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Abstract. We construct finite-dimensional approximations of solution spaces of divergence-form opera-
tors with L∞-coefficients. Our method does not rely on concepts of ergodicity or scale-separation, but on the
property that the solution space of these operators is compactly embedded in H 1 if source terms are in the unit
ball of L2 instead of the unit ball of H−1. Approximation spaces are generated by solving elliptic PDEs on
localized subdomains with source terms corresponding to approximation bases for H 2. The H 1-error estimates
show that Oðh−dÞ-dimensional spaces with basis elements localized to subdomains of diameter Oðhα ln 1

hÞ
(with α ∈ ½12 ; 1Þ) result in an Oðh2−2αÞ accuracy for elliptic, parabolic, and hyperbolic problems. For high-
contrast media, the accuracy of the method is preserved, provided that localized subdomains contain buffer
zones of width Oðhα ln 1

hÞ, where the contrast of the medium remains bounded. The proposed method can
naturally be generalized to vectorial equations (such as elasto-dynamics).
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1. Introduction. Consider the partial differential equation�
−divðaðxÞ∇uðxÞÞ ¼ gðxÞ; x ∈ Ω; g ∈ L2ðΩÞ; aðxÞ ¼ faij ∈ L∞ðΩÞg
u ¼ 0 on ∂Ω;ð1:1Þ

whereΩ is a bounded subset of Rd with a smooth boundary (e.g., C 2) and a is symmetric
and uniformly elliptic on Ω. It follows that the eigenvalues of a are uniformly bounded
from below and above by two strictly positive constants, denoted by λminðaÞ and λmaxðaÞ.
Precisely, for all ξ ∈ Rd and x ∈ Ω,

λminðaÞjξj2 ≤ ξTaðxÞξ ≤ λmaxðaÞjξj2:ð1:2Þ
In this paper, we are interested in the homogenization of (1.1) (and its parabolic and

hyperbolic analogues in sections 4 and 5), but not in the classical sense, i.e., that of
asymptotic analysis [9] or that of G or H -convergence (see [47], [57], [32]) in which
one considers a sequence of operators −divðaϵ∇Þ and seeks to characterize limits of
solution. We are interested in the homogenization of (1.1) in the sense of “numerical
homogenization,” i.e., that of the approximation of the solution space of (1.1) by a
finite-dimensional space.

This approximation is not based on concepts of scale-separation and/or of ergodi-
city but on compactness properties, i.e., the fact that the unit ball of the solution space is
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compactly embedded into H 1
0ðΩÞ if source terms (g) are integrable enough. This higher

integrability condition on g is necessary because if g spans H−1ðΩÞ, then the solution
space of (1.1) is H 1

0ðΩÞ (and it is not possible to obtain a finite-dimensional approxima-
tion subspace ofH 1

0ðΩÞwith arbitrary accuracy in theH 1-norm). However, if g spans the
unit ball of L2ðΩÞ, then the solution space of (1.1) shrinks to a compact subset of H 1

0ðΩÞ
that can be approximated to an arbitrary accuracy in theH 1-norm by finite-dimensional
spaces [10] (observe that if a ¼ I d, then the solution space is a closed bounded subset of
H 2 ∩ H 1

0ðΩÞ, which is known to be compactly embedded into H 1
0ðΩÞ).

The identification of localized bases spanning accurate approximation spaces relies
on a transfer property obtained in [10]. For the sake of completeness, we will give a short
reminder of that property in section 2. In section 3, we will construct localized approx-
imation bases with rigorous error estimates (under no further assumptions on a than
those given above). In subsection 3.4, we will also address the high-contrast scenario
in which λmaxðaÞ is allowed to be large. In sections 4 and 5, we will show that the ap-
proximation spaces obtained by solving localized elliptic PDEs remain accurate for para-
bolic and hyperbolic time-dependent problems. We refer the reader to section 6 for
numerical experiments. We refer the reader to Appendix B for further discussion
and a proof of the strong compactness of the solution space when the range of g is a
closed bounded subset of H−νðΩÞ with ν < 1 (this notion of strong compactness con-
stitutes a simple but fundamental link between classical homogenization, numerical
homogenization, and reduced order modeling).

2. A reminder on the flux-norm and the transfer property. Recall that the
key element in G and H convergence is a notion of “compactness by compensation”
combined with convergence of fluxes. Here, the notion of compactness is combined with
a flux-norm introduced in [10].

The flux-norm. We will now give a short reminder on the flux-norm and its
properties.

DEFINITION 2.1. For k ∈ ðL2ðΩÞÞd, denote by kpot the potential portion of the Weyl–
Helmholtz decomposition of k. Recall that kpot is the orthogonal projection of k onto
f∇f∶f ∈ H 1

0ðΩÞg in ðL2ðΩÞÞd.
DEFINITION 2.2. For ψ ∈ H 1

0ðΩÞ, define
kψka-flux ≔ kða∇ψÞpotkðL2ðΩÞÞd :ð2:1Þ

We call kψka-flux the flux-norm of Ψ.
The following proposition shows that the flux-norm is equivalent to the energy norm

if λminðaÞ > 0 and λminðaÞ < ∞.
PROPOSITION 2.1 (see [10, Proposition 2.1]). k:ka-flux is a norm on H 1

0ðΩÞ. Further-
more, for all ψ ∈ H 1

0ðΩÞ,
λminðaÞk∇ψkðL2ðΩÞÞd ≤ kψka-flux ≤ λmaxðaÞk∇ψkðL2ðΩÞÞd :ð2:2Þ

Motivations behind the flux-norm. There are three main motivations behind the
introduction of the flux-norm.

• The flux-norm allows us to obtain approximation error estimates independent
from both the minimum and maximum eigenvalues of a. In fact, the flux-norm
of the solution of (1.1) is independent from a altogether since

kuka-flux ¼ k∇Δ−1gkðL2ðΩÞÞd :ð2:3Þ
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• The ð·Þpot in the a-flux-norm is explained by the fact that in practice, we are
interested in fluxes (of heat, stress, oil, pollutant) entering or exiting a given
domain. Furthermore, for a vector field ξ, ∫ ∂Ωξ · nds ¼ ∫ ΩdivðξpotÞdx, which
means that the flux entering or exiting is determined by the potential part
of the vector field.

• Classical homogenization is associated with two types of convergence: conver-
gence of energies (Γ-convergence [33], [15]) and convergence of fluxes (G- or H -
convergence [47], [32], [58], [57], [46]). Similarly, one can define an energy norm
and a flux-norm.

The transfer property. For V , a finite-dimensional linear subspace of H 1
0ðΩÞ, we

define

ðdiv a∇V Þ ≔ spanfdivða∇vÞ∶v ∈ Vg:ð2:4Þ

Note that ðdiv a∇V Þ is a finite-dimensional subspace of H−1ðΩÞ.
THEOREM 2.1 (transfer property of the flux-norm; see [10, Theorem 2.1]). LetV  0 and

V be finite-dimensional subspaces of H 1
0ðΩÞ. For f ∈ L2ðΩÞ, let u be the solution of

(1.1) with conductivity a, and let u 0 be the solution of (1.1) with conductivity a  0. If
ðdiv a∇V Þ ¼ ðdiv a  0∇V  0Þ, then

inf
v ∈V

ku− vka-flux
kgkL2ðΩÞ

¼ inf
v ∈V  0

ku 0 − vka 0-flux
kgkL2ðΩÞ

:ð2:5Þ

The usefulness of (2.5) can be illustrated by considering a  0 ¼ I so that div a 0∇ ¼ Δ.
Then, u 0 ∈ H 2, and therefore V  0 can be chosen as, e.g., the standard piecewise linear
finite element method space, on a regular triangulation of Ω of resolution h, with nodal
basis fϕig. The space V is then defined by its basis fθig determined by�

divða∇θiÞ ¼ Δϕi in Ω;
θi ¼ 0 on ∂Ω:ð2:6Þ

Equation (2.5) shows that the approximation error estimate associated with the spaceV
and the problem with arbitrarily rough coefficients is (in the a-flux-norm) equal to the
approximation error estimate associated with piecewise linear elements and the space
H 2ðΩÞ. More precisely,

sup
g ∈L2ðΩÞ

inf
v∈V

ku− vka-flux
kgkL2ðΩÞ

≤ Ch;ð2:7Þ

where C does not depend on a.
We refer the reader to [22], [25], and [11] for recent results on finite element methods

for high-contrast (λmaxðaÞ ∕ λminðaÞ >> 1) but nondegenerate (λminðaÞ ¼ Oð1Þ) media
under specific assumptions on the morphology of the (high-contrast) inclusions (in
[22], the mesh has to be adapted to the morphology of the inclusions). Observe that
the proposed method remains accurate if the medium is both of high contrast and de-
generate (λminðaÞ << 1), without any further limitations on a, at the cost of solving
PDEs (2.6) over the whole domain Ω.

Remark 2.1. We refer the reader to [10] for the optimal constant C in (2.7). This
question of optimal approximation with respect to a linear finite-dimensional space is
related to the Kolmogorov n-width [54], [44], which measures how accurately a given set
of functions can be approximated by linear spaces of dimension n in a given norm.
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A surprising result of the theory of n-widths is the nonuniqueness of the space realizing
the optimal approximation [54]. Observe also that, as another consequence of the trans-
fer property (2.5), a hkþ1 rate of convergence can be achieved in (2.7) by replacing ϕi

with higher-order basis functions in (2.6), and kgkL2 with kgkHk in (2.7). Similarly, an
exponential rate of convergence can be achieved if the source terms g are analytic. This is
the reason behind the nearly exponential rate of convergence observed in [6] for harmo-
nic functions (i.e., with zero source terms, and particular “buffer” solutions computed
near the boundary) and bounded (nonhigh) contrast media.

3. Localization of the transfer property. The elliptic PDEs (2.6) have to be
solved on the whole domain Ω. Is it possible to localize the computation of the basis
elements θi to a neighborhood of the support of the elements ϕi? Observe that the sup-
port of each ϕi is contained in a ball Bðxi; ChÞ of center xi (the node of the coarse mesh
associated with xi) of radius Ch. Let 0 < α ≤ 1. Solving the PDEs (2.6) on subdomains
of Ω (containing the support of ϕi) may, a priori, increase the error estimate in the right-
hand side of (2.5). This increase can, in fact, be linked to the decay of the Green’s func-
tion of the operator−divða∇Þ. The slower the decay, the larger the degradation of those
approximation error estimates. Inspired by the strategy used in [35] for controlling cell
resonance errors in the computation of the effective conductivity of periodic or stochas-
tic homogenization (see also [36], [53], [63]), we will replace the operator −divða∇Þ with
the operator 1

T − divða∇Þ in the left-hand side of (2.6) in order to artificially introduce
an exponential decay in the Green’s function. A fine-tuning of T is required, because
although a decrease in T improves the decay of the Green’s function, it also deteriorates
the accuracy of the transfer property. In order to limit this deterioration, we will transfer
a vector space with a higher approximation order than the one associated with piecewise
linear elements. Let us now give the main result.

3.1. Localized basis functions. Let h ∈ ð0; 1Þ. Let Xh be an approximation sub-
vector space of H 1

0ðΩÞ such that the following are true.
• Xh is spanned by basis functions ðφiÞ1≤i≤N (with N ¼ OðjΩj∕ hdÞ) with sup-

ports in Bðxi; ChÞ, where the xi are the nodes of a regular triangulation of
Ω of resolution h.

• Xh satisfies the following approximation properties: For all f ∈ H 1
0ðΩÞ ∩ H 2ðΩÞ,

inf
v∈Xh

kf − vkH 1
0ðΩÞ ≤ ChkfkH 2ðΩÞ;ð3:1Þ

and for all f ∈ H 1
0ðΩÞ ∩ H 3ðΩÞ,

inf
v∈Xh

kf − vkH 1
0ðΩÞ ≤ Ch2kfkH 3ðΩÞ:ð3:2Þ

• For all i, Z
Ω
j∇φij2 ≤ Chd−2:ð3:3Þ

• For all coefficients ci,

hd
X
i

c2i ≤ C

����X
i

ci∇φi

����2
L2ðΩÞ

:ð3:4Þ
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Remark 3.1. Examples of such spaces can be found in [17] and constructed
using piecewise quadratic polynomials. From the first bullet point it follows that
h can be thought of as the diameter of the support of the elements φi. The largest
parameter hd ∕ C satisfying (3.4) is the minimal eigenvalue of the stiffness matrix
ð∫ Ωð∇φiÞT∇φjÞ1≤i;j≤N , and condition (3.4) is obtained from the regularity of the
tessellation of Ω. In fact, the proof of Proposition 3.2 shows that condition (3.4)
can be relaxed to the assumption of existence of a constant dφ > 0 independent
from h such that for all coefficients ci,

hdφ
X
i

c2i ≤ C

����X
i

ci∇φi

����2
L2ðΩÞ

:ð3:5Þ

Throughout this paper, we will write C for any constant that does not depend on h
(but may depend on d,Ω, and the essential supremum and infimum of the maximum and
minimum eigenvalues of a over Ω). Let α ∈ ð0; 1Þ and C1 > 0. For each basis element φi

of Xh, let ψi be the solution of8<
:

h−2αψi − divða∇ψiÞ ¼ Δφi in B
�
xi; C1h

α ln 1
h

�
∩ Ω;

ψi ¼ 0 on ∂
�
B
�
xi; C 1h

α ln 1
h

�
∩ Ω

�
:

ð3:6Þ

Let

Vh ≔ spanðψiÞð3:7Þ

be the linear space spanned by the elements ψi.
THEOREM 3.1. For g ∈ L2ðΩÞ, let u be the solution of (1.1) in H 1

0ðΩÞ and uh the solu-
tion of (1.1) in Vh. There exists C 0 > 0 such that for C 1 ≥ C 0, we have

ku− uhkH 1
0ðΩÞ

kgkL2ðΩÞ
≤

8<
:

Ch if α ∈
�
0; 12

i
;

Ch2−2α if α ∈
h
1
2 ; 1
�
;

ð3:8Þ

where the constants C and C 0 depend on a, d, and Ω but not on h.
Remark 3.2. Theorem 3.1 shows that the convergence rate in the approximation

error remains optimal (i.e., proportional to h) after localization if 0 < α ≤ 1 ∕ 2 and de-
cays to 0 as h2−2α for 1

2 ≤ α < 1. In particular, choosing localized domains with radii
Oð ffiffiffi

h
p

ln 1
hÞ is sufficient to obtain the optimal convergence rate OðhÞ. Observe that

the choice of the constant α in (3.6) is arbitrary.
Remark 3.3. According to Theorem 3.1, the constant C 1 in (3.6) needs to be chosen

larger than C 0 to achieve the convergence rate hþ h2−2α. The constant C 0 depends on
α, d, λminðaÞ, and λmaxðaÞ. The constant C in the right-hand side of (3.8) also depends on
α, d, λminðaÞ, and λmaxðaÞ. It is possible to give an explicit value for C 0 and C by tracking
constants in the proof (in particular, as stated in subsection 3.4, the dependence on
λmaxðaÞ can be removed if the elements Ψi are computed on subdomains with added
buffer zones around high-conductivity inclusions).

Remark 3.4. If one uses piecewise linear basis elements instead of the elements φi

(i.e., in the absence of property (3.2)), then the estimate in the right-hand side of (3.8)
deteriorates to h1−2α. The proof of this remark is similar to that of Theorem 3.1. The
main modification lies in replacing h2 ∕ T by h∕ T in (3.10) and (3.16).
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Remark 3.5. One could use piecewise linear basis elements instead of the elements
φi, and also remove the term h−2αψi from the transfer property (3.6). In this situation,
we numerically observe a rate of convergence of h for periodic, stochastic, and low-
contrast media after localization of (3.6) to balls of radii OðhÞ. In these particular situa-
tions (characterized by short range correlations in a), the term h−2αψi should be avoided
to obtain the optimal convergence rate h after localization to subdomains of sizeOðhÞ. In
that sense, the estimate in the right-hand side of (3.8) corresponds to a worst case sce-
nario with respect to the medium a (characterized by long range correlations), requiring
the introduction of the term h−1ψi and a localization to subdomains of size Oð ffiffiffi

h
p

ln 1
hÞ

for the optimal convergence rate h.
Remark 3.6. For the elliptic problem, computational gains result from localization

(the elements ψi are computed on subdomains Ωi of Ω), parallelization (the elements ψi

can be computed independently from each other), and the fact that the same basis can
be used for different right-hand sides g in (1.1). Computational gains are even more
significant for time-dependent problems because, once an accurate basis has been
determined for the elliptic problem, the same basis can be used for the associated
(parabolic and hyperbolic) time-dependent problems with the same accuracy (we refer
the reader to sections 4 and 5). For the wave equation with rough bulk modulus and
density coefficients, the proposed method (based on precomputing basis elements as
solutions of localized elliptic PDEs) remains accurate, provided that high frequencies
are not strongly excited (∂tg ∈ L2).

On localization. We refer the reader to [22], [25], and [6] for recent localization re-
sults for divergence-form elliptic PDEs. The strategy of [22] is to construct triangula-
tions and finite element bases that are adapted to the shape of high-conductivity
inclusions via coefficient dependent boundary conditions for the subgrid problems
(assuming a to be piecewise constant and the number of inclusions bounded). The strat-
egy of [25] is to solve local eigenvalue problems, observing that only a few eigenvectors
are sufficient to obtain a good preconditioner. Both [22] and [25] require specific assump-
tions on the morphology and number of inclusions. The idea of the strategy is to observe
that if a is piecewise constant and the number of inclusions bounded, then u is locally H 2

away from the interfaces of the inclusions. The inclusions can then be taken care of by
adapting the mesh and the boundary values of localized problems or by observing that
those inclusions will affect only a finite number of eigenvectors.

The strategy of [6] is to construct generalized finite elements by partitioning the
computational domain into to a collection of preselected subsets and compute optimal
local bases (using the concept of n-widths [55]) for the approximation of harmonic func-
tions. Local bases are constructed by solving local eigenvalue problems (corresponding
to computing eigenvectors of P�P, where P is the restriction of a-harmonic functions
from ω� onto ω ⊂ ω�, P� is the adjoint of P, and ω is a subdomain of Ω surrounded by a
larger subdomain ω�). The method proposed in [6] achieves a nearly exponential con-
vergence rate (in the number of precomputed basis functions) for harmonic functions.
Nonzero right-hand sides (g) are then taken care of by solving (for each different g)
particular solutions on preselected subsets with a constant Neumann boundary condi-
tion (determined according to the consistency condition).

As explained in Remark 2.1, the nearly exponential rate of convergence observed in
[6] is explained by the fact that the source space considered in [6] is more regular than L2

(since [6] requires the computation particular (local) solutions for each right-hand side g
and each nonzero boundary condition, the basis obtained in [6] is in fact adapted to a-
harmonic functions away from the boundary). The strategy proposed here can also be
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used to achieve exponential convergence for analytic source terms g by employing high-
er-order basis functions φi in (3.6). Furthermore, as shown in sections 4, 5, and 3.4, the
method proposed here allows for the numerical homogenization of time-dependent pro-
blems (because it does not require the computation of particular solutions for different
source or boundary terms) and can be extended to high-contrast media. We also note
that the basis functions ψi are simpler and cheaper to compute (see (3.6)) than the
eigenvectors of P�P required by [6]. We refer the reader to p. 16 of [6] for a discussion
on the cost of this added complexity.

3.2. On numerical homogenization. By now, the field of numerical homogeni-
zation has become large enough that it is not possible to give an exhaustive review in this
short paper. Therefore, we will restrict our attention to works directly related to our
work.

• The multiscale finite element method [40], [62], [41] can be seen as a numerical
generalization of this idea of oscillating test functions found in H -convergence.
A convergence analysis for periodic media revealed a resonance error introduced
by the microscopic boundary condition [40], [41]. An oversampling technique
was proposed to reduce the resonance error [40].

• Harmonic coordinates play an important role in various homogenization ap-
proaches, both theoretical and numerical. These coordinates were introduced
in [42] in the context of random homogenization. Next, harmonic coordinates
have been used in one-dimensional and quasi-one-dimensional divergence-form
elliptic problems [7], [5], allowing for efficient finite-dimensional approxima-
tions. The connection of these coordinates with classical homogenization is
made explicit in [2] in the context of multiscale finite element methods. The
idea of using particular solutions in numerical homogenization to approximate
the solution space of (1.1) appears to have been first proposed in reservoir mod-
eling in the 1980s [16], [61] (in which a global scale-up method was introduced
based on generic flow solutions, i.e., flows calculated from generic boundary
conditions). Its rigorous mathematical analysis was done only recently [49]
and is based on the fact that solutions are in fact H 2-regular with respect to
harmonic coordinates (recall that they areH 1-regular with respect to Euclidean
coordinates). The main message here is that if the right-hand side of (1.1) is in
L2, then solutions can be approximated at small scales (in the H 1-norm) by
linear combinations of d (linearly independent) particular solutions (d being
the dimension of the space). In that sense, harmonic coordinates are only good
candidates for being d linearly independent particular solutions.
The idea of a global change of coordinates analogous to harmonic coordinates
has been implemented numerically in order to up-scale porous media flows [27],
[26], [16]. We refer the reader, in particular, to a recent review article [16] for an
overview of some main challenges in reservoir modeling and a description of
global scale-up strategies based on generic flows.

• In [24], [29], the structure of the medium is numerically decomposed into a mi-
croscale and a macroscale (meso-scale), and solutions of cell problems are com-
puted on the microscale, providing local homogenized matrices that are
transferred (upscaled) to the macroscale grid. This procedure allows one to ob-
tain rigorous homogenization results with controlled error estimates for nonper-
iodic media of the form aðx; xϵÞ (where aðx; yÞ is assumed to be smooth in x and
periodic or ergodic with specific mixing properties in y). Moreover, it is shown
that the numerical algorithms associated with heterogeneous multiscale
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methods (HMM) and multiscale finite element methods (MsFEM) can be
implemented for a class of coefficients that is much broader than aðx; xϵÞ. We
refer the reader to [34] for convergence results on the heterogeneous multiscale
method in the framework of G- and Γ-convergence.

• More recent work includes an adaptive projection based method [48], which is
consistent with homogenization when there is scale-separation, leading to adap-
tive algorithms for solving problems with no clear scale-separation, fast and
sparse chaos approximations of elliptic problems with stochastic coefficients
[60], [37], [23], finite-difference approximations of fully nonlinear, uniformly
elliptic PDEs with Lipschitz continuous viscosity solutions [19], and operator
splitting methods [4], [3].

• We refer the reader to [13], [12] (and the references therein) for the most recent
results on homogenization of scalar divergence-form elliptic operators with sto-
chastic coefficients. Here, the stochastic coefficients aðx ∕ ε;ωÞ are obtained
from stochastic deformations (using random diffeomorphisms) of the periodic
and stationary ergodic setting.

3.3. Proof of Theorem 3.1. For each basis element φi of Xh, let ψi;T be the
solution of �

1
T ψi;T − divða∇ψi;T Þ ¼ Δφi in Ω;
ψi;T ¼ 0 on ∂Ω:ð3:9Þ

The following proposition will allow us to control the impact of the introduction of the
term 1

T in the transfer property. Observe that the domain of PDE (3.9) is stillΩ (our next
step will be to localize it to Ωi ⊂ Ω).

PROPOSITION 3.1. For g ∈ L2ðΩÞ, let u be the solution of (1.1) in H 1
0ðΩÞ. Then, there

exists v ∈ spanðψi;T Þ such that

ku− vkH 1
0ðΩÞ

kgkL2ðΩÞ
≤ C

�
hþ h2

T

�
:ð3:10Þ

Furthermore, writing v ≔
P

iciψi;T , we haveX
i

c2i ≤ Ch−dð1þ T−2Þkgk2
L2ðΩÞ.ð3:11Þ

Proof. Let v ¼Piciψi;T . We have

u− v

T
− divða∇ðu− vÞÞ ¼ gþ u

T
−
X
i

ciΔφi:ð3:12Þ

Define a½v� to be the energy norm a½v� ≔ ∫ Ωð∇vÞTa∇v. Multiplying (3.12) by u− v and
integrating by parts, we obtain that

ku− vk2
L2ðΩÞ

T
þ a½u− v� ¼

Z
Ω
ðu− vÞ

�
gþ u

T
−
X
i

ciΔφi

�
:ð3:13Þ

Write ci ¼ ci;1 þ ci;2 and let w1 and w2 be the solutions of Δw1 ¼ g−
P

ici;1Δφi and
Δw2 ¼ u

T −
P

ici;2Δφi with Dirichlet boundary conditions on ∂Ω. Then, we obtain by
integration by parts and the Cauchy–Schwarz inequality that
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ku− vk2
L2ðΩÞ

T
þ a½u− v� ≤ k∇ðu− vÞkðL2ðΩÞÞdðk∇w1kðL2ðΩÞÞd þ k∇w2kðL2ðΩÞÞdÞ:ð3:14Þ

Using (3.1), we can choose ðci;1Þ so that

k∇w1kðL2ðΩÞÞd ≤ ChkgkL2ðΩÞ:ð3:15Þ

Using (3.2), we can choose ðci;2Þ so that

k∇w2kðL2ðΩÞÞd ≤ C
h2

T
kukH 1

0ðΩÞ;ð3:16Þ

we conclude the proof of the approximation (3.10) by observing that kukH 1
0ðΩÞ ≤

CkgkL2ðΩÞ. Let us now prove (3.11). First, observe that (3.4) and the triangular inequal-
ity imply that

�X
i

ðciÞ2
�1

2

≤ Ch−
d
2

 ����X
i

ci;1∇φi

����
L2ðΩÞ

þ
����X

i

ci;2∇φi

����
L2ðΩÞ

!
:ð3:17Þ

Next, we obtain from (3.15) and Poincaré inequality that����X
i

ci;1∇φi

����
L2ðΩÞ

≤ CkgkL2ðΩÞð3:18Þ

and ����X
i

ci;2∇φi

����
L2ðΩÞ

≤ C
1

T
kgkL2ðΩÞ.ð3:19Þ

We conclude by combining (3.18) and (3.19) with (3.17). ▯
We will now control the error induced by the localization of the elliptic problem

(3.9). To this end, for each basis element φi of Xh, write Si for the intersection of
the support of φi with Ω and let Ωi be a subset of Ω containing Si such that
distðSi;Ω ∕ ΩiÞ > 0. Let also ψi;T;Ωi

be the solution of�
1
T ψi;T;Ωi

− divða∇ψi;T;Ωi
Þ ¼ Δφi in Ωi;

ψi;T;Ωi
¼ 0 on ∂Ωi:

ð3:20Þ

For A;B ⊂ Ω, write dðA;BÞ for the Euclidean distance between the sets A and B.
PROPOSITION 3.2. Extending ψi;T;Ωi

by 0 on Ω ∕ Ωi, we have

kψi;T − ψi;T;Ωi
k
H 1ðΩÞ ≤

Ch
d
2−1ðT−1 þ 1Þ

ðdistðSi;Ω ∕ ΩiÞÞdþ1
exp

�
−
distðSi;Ω ∕ ΩiÞ

C
ffiffiffiffi
T

p
�
:ð3:21Þ

We refer the reader to Appendix A for the proof of Proposition 3.2.
Taking Ωi ≔ Bðxi; C1h

α ln 1
hÞ ∩ Ω (we use the particular notation C 1 because our

proof of accuracy requires the specific constant to be large enough, i.e., larger than a
constant depending on the parameter C appearing in the right-hand side of (3.21)
and the parameter C describing the balls Bðxi; ChÞ containing the support of the basis
functions ðφiÞ1≤i≤N introduced in subsection 3.1) and T ¼ h2α in (3.21) of Proposi-
tion 3.2, we obtain for C 1 large enough (but independent from h) that
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kψi;T −ψi;T;Ωi
k
H 1ðΩÞ ≤ Chdþ1þ2α:ð3:22Þ

Let u be the solution of (1.1) in H 1
0ðΩÞ. Using Proposition 3.1, we obtain that there exist

coefficients ci such that����u−
X
i

ciψi;T

����
H 1

0ðΩÞ
≤ Cðhþ h2−2αÞkgkL2ðΩÞð3:23Þ

and X
i

c2i ≤ Ch−d−4αkgk2
L2ðΩÞ.ð3:24Þ

Using the triangle inequality, it follows that����u−
X
i

ciψi;T;Ωi

����
H 1

0ðΩÞ
≤ Cðhþ h2−2αÞkgkL2ðΩÞ þ

X
i

jcijkψi;T − ψi;T;Ωi
k
H 1ðΩÞ;ð3:25Þ

whence, from the Cauchy–Schwarz inequality,����u−
X
i

ciψi;T;Ωi

����
H 1

0ðΩÞ
≤ Cðhþ h2−2αÞkgkL2ðΩÞ

þ
�X

i

jcij2
�1

2

�X
i

kψi;T − ψi;T;Ωi
k2
H 1ðΩÞ

�1
2

:ð3:26Þ

Combining (3.26) with (3.24), we obtain that����u−
X
i

ciψi;T;Ωi

����
H 1

0ðΩÞ
≤ Cðhþ h2−2αÞkgkL2ðΩÞ

þ Ch−
d
2−2αkgkL2ðΩÞ

�X
i

kψi;T − ψi;T;Ωi
k2
H 1ðΩÞ

�1
2

:ð3:27Þ

Using (3.22) in (3.27), we obtain that

����u−
X
i

ciψi;T;Ωi

����
H 1

0ðΩÞ
≤ Cðhþ h2−2αÞkgkL2ðΩÞ:ð3:28Þ

Observe that it is the exponential decay in (3.21) that allows us to compensate for the
large term on the right-hand side of (3.27) via (3.22). This concludes the proof of
Theorem 3.1.

3.4. On localization with high contrast. The constant C in the approximation
error estimate (3.8) depends, a priori, on the contrast of a. Is it possible to localize the
computation of bases for Vh when the contrast of a is high? The purpose of this sub-
section is to show that the answer is “yes,” provided that there is a buffer zone between
the boundaries of localization subdomains and the supports of the elements φi, where
the contrast of a remains bounded. More precisely, assume thatΩ is the disjoint union of
Ωbounded and Ωhigh. Assume that (1.2) holds only on Ωbounded, and that on Ωhigh we have
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λminðaÞjξj2 ≤ ξTaðxÞξ ≤ γjξj2;ð3:29Þ

where γ can be arbitrarily large. Practical examples include media characterized by a
bounded contrast background with high-conductivity inclusions or channels. Let ψhigh

i

be the solution of �
h−2αψ

high
i − divða∇ψ

high
i Þ ¼ Δφi in Ωi;

ψi ¼ 0 on ∂Ωi:
ð3:30Þ

Let

V high
h ≔ spanðψhigh

i Þð3:31Þ
be the linear space spanned by the elements ψhigh

i . For each i, define bi to be the largest
number r such that there exists a subset Ω 0

i such that the closure of Ω 0
i contains the

support of φi, ðΩ 0
iÞr is a subset of Ωi (where Ar are the set of points of Ω that are

at distance at most r forA), and ðΩ 0
iÞr ∕ Ω 0

i is a subset ofΩbounded. If no such subset exists,
we set bi ≔ 0. bi can be interpreted as the non–high-contrast buffer distance between
the support of φi and the boundary of Ωi. We refer the reader to Figure 3.1 for illustra-
tions of the buffer distance.

THEOREM 3.2. For g ∈ L2ðΩÞ, let u be the solution of (1.1) in H 1
0ðΩÞ and uh the solu-

tion of (1.1) in V high
h . There exists C 0 > 0 such that if for all i, bi ≥ C0h

α ln 1
h, then

ku− uhkH 1
0ðΩÞ

kgkL2ðΩÞ
≤

8<
:

Ch if α ∈
�
0; 12

i
;

Ch2−2α if α ∈
h
1
2 ; 1
�
;

ð3:32Þ

where the constants C and C 0 depend on λminðaÞ, λmaxðaÞ (the bounds on a in Ωbounded),
d, and Ω but not on h and γ (γ is the upper bound on a on Ωhigh).

Remark 3.7. Recall that the global basis computed in (2.6) remains accurate if the
medium is both of high contrast (λmaxðaÞ >> 1) and degenerate (λminðaÞ << 1). The
basis computed in (3.30) preserves the former property (of accuracy for high-contrast
media) but loses the latter property (of accuracy in the degenerate case), since the con-
stant C in (3.32) depends on λminðaÞ.

Remark 3.8. Observe that local solves have to resolve the connected components of
high-contrast structures. This is the price to pay for localization with high contrast in
the most general case. Recall that in classical homogenization with high contrast, the
limit of the homogenized operator may be a nonlocal operator (we refer the reader, for
instance, to [21]). A similar phenomenon is observed here (distant points connected by

FIG. 3.1. Illustrations of the buffer distance.
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high-conductivity channels are associated with a low resistance metric and a large
coupling coefficient in the numerically homogenized stiffness matrix).

The proof of Theorem 3.2 is similar to that of Theorem 3.1, but it requires a precise
tracking of the constants involved. Because of the close similarity, we will not include the
proof in this paper but only give its main points. First, the proof of Proposition 3.1 re-
mains unchanged, as the constants C in (3.10) and (3.11) do not depend on the max-
imum eigenvalue of the conductivity a. Only the proof of Proposition 3.2 has to be
adapted, and the part of the proof below Proposition 3.2 remains unchanged. This re-
quires an application of the elements of Lemmas A.2, A.3, A.4, and A.5 to buffer sub-
domains ðΩ 0

iÞr ∕ Ω 0
i. The main point is to observe that the decay of the Green’s function in

ðΩ 0
iÞr ∕ Ω 0

i can be bounded independently from γ (due to the maximum principle).
Observe that the choice of the subdomain Ωi in (3.30) can be chosen to be the same

as in (3.20) if its intersection with high-contrast inclusions is void (i.e., if the maximum
eigenvalue of a over Ωi remains bounded independently from γ); otherwise the choice
of Ωi in (3.30) has to be enlarged (when compared to that associated with (3.20)) to
contain the high-contrast inclusion (plus its buffer).

4. The basis remains accurate for parabolic PDEs. The computational gain
of the method proposed in this paper is particularly significant for time-dependent pro-
blems. One such problem is the parabolic equation associated with the operator
−divða∇Þ. More precisely, consider the time-dependent PDE�

∂tuðx; tÞ− divðaðxÞ∇uðx; tÞÞ ¼ gðx; tÞ; ðx; tÞ ∈ ΩT ; g ∈ L2ðΩT Þ;
u ¼ 0 on ∂ΩT ;

ð4:1Þ

where a and Ω satisfy the same assumptions as those associated with PDE (1.1), ΩT ≔
Ω× ½0; T � for some T > 0, and ∂ΩT ≔ ð∂Ω× ½0; T �Þ ∪ ðΩ× ft ¼ 0gÞ.

Let Vh be the finite-dimensional approximation space defined in (3.7). Let uh be the
finite element solution of (4.1); i.e., uh can be decomposed as

uhðx; tÞ ¼
X
i

ciðtÞψiðxÞð4:2Þ

and solves for all j

ðψj; ∂tuhÞL2ðΩÞ ¼ −a½ψj; uh� þ ðψj; gÞL2ðΩÞð4:3Þ

with a½v;w� ≔ ∫ Ωð∇vÞTa∇w. Write

kvk2
L2ð0;T;H 1

0ðΩÞÞ
≔
Z

T

0

Z
Ω
j∇vj2ðx; tÞdxdt:ð4:4Þ

THEOREM 4.1. We have

kðu− uhÞð:; TÞkL2ðΩÞ þ ku− uhkL2ð0;T;H 1
0ðΩÞÞ ≤ CkgkL2ðΩT Þðhþ h2−2αÞ:ð4:5Þ

Proof. The proof is a generalization of the proof found in [50] (in which approxima-
tion spaces are constructed via harmonic coordinates). Let AT be the bilinear form on
L2ð0; T; H 1

0ðΩÞÞ defined by

AT ½w1; w2� ≔
Z

T

0
a½w1; w2�dt:ð4:6Þ

1384 HOUMAN OWHADI AND LEI ZHANG

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/1

9/
17

 to
 1

31
.2

15
.2

48
.1

12
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



Observe that for all v ∈ L2ð0; T; VhÞ,
ðv; ∂tðu− uhÞÞL2ðΩT Þ þAT ½v; u− uh� ¼ 0:ð4:7Þ

Writing AT ½v� ≔ AT ½v; v�, we deduce that for v ∈ L2ð0; T; VhÞ,
1

2
kðu− uhÞð:; TÞk2

L2ðΩÞ þAT ½u− uh�
¼ ðu− v; ∂tðu− uhÞÞL2ðΩT Þ þAT ½u− v; u− uh�:ð4:8Þ

Using ∂tuh in (4.3) and integrating, we obtain that

k∂tuhk2L2ðΩT Þ þ
1

2
a½uhð:; TÞ; uhð:; TÞ� ¼ ð∂tuh; gÞL2ðΩT Þ:ð4:9Þ

Using Minkowski’s inequality, we deduce that

k∂tuhk2L2ðΩT Þ þ a½uhð:; TÞ; uhð:; TÞ� ≤ Ckgk2
L2ðΩT Þ:ð4:10Þ

Similarly,

k∂tuk2L2ðΩT Þ þ a½uð:; TÞ; uð:; TÞ� ≤ Ckgk2
L2ðΩT Þ:ð4:11Þ

Using the Cauchy–Schwarz and Minkowski inequalities in (4.8), we obtain that

kðu− uhÞð:; TÞk2
L2ðΩÞ þAT ½u− uh� ≤ Cku− vkL2ðΩT ÞkgkL2ðΩT Þ þ CAT ½u− v�:ð4:12Þ

Take v ¼ Rhu to be the projection of u onto L2ð0; T; VhÞ with respect to the bilinear
form AT . Observing that −divða∇uÞ ¼ g− ∂tu with ðg− ∂tuÞ ∈ L2ðΩT Þ, we obtain
from Theorem 3.1 that

ðAT ½u−Rhu�Þ12 ≤ CkgkL2ðΩT Þðhþ h2−2αÞ:ð4:13Þ

Let us now show (using a standard duality argument) that

ku−RhukL2ðΩT Þ ≤ Cðhþ h2−2αÞ2kgkL2ðΩT Þ:ð4:14Þ

Choose v� to be the solution of the following linear problem: For allw ∈ L2ð0; T; H 1
0ðΩÞÞ,

AT ½w; v�� ¼ ðw; u−RhuÞL2ðΩT Þ:ð4:15Þ

Taking w ¼ u−Rhu in (4.15), we obtain that

ku−Rhuk2L2ðΩT Þ ¼ AT ½u−Rhu; v
� −Rhv

��:ð4:16Þ

Hence by the Cauchy–Schwarz inequality and (4.13),

ku−Rhuk2L2ðΩT Þ ≤ Cðhþ h2−2αÞkgkL2ðΩT ÞðAT ½v� −Rhv
��Þ12:ð4:17Þ

Using Theorem 3.1 again, we obtain that
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ðAT ½v� −Rhv
��Þ12 ≤ Cku−RhukL2ðΩT Þðhþ h2−2αÞ:ð4:18Þ

Combining (4.18) with (4.17) leads to (4.14). Combining (4.12) with v ¼ Rhu, (4.14),
and (4.13) leads to

kðu− uhÞð:; TÞk2
L2ðΩÞ þAT ½u− uh� ≤ Cðhþ h2−2αÞ2kgk2

L2ðΩT Þ;ð4:19Þ

which concludes the proof of Theorem 4.1. ▯
Discretization in time. Let ðtnÞ be a discretization of ½0; T � with time-steps

jtnþ1 − tnj ¼ Δt. Write Zh
T , the subspace of L2ð0; T; VhÞ, such that

Zh
T ¼

n
v ∈ L2ð0; T; VhÞ∶vðx; tÞ ¼

X
i

ciðtÞψiðxÞ; ciðtÞ are constants on ðtn; tnþ1�
o
:

ð4:20Þ

Write uh;Δt, the solution in Zh
T of the following system of implicit weak formulation (such

that uh;Δtðx; 0Þ≡ 0): For each n and ψ ∈ Vh,

ðψ; uh;Δtðtnþ1ÞÞL2ðΩÞ ¼ ðψ; uh;ΔtðtnÞÞL2ðΩÞ

− jΔtja½ψ; uh;Δtðtnþ1Þ� þ
�
ψ;

Z
tnþ1

tn

gðtÞdt
�

L2ðΩÞ
:ð4:21Þ

Then, we have the following theorem.
THEOREM 4.2. We have

kðu− uh;ΔtÞðTÞkL2ðΩÞ þ ku− uh;ΔtkL2ð0;T;H 1
0ðΩÞÞ ≤ CðjΔtj þ hþ h2−2αÞ

⋅ ðk∂tgkL2ð0;T;H−1ðΩÞÞ þ kgð:; 0ÞkL2ðΩÞ þ kgkL2ðΩT ÞÞ:
ð4:22Þ

The proof of Theorem 4.2 is similar to that of Theorem 1.6 of [50] and will not be
given here. Observe that homogenization in space allows for a discretization in time with
time-steps Oðhþ h2−2αÞ without compromising the accuracy of the method.

5. The basis remains accurate for hyperbolic PDEs. Consider the hyperbolic
PDE

(
ρðxÞ∂2t uðx; tÞ− divðaðxÞ∇uðx; tÞÞ ¼ gðx; tÞ; ðx; tÞ ∈ ΩT ; g ∈ L2ðΩT Þ;
u ¼ 0 on ∂ΩT ;
∂tu ¼ 0 on Ω× ft ¼ 0g;

ð5:1Þ

where a,Ω,ΩT , and ∂ΩT are defined as in section 4. In particular, a is assumed to be only
uniformly elliptic and bounded (ai;j ∈ L∞ðΩÞ). We will further assume that ρ is uni-
formly bounded from below and above (ρ ∈ L∞ðΩÞ and essinf ρðxÞ ≥ ρmin > 0). It is
straightforward to extend the results presented here to nonzero boundary conditions
(provided that frequencies larger than 1 ∕ h remain weakly excited, because the waves
equation preserves energy, and homogenization schemes cannot recover energies put
into high frequencies; see [51]). For the sake of conciseness, we will give those results
with zero boundary conditions. PDE (5.1) corresponds to acoustic wave equations in
a medium with density ρ and bulk modulus a−1.

Let Vh be the finite-dimensional approximation space defined in (3.7). Let uh be the
finite element solution of (5.1); i.e., uh can be decomposed as
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uhðx; tÞ ¼
X
i

ciðtÞψiðxÞ;ð5:2Þ

and solves for all j

ðψj; ∂2t uhÞL2ðρ;ΩÞ ¼ −a½ψj; uh� þ ðψj; gÞL2ðΩÞ;ð5:3Þ

where

ðv;wÞL2ðρ;ΩÞ ≔
Z
Ω
vwρ:ð5:4Þ

THEOREM 5.1. If ∂tg ∈ L2ðΩT Þ and gðx; 0Þ ∈ L2ðΩÞ, then

k∂tðu− uhÞð:; TÞkL2ðΩÞ þ ku− uhkL2ð0;T;H 1
0ðΩÞÞ

≤ Cðk∂tgkL2ðΩT Þ þ kgðx; 0ÞkL2ðΩÞÞðhþ h2−2αÞ:
ð5:5Þ

Remark 5.1. We refer the reader to [59] for an analysis of the suboptimal rate of
convergence associated with finite-difference simulation of wave propagation in discon-
tinuous media (see also [18], [56]). We refer the reader to [51] for an alternative upscaling
strategy based on harmonic coordinates. If the medium is locally ergodic with long range
correlations [8] and also characterized by scale-separation, then we refer the reader to
HMM based methods [28], [1]. Homogenization based methods require that frequencies
larger than 1 ∕ h remain weakly excited. For high frequencies, and smooth media (or
away from local resonances, e.g., local, nearly resonant cavities), we refer the reader
to the sweeping preconditioner method [30], [31].

Proof. Let AT be the bilinear form on L2ð0; T; H 1
0ðΩÞÞ defined in (4.6). Observe

that for all v ∈ L2ð0; T; VhÞ,

ðv; ∂2t ðu− uhÞÞL2ðρ;ΩT Þ þAT ½v; u− uh� ¼ 0:ð5:6Þ

Taking ∂tu− ∂tuh − ð∂tu− ∂tvÞ as a test function in (5.6) and integrating in time, we
deduce that for ∂tv ∈ L2ð0; T; VhÞ,

1

2
k∂tðu− uhÞð:; TÞk2

L2ðρ;ΩÞ þ
1

2
a½ðu− uhÞð:; TÞ�

¼ ð∂tðu− vÞ; ∂2t ðu− uhÞÞL2ðρ;ΩT Þ þAT ½∂tðu− vÞ; u− uh�;
ð5:7Þ

where ðv;wÞL2ðρ;ΩT Þ ≔ ∫ T
0 ∫ Ωvwρdxdt. Taking the derivative of the hyperbolic equation

for u in time, we obtain that

∂3t u− divða∇∂tuÞ ¼ ∂tg:ð5:8Þ

Integrating (5.8) against the test function ∂2t u and observing that ∂2t uðx; 0Þ ¼ gðx; 0Þ, we
also obtain that

k∂2t uð:; TÞk2
L2ðρ;ΩÞ þ a½∂tuð:; TÞ� ≤ Cðk∂tgk2L2ðΩT Þ þ kgðx; 0Þk2

L2ðΩÞÞ:ð5:9Þ

Similarly, we obtain that
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k∂2t uhð:; TÞk2
L2ðρ;ΩÞ þ a½∂tuhð:; TÞ� ≤ Cðk∂tgk2L2ðΩT Þ þ kgðx; 0Þk2

L2ðΩÞÞ:ð5:10Þ

Take ∂tv ¼ Rh∂tu to be the projection of ∂tu onto L2ð0; T; VhÞ with respect to the
bilinear form AT . Observing that −divða∇∂tuÞ ¼ ∂tg− ∂2t u with ðg− ∂2t uÞ ∈ L2ðΩT Þ,
we obtain from (5.9) and Theorem 3.1 that

ðAT ½u−Rhu�Þ12 ≤ Cðk∂tgkL2ðΩT Þ þ kgðx; 0ÞkL2ðΩÞÞðhþ h2−2αÞ:ð5:11Þ

Furthermore, using the same duality argument as in the parabolic case, we obtain that

ku−RhukL2ðρ;ΩT Þ ≤ Cðhþ h2−2αÞ2ðk∂tgkL2ðΩT Þ þ kgðx; 0ÞkL2ðΩÞÞ:ð5:12Þ

Using the Cauchy–Schwarz and Minkowski inequalities and the above estimates in
(5.7), we obtain that

k∂tðu− uhÞð:; TÞk2
L2ðρ;ΩÞ þ a½ðu− uhÞð:; TÞ�

≤ Cðhþ h2−2αÞðAT ½u− uh� þ k∂tgkL2ðΩT Þ þ kgðx; 0ÞkL2ðΩÞÞ:
ð5:13Þ

We conclude using Grownwall’s lemma. ▯

6. Numerical experiments.

6.1. Elliptic equation. We compute the solutions of (1.1) up to time 1 on the fine
mesh and in the finite-dimensional approximation space Vh defined in (3.7). The phy-
sical domain is the square ½−1; 1�2. Global equations are solved on a fine triangulation
with 66049 nodes and 131072 triangles.

The elements ðφiÞ of subsection 3.1 are weighted extended B-splines (WEB) [38],
[39] (obtained by tensorizing one-dimensional elements and using weight function
ð1− x2Þð1− y2Þ to enforce the Dirichlet boundary condition). The order of accuracy
is not affected by the choice of weight function, given that the boundary is piecewise
smooth. Our motivation for using WEB elements lies in the fact that, with those
elements, (Dirichlet) boundary conditions become simple to enforce. This being said,
any finite elements satisfying the properties (3.1), (3.2), (3.3), and (3.4) would be
adequate [14].

We write h the size of the coarse mesh. Elements ψi are obtained by solving (3.6) on
localized subdomains of size h0. Table 6.1 shows errors with α ¼ 1 ∕ 2 for a given by (6.1)
(see [49, section 3, Example 1], trigonometric multiscale; see also [45]), i.e., for

TABLE 6.1
Example 1 of section 3 of [49] (trigonometric multiscale; see also [45]) with α ¼ 1∕ 2.

h L2 H 1 L∞

0.5 0.0119 0.0913 0.0157

0.25 0.0057 0.0664 0.0115

0.125 0.0027 0.0482 0.0075

0.0625 0.0005 0.0207 0.0032
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aðxÞ ≔ 1

6

�
1.1þ sinð2πx ∕ ϵ1Þ
1.1þ sinð2πy ∕ ϵ1Þ

þ 1.1þ sinð2πy ∕ ϵ2Þ
1.1þ cosð2πx ∕ ϵ2Þ

þ 1.1þ cosð2πx ∕ ϵ3Þ
1.1þ sinð2πy ∕ ϵ3Þ

þ 1.1þ sinð2πy∕ ϵ4Þ
1.1þ cosð2πx ∕ ϵ4Þ

þ 1.1þ cosð2πx ∕ ϵ5Þ
1.1þ sinð2πy∕ ϵ5Þ

þ sinð4x2y2Þ þ 1

�
;ð6:1Þ

where ϵ1 ¼ 1
5, ϵ2 ¼ 1

13, ϵ3 ¼ 1
17, ϵ4 ¼ 1

31, and ϵ5 ¼ 1
65.

Figure 6.1 shows the logarithm (in base 2) of the error with respect to log2ðh0 ∕ hÞ
(for h ¼ 0.125) and the value of T used in (3.6) for a given by [49, section 3, Example 5]
(percolation at criticality; the conductivity of each site is equal to γ or 1 ∕ γ with
probability 1 ∕ 2 and γ ¼ 4).

Figure 6.2 shows the logarithm (in base 2) of the error with respect to log2ðh0 ∕ hÞ
(for h ¼ 0.125) and the value of T used in (3.6) for a given by [49, section 3, Example 3];
i.e., aðxÞ ¼ ehðxÞ, with hðxÞ ¼Pjkj≤Rðak sinð2πk · xÞ þ bk cosð2πk · xÞÞ, where ak and bk
are independent uniformly distributed random variables on ½−0.3; 0.3� and R ¼ 6.

Remark 6.1. Two factors contribute to the error plots shown in Figures 6.1 and 6.2:
a localization error that becomes dominant when h0 ∕ h is small (i.e., the fact (2.6) is not
solved over the whole domain Ω) and the distortion of the transfer property resulting
from the 1 ∕ T term in (3.9). As expected, both figures show that when h0 ∕ h is large, the
error due to the distortion of the transfer property is dominant and is minimized by a

0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5
−10

−9

−8

−7

−6

−5

−4

−3
T=∞
T=1
T=0.5
T=0.25
T=0.125
T=0.0625

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5
T=∞
T=1
T=0.5
T=0.25
T=0.125
T=0.0625

FIG. 6.1. Example 5 of section 3 of [49] (percolation at criticality). Logarithm (in base 2) of the error with
respect to log2ðh0 ∕ hÞ (for h ¼ 0.125) and the value of T used in (3.6).

0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5
−8

−7

−6

−5

−4

−3

−2

−1
T=∞
T=1
T=0.5
T=0.25
T=0.125
T=0.0625

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
T=∞
T=1
T=0.5
T=0.25
T=0.125
T=0.0625

FIG. 6.2. Example 3 of section 3 of [49] (exponential of a sum of trigonometric functions with strongly
overlapping frequencies). Logarithm (in base 2) of the error with respect to log2ðh0 ∕ hÞ (for h ¼ 0.125) and the
value of T used in (3.6).
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large T . However, when h0 ∕ h is small, the localization error is dominant and is mini-
mized by a small T . The fact that in Figure 6.2 this error is minimized by the second
smallest T instead of the smallest T is explained by the fact that the localization error
remains bounded when h0 ∕ h is of the order of one, whereas the error due to the distor-
tion of the transfer property blows up as T ↓ 0. The fact that in both figures curves
associated with different T interest each other is indicative of the fact that for inter-
mediate values of h0 ∕ h, the error can be minimized via a fine-tuning of T as explained
in section 3. The differences in the locations of these intersections can be explained by a
larger localization error associated with the example of Figure 6.2 (due to longer corre-
lation ranges). In particular, the comparison between Figures 6.1 and 6.2 indicates larger
errors for Figure 6.2.

6.2. High contrast, with and without buffer. In this example, a is character-
ized by a fine and long-ranged high-conductivity channel (Figure 6.3). We choose
aðxÞ ¼ 100, if x is in the channel, and aðxÞ is the percolation medium if x is not in
the channel (the conductivity of each site not in the channel is equal to γ or 1 ∕ γ with
probability 1 ∕ 2 and γ ¼ 4). Figure 6.4 shows the log2 of the numerical error (in L2 and
H 1 norm) versus log2ðhÞ. The three cases for the localization are h0 ¼ Oð ffiffiffi

h
p

ln 1
hÞwith a

buffer bi around the high-conductivity channel (see subsection 3.4) of size Oð ffiffiffi
h

p
ln 1

hÞ,
h0 ¼ 3h with no buffer around the high-conductivity channel, and h0 ¼ 3h with a buffer
bi around the high-conductivity channel of size 3h. The first case shows that the method
of subsection 3.4 is converging as expected. The second case shows that, as expected,
taking α ¼ 1 does not guarantee convergence. The third case shows that adding a buffer
around the high-conductivity channel improves numerical errors but is not sufficient to

FIG. 6.3. High-conductivity channel.

−4 −3.5 −3 −2.5 −2 −1.5 −1
−11

−10

−9

−8

−7

−6

−5

−4

−3
h

0
=C h1/2 ln (1/h)

h
0
=3h, without buffer

h
0
=3h, with buffer

−4 −3.5 −3 −2.5 −2 −1.5 −1
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5
h

0
=C h1/2 ln (1/h)

h
0
=3h, without buffer

h
0
=3h, with buffer

FIG. 6.4. High-conductivity channel (Figure 6.3). The x-axis shows log2ðhÞ, the y-axis shows the log2 of
the error in L2 and H 1-norm. The three cases for the localization are h0 ¼ Oð ffiffiffi

h
p

ln 1
hÞ with a buffer around

the high-conductivity channel (see subsection 3.4) of size Oð ffiffiffi
h

p
ln 1

hÞ, h0 ¼ 3h with no buffer around the
high-conductivity channel, and h0 ¼ 3h with a buffer around the high-conductivity channel of size 3h.
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guarantee convergence (as expected, we also need α < 1). The percolating background
medium has been resampled for each case; the effect of this resampling can be seen for
the largest value of h (i.e., log2ðhÞ ¼ −1).

6.3. Wave equation. We compute the solutions of (5.1) up to time 1 on the fine
mesh and in the finite-dimensional approximation space Vh defined in (3.7). The initial
condition is uðx; 0Þ ¼ 0 and utðx; 0Þ ¼ 0. The boundary condition is uðx; tÞ ¼ 0 for
x ∈ ∂Ω. The density is uniformly equal to one, and we choose g ¼ sinðπxÞ sinðπyÞ.
Figure 6.5 shows the fine mesh solutions u and uh at time one, for a given by the tri-
gonometric example (6.1), with h ¼ 0.125, h0 ¼ 3h, and T ¼ h. Figure 6.6 shows the
coarse mesh solutions u and uh at time one, for a given by the high-conductivity channel
example (Figure 6.3), with h ¼ 0.125, h0 ¼ 3h, and T ¼ h.

We refer the reader to [52] for a list of movies on the numerical homogenization
of the wave equation with and without high contrast and with and without buffers
(extended buffers in the high-contrast case).

Appendix A. Proof of Proposition 3.2. The proof of Proposition 3.2 is a gen-
eralization of the proof of the control of the resonance error in periodic medium given
in [35].

First we need the following lemma, which is the cornerstone of Cacciopoli’s
inequality.

LEMMA A.1. Let D be a subdomain of Ω with piecewise Lipschitz boundary, and let
v solve

FIG. 6.5. Wave equation. Trigonometric case, fine mesh solution, h ¼ 0.125, h0 ¼ 3h, T ¼ h. The L2,
H 1, and L∞ relative numerical errors are 0.0339, 0.1760, and 0.0235.

FIG. 6.6. Wave equation. Channel case, coarse mesh solution, h ¼ 0.125, h0 ¼ 3h, T ¼ h. The L2, H 1,
and L∞ relative numerical errors are 0.0439, 0.2684, and 0.0389.
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�
v
T − divðaðxÞ∇vðxÞÞ ¼ fðxÞ; x ∈ D; f ∈ H−1ðDÞ;
v ¼ 0 on ∂D.

ðA:1Þ

Let ζ∶D → Rþ be a function of class C 1 such that ζ is identically null on an open neigh-
borhood of the support of f . Then,Z

D
j∇ðζvÞj2 ≤ C

Z
D
v2j∇ζj2;ðA:2Þ

where C only depends on the essential supremum and infimum of the maximum and
minimum eigenvalues of a over D.

Proof. Multiplying (A.1) by ζ2v and integrating by parts, we obtain thatZ
D
ζ
v2

T
þ
Z
D
∇ðζ2vÞa∇v ¼ 0:ðA:3Þ

Hence, Z
D
ζ
v2

T
þ
Z
D
∇ðζvÞa∇ðζvÞ ¼

Z
D
v2∇ζa∇ζ;ðA:4Þ

which concludes the proof. ▯
LEMMA A.2. Let D be a subdomain of Ω with piecewise Lipschitz boundary. Write

GT;D for the Green’s function of the operator 1
T − divða∇Þ with Dirichlet boundary con-

dition on ∂D. Then,

GT;Dðx; yÞ ≤
C

jx− yjd−2
exp

�
−
jx− yj
C

ffiffiffiffi
T

p
�
;ðA:5Þ

where C only depends on d and the essential supremum and infimum of the maximum
and minimum eigenvalues of a over D.

Proof. Extending a to Rd and using the maximum principle, we obtain that

GT;Dðx; yÞ ≤ GT;Rdðx; yÞ;ðA:6Þ

we conclude by using the exponential decay of the Green’s function in Rd (we refer the
reader to Lemma 2 of [35]). ▯

LEMMA A.3. Let ψi;T be the solution of (3.9) and ψi;T;Ωi
the solution of (3.20). Let Ω  0

i

be a subdomain of Ωi such that Si ⊂ Ω 0
i and distðSi;Ωi ∕ Ω  0

iÞ > 0. We have

kψi;TkH 1ðΩ ∕ Ω 0
iÞ ≤

Ch
d
2−1

ðdistðSi;Ω ∕ Ω 0
iÞÞd

exp

�
−
distðSi;Ω ∕ Ω  0

iÞ
C

ffiffiffiffi
T

p
�
;ðA:7Þ

and

kψi;T;Ωi
k
H 1ðΩi ∕ Ω  0

iÞ ≤
Ch

d
2−1

ðdistðSi;Ω ∕ Ω 0
iÞÞd

exp

�
−
distðSi;Ω ∕ Ω 0

iÞ
C

ffiffiffiffi
T

p
�
:ðA:8Þ

Proof. For A ⊂ Ω, write Ar for the set of points of Ω that are at distance at most r
from A. Let us now use Cacciopoli’s inequality to bound ∫ Ω ∕ Ω 0

i
j∇ψi;T j2. Using
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Lemma A.1 with ζ identically equal to one on Ω ∕ Ω  0
i, zero on ðΩ ∕ Ω 0

iÞr with
r ≔ distðSi;Ω ∕ Ω 0

iÞ ∕ 3, and j∇ζj ≤ C ∕ r, we obtain thatZ
Ω ∕ Ω 0

i

j∇ψi;T j2 ≤
C

r2

Z
ðΩ ∕ Ω 0

iÞr
ψ2

i;T :ðA:9Þ

Next, observe that for x ∈ ðΩ ∕ Ω 0
iÞr,

ψi;T ðxÞ ¼ −
Z
Si

∇GT;Ωðx; yÞ∇φiðyÞdy:ðA:10Þ

Hence,

jψi;T ðxÞj ≤ k∇φikðL2ðSiÞÞdk∇GT;Ωðx; :ÞkðL2ðSiÞÞd :ðA:11Þ

Another use of Cacciopoli’s inequality leads to

k∇GT;Ωðx; :ÞkðL2ðSiÞÞd ≤
C

r
kGT;Ωðx; :ÞkL2ðSr

i Þ:ðA:12Þ

Combining (A.9) with (A.11) and (A.12), we obtain thatZ
Ω ∕ Ω 0

i

j∇ψi;T j2 ≤ k∇φik2ðL2ðSiÞÞd
C

r4

Z
ðΩ ∕ Ω 0

iÞr
kGT;Ωðx; :Þk2L2ðSr

i Þ
:ðA:13Þ

We conclude the proof of (A.7) using Lemma A.2 and (3.3). The proof of (A.8) is similar
observing that distðSi;Ω ∕ Ω 0

iÞ ≤ distðSi;Ωi ∕ Ω 0
iÞ. ▯

LEMMA A.4. Let D be a subdomain of Ω with piecewise Lipschitz boundary. Let
ψ ∈ H 1ðΩÞ, and let v solve�

v
T − divðaðxÞ∇vðxÞÞ ¼ 0; x ∈ D;
v ¼ ψ on ∂D.

ðA:14Þ

Write S for the intersection of the support of ψ with D. Let D1 be a subdomain of D such
that distðD1; SÞ > 0; then

Z
D1

j∇vj2 ≤ C

ðdistðD1; SÞÞ2d
ðT−1 þ 1Þ2kψk2

H 1ðΩÞ exp
�
−
distðD1; SÞ

C
ffiffiffiffi
T

p
�
;ðA:15Þ

where C does not depend on D, D1, or S.
Proof. Write w ≔ v− ψ. Then,�

w
T − divðaðxÞ∇wðxÞÞ ¼ − ψ

T þ divða∇ψÞ; x ∈ D;
v ¼ 0 on ∂D.

ðA:16Þ

Thus,

wðxÞ ¼ −
Z
D

�
ψðyÞ
T

GT;Dðx; yÞ þ∇ψðyÞaðyÞ∇GT;Dðx; yÞ
�
dy:ðA:17Þ

Using the Cauchy–Schwarz inequality, we obtain that
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jwðxÞj ≤ CkψkH 1ðΩÞ

�
1

T
kGT;Dðx; :ÞkL2ðSÞ þ k∇GT;Dðx; :ÞkðL2ðSÞÞd

�
:ðA:18Þ

For A ⊂ D, write Ar for the set of points of D that are at distance at most r from A. Let
us now use Cacciopoli’s inequality to bound ∫ D1

j∇wj2. Using Lemma A.1 with ζ iden-
tically equal to one on D1, zero on D ∕ Dr1

1 , and such that j∇ζj ≤ C ∕ r1, we obtain that

Z
D1

j∇wj2 ≤ C

r21

Z
D

r1
1

w2;ðA:19Þ

provided that distðDr1
1 ; SÞ > 0. Hence, for r1 ≔ distðD1; SÞ ∕ 3, we obtain (A.19). Taking

r2 ≔ distðD1; SÞ ∕ 3 and using Cacciopoli’s inequality again, we also obtain that

k∇GT;Dðx; :ÞkðL2ðSÞÞd ≤
C

r2
kGT;Dðx; :ÞkL2ðSr2 Þ:ðA:20Þ

Combining (A.19) with (A.18) and (A.20) and observing that w ¼ v on Dr1
1 , we obtain

that Z
D1

j∇vj2 ≤ C

r21r
2
2

kψk2
H 1ðΩÞðT−1 þ 1Þ2

Z
D

r1
1

kGT;Dðx; :Þk2L2ðSr2 Þ:ðA:21Þ

Using Lemma A.2, we deduce thatZ
D1

j∇wj2 ≤ C jΩj
ðdistðD1; SÞÞ2d

kψk2
H 1ðΩÞðT−1 þ 1Þ2 exp

�
−
distðD1; SÞ

C
ffiffiffiffi
T

p
�
:ðA:22Þ

This concludes the proof of Lemma A.4. ▯
LEMMA A.5. Let ψi;T be the solution of (3.9) and ψi;T;Ωi

the solution of (3.20). Let Ω  0
i

be a subdomain of Ωi such that distðΩ ∕ Ωi;Ω  0
iÞ > 0. We have

kψi;T − ψi;T;Ωi
k
H 1ðΩ 0

iÞ ≤
CðT−1 þ 1Þhd

2−1

ðdistðΩ ∕ Ωi;Ω 0
iÞÞdþ1

exp

�
−
distðΩ ∕ Ωi;Ω 0

iÞ
C

ffiffiffiffi
T

p
�
:ðA:23Þ

Proof. Lemma A.5 is a direct consequence of Lemma A.4. To this end, we choose
D ≔ Ωi, v ≕ ψi;T − ψi;T;Ωi

, and D1 ≔ Ω 0
i. We also choose ψ ≔ ηψi;T , where η∶Ω →

½0; 1� is C 1, equal to one on Ω ∕ Ωi and 0 on ðΩ ∕ ΩiÞr with r ≔ distðΩ ∕ Ωi;Ω 0
iÞ ∕ 3

(Ar being the set of points in Ω at distance at most r from A), and j∇ηj ≤ C ∕ r.
We obtain from Lemma A.4 that

kψi;T −ψi;T;Ωi
k
H 1ðΩ 0

iÞ ≤
CðT−1 þ 1Þ

ðdistðΩ ∕ Ωi;Ω 0
iÞÞd

kψkH 1ðΩÞ exp
�
−
distðΩ ∕ Ωi;Ω  0

iÞ
C

ffiffiffiffi
T

p
�
:ðA:24Þ

We conclude using (3.3) and kψkH 1ðΩÞ ≤ C
distðΩ ∕ Ωi;Ω 0

iÞ k∇φikðL2ðΩÞÞd . ▯
Observing that

kψi;T − ψi;T;Ωi
k
H 1ðΩÞ ≤ kψi;T − ψi;T;Ωi

k
H 1ðΩ 0

iÞ þ kψi;TkH 1ðΩ ∕ Ω  0
iÞ þ kψi;T;Ωi

k
H 1ðΩi ∕ Ω 0

iÞ;

ðA:25Þ
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we conclude the proof of Proposition 3.2 by using Lemma A.5 and Lemma A.3 with
Ω 0

i ≔ Sr
i , where Sr

i are the points in Ωi at distance at most r from Si with r ≔
distðSi;Ω ∕ ΩiÞ ∕ 3.

Appendix B. On the compactness of the solution space. Although the foun-
dations of classical homogenization [9] were laid down based on assumptions of periodi-
city (or ergodicity) and scale-separation, numerical homogenization, as described here,
is independent from these concepts and solely relies on the strong compactness of the
solution space (and the fact that a compact set can be covered with a finite number of
balls of arbitrary sizes). Observe that an analogous notion of compactness supports the
foundations ofG- and H -convergence (see [47], [57], [32]). The main difference is thatG-
and H -convergence rely on precompactness and weak convergence of fluxes, and here,
we rely on compactness in the (strong) H 1

0-norm, i.e., the following theorem.
Let W be the range of g in (1.1). Write

V ≔ fu ∈ H 1
0ðΩÞ∶u solves ð1:1Þ for some g ∈ Wg:ðB:1Þ

THEOREM B.1. Let ν < 1. If W is a closed bounded subset of H−νðΩÞ, then W is a
compact subset of H 1

0ðΩÞ (in the strong H 1
0-norm).

Proof. We have ða∇uÞpot ¼ −∇Δ−1g. So using the same notation as in (2.4), we get
ða∇V Þpot ¼ −∇Δ−1W . Let un be a sequence in V ; then there exists a sequence in W
such that −divða∇unÞ ¼ gn. Using the fact that −∇Δ−1W is a compact subset of
ðL2ðΩÞÞd (we refer, for instance, to the Kondrachov embedding theorem), we get that
there exists g� ∈ W such that k∇Δ−1gn −∇Δ−1g�kL2 → 0. Writing u� for the solution
of −divða∇u�Þ ¼ g� and using ða∇ðun − u�ÞÞpot ¼ −∇Δ−1ðgn − g�Þ, we get that
kða∇ðun − u�ÞÞpotkL2 → 0. Using the equivalence between the flux-norm and the H 1

0

norm we deduce that kun − u�kH 1
0
→ 0. This finishes the proof. ▯

This notion of compactness of the solution space constitutes a simple but fundamen-
tal link between classical homogenization, numerical homogenization, and reduced order
modeling (or reduced basis modeling [20], [43]) (we also refer the reader to the discussion
in section 6 of [10]). This notion is also what allows for atomistic to continuum upscaling
[64]; the basic idea is that if source (force) terms are integrable enough (for instance, in
L2 instead of H−1), then the solution space is no longer H 1 but a subspace V that is
compactly embedded into H 1, and, hence, it can be approximated by a finite-
dimensional space (in the H 1-norm). In other words, if these systems are “excited”
by “regular” forces or source terms (think compact, low dimensional), then the solution
space can be approximated by a low dimensional space (of the whole space), and the
name of the game becomes “how to approximate” this solution space (and this can be
done by using local time-independent solutions).
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