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Abstract. This paper studies mathematical models of biopolymer supramolecular aggregates
that are formed by the self-assembly of single monomers. We develop a new multiscale numerical ap-
proach to model the structural properties of such aggregates. This theoretical approach establishes
micro-macro relations between the geometrical and mechanical properties of the monomers and
supramolecular aggregates. Most atomistic-to-continuum methods are constrained by a crystalline
order or a periodic setting and therefore cannot be directly applied to modeling of soft matter. By
contrast, the energy matching method developed in this paper does not require crystalline order and,
therefore, can be applied to general microstructures with strongly variable spatial correlations. In
this paper we use this method to compute the shape and the bending stiffness of their supramolecular
aggregates from known chiral and amphiphilic properties of the short chain peptide monomers. Nu-
merical implementation of our approach demonstrates consistency with results obtained by molecular
dynamics simulations.
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1. Introduction. Fast development of bio- and nanosciences requires new meth-
ods for theoretical investigations of structural properties of supramolecular aggre-
gates consisting of thousands to millions of atoms. However, the fully atomistic
treatment of such big aggregates remains a challenge. These days, the most promis-
ing strategy for computer modeling of nano-sized supramolecular aggregates is the
multiscale approach, e.g., [29, 39]. The fundamental idea behind the multiscale ap-
proach is that detailed information from the atomistic scale is systematically coarse-
grained and then used for continuous modeling of the aggregates in a self-consistent
way.

Using the multiscale approach, we have developed a new low-cost model for simu-
lating the mechanical properties of supramolecular tapes formed by the self-assembling
oligopeptides (a short chain of peptide) [1, 2, 4, 3]. These oligopeptides can form reg-
ular tapelike and rodlike nanoaggregates in aqueous solutions [1, 2, 4, 3]. The aggre-
gates are important as promising “smart” biodegradable nanomaterials [52] because
one could easily assemble and disassemble them by varying the solvent conditions (pH,
temperature, etc.) [4, 3]. These self-assembled systems are also important as model
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systems for amyloid-like fibril assemblies formed by self-assembling natural oligopep-
tides and misfolded proteins [32]. The amyloid fibrils are the potential cause of such
diseases as Huntington’s and Alzheimer’s and type II diabetes [45].

Because these supramolecular assemblies are very difficult to crystallize, there are
severe difficulties with experimental studies of their structural and mechanical prop-
erties. Therefore, one should complement the experimental studies with simulations
to obtain complete information about the structural and mechanical properties of the
supramolecular systems. Although there were several attempts to simulate these sys-
tems using the standard “one-scale” tools of molecular simulations [37, 26, 10, 11, 12],
in general, these assemblies are too large for standard methods of atomistic simula-
tions. For example, to make a clear connection between available experiments and
simulations, one should model many systems comprised of 105–107 atoms by vary-
ing the solvent conditions as well as the chemical structure of the monomers. This
problem is practically intractable for the standard one-scale methods of atomistic
simulations. To overcome these obstacles, we have developed a new multiscale model
which hybridizes, in an efficient way, the atomistic molecular dynamics (MD) method
with continuum mechanics.

Previous work has been done, e.g., in [7, 27], to derive continuum models for
crystalline atomistic tapes and rods which resemble the standard Cauchy–Born rule for
bulk solids. The resulting elastic model is usually strongly nonlinear and depends on
the crystalline order, which makes it difficult to implement numerically. In this work,
we use the energy matching principle to derive an appropriate curvature elasticity
model numerically from the atomistic model.

The main steps of this method are as follows: First, a continuum model with
m unknown parameters is discretized on a piecewise flat triangulated surface which
approximates the atomistic tape. m is a number related to the nature of continuum
model and the dimension of the space (for instance m = 6 for linear elasticity of bulk
body in dimension three). Next, m representative and independent displacements
(global solutions) of the atomistic model are computed with appropriate boundary
conditions. Finally, the m unknown parameters of the continuum model are deter-
mined by enforcing that, for each one of these m precomputed (global) solutions,
the elastic energy of the continuum model matches the total energy of the atomistic
model.

Mathematically, our method is based on the observation that, at fine scales, arbi-
trary solutions of the atomistic system can be locally approximated by a linear combi-
nation of a few independent precomputed fine scale solutions [41, 8, 34, 16]. We use the
method to study the geometric chirality and mechanic property of the self-assembled
atomistic tape. The proposed model is much less computationally demanding than
the fully atomistic methods and can be used to investigate the properties of large
self-assembled structures.

The paper is organized as follows: First, we introduce the reader to the necessary
mathematical and biological background of the problem. Second, we describe the
problem, atomistic and continuum modeling, in section 3, “Atomistic and Continuum
Modeling of Atomistic Tape.” Then we introduce the energy matching method in
section 4, “Atomistic-to-Continuum (AtC) Modeling by Energy Matching Method.”
In the “Numerical Results” section (5), we will use the proposed method to study
the structure transition and mechanical properties of the self-assembled tapes with
different atomistic parameters and show that the method works well for continuum
models of different complexity.
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2. Biological and mathematical background.

2.1. Biological background: Self-assembly of biopolymers. Wemodel self-
assembled aggregates of biomolecules, e.g., peptides, with the main focus on the
oligopeptide self-assembled systems, which may serve as a model system to study
the aggregation process in amyloid-caused disease because there are experiments
that reveal substantial structural similarity between the fibrils formed by the pep-
tide self-assembly and the amyloid fibrils found in conformational diseases, such as
Huntington’s, Alzheimer’s, and type II diabetes [45]. These synthetic oligopeptides
are specifically designed to make them self-assemble [51]. They can be considered as
short segments of polypeptide chains that are formed by a predefined sequence of
amino acids linked head-to-tail with covalent peptide bonds.

In short, the self-assembly mechanism is [1, 2, 3, 4, 32] the following: Peptide
is a sequence of amino acids linked by peptide bonds. A peptide bond is a covalent
bond that is formed between two adjacent amino acids when the carboxyl group of
one amino acid reacts with the amino group of another amino acid. Single peptides in
solution can undergo a conformational change from a random coil (different coils can
vary randomly in shape) and assemble side by side to form a β-tape. β-tape [5] is a wide
class of macromolecular structures, formed by aligning oligopeptide strands in parallel.
This is the first level of the hierarchy; see Figure 1. With increasing concentration,
more complex amyloid-like structures such as ribbons (double tapes), double ribbons,
fibrils, and fibers can be developed. Noncovalent bonds are crucial for the self-assembly
process. In this work, we will only study the self-assembled β-tapes. The future goal
is to study the more complicated hierarchical structure of the self-assembled system.

Fig. 1. Hierarchical structures of self-assembly.

Atoms can be modeled as spheres with the radius defined as van der Waals radius.
The fact that each atom within a molecule occupies a certain amount of space, which
is associated to the energy cost due to overlapping electron clouds (Pauli or Born
repulsion), may affect the molecule’s preferred shape (conformation) and reactivity.
Furthermore, this constraint limits greatly the possible bond angles in a polypeptide
chain. This constraint and other steric interactions (excluding volume effect) severely
restrict the variety of three-dimensional possible arrangements of atoms (or confor-
mations). In the following, we will see how to mathematically model these bonded
interactions on the atomistic scale.
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The conformation of biopolymers is, however, further constrained by many dif-
ferent sets of weak noncovalent bonds (or nonbonded interactions) that form between
atoms, which are not linked by covalent bonds, in different peptide chains or in differ-
ent parts of a single peptide chain. The weak bonds are mainly of four types: hydrogen
bonds, ionic bonds, van der Waals attractions, and hydrophobic/hydrophilic interac-
tion. Individual noncovalent bonds are 30–300 times weaker than the typical covalent
bonds that create biological molecules [5]. Many weak bonds can act in parallel to hold
two peptide chain or two regions of a peptide chain tightly together. The stability of
each folded shape is therefore determined by the combined strength of large numbers
of such noncovalent bonds.

2.2. Mathematical background: Atomistic and continuum modeling for
atomistic tapes. Molecular self-assembly is one class of physical problems with
many scales. Such multiscale problems are ubiquitous in material sciences. To make
them more amenable to analysis, it is often necessary to make the assumption of scale
separation. Namely, choose a small parameter ε as the ratio between the microscopic
scale and macroscopic scale, let ε→0, and study the ε family of problems with trans-
lational invariance (periodicity, quasi periodicity, or ergodicity), such as in classical
homogenization theory [15, 33, 42, 6, 23]. For example, the ratio between the inter-
atom distance and the object size can be taken as such a small parameter. Recently,
these analytical approaches (Γ-, G- and H-convergence [15, 33, 42, 6, 23]) have been
applied to study the atomistic-to-continuum limits for thin elastic films [27, 44].

In real applications, we often need to compute the solution numerically. Further-
more, in most problems of material sciences, physics, and biology, one has to deal
with a given medium and not with an ε family of media. A direct atomistic simula-
tion of the multiscale problem, which typically involves a wide range of spatial and
time scales, is still difficult even with state-of-the-art supercomputers and algorithms.
We often need to use multiscale methods to solve the problem on a coarser scale. More
precisely, we need to know how to extract and transfer information from fine scales
to coarse scales and how to use the obtained information to construct a coarse scale
solver that is efficiently computable.

A system such as molecular self-assembly can be most naturally studied by atom-
istic models, given the full atomistic potential. However, the computational expense
limits atomistic simulations to the scale of nanoseconds in duration and nanometers
in length; therefore, it is important to introduce a coarse-grained continuum model
to interpret and extend the results of atomistic simulation.

Oligopeptides can form a hierarchy of structures via self-assembly, and in this
hierarchy the β-tape is the first level. The intrinsic chirality of the β-tape is directly
related to the atomistic parameters of the peptide, namely, the asymmetry of the side
chains and the twist of the peptide backbone. On the other hand, the chirality of the
β-tape determines the structure and formation of higher order structures. Therefore,
our first goal is to study self-assembled β-tapes and derive their elastic energy, which
can be used afterward as packing energy (building block energy) for higher order
structures, e.g., energy of a single tape which determines the formation of the next
order structure such as ribbon.

At the continuum scale, the tapelike structures can be modeled as elastic strips
with small or zero thickness which can be treated by elastic plate, shell, or membrane
theory depending on the specific situation. Analogous to the Saint Venant–Kirchhoff
model of finite elasticity, elastic energy for a two-dimensional continuum can be split
into membrane energy and bending energy. On the nanoscale, the supramolecular
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structure is hardly extendible, which is why we are primarily interested in twisting
and bending energies. It can be verified by atomistic simulation [12] that fluctuations
in the interpeptide distance and in the single peptide end-end distance are negligible
compared to the fluctuations related to twisting and bending [13, 14]. Therefore,
we make an assumption that the atomistic tape is inextensible, and the in-plane
contribution to the elastic potential energy is negligible.

The problem of deriving continuum description from atomistic potential has been
studied by many authors. Friesecke and James [27] introduced a scheme to construct
continuum models directly from atomistic models for multilayer thin films and nano-
rods. Arroyo and Belyschko [7] proposed the exponential Cauchy–Born rule for single-
layer crystalline sheets, and the calculation involves solving the geodesics equation for
the deformed surface. In [50] Yang and E developed a simplified approach that approx-
imated the curvature of the tape surface by higher order derivatives of displacements
when the deformation is not large and then adopted a generalized Cauchy–Born rule,
which takes into account the displacement due to the curvature. In these models,
hyperelastic strain energy is used as the continuum model of the system. The above
models are strongly nonlinear. Therefore, the numerical solution is done in iteration
steps. At each step, the numerical evaluation requires the inner displacement relax-
ation for the representative volume, and the membrane and bending contributions are
tightly coupled. Furthermore, the above methods typically require a crystalline order
or periodic setting, which is rarely present in soft matter.

3. Atomistic and continuum modeling of atomistic tape. We first present
the setup of our test problem, which has been studied by MD in [12]. Then we intro-
duce the atomistic model and continuum model for β-tapes.

We mainly focus on the twisting and bending properties of the supramolecular
tapes. For the sake of simplicity, we use the united atom model from [12]. The model
is tailored to capture essential features of the system, neglecting those details of the
molecular structure of amino acids that are unimportant for our purpose.

Consider the following molecular system: M = 60 peptides (see Figure 2 for an
illustration of a single peptide) are placed into a planar, parallel arrangement which
forms a flat tape. A single amino acid is represented by three beads (two for the
backbone and one for the side chain). The bead denoted as X stands for the moiety
CαH −C′O, and Y represents the amine group (NH) on the backbone. The tape has
two different sides: one “covered” by S1 side chains and another “covered” with S2

side chains. The molecular systems are studied by varying both the chiral strength
(CS) of the peptide backbone and the solvent affinity asymmetry (SAA) between the
Lennard-Jones interaction for the pairs S2 − S2 and S1 − S1; the parameters CS and
SAA will be explained in more detail later. These peptides can form an atomistic tape
via self-assembly [13, 14]. We can index the beads in this tape by a set of positive
integers I ⊂ N; the position of the ith bead is xi ∈ R

3.

3.1. Atomistic modeling of the atomistic tape. The atomistic potential
energy of a self-assembling biopolymer has two types of terms: bonded energy terms
and nonbonded energy terms. The bonded energy is due to changes in geometry of
a single peptide, whereas the nonbonded energy models interaction between peptides
in the assembly. We use the simplified atomic potential adopted in [12]. This model is
well tested and now actively used for self-assembled aggregation of peptides [13, 14].

(1) Ea =
∑
bonds

Ubond +
∑

angles

Uangle +
∑

dihedrals

Utors +
∑
i

∑
j �=i

ULJ(rij)
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Fig. 2. Geometry of the model peptide.

The numerical values of the energy parameters used in our model, such as those
chirality-related parameters, correspond to the ones typically used in atomistic force
fields. Their values were chosen to reproduce the experimental range of the macro-
scopic deformation [12].

The bonded energy consists of the following terms:
1. Bond length potential,

(2) Ubond =
Kb

2
(r − req)

2,

where Kb = 200.0kcal/mol · Å−2
and req = 2.0Å; the length of each bond is

thus restrained toward the equilibrium value via the above harmonic poten-
tial.

2. Bond angle potential,

(3) Uangle =
Kθ

2
(θ − θeq)

2,

where Kθ = 40.0kcal/mol and θeq can take two different values: θeq = 120◦

for angles centered at X beads, and θeq = 180◦ for angles centered at Y beads.
Bond angles defined via triplets X −Y −X , Y −X−Y , and Y −X−S1(S2)
are controlled by the above harmonic potential.

3. Dihedral angle potential,

(4) Utors = Dijkl cos(3α− δijkl)−Gijkl cos(α− δijkl),

where two angles sharing a common bond form a dihedral; for every such set
of four atoms, this potential is used to exclude overlap of the first atom and
the last atom. In this model, ijkl can be Y XYX or XYXY . Dijkl = Gijkl =
1.5kcal/mol; δijkl = π.

In this paper, we model the intermolecular hydrogen bonding network typical of
β-tape structures by the Lennard-Jones potential as in [12] as follows:

(5) ULJ(r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
,
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where r is the distance between two interacting beads and ε is the interaction strength.
The interaction exists between both backbone beads and side chain beads; see

Figure 2. For the interaction involving only the backbone beads X and Y, we have
ε = 5.0kcal/mol, σ = 2.0Å for XX and YY pairs, and σ = 3.0Å for XY pairs. The
nonbonded interactions between side chain beads are essential for the self-assembly
formation. We define ε1 as the interaction strength for pair S1 − S1 and ε2 for pair
S2 − S2. The cutoff of the Lennard-Jones potential was fixed at 10.0Å.

We used the same interaction strength parameter throughout the tape. In practice,
the constant ε in the Lennard-Jones potential can have strong variations even for
neighboring atoms.

Once the atomistic potential is given, one can compute the equilibrium configu-
ration of the tape by minimizing the atomistic energy (1). We denote the resulting
equilibrium position of bead i as x0

i .
The tape will deform from the equilibrium configuration if we impose boundary

conditions or apply external loads to it. The deformed configuration of the tape can
be computed by minimizing the atomistic energy (1) subject to boundary conditions
and external loads. The displacement for the ith bead is denoted by ui ∈ R

3.
The bending of the β-tape can be attributed to the following two physical origins

at the molecular level:
1. The twist of the backbone: a single peptide (a single strand) in a β-tape

possesses a right-handed twist along the backbone direction, which can be
measured by the dihedral angle defined by the quadruplets S2 −X −X − S1

or S1 − X − X − S2 within the single strand; see Figure 2. A single pep-
tide monomer with such a right-handed twist assembles with its neighbors
at a finite angle. This angle transfers the chirality from the single strands
(molecules) to the level of the mesoscopic assembly, e.g., a tape. In the
simulation, we take three different values for the dihedral angle parame-
ter: δijkl = 165◦, 160◦, and 155◦, which correspond to systems with “chiral
strength”: CS = 1, 2, and 3, respectively.

2. The asymmetry of the strength of nonbonded interactions of the S1 side
and S2 side of the tape: we model this assymetry by assigning different
values of the parameter ε for Lennard-Jones interactions on the S1 side
and S2 side of the tape. We vary the parameter ε2 and keep the pa-
rameter fixed at ε1 = 1.0kcal/mol. ε2 can take values from 1.0, 2.0, 3.0,
4.0, 5.0, 6.0, 7.0, 8.0, and 9.0 (kcal/mol), which is indexed by the num-
bers 1, 2, 3, 4, 5, 6, 7, 8, and 9. We denote this asymmetry parameter
by SAA = (ε2 − ε1)/ε1. SAA will be used as an index in the figures in
section 5.

Generally speaking, the backbone twist of an oligopeptide monomer mainly de-
pends on the primary sequence of the oligopeptide. The solvent affinity depends on
the chemical nature of the oligopeptide side chains as well as the solvent composition
(pH, ionic strength, etc.). In general, for a given oligopeptide in situ, it is much easier
to vary the solvent affinity rather than the backbone twist because one can easily
change the strength of peptide-solvent interactions by, for example, changing the pH
value of the solution [3]. Therefore, by switching the pH value, one can control not
only the assembly and disassembly process of the peptides but also the shape of the
tapes.

3.2. Continuum modeling of thin elastic structures. Although a most gen-
eral treatment using hyperelastic constitution law requires the nonlinear coupling of
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bending and membrane energy, the decomposition of elastic energy into membrane and
bending (flexural) energy works well in many cases. For example, in [48] a geometric
argument was developed to show that the stored energy of a continuous inextensible
plate has the following form:

(6)

∫
Ω

cHH2 + cKKdA,

where cH and cK are material coefficients, H is the mean curvature, and K is the
Gaussian curvature. In our case, we adopt the Saint Venant–Kirchhoff model analo-
gous to (6) for the elastic tape to achieve a trade-off between accuracy and efficiency
[7] of the numerical model.

Under the assumption of inextensibility (see also discussions in section 2.2), the
elastic energy is purely bending, and the bending energy can be written in a compact
form by using the shape operator [53] described as follows. Let Ω be a smooth surface
which can be seen as the middle surface of a shell or a surface of a membrane of zero
thickness, where n and T are unit normal and unit tangent to surface Ω, respectively.
The shape operator S of n acting on T can be defined as Sn(T) := −∂Tn (for
simplicity, denoted below by S). Suppose that Q = ∇u is the gradient of surface
deformation. The difference between QTSQ and S is of higher order and can be
neglected for small strains. For a Kirchhoff–Love inextensible shell of thickness 2h,
the Koiter bending energy has the following form [53]:

(7)

U = D
2

∫
Ω[ν(tr(Q

TSQ− S0))
2 + (1− ν)tr((QTSQ− S0)

2)]dσ

� D
2

∫
Ω
[ν(tr(ΔS))2 + (1− ν)tr((ΔS)2)]dσ

= D
∫
Ω
[(1 + ν)(H −H0)

2 + (1 − ν)((ΔA)2 + 4AA0 sin
2 θ)]dσ,

where S0 is the shape operator for the undeformed surface, ΔS := S − S0, A =√
H2 −G, H is the mean curvature, G is the Gaussian curvature, and H0 is the mean

curvature for the undeformed surface, also called spontaneous curvature [49]. θ is the
angle of principal axes between deformed and undeformed surfaces. Note that H is
the trace and G is the determinant of the shape operator S. The bending constant
D is given by D = 2h3E/[3(1− ν2)], where E is Young’s modulus, and ν is Poisson’s
ratio. In fact, for our supramolecular tape, it is not immediately clear how to define
h [36] because we have different types of atoms in our monomers. In the work of [53],
the following formula for a single layer atomic tape was introduced:

(8) E1 =

∫
Ω

[α1(H −H0)
2 + β1((ΔA)2 + 4AA0 sin

2 θ)] + γ1]dσ

with effective parameters α1, β1, and γ1 to be determined from the atomistic model.
An alternative of the above form (8) is the so-called Helfrich energy functional

[31]:

(9) E2 =

∫
Ω

1

2
[α2(H −H0)

2 + β2K + γ2]dσ.

It can be seen as an approximate shell model and is frequently used in computer
graphics and membrane physics, although it is usually used to model fluid membrane
under this context [31]; that is, θ = 0 in formula (8).

In the biological literature [4, 12], the following one-dimensional model for
anisotropic elastic rod is used as a coarse-grained model. It is assumed that the tape
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has fixed width and length; then the energy is given by

(10) U =

∫ L

0

[α3(k − k0)
2 + β3(η − η0)

2 + γ3]ds

with k and η the curvature and the torsion of the centerline of the tape, respectively,
whereas k0 and η0 are the curvature and the torsion for their equilibrium counterparts.
The value of curvature k and torsion η can be calculated numerically by the method
in [35].

The assumption of model (10) is that the conformation of the tape is only deter-
mined by its centerline and a direction vector orthogonal to the centerline. The defor-
mation energy functional of a membrane can be decomposed into twisting, bending,
and splay modes. We assume the length and the width of our tape are constant, the
splay deformation is negligible, and that one needs to consider only the twisting and
the bending energy. In this paper, we will test all three models and show that al-
though the one-dimensional model is simple to use, it has limited accuracy. Note that
the one-dimensional model cannot deal with the situation when the peptide consists
of different amino acids.

Remark 3.1. In a recent work [36], the authors derived the bending constant for
a graphene monolayer from an atomistic model where only bonded interactions are
present. If the equilibrium configuration is flat, an analytical formula of the bending
modulus can be derived from the knowledge of the atomistic potentials. Any atomic
model with only the bonded length potential (nearest neighbor interactions) would
lead to a zero bending modulus of the monolayer, which is nonphysical.

3.3. Discretization for the continuum energy of the atomistic tape.
Both the bending energy E1 derived from shell theory (8) and the Helfrich bending
energy E2 (9) involve the computation of curvature-based quantities: mean curvature,
Gaussian curvature, principal directions, and principal curvatures.

The atomistic tape can be viewed as a surface S. See Figure 2; the collection of
all beads Y form a set of points that is interpolated by a smooth surface S. We next
approximate the surface S by a piecewise flat surface Sh composed of triangles of size
h � δ; δ is the atomistic spacing. We call the triangulation T . The vertices of these
triangles are also beads. See Figure 3 for an illustration.

We index the Y beads of the tape surface S by Yi,j , where i denotes its position
in the oligopeptide sequence and j is the monomer number of the oligopeptide in
the tape. For the tape described at the beginning of section 3, i ∈ I = {1, . . . , 12},
j ∈ J = {1, . . . , 60}. Similarly, we index the vertices P of the piecewise flat surface
as Pic,jc. We denote Ic as the set of indices ic, and Jc is the set of indices jc. The
triangle Pic,jc+1Pic,jcPic+1,jc is a typical triangle of T .

An atomistic displacement field uA introduced in section 3.1 can be projected
from the atomistic scale δ to the coarse displacement field uC on the piecewise flat
triangulated surface Sh. For simplicity, we use piecewise linear interpolation as follows.
At the vertices P of the triangulation, we have

(11) uC(P ) = uA(P ),

and at the interior of each triangle, the displacement uC is the linear interpolation of
the displacements of the three vertices of that triangle.

To calculate the curvature for this piecewise flat triangulated surface, we can
use polynomial reconstruction and analytical evaluation. However, this often leads
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Fig. 3. From atomistic tape to piecewise flat triangulated surface. To improve visibility,
all-beads representation is only shown for the peptide in the front of the top figure. For other peptides,
we only show Y beads.

to spurious oscillation (artifacts of numerics) and is computationally expensive [38].
Alternatively, we can use discrete differential geometry techniques to calculate discrete
curvatures [38, 47]. These techniques are more robust and more efficient. In this way,
we can go directly from atomistic representation to a discretized problem, and we do
not need to use continuum description as an intermediate step. For completeness, we
will introduce the technique to compute discrete curvature in the following section.

3.3.1. Discrete curvatures of triangulated surface. For the definition of
discrete curvature, we will follow [38, 47, 53]. For a triangulated surface, the discrete
curvatures—mean curvature, Gaussian curvature, principal curvatures—as well as
principal directions are defined on the vertices of the triangulation. 1-ring neighbors
of a vertex are all the vertices which are connected to the vertex by one edge. The
discrete curvatures depend only on the positions of the vertex itself and its 1-ring
neighbors. We assume that all the triangles are nonobtuse; for general situations,
please refer to [38].

Let Ω be a surface in R
3; suppose that H is the mean curvature of Ω, and G is the

Gaussian curvature of Ω. κ1 and κ2 are two principal curvatures with their associated
principal directions e1 and e2, respectively. We have H = κ1+κ2

2 and G = κ1κ2. It is
often more convenient to work with the mean curvature vector defined by L(P ) :=
2H(P )n(P ) at a point P . See Figure 4(a) for an illustration. L is also known as the
Laplace–Beltrami operator for the surface Ω.

It is not straightforward to define quantities like tangent plane or normal vector
for a vertex on a triangulated surface as we can do for a smooth surface. Alternatively,
one can define geometric quantities of the triangulated surface at a vertex as spatial
averages around this vertex. For example, the unit normal vector at vertex P can be
defined as the normalized spatial average of normal vectors 1

A(P )

∫
A(P )

ndσ, and the
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(a) Principal directions e1 and
e2 associated with two princi-
pal curvatures κ1 and κ2

(b) Voronoi cell around a ver-
tex which can be used to define
discrete curvature

Fig. 4. Definition of discrete curvature.

mean curvature vector L at a vertex P can be defined as

(12) L(P ) =
1

A(P )

∫
A(P )

L(x)dσ,

where A(P ) is a properly chosen area associated with P . For example, if all the
triangles are nonobtuse, A(P ) can be chosen as the Voronoi cell around P (Figure
4(b)).

Analogous to its smooth counterpart, the discrete mean curvature vector L defined
at vertex P = xi is the first variation of the area A(P ), which can be expressed as

(13)

L(P ) = 2H(P )n(P ) = −∇PA(P )

=
1

2A(P )

∑
j∈N1(i)

(cotαij + cotβij)(xi − xj),

where αij and βij are the two angles opposite to the edge (xi,xj) and N1(i) is the
set of 1-ring neighbors of the vertex P = xi as show in Figure 4(b).

Gaussian curvature at the vertex P can be calculated by the so-called angle deficit
formula which keeps the Gauss–Bonnet theorem true, namely,

(14) K(p)A(P ) =

∫
A(p)

Kdσ = 2π −
∑
i

θi.

Here the angles θi are the angles at P of the triangles meeting there.
Once the mean curvature and Gaussian curvatures are defined, principal curva-

tures can be easily computed by

(15) κ1,2 = H ±
√

H2 −G.

To find the principal directions, first we use the osculating circle approximation
[21] to define the normal curvature in the direction xixj for each 1-ring neighbor xj .
The osculating circle passes through xi, xj , with n as its normal direction at xi, and
the normal curvature κi,j is the inverse of the osculating circle radius as follows:

(16) κi,j = 2
(xi − xj) · n
‖xi − xj‖2

.

D
ow

nl
oa

de
d 

07
/1

9/
17

 to
 1

31
.2

15
.2

48
.1

12
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ENERGY MATCHING FOR SELF-ASSEMBLING AGGREGATES 1969

Let us introduce the curvature tensor C as

(17) C =

(
a b
b c

)
.

Let di,j be the unit vector projection of xixj on the tangent plane; we have the
following quadratic relation:

(18) dTi,jCdi,j = κi,j .

In general (18) is an overdetermined relation because C has only three unknowns,
but since we have six triangles meeting at P for a regular triangulation, C can be
obtained through a least square fitting, and principal directions e1 and e2 are eigen-
vectors of C.

3.4. Inextensible constraint and boundary conditions. Representing the
surface by a piecewise flat triangulation T , we can express the bending energy by
either (8) or (9) through a summation over vertices,

(19) EB =
∑
P

f(H(P ), G(P ), e1(P ), e2(P ))A(P ),

where f is an energy form in terms of the curvature-related quantities H(P ), G(P ),
principal direction e1(P ), and e2(P ). In actual simulations, we will choose f to be one
of the functionals (8) or (9).

We need to find the minimizer of the above discretized energy up to appropriate
boundary conditions and inextensibility condition.

The inextensibility condition is enforced as a penalty formulation. We write the
total energy as a sum of membrane and bending energy [30],

(20) Etotal = EM + kBEB

where kB is the bending or flexural stiffness, and EM is the penalized membrane
energy defined as follows. We decompose EM = kLEL +KAEA, where the shearing
energy EL measures local change in length as follows:

(21) EL =
∑
e

(1− ‖e‖/‖e0‖)2‖e0‖,

where e is the edge of the deformed triangle, e0 is the edge of the undeformed triangle,
and ‖e‖ and ‖e0‖ stand for lengths of the edges. The summation is taken over all edges
in the piecewise flat surface T .

The stretching energy EA measures local change in area as follows:

(22) EA =
∑
A

(1− ‖A‖/‖A0‖)2‖A0‖,

where A is the deformed triangle, A0 is the undeformed triangle, and ‖A‖ and ‖A0‖
stand for areas of a triangle. The summation is taken over all triangles in the piecewise
flat surface T .

The inextensibility is achieved by choosing sufficiently large stiffness constants
kL and kA. Since we cannot model the inextensibility exactly, in practice we choose
an increasing sequence of stiffness constants kLn and kAn to achieve convergence of
energy [49].
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Remark 3.2. In general, the penalty on the membrane deformation introduces
complicated numerical coupling between the bending and membrane energies. There
is no analytical result that guarantees the convergence to a minimizer. We will show
that for our numerical experiments, the membrane energy is indeed small compared to
the bending energy, and therefore, the minimization of the penalized energy converges;
see also Remark 5.4.

Boundary conditions on ∂Ω are enforced as constraints over positions of boundary
vertices. The Dirichlet boundary condition is straightforward. For a natural boundary
condition, we calculate the force numerically as the gradient of the energy and enforce
the zero force condition as a nonlinear constraint.

4. Atomistic-to-continuum (AtC) modeling by the energy matching
method. We will develop a global energy matching method for the self-assembly
system. The main issues of these systems are the following: First, they are noncrys-
talline, and therefore, the lattice is not periodic; second, they are generally highly
heterogeneous on both micro- and macroscales with nonseparable scales. Third, the
energy is nonlinear.

In principle, the AtC transition could be done by taking the homogenization limit
in the atomistic model, as lattice spacing tends to 0 (for a review of rigorous results
on AtC limit, see, e.g., [17, 18, 20, 24]). However, this problem is presently intractable
because of the complex form of the atomistic energy (1); in particular, the constant ε
in the Lennard-Jones potential can have strong variations even for neighboring atoms.
To the best of our knowledge, we are not aware of existing AtC methods which can
accurately handle all these problems. In this paper, we deal with this difficulty by
introducing an energy-based method. The main idea is to postulate the macroscopic
continuum energy and match it with the atomistic energy. More discussions on com-
paring our method with the existing ones are presented in the next subsection.

Our goal is to obtain effective elastic properties for the hierarchical supramolecular
structures (see Figure 1). In this paper we restrict ourselves to numerical evaluation
of effective constants for the self-assembled β-tapes described in section 2.1.

We postulate a specific macroscopic (continuum) form of the energy and deter-
mine material constants in this energy by enforcing the match between that continuum
energy (20) (with coefficients defined for E1 in (8), E2 in (9), and E3 in (10)) and
the discrete energy Ea (1). Theoretically, it should be done for all possible displace-
ment fields. However, in practice, the key is to choose the minimal amount of special
representative fields as follows:

(23) Ea = Etotal ∼ kBEB .

Equation (23) has unknowns kB and coefficients in the energy forms (8), (9)
or (10).1 The unknowns are found by substituting discrete displacement fields that
minimize (1) under appropriate boundary conditions into (23).

Let u be the displacement field for the discrete energy (1). We find the minimizers
of (1) by imposing Dirichlet boundary conditions u = f(x) on the boundary of the
tape and varying f(x). For fixed f(x), we choose a minimizing sequence and use the
standard stopping criteria numerically. For example, in the Helfrich energy (9), we
have three different unknown effective material constants. Therefore, we choose three
different functions f(x) that correspond to three different twists. For each value of f ,
we find the minimizer numerically by the BFGS quasi-Newton method [40].

1kB can be absorbed into coefficients of the specific energy form.
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In general the minimizer is not unique, and in actual numerical procedures, instead
of finding a global minimizer, we numerically find approximate physically meaningful
local minimizers.

Remark 4.1. In the equality (23), due to the inextensibility condition (see section
3.4), Etotal can be approximately represented as kBEB up to an additive constant
which is set to 0 in (23) for simplicity. In practice, this additive constant is also an
unknown parameter for the continuum model.

Remark 4.2. If the medium is heterogeneous (noncrystalline), then the projec-
tion of the continuum model on the coarse piecewise flat surface (with N triangles)
is characterized by N × m unknown parameters. However, m precomputed (global
atomistic) solutions are still sufficient to determine those N ×m unknown parameters
by enforcing the energy matching principle in each triangle.

Remark 4.3. The concept of precomputed solutions can be seen as an analogue
of the periodic cell problems [15, 33] for the homogenization of partial differential
equations. The advantage of solving precomputed solutions numerically rather than
solving directly the full original problem comes when, e.g., we need to solve for many
different loads or boundary conditions. For more detailed discussions regarding pre-
computed solutions under the context of the numerical homogenization for partial
differential equations, see [34].

Our method can be summarized in the following steps:
1. A continuum energy with m unknown parameters is postulated in one of the

forms: m = 3 for (8), (9), and (10).
2. We construct a piecewise flat surface Sh from coarse triangles; the size of

triangles h is much larger than the atomistic scale δ (refer to Figure 3).
3. A discrete representation (19) of the continuum energy is obtained on the

surface Sh.
4. m representative and independent solutions uA,i, i = 1, . . . ,m are computed

by minimizing the atomistic model (1) with appropriate boundary conditions.
5. From discrete solution uA,i, we construct a piecewise linear function uC,i as

described in section 3.3; uC,i is viewed as an approximate continuum mini-
mizer on the piecewise flat surface.

6. Obtain m equations by matching the atomistic energy of each solution uA,i

with the continuum energy of corresponding function uC,i defined on the
piecewise flat surface Sh:

(24) Ea(u
A,i) = Etotal(u

C,i)

7. Equation (24) determines m unknown material constants in the energy (8),
(9), or (10).

The rationale behind the method in the context of AtC upscaling lies in a mod-
ification of the Cauchy–Born rule. For crystalline materials, the Cauchy–Born rule
[19, 28, 25, 22] states that at fine scales, displacements are essentially linear. The
Cauchy–Born rule no longer holds for noncrystalline materials; however, our method
is based on the rule (conjecture) that at fine scales, displacement solution set can be
approximated by linear space of low dimension. In the following, we will call this rule
the rule of low-dimensional representation. Namely, at fine scales, all displacements
can be approximated (in energy norm) by the linear span of a few precomputed dis-
placements. In our case, the m-dimensional subspace is the span of m solutions uA,i

by m different boundary conditions.
How to choose the m precomputed solutions? According to the rule of low-

dimensional representation for heterogeneous materials, any set of m precomputed
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solutions should be sufficient to approximate the solution space of the atomistic model
provided that those solutions are linearly independent on each triangle of the coarse
mesh. Two different sets of m precomputed solutions will lead to two distinct con-
tinuous model parameters; however, according to the new rule, the error between
those parameters will be proportional to the size of the coarse mesh on which the
continuous model is projected. This being said, a given set of m precomputed solu-
tions may lead to an ill conditioned system of equations for the continuous model’s
unknown parameters (and hence to a large error constant associated with the size of
the coarse mesh). If the resulting system is ill posed, we may need additional solutions
and solve the system in a mean squared sense. Ideally, one would like to choose the
minimum number of solutions leading to a well conditioned system. Although there
is no general recipe on how to choose the m precomputed solutions in order to obtain
well conditioned systems, one can use simple physical considerations as a guide. For
instance, for the model considered in this paper, twisting and bending are the most
important physically independent modes of deformation. Therefore, we can choose the
boundary condition by twisting or bending the equilibrium configuration. For scalar
elliptic equations a typical choice of precomputed solutions consists of harmonic co-
ordinates [41, 16]. For elasticity equations, one can use harmonic displacements with
linear Neumann or Dirichlet boundary conditions [34, 16].

4.1. Novelty and advantage of the method. The global energy matching
method works for general atomistic configurations, not necessarily periodic or homo-
geneous. Most biological assemblies are of noncrystalline nature. However, most pre-
vious AtC methods were constrained by crystalline order or periodic structure [27, 7]
and, therefore, cannot be directly applied to the “soft matter” system. On the con-
trary, the energy matching method does not require crystalline order and works for
general microstructures such as nonstructured/amorphous systems.

The global energy matching method is based on a completely different reason-
ing from previous AtC methods. The underlying mathematical rationale for the en-
ergy matching method is the existence of a low-dimensional approximating functional
subspace to the atomistic system, which can be viewed as a particular case of the
thin subspace idea introduced in [16], while local energy-based methods, such as the
Cauchy–Born rule, are often based on an asymptotic analysis.

First results on energy matching methods can be traced back to the works
[8, 9, 46]. In these works, the local energy matching principle, also called the re-
covery method, was introduced for solving large systems of lattice equations. The
local (restricted to subdomains of mesoscopic size) energy matching principle is used
as a preconditioner for fine scale equations rather than for homogenization as in the
present paper. The main novelty here is that our method is global and it is better
suited for inhomogeneous media such as supramolecular aggregates considered in this
paper. In parallel with our work from AtC elasticity, similar energy matching tech-
niques have been applied to the coarse graining of the linear elasticity equation [34].2

In this paper, we develop an approach which allows us to compute an effective mod-
ulus and approximate displacements from nonlinear atomistic models to a continuum
nonlinear elasticity model (geometric nonlinearity due to the curvature). While other
approaches assume a specific form of the energy, our approach allows us to select the

2Moreover, the method proposed in subsection 1.3 of [41] is equivalent to the energy matching
principle applied to the upscaling of scalar elliptic partial differential equations and proven to be
accurate with arbitrary rough coefficients.
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best form for effective continuum energy from several candidates; e.g., in this paper
we can choose from (8)–(10).

5. Numerical results. We perform numerical experiments for the supramolec-
ular tapes. Sixty peptides (M = 60) are placed into a planar parallel arrangement
which forms a flat tape. We compute the equilibrium configuration first by mini-
mizing the potential energy at temperature T = 0K. Once we have the equilibrium
configuration, we can calculate geometric quantities such as curvatures and material
parameters in (8), (9), and (10) and obtain the continuum model using our energy
matching method. The atomistic simulations are done by NAMD [43], the contin-
uum simulations are done in Matlab, and the minimization is done by the BFGS
quasi-Newton method [40].

5.1. Structural transition and mean curvature. The parameters SAA and
CS, introduced in section 3.1, reflect the physical origins of the deformation of the
atomistic tape. In Figure 5, we show the equilibrium configuration of the tape with
parameters SAA=5, CS=1, and the discrete geometrical quantities such as mean

(a) Equilibrium
configuration,
SAA=5, CS=1

(b) Mean curvature vec-
tor

(c) Principal directions e1 and e2
associated with two principal cur-
vatures κ1 and κ2

(d) MC: Mean curva-
ture, I: index for peptide
sequence, J : index for
monomer number, see
section 3.3

Fig. 5. Equilibrium configuration and discrete geometric quantities.
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curvature vector, principal directions, and mean curvature. Notice that except at the
boundary, the value of mean curvature is almost constant. This is not surprising since
the peptide in our problem is homogeneous. The drop of the mean curvature at the
boundaries is due to the finite size of the system and should be negligible for systems
with large size.

In [12], the authors found that when the asymmetry of the side chains (SAA)
or twist of the peptide backbone (CS) increases, the equilibrium configuration of the
β-tape switches from helicoid to cylindrical shape. This can be seen in Figure 6.

(a) SAA=1, CS=1 (b) SAA=5, CS=1

(c) SAA=5, CS=3 (d) SAA=9, CS=1

Fig. 6. Equilibrium configuration with different atomistic parameters.

Corresponding to the transition of structures, the mean curvature increases as
the asymmetry of the side chains grows and as the peptide backbone becomes more
twisted. We compute the mean curvatures for equilibrium configurations as an indica-
tor for bending with respect to parameters SAA, ranging from 0 to 8, and CS, ranging
from 1 to 3 (Figure 7).

5.2. Twisted tape: Verification of the global energy matching method.
We use this example to test the accuracy of the global energy matching method.
Consider a deformed tape with two shorter sides twisted and then clamped at fixed
position. The two shorter sides will be twisted by n◦ from the equilibrium configu-
ration, n = 1, . . . , 10. By matching the energy, we can obtain the parameters of the
elastic model. Here we will test all the models: shell bending energy E1 in (8), the
Helfrich bending energy E2 in (9), and one-dimensional energy E3 in (10). We used
the atomistic simulation for n = 0, 1, 2, 3 to generate a training set and obtain the
parameter set.
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Fig. 7. Mean curvature (denoted by MC in the figure) with respect to side chain asymmetry
(SAA) and backbone twist (CS).

Figure 8 shows the configuration from the steered (constrained) MD simulation
[43] and continuum simulation using the Helfrich bending energy (9) for n = 10. Note
that the continuum simulation is done on the piecewise flat triangulated surface with
typical size h = 2δ, where δ is the typical distance of neighboring amino acids. The
resulting configurations of the twisted tape are visually close to each other.

(a) Equilibrium, MD sim-
ulation

(b) Deformed, MD simu-
lation

(c) Deformed, elastic
model

Fig. 8. Atomistic tape with shorter sides twisted 10◦.

Remark 5.1. The numerical computation of the elastic model, in particular, the
geometric quantities such as curvatures, requires the triangulation T . But for visual-
ization purposes, we only need to plot the position of vertices, and we do not draw
the triangulation in Figure 8 and the following figures.

Remark 5.2. Here we briefly discuss the computational cost of the global energy
matching method. At the training stage, we need to compute m displacements by
atomistic simulation. Once this is done, we can use the elastic model for further
simulations. For our test problem, the degree of freedom for atomistic simulation is
60× 12× 3× 3 = 6480, and the degree of freedom for the elastic model in Figure 8(c)
is 540. The computational time for the atomistic simulation on a desktop computer
with an Intel Core i7-870 2.93GHz processor is about 3 hours, and for the continuum
simulation, it is about 20 to 30 minutes.
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Remark 5.3. For the one-dimensional model, we only calculate the energy for the
atomistic simulation result. Whereas for the two-dimensional model E1 and E2, once
we have obtained the parameters, we use the energy to compute the respective energy
minimizers subject to different boundary conditions.

Remark 5.4. We have checked the membrane energy for the atomistic tape for all
twist angles: it is about 1% of the bending energy. We actually impose this constraint
also in the numerical minimization of the penalized energy.

In Figure 9, the deformation energy is plotted against twist angle n for all the
three continuum models, with m = 4. We can see that the two-dimensional shell
model is most accurate. Surprisingly, the one-dimensional rod model is better than
the Helfrich model. The reason is that our deformation here still retains symmetry;
therefore, the one-dimensional model is appropriate. Another reason could be that
the Helfrich model does not take into account the deformation of the principal axis.

1 2 3 4 5 6 7 8 9 10
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

Twist Angle

E
ne

rg
y

 

 

MD
Shell Model
Helfrich Model
One Dim Model

Fig. 9. Energy (E) vs. twist angle.

Now we change the number of displacements in the training set; namely, we use
m = 3, . . . , 8 displacements to obtain the parameters and use these parameters to
generate the elastic energy E1, E2, and E3. Then we measure the error of elastic
model by

e(m) = max
twist n=0,··· ,10

|Ea − Ei|.

We present Table 1 for e(m).

Table 1

Errors of different models in terms of energy.

m 3 4 5 6 7 8
E1 1.9411 0.1899 0.1122 0.0513 0.0293 0.0094
E2 0.0122 0.0375 0.0138 0.0077 0.0041 0.0057
E3 0.0572 0.0888 0.0066 0.0086 0.0132 0.0032

From Table 1, we see that as more displacements are added to the training set,
more accurate results can be obtained. The shell model E2 is most accurate; even
using the minimum required number of training displacements m = 3, we get a small
error compared with atomistic simulation. As a one-dimensional rod model, E3 is also
a good option. Although it cannot reproduce the geometry of the two-dimensional
tape, it can reproduce the energy with relatively lower computational cost.
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5.3. Using obtained parameters to simulate longer molecular tape. No-
tice that from Figure 5, the mean curvature of the atomistic tape is almost constant
except at the boundary. Since there is no long-range interaction between different parts
of the tape, we can use the parameters computed for the tape of M = 60 peptides to
calculate the equilibrium configuration for a self-assembled tape with M = 120 pep-
tides, which is reminiscent of the so-called cell problem in homogenization. Namely,
we can connect two tapes consisting of M = 60 peptides together. We use the follow-
ing compatibility condition at the common sides which join two tapes together: the
normal vectors computed from each tape coincide at the common sides.

From Figures 10 and 11, we can see that the configurations computed by atomistic
simulation and the continuum method are visually similar, and the mean curvature
is almost constant in the interior of the tape.

(a) equilibrium configu-
ration, atomistic simula-
tion

(b) equilibrium configu-
ration, elastic model

Fig. 10. Tape of M = 120 peptides.

(a) atomistic simulation,
I: index for peptide se-
quence, J : index for
monomer number, see
section 3.3.

(b) elastic model, Ic and
Jc: index for the vertices
of triangulated surface,
corresponding to I and J
respectively, see section
3.3.

Fig. 11. Mean curvature (MC): tape of M = 120 peptides.

D
ow

nl
oa

de
d 

07
/1

9/
17

 to
 1

31
.2

15
.2

48
.1

12
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1978 L. ZHANG, L. BERLYAND, M. FEDOROV, AND H. OWHADI

6. Conclusion. In this work, we propose a way to determine macroscopic
characteristics from atomistic parameters for an important class of nanoobjects—
supramolecular aggregates. On a set of test systems, peptide self-assembling β-tapes,
we showed how to obtain curvature elasticity models from an atomistic model by the
energy matching method. It is important to note that this method can be applied to
many kinds of soft matter systems (polymer assemblies, peptide/protein aggregates,
amorphous nanocomposites, etc.) because the energy matching method requires nei-
ther crystalline order nor periodic setting. We used the discrete geometry tool to
represent the curvature-based elastic energy.

The numerical tests show that the method is robust with respect to changes in the
definitions of the energy functionals (at least for this class of supramolecular objects):
numerical experiments indicate that reasonable results can be obtained through both
shell bending energy (8) and the Helfrich bending energy (9). We also note that the
energy matching method is much less computationally expensive than direct atom-
istic simulations. Moreover, this method could be applied to problems where material
parameters undergo drastic spatial variations. In this case, we can apply the energy
method to inhomogeneous materials (e.g., assembly of different proteins) on subdo-
mains where parameters are approximately constant.

The accurate elastic energy for the β-tapes not only allows us to explore higher
order self-assembled structures—ribbons, fibrils, and fibers—but also opens a new av-
enue for more efficient investigations of dislocation and fracture for the self-assembled
fibers and inelastic behavior such as slippage between β-tapes. These will be addressed
in future work.
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