. Scovel. Communications in Mathematical Sciences (2015). arXiv:1304.7046
- On the Brittleness of Bayesian Inference. H. Owhadi, C. Scovel and T. Sullivan. SIAM Review, 57(4), 566-582, 2015, arXiv:1308.6306
- Qualitative Robustness in Bayesian Inference (2015). H. Owhadi and C. Scovel. arXiv:1411.3984

Positive

- Classical Bernstein Von Mises
- Wasserman, Lavine, Wolpert (1993)
- P Gustafson \& L Wasserman (1995)
- Castillo and Rousseau (2013)
- Castillo and Nickl (2013)
- Stuart \& Al (2010+).

Negative

- Freedman $(1963,1965)$
- P Gustafson \& L Wasserman (1995)
- Diaconis \& Freedman 1998
- Johnstone 2010
- Leahu 2011
- Belot 2013

Brittleness of Bayesian Inference under Finite Information in a Continuous World. H. Owhadi, C. Scovel and T. Sullivan. Electronic Journal of Statistics, vol 9, pp 1-79, 2015. arXiv:1304.6772
10.000 children are given one pound of play-doh. On average, how much mass can they put above a while, on average, keeping the seesaw balanced around \underline{m} ?

Paul is given one pound of play-doh. What can you say about how much mass he is putting above a if all you have is the belief that he is keeping the seesaw balanced around m ?

What is the least upper bound on

$$
\mathbb{E}_{\mu \sim \pi}[\mu[X \geq a]]
$$

If all you know is $\mathbb{E}_{\mu \sim \pi}\left[\mathbb{E}_{\mu}[X]\right]=m ?$

$$
\sup _{\pi \in \Pi} \mathbb{E}_{\mu \sim \pi}[\mu[X \geq a]]
$$

$$
\Pi:=\left\{\pi \in \mathcal{M}(\mathcal{A}): \mathbb{E}_{\mu \sim \pi}\left[\mathbb{E}_{\mu}[X]\right]=m\right\}
$$

$\mid \sup \mathbb{E}_{\mu \sim \pi}[\mu[X \geq a]]$ $\pi \in \Pi$

$\Pi:=\left\{\pi \in \mathcal{M}(\mathcal{M}([0,1])): \mathbb{E}_{\mu \sim \pi}\left[\mathbb{E}_{\mu}[X]\right]=m\right\}$

$a \quad 1$
Theorem
$\sup _{\pi \in \Pi} \mathbb{E}_{\mu \sim \pi}[\mu[X \geq a]]=\sup _{\mathbb{Q} \in \mathcal{M}([0,1]): \mathbb{E}_{\mathbb{Q}}[q]=m}$

$$
\mathbb{E}_{q \sim \mathbb{Q}}\left[\sup _{\mu \in \mathcal{M}([0,1]): \mathbb{E}_{\mu}[X]=q} \mu[X \geq a]\right]
$$

$\sup _{\in \Pi} \mathbb{E}_{\mu \sim \pi}[\mu[X \geq a]]$

$\Pi:=\left\{\pi \in \mathcal{M}(\mathcal{M}([0,1])): \mathbb{E}_{\mu \sim \pi}\left[\mathbb{E}_{\mu}[X]\right]=m\right\}$

$$
\begin{aligned}
& \sup _{\pi \in \Pi} \mathbb{E}_{\mu \sim \pi}[\mu[X \geq a]]= \sup _{\mathbb{Q} \in \mathcal{M}([0,1]): \mathbb{E}_{\mathbb{Q}}[q]=m} \\
& \mathbb{E}_{q \sim \mathbb{Q}}\left[\min \left(\frac{q}{a}, 1\right)\right] \\
& \hline
\end{aligned}
$$

$\sup _{\pi \in \Pi} \mathbb{E}_{\mu \sim \pi}[\mu[X \geq a]]$

$\Pi:=\left\{\pi \in \mathcal{M}(\mathcal{M}([0,1])): \mathbb{E}_{\mu \sim \pi}\left[\mathbb{E}_{\mu}[X]\right]=m\right\}$

$\sup _{\pi \in \Pi} \mathbb{E}_{\mu \sim \pi}[\mu[X \geq a]]=\frac{m}{a}$

Reduction calculus with measures over measures

Polish space

Theorem Brittleness of Bayesian Inference under Finite Information in a Continuous World. H. Owhadi, C. Scovel and T. Sullivan. Electronic Journal of Statistics, vol 9, pp 1-79, 2015. arXiv:1304.6772

$$
\begin{gathered}
\sup _{\pi \in \Psi^{-1} \mathfrak{Q}} \mathbb{E}_{\mu \sim \pi}[\Phi(\mu)] \\
\sup _{\mathbb{Q} \in \mathfrak{Q}}\left[\mathbb{E}_{q \sim \mathbb{Q}}\left[\sup _{\mu \in \Psi^{-1}(q)} \Phi(\mu)\right]\right]
\end{gathered}
$$

What is the worst with random data?
μ^{\dagger} : Unknown element of \mathcal{A}

$\Phi: \mathcal{A} \longrightarrow \mathbb{R}$
$\mu \longrightarrow \Phi(\mu) \quad$ Quantity of Interest
You observe data $d \sim\left(\mu^{\dagger}\right)^{n}$

What is $\Phi\left(\mu^{\dagger}\right) ?$

Find a (confidence) set $\mathcal{C}(d)$ such that with probability $1-\epsilon$

$$
\mu^{\dagger} \in \mathcal{C}(d)
$$

\downarrow

With probability $1-\epsilon$
$\inf _{\mu \in \mathcal{A} \cap \mathcal{C}(d)} \Phi(\mu) \leq \Phi\left(\mu^{\dagger}\right) \leq \sup _{\mu \in \mathcal{A} \cap \mathcal{C}(d)} \Phi(\mu)$

Notion of worst/sharpest depends on the particular choice of $\mathcal{C}(d)$
Frequentist/Concentration of measure worst case

$$
\begin{aligned}
& \mu \in \mathcal{M}(\mathcal{X}) \\
& \mu_{n}:=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}} \in \mathcal{M}(\mathcal{X}) \quad \\
& d=\left(X_{1}, \ldots, X_{n}\right)
\end{aligned}
$$

Theorem $\quad d_{\text {Wasesestesin }}\left(\mu, \mu_{n}\right)=\sup _{f \in \operatorname{Liv}}\left(\mathbb{E}_{\mu}[f]-\mathbb{E}_{\mu_{n}}[f]\right) \quad \mathbb{E}_{X \sim \mu}\left[e^{\|X\|^{a}}\right]<\infty$

$$
\mu^{n}\left[d_{\mathrm{W}}\left(\mu, \mu_{n}\right) \geq r\right] \leq C\left(e^{-c n r^{m}} 1_{r \leq 1}+e^{-c n r^{a}} 1_{r>1}\right)
$$

N. Fournier and A. Guillin, On the rate of convergence in Wasserstein distance of the empirical measure, Probability Theory and Related Fields, (2014), pp. 1-32.

Reduction calculus of the ball about the empirical distribution

- D. Wozabal. A framework for optimization under ambiguity. Annals of Operations Research, 193(1):21-47, 2012.
- P. M. Esfahani and D. Kuhn. Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations. arXiv:1505.05116, 2015.
- Extreme points of a ball about a measure with finite support (2015). H. Owhadi and Clint Scovel. arXiv:1504.06745

The extreme points of the Prokhorov, Monge-Wasserstein and Kantorovich metric balls about a measure whose support has at most \mathbf{n} points, consist of measures whose supports have at most $\mathrm{n}+2$ points.

Question

Game/Decision Theory + Information Based Complexity

Turn the process of discovery of scalable numerical solvers into an algorithm

Worst case calculus

The truncated moment problem

$$
\begin{aligned}
& \mathcal{M}[0,1] \Psi \\
& \mu \xrightarrow{\Psi} \mathbb{R}^{k} \\
&\left.\mathbb{E}_{X \sim \mu}[X], \mathbb{E}_{X \sim \mu}\left[X^{2}\right], \ldots, \mathbb{E}_{X \sim \mu}\left[X^{k}\right]\right)
\end{aligned}
$$

Study of the geometry of $M_{k}:=\Psi(\mathcal{M}([0,1]))$

P. L. Chebyshev 1821-1894

A. A. Markov 1856-1922

M. G. Krein 1907-1989
$\mathcal{M}[0,1] \xrightarrow{\Psi} \mathbb{R}^{k} \quad M_{k}:=\Psi(\mathcal{M}([0,1]))$

$$
\mu \longrightarrow\left(\mathbb{E}_{X \sim \mu}[X], \mathbb{E}_{X \sim \mu}\left[X^{2}\right], \ldots, \mathbb{E}_{X \sim \mu}\left[X^{k}\right]\right)
$$

Infinite dim.

Finite dim.

Let us compute $\operatorname{Vol}\left(M_{k}\right)$ using different extreme points representations.
Finite dim.

Infinite dim.
Finite dim.

$$
\mu=\sum_{j=1}^{N} \lambda_{j} \delta_{t_{j}} \xrightarrow{\Psi} \underset{\substack{ \\q_{i}=\sum_{j=1}^{N} \lambda_{j} t_{j}^{i}}}{\left(q_{1}, \ldots, q_{k}\right)}
$$

$$
\mu=\sum_{j=1}^{N} \lambda_{j} \delta_{t_{j}}
$$

Index $i(\mu)$: Number of support points of μ Counting interior points with weight 1 and boundary points with weight $\frac{1}{2}$ μ is called • principal if $i(\mu)=\frac{k+1}{2}$

- canonical if $i(\mu)=\frac{k^{2}+2}{2}$
- upper if support points include 1

Theorem

- lower if support points do not include 1

Every point $q \in \operatorname{Int}\left(M_{k}\right)$ has a unique upper and lower principal representation.

Upper

Lower

$\operatorname{Vol}\left(M_{2 m-1}\right)$ using Upper Rep. $=\operatorname{Vol}\left(M_{2 m-1}\right)$ using Lower Rep.

$$
\frac{1}{(m-1)!} S_{m-1}(3,3,2)=\frac{1}{m!} S_{m}(1,1,2)
$$

$\overline{\operatorname{Vol}\left(M_{2 m}\right) \text { using Upper Rep. }=\operatorname{Vol}\left(M_{2 m}\right) \text { using Lower Rep. }}$

$$
S_{m}(1,3,2)=S_{m}(3,1,2)
$$

Selberg Identities

$$
\begin{array}{r}
S_{n}(\alpha, \beta, \gamma)=\prod_{j=0}^{n-1} \frac{\Gamma(\alpha+j \gamma) \Gamma(\beta+j \gamma) \Gamma(1+(j+1) \gamma)}{\Gamma(\alpha+\beta+(n+j-1) \gamma) \Gamma(1+\gamma)} \\
S_{n}(\alpha, \beta, \gamma):=\int_{[0,1]^{n}} \prod_{j=1}^{n} t_{j}^{\alpha-1}\left(1-t_{j}\right)^{\beta-1}|\Delta(t)|^{2 \gamma} d t \\
\Delta(t):=\prod_{j<k}\left(t_{k}-t_{j}\right)
\end{array}
$$

Brittleness of Bayesian inference and new Selberg formulas. H. Owhadi and C. Scovel. Communications in Mathematical Sciences (2015). arXiv:1304.7046

Forrester and Warnaar 2008

The importance of the Selberg integral
Used to prove outstanding conjectures in Random matrix theory and cases of the Macdonald conjectures

Central role in random matrix theory, CalogeroSutherland quantum many-body systems, KnizhnikZamolodchikov equations, and multivariable orthogonal polynomial theory

$$
\mu=\sum_{j=1}^{N} \lambda_{j} \delta_{t_{j}}
$$

Index $i(\mu)$: Number of support points of μ Counting interior points with weight 1 and boundary points with weight $\frac{1}{2}$ μ is called • principal if $i(\mu)=\frac{k+1}{2}$

- canonical if $i(\mu)=\frac{k^{2}+2}{2}$
- upper if support points include 1

Theorem - lower if support points do not include 1
For $t_{*} \in(0,1)$, every point $q \in \operatorname{Int}\left(M_{k}\right)$ has a unique canonical representation whose support contains t_{*}. When $t_{*}=0$ or 1 , there exists a unique principal representation whose support contains t_{*}.

New Reproducing Kernel Hilbert Spaces and Selberg Integral formulas related to the Markov-Krein representations of moment spaces.

$$
\begin{aligned}
& \mathcal{M}[0,1] \xrightarrow{\Psi}[0,1]^{k} \\
& \mu \mathrm{Z}\left(\mathbb{E}_{X \sim \mu}[X], \mathbb{E}_{X \sim \mu}\left[X^{2}\right], \ldots, \mathbb{E}_{X \sim \mu}\left[X^{k}\right]\right) \\
& \frac{\int_{I^{m}} \Sigma t^{-1} \cdot \prod_{j=1}^{m} t_{j}^{2}\left(1-t_{j}\right)^{2} \Delta_{m}^{4}(t) d t=\frac{S_{m}(5,1,2)-S_{m}(3,3,2)}{2}}{\int_{I^{m}} \Sigma t^{-1} \cdot \prod_{j=1}^{m} t_{j}^{2} \cdot \Delta_{m}^{4}(t) d t=\frac{m}{2} S_{m-1}(5,3,2)} \\
& \Delta_{m}(t):=\prod_{j<k}\left(t_{k}-t_{j}\right) \quad I:=[0,1] \\
& \quad(\Sigma \phi)(t):=\sum_{j=1}^{m} \phi\left(t_{j}\right), \quad t \in I^{m} \\
& S_{n}(\alpha, \beta, \gamma)=\prod_{j=0}^{n-1} \frac{\Gamma(\alpha+j \gamma) \Gamma(\beta+j \gamma) \Gamma(1+(j+1) \gamma)}{\Gamma(\alpha+\beta+(n+j-1) \gamma) \Gamma(1+\gamma)}
\end{aligned}
$$

$$
e_{j}(t):=\sum_{i_{1}<\cdots<i_{j}} t_{i_{1}} \cdots t_{i_{j}}
$$

$\Pi_{0}^{n}: n$-th degree polynomials which vanish on the boundary of $[0,1]$ $M_{n} \subset \mathbb{R}^{n}$: set of $q=\left(q_{1}, \ldots, q_{n}\right) \in \mathbb{R}^{n}$ such that there exists a probability measure μ on $[0,1]$ with $\mathbb{E}_{\mu}\left[X^{i}\right]=q_{i}$ with $i \in\{1, \ldots, n\}$.

Theorem

Bi-orthogonal systems of Selberg Integral formulas

Consider the basis of $\Pi_{0}^{2 m-1}$ consisting of the associated Legendre polynomials $Q_{j}, j=2, . ., 2 m-1$ of order 2 translated to the unit interval I. For $k=2, . ., 2 m-1$ define

$$
\begin{gathered}
a_{j k}:=\frac{\left(j+k+k^{2}\right) \Gamma(j+2) \Gamma(j)}{\Gamma(j+k+2) \Gamma(j-k+1)}, \quad k \leq j \leq 2 m-1 \\
\tilde{h}_{k}(t):=\sum_{j=k}^{2 m-1}(-1)^{j+1} a_{j k} e_{2 m-1-j}(t, t) .
\end{gathered}
$$

Then for $j=k \bmod 2, j, k=2, . ., 2 m-1$, we have

$$
\int_{I^{m-1}} \tilde{h}_{k}(t) \Sigma Q_{j}(t) \prod_{j^{\prime}=1}^{m-1} t_{j^{\prime}}^{2} \cdot \Delta_{m-1}^{4}(t) d t=\operatorname{Vol}\left(M_{2 m-1}\right)(2 m-1)!(m-1)!\frac{(k+2)!}{(8 k+4)(k-2)!} \delta_{j k} .
$$

Collaborators

Clint Scovel (Caltech), Tim Sullivan (Warwick), Mike McKerns (Caltech), Michael Ortiz (Caltech),
Lei Zhang (Jiaotong), Leonid Berlyand (PSU), Lan Huong Nguyen, Paul Herve Tamogoue Kamga.

Research supported by

Air Force Office of Scientific Research

DARPA EQUiPS Program (Enabling Quantification of Uncertainty in Physical Systems)
U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research, through the Exascale Co-Design Center for Materials in Extreme Environments

National Nuclear Security Administration

[^0]: How do we reason with the worst in presence of data sampled from an unknown distribution?

