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Abstract. This paper is concerned with the approximation of the effective conductivity
σ(A,µ) associated to an elliptic operator ∇xA(x, η)∇x where for x ∈ R

d , d ≥ 1,A(x, η) is
a bounded elliptic random symmetric d×d matrix and η takes value in an ergodic probability
space (X,µ). Writing AN(x, η) the periodization of A(x, η) on the torus T dN of dimension
d and side N we prove that for µ-almost all η

lim
N→+∞

σ(AN, η) = σ(A,µ)

We extend this result to non-symmetric operators ∇x(a +E(x, η))∇x corresponding to dif-
fusions in ergodic divergence free flows (a is d×d elliptic symmetric matrix andE(x, η) an
ergodic skew-symmetric matrix); and to discrete operators corresponding to random walks
on Z

d with ergodic jump rates.
The core of our result is to show that the ergodic Weyl decomposition associated to

L
2(X,µ) can almost surely be approximated by periodic Weyl decompositions with increas-

ing periods, implying that semi-continuous variational formulae associated to L
2(X,µ) can

almost surely be approximated by variational formulae minimizing on periodic potential and
solenoidal functions.
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1. Introduction

Homogenization theory has been developed to find the asymptotic behavior of
operators associated to an heterogeneous ergodic medium when the microscopic
scale associated to the heterogeneities tends towards 0 in front of the macroscopic
scale of the observation. The mathematical formulation of this theory [BLP78] has
been first developed in the simpler case of elliptic and parabolic periodic opera-
tors. The first rigorous results on elliptic and stationary parabolic ergodic operators
were obtained by S. Kozlov [Koz80], [Koz85], G. Papanicolaou and S. Varadhan
[PV79] in the late seventies. Next C. Kipnis and S.R.S. Varadhan [KV86] followed
by [MFGW89] and [OS95] introduced powerful central limit theorems allowing
the extension of homogenization theory to a wide range of ergodic operators.
Thus two main categories of problems have been addressed by homogenization
theory: the asymptotic behavior of periodic operators and the asymptotic behavior
of ergodic operators. The question of the existence of a natural and continuous link
between those two categories of applications has naturally arisen. Indeed for large
deviations [DGI00] and equilibrium fluctuations [GOS01] of ∇φ interface models
it has been observed that the regularity of the effective conductivity associated to the
infinite dimensional ergodic system under its finite dimensional periodic approxi-
mations hides an hard core difficulty in extending the mathematical description of
relaxation towards equilibrium of periodic environments to ergodic ones.
Recently this regularity property has been proven for the self-diffusion coeffi-
cient for the exclusion process [LOV01]. The case of the effective diffusivity of a
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symmetric random walk on Z
d , under the condition that its jump rates are i.i.d.

has been addressed in [CI01], which also put into evidence an exponential rate of
convergence of effective diffusivities of the finite volume approximations of the
ergodic medium.
It is important to note that the periodic approximation of the effective conductivity
of a continuous ergodic operator can be obtained from almost sureG-convergence
properties associated to the homogenization of that operator; this is the so called
“principle of periodic localization” (equation 5.15, page 155 of [JKO91], [Pia02]).
It is well known that these effective conductivities associated to periodic and erg-
odic operators are given by variational formulae in the geometrical framework of
Weyl decomposition. Weyl decomposition plays a central role in homogenization
in periodic or ergodic media but is independent of them. Thus it is natural to seek
for a geometrical property inherent to Weyl decomposition allowing the almost sure
approximation of ergodic effective conductivities by periodization. The purpose of
our paper is to show that such property does exist: the Weyl decomposition is gifted
with almost sure strong stability properties (theorem 3.1, proposition 3.2) which
can be used to establish a natural and continuous link between homogenization
in periodic and ergodic media. We refer to theorem 4.1 for a continuous operator,
theorem 4.2 for a non symmetric operator and 4.6 for discrete operator (one can
also consider a larger class of homogenization problems such as those associated to
the lemma 3.1 of [Nor97]). This property inherent to Weyl decomposition can also
be used to obtain almost sure periodic approximation results for a wider class of
variational formulations on an ergodic space than those associated to an effective
conductivity, this is the object of theorem 3.8.

2. General set up

2.1. The ergodic space

2.1.1. Continuous case

Let (X,G, µ) be a probability space with η ∈ X labeling the particular realization
of the quenched medium. We assume that on (X,G, µ) acts ergodically a group of
measure preserving transformationsG = {τx : x ∈ R

d}, i.e. that the following are
satisfied:

Condition 2.1. ∀x ∈ R
d , τx preserves the measure, namely, ∀A ∈ G, µ(τxA) =

µ(A);

Condition 2.2. The action of G is ergodic, namely, if A = τxA ∀x ∈ R
d , then

µ(A) = 0 or µ(A) = 1.

Let L2(µ) be the Hilbert space of square integrable functions on X with the usual
scalar product

∫
X

f (η)g(η) dµ(η) (1)
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Let f ∈ L2(µ), for almost every η we define

(Txf )(η) = f (τ−xη) (2)

We assume furthermore that

Condition 2.3. For any measurable function f (η) on X, the function Txf (η) de-
fined on the Cartesian product X × R

d is also measurable (where R
d is endowed

with the Lebesgue measure).

It follows that that Tx form a strongly continuous unitary group on L2(µ) (see
[JKO91] chapter 7).
For f ∈ L1(µ) we write.

< f >≡
∫
X

f (η)µ(dη) (3)

2.1.2. Discrete case

We shall distinguish through this paper two cases of ergodic spaces. The one men-
tioned above associated to a continuous of measure preserving transformations and
the one mentioned here associated to a discrete measure preserving transformations.
We shall keep the same notation used above for the continuous case. (X,G, µ)will
remain our ergodic probability space with η ∈ X labeling the particular realization
of the quenched medium but we replace the group of measure preserving transfor-
mations acting ergodically on (X,G, µ) by G = {τx : x ∈ Z

d}. We will replace
the conditions 2.1 and 2.2 by

Condition 2.4. ∀x ∈ Z
d , τx preserves the measure, namely, ∀A ∈ G, µ(τxA) =

µ(A);

Condition 2.5. The action of G is ergodic, namely, if A = τxA ∀x ∈ Z
d , then

µ(A) = 0 or µ(A) = 1.

2.2. Weyl decomposition

2.2.1. Continuous case

A vector field f = (f1, . . . , fd), fi ∈ L2
loc(R

d), i = 1, . . . , d is called vortex-free
in R

d if ∫
Rd

(
fi∂jφ − fj ∂iφ

)
dx = 0 ∀φ ∈ C∞

0 (R
d) (4)

It is well known that any vortex-free vector possesses a potential function, i.e.,
admits the representation f = ∇u, u ∈ H 1

loc(R
d). Therefore the potentiality of

a vector field f is equivalent to the property (4). A vector field f is said to be
solenoidal in R

d if ∫
Rd
fi∂iφ(x) dx = 0, ∀φ ∈ C∞

0 (R
d) (5)
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Now let us consider vector fields on X. A vector field f ∈ (L2(µ))d = L
2(X,µ)

will be called potential (resp., solenoidal), if almost all its realizations Txf (η) are
potential (resp., solenoidal) in R

d . The spaces of potential and solenoidal vector
fields denoted by L

2
pot (X,µ) and L

2
sol(X,µ), form closed sets in L

2(X,µ).
Set

F 2
pot = {f ∈ L

2
pot (X,µ), < f >= 0} (6)

F 2
sol = {f ∈ L

2
sol(X,µ), < f >= 0} (7)

By Weyl’s decomposition (see the lemma 7.3 of [JKO91]) the following orthogonal
decomposition are valid

L
2(X,µ) = F 2

pot ⊕ F 2
sol ⊕ R

d = F 2
pot + L

2
sol(X,µ) (8)

2.2.2. Discrete case

For any f : X → R and i ∈ {1, . . . , d} we write

Dif (η) = f (τ−ei η)− f (η) D∗
i f (η) = Dif (τei η) (9)

Write

L
2(X,µ) := {(fi)1≤i≤d : fi ∈ L2(µ)} (10)

and F 2
pot the completion of {(Dif (η))1≤i≤d : f ∈ L2(µ)} in L

2(X,µ) with

respect to the standard L2 norm (‖f ‖2 = ∑d
i=1

〈
f 2
i

〉
).

Write S(X,µ) the set of skew-symmetric matrices H such that Hi,j ∈ L2(µ) and
define DivH as the vector (DivH)i := ∑d

j=1DjHij . We write F 2
sol the com-

pletion of {DivH : H ∈ S(X,µ)} in L
2(X,µ) with respect to the standard L2

norm.
We will prove the subsection 5.1.1 the following theorem corresponding to the Weyl
decomposition.

Theorem 2.6. One has

L
2(X,µ) = F 2

pot ⊕ F 2
sol ⊕ R

d (11)

3. Main result

3.1. Almost sure continuity of Weyl’s decomposition

The results and notations given in this section are valid in the continuous case as in
the discrete case. Write T dN the torus of sideN and dimension d (T dN := R

d/(NZ
d)

in the continuous case and T dN := Z
d/(NZ

d) in the discrete). Write L
2(T dN) the
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space of square integrable vectors fields on T dN and gift it with the norm ‖f ‖2
L2(T dN )

(written below) to obtain an Hilbert space. We define

‖f ‖2
L2(T dN )

:=
d∑
i=1

N−d
∫
T dN

(fi(x))
2 dx

in the continuous case and

‖f ‖2
L2(T dN )

:=
d∑
i=1

N−d ∑
x∈T dN

(fi(x))
2

in the discrete case. In the continuous case, write F 2
pot (T

d
N) (F 2

sol(T
d
N)) the comple-

tion of the space of smooth T dN -periodic potential (solenoidal) forms (with 0-Le-
besgue mean value) in L

2(T dN) with respect to that norm. In the discrete case we
shall use the following definitions

F 2
pot (T

d
N) := {∇f : f ∈ L2(T dN)} (12)

whereL2(T dN) is the space of square integrable functions on T dN and ∇ is the discrete
gradient on Z

d , (∇f )i := (∇if ) = f (x+ei)−f (x). ForN , let us write S(T dN) the
set of skew-symmetric matrices with coefficients in L2(T dN) and for H ∈ S(T dN),
divH is the vector field defined by (divH)i = ∑d

j=1 ∇jHi,j .

F 2
sol(T

d
N) := {divH : H ∈ S(T dN)} (13)

As in the ergodic case it is easy (see [JKO91]) to obtain the following Weyl decom-
position for the periodic case:

L
2(T dN) = F 2

pot (T
d
N)⊕ F 2

sol(T
d
N)⊕ R

d (14)

For any ξ ∈ L
2(X,µ) we write �Nξ ∈ L

2(T dN) its periodization on the torus T dN :
for x = pN + y with p ∈ Z

d and y ∈ [0, N(d ( y ∈ Z ∩ [0, N(d in the discrete
case)

�Nξ(x, η) := Tyf (η)

Let us define limN→∞ F 2
pot (T

d
N) as the subset of ξ ∈ L

2(X,µ) such that for µ-al-

most all η ∈ X there exists a sequence νNpot ∈ F 2
pot (T

d
N) such that

lim
N→∞

‖�Nξ(η)− νNpot‖L2(T dN )
= 0 (15)

Similarly we define limN→∞ F 2
sol(T

d
N) as the subset of ξ ∈ L

2(X,µ) such that for
µ-almost all η ∈ X there exists a sequence νNsol ∈ F 2

sol(T
d
N) such that

lim
N→∞

‖�Nξ(η)− νNsol‖L2(T dN )
= 0 (16)

The following theorem (valid for both continuous and discrete cases) is the cen-
tral point linking homogenization in ergodic media to homogenization in periodic
media.



Approximation of the effective conductivity 231

Theorem 3.1.

lim
N→∞

F 2
pot (T

d
N) = F 2

pot (17)

and

lim
N→∞

F 2
sol(T

d
N) = F 2

sol (18)

Where the limits in N are taken along R
+ in the continuous case and along N in

the discrete.

For any ξ ∈ L
2(X,µ) we write ξpot and ξsol its components on F 2

pot and

F 2
sol . For any ν ∈ L

2(T dN) we write νpot and νsol its components on F 2
pot (T

d
N) and

F 2
sol(T

d
N). The theorem 3.1 is based on the following proposition

Proposition 3.2. For any ξ ∈ L
2(X,µ), for µ-almost all η ∈ X

lim
N→∞

‖�N
(
ξpot (η)

) − (
�Nξ(η)

)
pot

‖
L2(T dN )

= 0 (19)

and

lim
N→∞

‖�N
(
ξsol(η)

) − (
�Nξ(η)

)
sol

‖
L2(T dN )

= 0 (20)

Where the limits in N are taken along R
+ in the continuous case and along N in

the discrete.

In order to prove 20 observe that it is sufficient to prove the following lemma

Lemma 3.3. for any ξ ∈ L
2(X,µ), for µ-almost all η ∈ X

lim
N→∞

‖�N
(
ξpot (η)

) − (
�Nξpot (η)

)
pot

‖
L2(T dN )

= 0 (21)

and

lim
N→∞

‖�N
(
ξsol(η)

) − (
�Nξsol(η)

)
sol

‖
L2(T dN )

= 0 (22)

Where the limits in N are taken along R
+ in the continuous case and along N in

the discrete.

There exists two strategies two prove lemma 3.3. For the equation (21) for in-
stance, the second strategy consists in taking the primitive of ξpot , then approximat-
ing that primitive by a T dN -periodic function whose gradient is used to approximate
�N

(
ξpot (η)

)
. This second strategy is the harder one because the primitive of ξpot

is in general not an element of L
2(X,µ). The first strategy consists in finding a

function u in L2(µ) such that its gradient is an approximation of ξpot then proving
(21) for ∇u. Our proof of the Weyl decomposition (theorem 2.6) and the defini-
tion of F 2

pot allows us to use the simpler first strategy in the discrete case. In the
continuous case we have used the second strategy (which can also be used for the
discrete case) but one can also adapt the second strategy to the continuous case (it
is important to note that first, one has to prove that there exists a subset of L

2(X,µ)
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such that the gradients of its elements are dense in F 2
pot ). The proof of lemma 3.3

will be given in subsection 5.1. We will first prove in subsection 5.1.2 equation (22)
in the discrete case using the first strategy, the proof of equation (21) in the discrete
case being similar we will just give the idea of the proof in subsection 5.1.3. Then
in subsection 5.1.4 we will prove equation (21) in the continuous case using the
second strategy (the proof of equation (22) being similar we will just give its idea
in subsection 5.1.4.1).

Remark 3.4. Let us note that the proof of lemma 3.3 with the second strategy
is constructive and Birkhoff ergodic theorem is applied only to ξpot and not to
a sequence of its approximations. Thus the second strategy associate the rate at
which Birkhoff ergodic theorem holds for ξpot to the rate at which the limits in
lemma 3.3 hold. More precisely, writing for M ∈ N, I (M) = {(i1, . . . , id) ∈
{1, . . . ,M}d ; minj min(ij − 1,M − ij ) = 0} and J (M) the set of cubes Bi
indexed by i ∈ I (M) and

Bi = {x ∈ [0, 1]d : max
j

|xj − (ij − 0.5)/M| ≤ 1/(2M)} (23)

one can define

f (N, ξpot , η)= sup
{
M ∈ N : sup

Bi∈J (M2)

M(Vol(Bi))
−1

∣∣
∫
Bi

ξpot (Nx, η) dx
∣∣ ≤ 1

and sup
Bi∈J (M)

(Vol(Bi))
−1

∫
Bi

∣∣ξpot (Nx, η)∣∣2
dx ≤ 2

〈
ξ2
pot

〉}

(24)

It is then easy to check by Birkhoff ergodic theorem 3.5 that a.s.f (N, ξpot , η) → ∞
as N → ∞ and by taking M = f (N, ξpot , η) and P = M in subsection 5.1.4 one
obtains that for all ξpot ∈ F 2

pot and N > 0 (N ∈ N
∗ in the discrete case)

‖�N
(
ξpot (η)

) − (
�Nξpot (η)

)
pot

‖
L2(T dN )

≤ Cd
〈
ξ2
pot

〉 1
2
(
f (N, ξpot , η)

)− 1
2 (25)

The same rate of convergence can be obtained with the second strategy in the
discrete case for both equations (19) and (20). Then following the proof of our
applications one can relate the rate at which the effective conductivity can be ap-
proximated by its periodizations to the function f (N, ξpot , η).

3.1.1. Proof of theorem 3.1

We will now give the proof of theorem 3.1 based on proposition 3.2. We will first
give the proof in the continuous case. First, let us remind the standard ergodic the-
orem that we will use.
Let f (x) ∈ L1

loc(R
d). A number M{f } is called the mean value of f if

lim
ε→0

∫
K

f (ε−1x)dx = |K|M{f } (26)
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for any Lebesgue measurable bounded set K ⊂ R
d (here |K| stands for the

Lebesgue measure of K). Let Kt = {x ∈ R
d , t−1x ∈ K} denote the homo-

thetic dilatation, with ratio t > 0, of the set K . Then (26) can be written in a more
habitual form:

lim
t→∞

1

td |K|
∫
Kt

f (x)dx = M{f } (27)

The following theorem is the theorem 10 of the chapter VIII.7.10 of [DS67] (see
also the theorem 7.2 of [JKO91] ).

Theorem 3.5. Let f ∈ Lp(µ) with 1 ≤ p < ∞. Then for almost all η ∈ X the
realization Txf (η) posses a mean value in the sense of (27). Moreover, the mean
value M{Txf (η)}, considered as a function of η ∈ X is invariant, and for almost
all η ∈ X

< f >≡
∫
X

f (η)µ(dη) = M{Txf (η)} (28)

If p > 1, then the limit in (27) also exists in the norm of Lp and the functions are
for t > 0, all dominated by a function in Lp.

Now let us observe that from equation 19 one easily obtains that

F 2
pot ⊂ lim

N→∞
F 2
pot (T

d
N) (29)

similarly from equation 20 one easily obtains that

F 2
sol ⊂ lim

N→∞
F 2
sol(T

d
N) (30)

Now let ξ ∈ limN→∞ F 2
pot (T

d
N) and ν ∈ L

2
sol(T

d
N). Using the ergodic theorem 3.5,

one has µ-a.s.

lim
N→∞

N−d
∫
T dN

�Nξ(x, η).�Nν(x, η) dx = 〈
ξ.ν

〉
(31)

Using
∫
T dN

�Nξ(x, η).�Nν(x, η) dx =
∫
T dN

(
�Nξ(x, η)

)
pot
.
(
�Nν(x, η)

)
pot
dx

+
∫
T dN

(
�Nξ(η)− (

�Nξ(η)
)
pot

)
.�Nν(x, η) dx

(32)

it follows that

∣∣N−d
∫
T dN

�Nξ(x, η).�Nν(x, η) dx
∣∣≤‖(�Nξ(η))pot‖L2(T dN )

‖(�Nν(η))pot‖L2(T dN )

+ ‖�N
(
ξ(η)

) − (
�Nξ(η)

)
pot

‖
L2(T dN )

‖(�Nν(η))‖L2(T dN )

(33)
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Using the ergodic theorem 3.5 and proposition 3.2, one easily obtains that µ-a.s.

lim
N→∞

N−d
∫
T dN

�Nξ(x, η).�Nν(x, η) dx = 0 (34)

which proves that
〈
ξ.ν

〉 = 0. Thus ξ⊥L
2
sol(X,µ), which implies from Weyl

decomposition that ξ ∈ F 2
pot (X,µ). Thus we have proven that

lim
N→∞

F 2
pot (T

d
N) ⊂ F 2

pot (35)

Similarly one proves that

lim
N→∞

F 2
sol(T

d
N) ⊂ F 2

sol (36)

Combining the equations (29), (30), (35) and (36) one concludes the poof of the-
orem 3.1. The proof in the discrete case being similar, we will just remind below
the ergodic theorem which is used. For any bounded set K ⊂ Z

d . Let Kt = {x ∈
Z
d , t−1x ∈ K} denote the homothetic dilatation, with ratio t > 0, of the set K .

Let f (x) ∈ L1
loc(Z

d). A number M{f } is called the mean value of f if

lim
t→∞

1

td |K|
∑
x∈Kt

f (x) = M{f } (37)

For any bounded set K ⊂ Z
d .

The following theorem is the theorem 9 of the chapter VIII.6.9 of [DS67]

Theorem 3.6. Let f ∈ Lp(µ) with 1 ≤ p < ∞. Then for almost all η ∈ X the
realization Txf (η) posses a mean value in the sense of (37). Moreover, the mean
value M{Txf (η)}, considered as a function of η ∈ X is invariant, and for almost
all η ∈ X

< f >≡
∫
X

f (η)µ(dη) = M{Txf (η)} (38)

If p > 1, the limit in (37) also exists in the norm of Lp and the functions are for
t > 0, all dominated by a function in Lp.

3.2. Periodic approximation of variational functionals on the ergodic spaces

In this subsection it will be shown that the almost sure continuity of Weyl’s decom-
position has a direct consequence on variational functionals on the ergodic space.
The results and notations given in this subsection are valid in the continuous case
as in the discrete case. Let m,p ∈ N

2, and


 : (η,X1, . . . , Xm, Y 1, . . . , Y p) −→ 
(η,X1, . . . , Xm, Y 1, . . . , Y p)

(39)
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a mapping from X × R
d×m × R

d×p into R
+ such that for any

(ξ1, . . . , ξm, ν1, . . . , νp) ∈ (F 2
pot )

m × (F 2
sol)

p one has

η → 
(η, ξ1, . . . , ξm, ν1, . . . , νp) ∈ L
1(X,µ).

We write

Z(
,µ) := inf
(ξ1,... ,ξm,ν1,... ,νp)∈(F 2

pot )
m×(F 2

sol )
p

〈

(η, ξ1, . . . , ξm, ν1, . . . , νp)

〉

(40)

Let us define for N > 0 the function (in the continuous case)

�N : X × (L2(T dN))
m × (L2(T dN))

p →R
+

(
η, v1, . . . , vm, q1, . . . , qp

) →N−d
∫
x∈[0,N(d


(τ−xη, v1(x), . . . , vm(x)

, q1(x), . . . , qp(x)) dx

(41)

In the discrete case we shall write

�N : X × (L2(T dN))
m × (L2(T dN))

p →R
+

(
η, v1, . . . , vm, q1, . . . , qp

) →N−d ∑
x∈Z∩[0,N(d


(τ−xη, v1(x), . . . , vm(x)

, q1(x), . . . , qp(x))

(42)

Let us define for N ∈ N the random variable Z(N, η) by

Z(N, η) := inf
(v1,... ,vm,q1,... ,qp)∈(F 2

pot (T
d
N ))

m×(F 2
sol (T

d
N ))

p
�N

(
η, v1, . . . , vm, q1, . . . , qp

)

(43)

Observe that Z(N, η) corresponds to the periodization of the variational problem
associated to Z(
,µ) over the torus T dN for a particular realization η of the ergodic
space.

Definition 3.7. We say that the function 
 is admissible if there exists a strictly
increasing continuous function g from R

+ into R
+ such that for all η ∈ X, the

function

g ◦�N(η) : (L2(T dN))
m × (L2(T dN))

p →R
+

(
v1, . . . , vm, q1, . . . , qp

) →g
(
�N

(
η, v1, . . . , vm, q1, . . . , qp

))
(44)

is upper semi-continuous with respect to the norm
∑m
i=1 ‖vi‖

L2(T dN )
+ ∑p

j=1

‖vj‖
L2(T dN )

a.s. uniformly in N and η.
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Theorem 3.8. If the function 
 is admissible then for µ-almost all η ∈ X
lim sup

N→∞
Z(N, η) ≤ Z(
,µ) (45)

Proof. We will write the theorem for the continuous case. In the discrete case the
proof is trivially similar. Let (ξ1, . . . , ξm, ν1, . . . , νp) ∈ (F 2

pot )
m × (F 2

sol)
p. To

prove the theorem it is sufficient to show that for µ-almost all η ∈ X
lim sup

N→∞
g
(
Z(N, η)

) ≤ g
(〈

(η, ξ1, . . . , ξm, ν1, . . . , νp)

〉)
(46)

By the equation (43) we have

g
(
Z(N, η)

) = J1(N)+ J2(N) (47)

with

J1(N)

= g
(
N−d

∫
x∈[0,N(d


(τ−xη, ξ1(x, η), . . . , ξm(x, η), ν1(x, η), . . . , νp(x, η)) dx
)

(48)

and

J2(N)

= inf
(v1,... ,vm,q1,... ,qp)∈(F 2

pot (T
d
N ))

m×(F 2
sol (T

d
N ))

p

(
g
(
�N

(
η, v1, . . . , vm, q1, . . . , qp

))

−g
(
�N

(
η,�Nξ

1, . . . ,�Nξm,�Nν1, . . . ,�Nνp
)))

(49)

by the ergodic theorem 3.5 one has for µ-almost all η ∈ X
lim
N→∞

J1(N) = g
(〈

(η, ξ1, . . . , ξm, ν1, . . . , νp)

〉)
(50)

Now by theorem 3.1 for µ-almost all η ∈ X there exists sequences
v1,N , . . . , q1,N , v1,N , . . . , qp,N ∈ (

F 2
pot (T

d
N)

)m × (
F 2
sol(T

d
N)

)p such that

lim
N→∞

m∑
i=1

‖�Nξi(η)− vi,N‖
L2(T dN )

+
p∑
j=1

‖�Nνj (η)− vj,N‖
L2(T dN )

= 0 (51)

From equation (49) one obtains

J2(N) ≤g
(
�N

(
η, v1,N , . . . , vm,N , q1,N , . . . , qp,N

))

− g
(
�N

(
η,�Nξ

1, . . . ,�Nξm,�Nν1, . . . ,�Nνp
)) (52)

Combining (52) with (51) and the uniform upper semi-continuity of g ◦ ψ(η) we
concludes that for µ-almost all η ∈ X

lim sup
N→∞

J2(N) ≤ 0 (53)

Which concludes the proof of the theorem. ��
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4. Application

4.1. Symmetric continuous operator

4.1.1. Homogenization in the ergodic medium

Let A(η) be a d × d bounded symmetric matrix defined on X (Ai,j ∈ L∞(X,µ))
and satisfying the following ellipticity condition

ν1|ξ |2 ≤t ξAξ ≤ ν2|ξ |2, ν1 > 0 (54)

for almost all η ∈ X. Realizations A(x, η) = TxA(η) of this matrix are considered
and we are interested in describing the homogenization for almost all η ∈ X of the
operator ∇xA(x, η)∇x .
Consider σ(A,µ) the d × d positive definite symmetric matrix defined by the
following variational formula: for ξ ∈ R

d

t ξσ (A,µ)ξ = inf
v∈F 2

pot

〈
t (ξ + v)A(ξ + v)

〉
(55)

Observe that σ(A,µ) corresponds to the effective conductivity associated to the
operator ∇xA(x, η)∇x . Indeed by the theorem 7.4 of [JKO91] for any bounded
domain Q ⊂ R

d and any f ∈ H−1(Q) the solutions uε of the Dirichlet problems
(Aε(x, η) = A(x/ε, η))

∇Aε∇uε = f, uε ∈ H 1
0 (Q) (56)

possess the following properties of convergence (in the weak topology)

uε → u0 in H 1
0 (Q), Aε∇uε → σ(A,µ)∇u0 in L

2(Q) (57)

where u0 is the solution of the Dirichlet problem

∇σ(A,µ)∇u0 = f, u0 ∈ H 1
0 (Q) (58)

Moreover writing yηt the diffusion associated to the operator ∇xA(x, η)∇x , and Pη

the law of that started from 0 in R
d it is well known ([KV86], [JKO91], [Oll94])

that under the law µ ⊗ Pη, εyη
t/ε2 converges in law as ε ↓ 0 towards a Brownian

Motion starting from 0 with covariance matrix (effective diffusivity) 2σ(A).

4.1.2. Periodization of the ergodic medium

For η ∈ X, we write AN(x, η) obtained by periodizing A(x, η) over the torus T dN
(of dimension d and side N , R

d
/
(NZ

d))

AN(x, η) = A(x −N [x/N ], η) (59)
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where [y] is the integer part of y. For η ∈ X, we define σ(AN, η) the d × d sym-
metric positive definite matrix by the following variational formula: for ξ ∈ R

d

t ξσ (AN, η)ξ = inf
f∈C∞(T dN )

N−d
∫
T dN

t (ξ + ∇f (x))AN(x, η)(ξ + ∇f (x)) dx

(60)

Observe that σ(AN, η) corresponds to the effective conductivity associated to the
periodic operator ∇AN(x, η)∇ in the sense given above in the equations (56), (57)
and (58). Writing yη,Nt the diffusion associated to the operator ∇xAN(x, η)∇x , it
is well known ([JKO91], [Oll94]) that εyη,N

t/ε2 converges in law as ε ↓ 0 towards
a Brownian Motion starting from 0 with covariance matrix (effective diffusivity)
2σ

(
AN, η

)
. Notice, whereas σ(A,µ) is a constant (not random) matrix, σ

(
AN, η

)
is a random matrix on X, which depends on the particular realization AN(x, η) of
the periodic environment.

4.1.3. The main theorem

It is our purpose to prove the following theorem

Theorem 4.1. For µ-almost all η ∈ X

lim
N→+∞

σ(AN, η) = σ(A,µ) (61)

4.1.4. Proof

Let ξ ∈ R
d . Let us apply theorem 4.1 with m = 1, p = 0 and 
(η,X1) =

t (ξ +X1)A(η)(ξ +X1). By the Minkowski inequality and the uniform ellipticity
condition (54) one has that forN ∈ N

∗ andµ-almost all η ∈ X, v1, v2 ∈ (
L

2(T dN)
)2

(
�N(η, v

1)
) 1

2 − (
�N(η, v

2)
) 1

2 ≤ ν2‖v1 − v2‖
L2(T dN )

(62)

It follows that 
 is admissible and from the variational formulae (60), (60) and
theorem 4.1 one obtains that for µ-almost all η ∈ X

lim sup
N→∞

t ξσ (AN, η)ξ ≤ t ξσ (A,µ)ξ (63)

Which gives the upper bound of theorem 4.1. For the lower bound we will apply
theorem 4.1 with m = 0, p = 1 and 
(η, Y 1) = t (ξ + Y 1)A−1(η)(ξ + Y 1). By
the Minkowski inequality and the uniform ellipticity condition (54) one has that
for N ∈ N

∗ and µ-almost all η ∈ X, q1, q2 ∈ (
L

2(T dN)
)2

(
�N(η, q

1)
) 1

2 − (
�N(η, q

2)
) 1

2 ≤ (ν1)
−1‖q1 − q2‖

L2(T dN )
(64)
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Moreover let us remind the following well known ([JKO91]) variational formulas:
for l ∈ R

d

t lσ (A,µ)−1l = inf
p∈F 2

sol

〈
(l + p)A−1(l + p)

〉
(65)

t lσ (AN, η)−1l = inf
ν∈F 2

sol (T
d
N )

N−d
∫
T dN

t
(
l + ν(x)

)(
AN(x, η)

)−1(
l + ν(x)

)
dx

(66)

Then it follows that 
 is admissible and from the variational formulae (65), (66)
and theorem 4.1 one obtains that for µ-almost all η ∈ X

lim sup
N→∞

t l
(
σ(AN, η)

)−1
l ≤ t l

(
σ(A,µ)

)−1
l (67)

Which gives the lower bound of theorem 4.1.

4.2. Non symmetric continuous operator, diffusion in divergence free flow

4.2.1. Homogenization in the ergodic medium

LetE be a d×d bounded skew-symmetric matrix defined onX (Ei,j ∈ L∞(X,µ)).
Let a be a constant symmetric positive definite d×dmatrix. RealizationsE(x, η) =
TxE(η) of this matrix are considered and we are interested in describing the ho-
mogenization for almost all η ∈ X of the operator

LE = ∇x
(
a + E(x, η)

)∇x (68)

E is seen as the stream matrix of the incompressible flow t∇.E.
Let zηt be the process generated by LE , and Pη the law of that diffusion started
from 0 in R

d . It is well known (see for instance [Oll94])that under the law µ⊗ Pη

as ε ↓ 0, εzη
t/ε2 converges in law to a Brownian motion with covariance matrix

D(a,E,µ): for l ∈ R
d

t lD(a,E,µ)l = 2t lal + 2
〈|vl |2a 〉 (69)

Where we have used the notation |ξ |2a := t ξaξ for ξ ∈ R
d and vl defined as the

unique solution u ∈ F 2
pot of

< φ.(a + E)(l + u) >= 0, ∀φ ∈ F 2
pot ; u ∈ F 2

pot (70)

The existence of a solution for this problem follows from the Lax-Milgram Lemma
and the estimate < v.(a + E)v >≥ λmin(a)‖v‖2

L2(X,µ)
; [JKO91].

Obviously, the solution vl of the problem (70) depends linearly on l ∈ R
d .

Therefore
〈
(a+E)(l+ vl)

〉
is a linear form with respect to l. The effective conduc-

tivity σ(a,E,µ) is defined by

σ(a,E,µ)l = 〈
(a + E)(l + vl)

〉
(71)
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It is a non-symmetric matrix relating the gradient of the heat intensity with the flux
[FP94] by (71). Observe that the symmetric part of the effective conductivity gives
the effective diffusivity by the following relation:

D(a,E,µ) = 2σsym(a, E) (72)

4.2.2. Periodization of the ergodic medium

For η ∈ X, we write EN(x, η) obtained by periodizing E(x, η) over the torus T dN

EN(x, η) = E(x −N [x/N ], η) (73)

We are interested in describing the homogenization for almost all η ∈ X of the
operator

LNE = ∇x
(
a + EN(x, η)

)∇x (74)

Let zη,Nt be the process generated by LNE . It is well known (see for instance

[Nor97])that as ε ↓ 0, εzη,N
t/ε2 converges in law to a Brownian motion with co-

variance matrix D(a,EN, η) with for l ∈ R
d

t lD(a,EN, η)l = 2t lal + 2N−d
∫
T dN

|ψl(x, η)|2a dx (75)

Where ψl defined as the unique solution ψ ∈ H 1(T dN) of

∫
T dN

φ(x)
(
a + EN(x, η)

)(
l + ψ(x)

)
dx = 0, ∀φ ∈ H 1(T dN); ψ ∈ H 1(T dN)

(76)

We have noted H 1(T dN) the closure of {∇f : f ∈ C∞(T dN)} in L2(T dN) with
respect to the L2-norm. Obviously, the solution ψl of the problem (76) depends
linearly on l ∈ R

d . Therefore
∫
T dN

(
a +Eη,N(x)

)(
l +ψl(x, η)

)
dx is a linear form

with respect to l. The effective conductivity σ(a,EN, η) is defined by: for l ∈ R
d

σ (a,EN, η)l =
∫
T dN

(
a + Eη,N(x)

)(
l + ψl(x)

)
dx (77)

It is a non-symmetric matrix relating the gradient of the heat intensity with the flux
[FP94] by (77). Observe that the symmetric part of the effective conductivity gives
the effective diffusivity by the following relation:

D(a,EN, η) = 2σsym(a, E
N, η) (78)
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4.2.3. The main theorem

It is our purpose to prove the following theorem

Theorem 4.2. For µ-almost all η ∈ X

lim
N→+∞

σ(a,EN, η) = σ(a,E,µ) (79)

In particular

lim
N→+∞

D(a,EN, η) = D(a,E,µ) (80)

4.2.4. Core of the proof: Variational formulations and theorem 4.1

As for a symmetric operator, the proof theorem 4.2 relies theorem 3.1 and the
variational formulae associated to the effective conductivity.

4.2.4.1. Variational formulation of the effective diffusivity in the periodic case.
For N > 0, let us write S(T dN) the set of skew-symmetric matrices with smooth
coefficients defined on T dN and for H ∈ S(T dN), divH is the vector field defined by

(divH)i = ∑d
j=1 ∂jHi,j .

In the periodic case, we will use Norris’s variational formulation (obtained by po-
larization [Nor97]) to control σ(a,EN, η). For y ∈ R

d we will write |y|2
a−1 :=

t ya−1y.
For all ξ, l ∈ R

d ,

|ξ − σ(a,EN, η)l|2
σ−1

sym(a,E
N ,η)

= inf
f,H∈C∞(T dN )×S(T dN )

N−d
∫
T dN

|ξ − ∇H − (a + EN(x, η))(l − ∇f )|2
a−1 dx

(81)

For all l ∈ R
d

|l|2
σsym(a,EN ,η)

= inf
ξ⊥l,f,H∈C∞(T dN )×S(T dN )

N−d
∫
T dN

|ξ−∇H − (a + EN(x, η))(l − ∇f )|2
a−1 dx

(82)

Where we have written ξ ⊥ l := {ξ ∈ R
d : ξ.l = 0}. We also have for all ξ ∈ R

d

|ξ |2
σ−1

sym(a,E
N ,η)

= inf
f,H∈C∞(T dN )×S(T dN )

N−d
∫
T dN

|ξ−∇H+(a+EN(x, η))∇f |2
a−1 dx

(83)
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Remark 4.3. Let us remind, as it has been noticed by J.R. Norris [Nor97], that from
(82) and (83) one obtains that

a ≤ σsym(a, E
N, η) ≤ a +N−d

∫
T dN

tEN(x, η)a−1EN(x, η) dx (84)

For a saddle point variational formulation we refer to [FP94].

4.2.4.2. Variational formulation of the effective diffusivity in the ergodic case.
The following theorem proven in subsection 5.2.1 is inspired from the variational
formulation given for the periodic case by J. R. Norris [Nor97] (lemma 3.1), (for a
non local variational formulation we refer to [FP96])

Theorem 4.4. For all ξ, l ∈ R
d ,

|ξ − σ(a,E,µ)l|2
σ−1

sym(a,E,µ)
= inf
v,p∈Fpot×Fsol

〈
|ξ − p − (a + E)(l − v)|2

a−1

〉
(85)

for l ∈ R
d

t lσsym(a, E,µ)l = inf
ξ⊥l,v∈F 2

pot ,p∈F 2
sol

〈|ξ − p − (a + E)(l − v)|2
a−1

〉
(86)

For all ξ ∈ R
d

|ξ |2
σ−1

sym(a,E,µ)
= inf
v,p∈Fpot×Fsol

〈
|ξ − p + (a + E)v|2

a−1

〉
(87)

Remark 4.5. Let us observe that from (86) and (87) one obtains that

a ≤ σsym(a, E,µ) ≤ a + 〈t
Ea−1E

〉
(88)

Let ξ, l ∈ R
d . Let us apply theorem 4.1 withm = 1,p = 1 and
(η,X1, Y 1) =

|ξ−Y 1−(a+E)(l−X1)|2
a−1 . By the Minkowski inequality one has that forN ∈ N

∗

and µ-almost all η ∈ X, v1, v2, q1, q2 ∈ (
L

2(T dN)
)4

(
�N(η, v

1, q1)
) 1

2 − (
�N(η, v

2, q2)
) 1

2 ≤ Cd
(
λmin(a)

)−1/2‖q1 − q2‖
L2(T dN )

+ Cd(λmax(a)+ ‖E‖L∞(X,µ))
(
λmin(a)

)−1/2‖v1 − v2‖
L2(T dN )

(89)

It follows that 
 is admissible and from the variational formulae (85), (81) and
theorem 4.1 one obtains that for µ-almost all η ∈ X

lim sup
N→∞

|ξ − σ(a,EN(η))l|2
σ−1

sym(a,E
N ,η)

≤ |ξ − σ(a,E,µ)l|2
σ−1

sym(a,E,µ)
(90)

Choosing ξ := σ(a,E,µ)l in this equation, one obtains from (84) and (88) that
for µ-almost all η ∈ X

lim
N→∞

σ(a,EN(η))l = σ(a,E,µ)l (91)

Which concludes the proof of theorem 4.2.
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4.3. Discrete operator

We shall extend in this subsection our results to the discrete case.

4.3.1. The ergodic homogenization problem

We will consider a symmetric random walk on Z
d as in [CI01] but with ergodic

jump rates instead of i.i.d. The random ergodic environment will be represented
by the random d-dimensional vector ξi(η) (i ∈ {1, . . . , d}) on X, we will write
ξi(x, η) = ξi(τ−xη). We will assume that there exists c ≥ 1 such that for µ-almost
all η ∈ X,

1/c ≤ ξi(η) ≤ c (92)

Let us write X
(
t, ξ(η)

)
the nearest neighbor symmetric random walk on Z

d with
jump according to ξi(x, η) rates (ξi(x, η) is the jump rate between from the site x
to the site x + ei and also from the site x + ei to the site x).

In the quenched regime (for a fixed η), P
ξ(η)
x stands for the probability law of

this process when the walk starts at x ∈ Z
d . It is well known ([KV86], [MFGW89],

[CI01]) that in the annealed regime (under the lawµ⊗P
ξ(η)
0 ) as ε ↓ 0, εX

(
t/ε2, ξ(η)

)
converges in law towards a Brownian Motion with covariance matrix (effective dif-
fusivity) D(ξ, µ).

4.3.2. Periodization of the ergodic medium

ForN ∈ N
∗ and η ∈ X we write ξN(η) the periodized bond configuration associat-

ed to ξ(x, η) over the torus TN = Z
d/NZ

d . For x ∈ Z
d decomposed as x = y+Nz

with y ∈ {0, . . . , N − 1}d and z ∈ Z
d we define ξN(x, η) by

ξN(x, η) := ξ(y, η) (93)

It is well known ([CI01]) that in the quenched regime (under the law P
ξN (η)
0 ) as

ε ↓ 0, εX
(
t/ε2, ξN(η)

)
converges in law towards a Brownian Motion on Z

d with
covariance matrix (effective diffusivity) σ(ξN , η) (which is a random matrix onX,
depending on the particular realization ξN(η)).

4.3.3. The main theorem

It is our purpose to prove the following theorem

Theorem 4.6. For µ-almost all η ∈ X
lim

N→+∞
σ(ξN , η) = σ(ξ, µ) (94)

This result has already been given in [CI01] when the jump rates are i.i.d. It is
interesting to note that when the jump rates are i.i.d., D. Ioffe and P. Caputo have
shown an exponential rate of convergence of σ(ξN , η) towards Eµ

[
σ(ξN , η)

]
as

N → ∞.
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4.3.4. Proof

We shall use the variational formula given in [CI01]: for l ∈ R
d

t lσ (ξ, µ)l = inf
f∈L2(µ)

d∑
i=1

〈
ξi(li +Dif )

2
〉

(95)

Let us also remind the variational formula

t lσ (ξN , η)l = inf
f∈L2(T dN )

|T dN |−1
∑
x∈T dN

d∑
i=1

ξNi (x, η)
(
li + ∇if (x)

)2
(96)

We will prove in the subsection 5.2.3 the following lemma which corresponds to
the variational formulation of D−1(ξ)

Lemma 4.7. For l ∈ R
d

t lσ (ξ, µ)−1l = inf
H∈S(X,µ)

d∑
i=1

〈
ξ−1
i (li + (DivH)i)

2
〉

(97)

It is also easy to prove that for l ∈ R
d (the proof is similar to the one of lemma 97)

t lσ (ξN , η)−1l = inf
H∈S(T dN )

N−d ∑
x∈T dN

d∑
i=1

ξNi (x, η)
−1(li + (divH)i

)2 (98)

Let l ∈ R
d . Let us apply theorem 4.1 with m = 1, p = 0 and 
(η,X1) =∑d

i=1 ξi(η)(li + X1
i )

2. By the Minkowski inequality and the uniform ellipticity

condition (92) one has that forN ∈ N
∗ andµ-almost all η ∈ X, v1, v2 ∈ (

L
2(T dN)

)2

(
�N(η, v

1)
) 1

2 − (
�N(η, v

2)
) 1

2 ≤ C‖v1 − v2‖
L2(T dN )

(99)

It follows that 
 is admissible and from the variational formulae (95), (96) and
theorem 4.1 one obtains that for µ-almost all η ∈ X

lim sup
N→∞

t lσ (ξN , η)l ≤ t lσ (ξ, µ)l (100)

Which gives the upper bound of theorem 4.6. The proof of the lower bound is triv-
ially similar: using Minkowski inequality, the uniform ellipticity condition (92),
variational formulae (97), (98) and theorem 4.1 one obtains that for µ-almost all
η ∈ X

lim sup
N→∞

t l
(
σ(ξN , η)

)−1
l ≤ t l

(
σ(ξ, µ)

)−1
l (101)

Which gives the lower bound of theorem 4.6.



Approximation of the effective conductivity 245

5. Proofs

5.1. Main results

5.1.1. Proof of theorem 2.6

It is trivial to check that F 2
pot , F

2
sol and R

d are mutually orthogonal. Thus in order
to prove the Weyl decomposition (2.6) it is sufficient to check that any element of
L

2(X,µ) orthogonal to F 2
pot and R

d is an element of F 2
sol . Let P be an element of

L
2(X,µ) orthogonal to F 2

pot and R
d . Since P ⊥ F 2

pot it must verify

d∑
i=1

D∗
i P = 0 (102)

By Lax-Milgram lemma form, n ∈ {1, . . . , d}, there exists Bm,n ∈ F 2
pot such that

d∑
i=1

D∗
i B

m,n
i = D∗

mPn (103)

Let us define for i, m, n ∈ {1, . . . , d}

Hi,n,m = B
m,n
i − B

n,m
i (104)

Let us define Q ∈ L
2(X,µ) by for n ∈ {1, . . . , d}

Qn =
d∑
i=1

Hi,n,i (105)

Since Bm,n ∈ F 2
pot they can be approximated by gradient forms in L

2
pot and it is

easy to deduce that Qn ∈ F 2
sol . Moreover for all n ∈ {1, . . . , d}

d∑
k=1

D∗
kDkQn =

d∑
k=1

d∑
i=1

(
D∗
kDkB

i,n
i −D∗

kDkB
n,i
i

)
(106)

Since Bm,n ∈ F 2
pot it is easy to check by density that η-a.s., DkB

i,n
i = DiB

i,n
k and

DkB
n,i
i = DiB

n,i
k thus from the equation (103) one obtains that η-a.s.

d∑
k=1

D∗
kDkQn =

d∑
i=1

Di

d∑
k=1

(
D∗
kB

i,n
k (η)−D∗

kB
n,i
k (η)

)

=
d∑
i=1

Di
(
D∗
i Pn −D∗

nPi
) =

d∑
i=1

D∗
i DiPn −Dn

d∑
i=1

D∗
i Pi

(107)
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Using
∑d
i=1D

∗
i Pi = 0 we obtain that η-a.s.

d∑
k=1

D∗
kDk(Qn − Pn) = 0 (108)

Combining this with < Qn − Pn >= 0, it follows by Lax Milgram lemma that
η − a.s., Qn = Pn and since Q ∈ F 2

sol it follows that P ∈ F 2
sol which concludes

the proof of theorem 2.6.

5.1.2. Proof of equation (22) of lemma 3.3 in the discrete case

Let p ∈ F 2
sol . We will prove in this subsection that for µ-almost all η ∈ X

lim
N→∞

‖�Np(η)− (
�Np(η)

)
sol

‖
L2(T dN )

= 0 (109)

For A ⊂ R
d and f ∈ L2

loc(Z
d) we will write

‖f ‖L2(A) = ( ∑
x∈Zd∩A

f (x)2
) 1

2 (110)

Observe that to prove the equation (109), it is sufficient to prove the following
lemma

Lemma 5.1. Forµ-almost allη ∈ X, there exists a sequence (KN(x, η,M))M,N∈N

of skew symmetric matrices with coefficients in L2(T dN) and a sequence of positive
reals h(M) such that limM→∞ h(M) = 0 and for M ≥ 10

lim sup
N→∞

N−d/2‖p(x, η)− divKN(x, η,M)‖L2([0,N(d ) ≤ h(M) (111)

Let us now prove lemma 5.1. LetM ∈ N, M ≥ 10,M ≤ 103N . Sincep ∈ F 2
sol ,

on obtains from Weyl decomposition (11) that for eachM , there exists a d×d skew
symmetric matrix HM , with coefficients HM

i,j ∈ L2(µ), (i, j) ∈ {1, . . . d}2 such

that HM
i,j = −HM

j,i and

d∑
i=1

〈|p − divHM |2〉 ≤ 1/M2 (112)

and it is easy to check from the proof of (11) given in subsection 5.1.1 that one can
choose HM such that for all (i, j) ∈ {1, . . . d}2

〈|∇HM
i,j |2

〉 ≤ Cd
〈|p|2〉 (113)

Observe that by the ergodic theorem 3.6, η-a.s.

lim sup
N→∞

(
N−d ∑

x∈Zd∩[0,N(d

|p(x, η)− divHM(x, η)|2
) 1

2 ≤ 1/M (114)
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Let g be a smooth increasing function on R such that g(z) = 1 for z ≥ 1 and
g(z) = 0 for z ≤ 1/2 and let for x ∈ [0, 1]dαM(x) = g(M dist(x, ([0, 1]d)c)).
Our candidate for KN will be the skew symmetric T dN -periodic matrix:

KN(x, η,M) = (
HM(x, η)− [N/M]−d

∑
y∈[0,N/M(d∩Zd

HM(y, η)
)
αM(x/N)

on [0, N(d∩Z
d (115)

Observe that αM(x) is null on an open neighborhood of R
d containing the boundary

of [0, 1]d and the coefficients ofKN can be defined as elements of L2(T dN). Let us
write

J1(N,M, η) = N−d/2‖divHM(x, η)− divKN(x, η,M)‖
L2

(
[0,N(d

) (116)

Observe that η-a.s. (∇αM standing for the discrete gradient of αM )

divKN(x, η,M) = divHM(x, η)αM(x/N)

+ (
HM(x, η)− [N/M]−d

∑
y∈[0,N/M(d∩Zd

HM(y, η)
)

× ∇(
αM(x/N)

)

Thus

J1(N,M, η) ≤ J2(N,M, η)+ J3(N,M, η) (117)

with

J2(N,M, η) = N−d/2‖divHM(x, η)(1 − αM(x/N))‖L2
(

[0,N(d
) (118)

and

J3(N,M, η)

= N−d/2‖(HM(x, η)− [N/M]−d
∑

y∈[0,N/M(d∩Zd

HM(y, η)
)

× ∇(
αM(x/N)

)‖
L2

(
[0,N(d

) (119)

Write

AM = {x ∈ [0, N(d∩Z
d : min

j∈{1,...d}
min(xj , N − xj ) < N/M} (120)

observe that

J2(N,M, η) ≤ N−d/2‖divHM(x, η)‖L2(AM)

≤ CdM
− 1

2
(

Vol(AM)
)−1/2‖divHM(x, η)‖L2(AM)

(121)

and by the ergodic theorem 3.5, η-a.s.
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(
Vol(AM)

)−1/2‖divHM(x, η)‖L2(AM)
→ 〈

(divHM)2
〉 1

2 as N → ∞. Thus η-
a.s.

lim sup
N→∞

J2(N,M, η) ≤ CdM
− 1

2
〈
p2〉 1

2 (122)

Now let us prove that

lim
M→∞

lim sup
N→∞

J3(N,M, η) = 0 (123)

Since |∇(αM(x/N))| ≤ CdM/N one has

J3(N,M, η) ≤ CdN
−1−d/2M

∑
m,n

‖HM
m,n(x, η)

− [N/M]−d
∑

y∈[0,N/M(d∩Zd

HM
m,n(y, η)‖L2(AM)

(124)

Let I (M) = {(i1, . . . , id) ∈ {1, . . . ,M}d ; minj min(ij − 1,M − ij ) = 0} and
write {Bi}i∈I (M) the set of cubes covering AM (the N/M-neighborhood of the
border of [0, N(d ). More precisely for i ∈ I (M),

Bi = {x ∈ [0, N(d∩Z
d : max

j
|xj /N − (ij − 0.5)/M| ≤ 1/(2M)} (125)

By the equation (124) one has

J3(N,M, η)
2 ≤ CdM

2
∑

i∈I (M)

∑
m,n

K
m,n
i (126)

with

K
m,n
i = N−2−d∥∥HM

m,n(x, η)− [N/M]−d
∑

y∈[0,N/M(d∩Zd

HM
m,n(y, η)

∥∥2
L2(Bi)

(127)

Now using the inequality (X + Y )2 ≤ 2X2 + 2Y 2 observe that

K
m,n
i ≤ 2N−2−d∥∥HM

m,n(x, η)− Vol(Bi))
−1

∑
y∈Bi

HM
m,n(y, η)

∥∥2
L2(Bi)

+ 2N−2M−d
(

[N/M]−d
∑

y∈[0,N/M(d∩Zd

HM
m,n(y, η)

− (Vol(Bi))
−1

∑
y∈Bi

HM
m,n(y, η)

)2

(128)

By the Poincaré inequality one has

N−2−d∥∥HM
m,n(x, η)− Vol(Bi))

−1
∑
y∈Bi

HM
m,n(y, η)

∥∥2
L2(Bi)

≤ CdM
−2N−d∥∥∇HM

m,n(x, η)
∥∥2
L2(Bi)

(129)
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Thus

J3(N,M, η)
2 ≤ CdM

−1
∑
m,n

(Vol(AM))
−1

∥∥∇HM
m,n(x, η)

∥∥2
L2(AM)

+ CdM
2−d ∑

m,n

∑
i∈I (M)

N−2
(

[N/M]−d
∑

y∈[0,N/M(d∩Zd

HM
m,n(y, η)

− (Vol(Bi))
−1

∑
y∈Bi

HM
m,n(y, η)

)2

(130)

But by the ergodic theorem 3.6, η − a.s. for all i ∈ I (M)

lim
N→∞

(
[N/M]−d

∑
y∈[0,N/M(d∩Zd

HM
m,n(y, η)− (Vol(Bi))

−1
∑
y∈Bi

HM
m,n(y, η)

)

=< HM
m,n > − < HM

m,n >= 0
(131)

It is important to observe that HM
m,n ∈ L2(µ) is sufficient to apply the ergodic

theorem 3.6 in order to obtain (131). In the continuous we will not consider an
approximation of p but its direct primitive which is not in L2(µ) explaining why
the ergodic theorem will not be applied directly.
It follows that (using (113))

lim sup
N→∞

J3(N,M, η)
2 ≤ CdM

−1
∑
m,n

< (∇HM
m,n)

2 >

≤ CdM
−1 < p2 >

(132)

And taking the limit M → ∞ one obtains the equation (123). Now combining
equations (112), (116), (117), (122) and (123) one obtains lemma 5.2.

5.1.3. Proof of equation (21) of lemma 3.3 in the discrete case

The proof of equation (21) being similar to the one of equation (22) we will just
give its idea. Let v ∈ F 2

pot . We have to prove that for µ-almost all η ∈ X

lim
N→∞

‖�Nv(η)− (
�Nv(η)

)
pot

‖
L2(T dN )

= 0 (133)

Observe that to prove the equation (133) it is sufficient to prove the following lemma

Lemma 5.2. Forµ-almost allη ∈ X, there exists a sequence (GN(x, η,M))M,N∈N

of functions in L
2(T dN) and sequence of positive reals h(M) such that limM→∞

h(M) = 0 and for M ≥ 10

lim sup
N→∞

(
N−d ∑

x∈Zd∩[0,N(d

|v(x, η)− ∇GN(x, η,M)|2
) 1

2 ≤ h(M) (134)
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Let us now prove lemma 5.2. Let M ∈ N, M ≥ 10, M ≤ 103N . Since
v ∈ F 2

pot , there exists uM ∈ L2(X,µ) such that

d∑
i=1

〈|vi −Diu
M |2〉 ≤ 1/M2 (135)

Observe that by the ergodic theorem 3.6, η-a.s.

lim sup
N→∞

(
N−d ∑

x∈Zd∩[0,N(d

|v(x, η)− ∇uM(x, η)|2
) 1

2 ≤ 1/M (136)

Defining αM(x) as in the subsection 5.1.2 our candidate forGN will be theL2(T dN)

periodic function with value ([N/M] being the integer part of N/M)

GN(x, η,M) = (
uM(x, η)− [N/M]−d

∑
y∈[0,N/M(d∩Zd

uM(y, η)
)
αM(x/N)

on [0, N(d∩Z
d (137)

From this point the proof of lemma 5.2 is trivially similar to the one given in
subsection 5.1.2.

5.1.4. Proof of equation (21) of lemma 3.3 in the continuous case

Let v ∈ F 2
pot . We will prove in this subsection that for µ-almost all η ∈ X

lim
N→∞

‖�Nv(η)− (
�Nv(η)

)
pot

‖
L2(T dN )

= 0 (138)

Observe that to prove the equation (138) it is sufficient to prove the following lemma

Lemma 5.3. Forµ-almost allη ∈ X, there exists a sequence (GN(x, η,M))M,N∈N

of functions in H 1(T d1 ) and sequence of positive reals h(M) such that limM→∞
h(M) = 0 and for M ≥ 10

lim sup
N→∞

‖v(Nx, η)− ∇GN(x, η,M)‖L2([0,1]d ) ≤ h(M) (139)

Let us now prove lemma 5.3. Since v ∈ F 2
pot , for almost all η, v admits the

following representation v(x, η) = ∇xu(x, η), where u(x, η) is an element of
H 1
loc(R

d) (see subsection 2.2).
Let M ∈ N, M ≥ 10. Let z → g(z) be a smooth increasing function on R

such that g = 1 for z ≥ 1 and g = 0 for z ≤ 1/2 and let for x ∈ [0, 1]dαM(x) =
g
(
M dist(x, ([0, 1]d)c)

)
. Our candidate forGN will be the H 1(T d1 ) periodic func-

tion with value

GN(x, η,M) = N−1(u(Nx, η)−Md

∫
[0,1/M]d

u(Ny, η)dy
)
αM(x) on [0, 1]d

(140)
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Observe that since αM(x) is null on an open neighborhood of R
d containing the

boundary of [0, 1]d , GN can be defined as an element of H 1(T d1 ). Let us write

J1(N,M, η) = ‖∇u(Nx, η)− ∇GN(x, η,M)‖L2([0,1]d ) (141)

Observe that

∇GN(x, η,M) = ∇u(Nx, η)αM(x)
+N−1(u(Nx, η)−Md

∫
[0,1/M]d

u(Ny, η)dy
)∇αM(x)

Thus

J1(N,M, η) ≤ J2(N,M, η)+ J3(N,M, η) (142)

with

J2(N,M, η) = ‖∇u(Nx, η)(1 − αM(x))‖L2([0,1]d ) (143)

and

J3(N,M, η) = N−1‖(u(Nx, η)−Md

∫
[0,1/M]d

u(Ny, η)dy
)∇αM(x)‖L2([0,1]d )

(144)

Write

AM = {x ∈ [0, 1]d : min
j∈{1,...d}

min(xj , 1 − xj ) ≤ 1/M} (145)

Observe that

J2(N,M, η) ≤ ‖∇u(Nx, η)‖L2(AM)

≤ CdM
− 1

2
(

Vol(AM)
)−1/2‖∇u(Nx, η)‖L2(AM)

(146)

and by the ergodic theorem 3.5, η-a.s.
(

Vol(AM)
)−1/2‖∇u(Nx, η)‖L2(AM)

→〈
v2

〉 1
2 as N → ∞. Thus η-a.s.

lim sup
N→∞

J2(N,M, η) ≤ CdM
− 1

2
〈
v2〉 1

2 (147)

Now let us prove that η − a.s.

lim
M→∞

lim sup
N→∞

J3(N,M, η) = 0 (148)

Since |∇αM | ≤ CdM one has

J3(N,M, η) ≤ CdN
−1‖M(

u(Nx, η)−Md

∫
[0,1/M]d

u(Ny, η)dy
)‖L2(AM)

(149)
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Let I (M) = {(i1, . . . , id) ∈ {1, . . . ,M}d ; minj min(ij − 1,M − ij ) = 0} and
{Bi}i∈I (M) the set of cubes covering AM (the 1/M-neighborhood of the border of
[0, 1]d ). More precisely for i ∈ I (M),

Bi = {x ∈ [0, 1]d : max
j

|xj − (ij − 0.5)/M| ≤ 1/(2M)} (150)

By the equation (149) one has

J3(N,M, η)
2 ≤ CdM

2
∑

i∈I (M)
Ki (151)

with

Ki = N−2
∫
Bi

(
u(Nx, η)−Md

∫
[0,1/M]d

u(Ny, η)dy
)2
dx (152)

Now using the inequality (X + Y )2 ≤ 2X2 + 2Y 2 observe that

Ki ≤ 2N−2
∫
Bi

(
u(Nx, η)− (Vol(Bi))

−1
∫
Bi

u(Ny, η)dy
)2
dx

+ 2N−2(Vol(Bi))
−1

( ∫
[0,1/M]d

u(Ny, η)dy −
∫
Bi

u(Ny, η)dy
)2

(153)

By the Poincaré inequality one has

N−2
∫
Bi

(
u(Nx, η)−(Vol(Bi))

−1
∫
Bi

u(Ny, η)dy
)2
dx≤CdM−2

∫
Bi

(
v(Nx, η)

)2
dx

(154)

Thus

J3(N,M, η)
2 ≤CdM−1(Vol(AM))

−1
∫
AM

(
v(Nx, η)

)2
dx

+ CdM
2

∑
i∈I (M)

(Vol(Bi))
−1N−2

×
( ∫

[0,1/M]d
u(Ny, η)dy −

∫
Bi

u(Ny, η)dy
)2

(155)

It shall be proven in the paragraph 5.1.4.1 that by the ergodic theorem η− a.s. for
all i ∈ I (M)

lim
N→∞

N−1
∣∣
∫

[0,1/M]d
u(Ny, η)dy −

∫
Bi

u(Ny, η)dy
∣∣ = 0 (156)

It follows that η − a.s.

lim sup
N→∞

J3(N,M, η)
2 ≤ CdM

−1 < v2 > (157)

And taking the limit M → ∞ one obtains the equation (148). Now combining
equations (141), (142), (147) one obtains lemma 5.3 with h(M) = CdM

−1/2 <

v2 >1/2.
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5.1.4.1. Proof of equation (156). Let a, b ∈ I (M) × I (M), q ∈ N
∗ and w ∈

{1, . . . , d} such that b = a + qew. Observing that

u(N(x + qew/M), η)− u(Nx, η) =
∫
t∈[0,1]

v(N(x + qtew/M), η).(qew/M) dt

we obtain

N−1
∫
Bb

u(Nx, η)dx =N−1
∫
Ba

u(Nx, η)dx

+
∫
t∈[0,1]

∫
Ba

v(N(x + qtew/M), η).(qew/M)dx dt

(158)

Now let us write ∂wBa the lower face of the cube Ba orthogonal to ew:

∂wBa := {x ∈ Ba : x.ew = (aw − 0.5)/M − 1/(2M)}

Now we decompose x ∈ Ba as x = xw + ywew/M with xw ∈ ∂wBa and yw ∈
[0, 1], using this change of variable we obtain

∫
t∈[0,1]

∫
Ba

v(N(x + qtew/M), η).(qew/M)dx dt

=
∫
t∈[0,1]

∫
yw∈[0,1],xw∈∂wBa

v(N(xw+(tq+yw)ew/M), η).(qew/M2) dxw dt dyw

(159)

Now using the change of variable s = (tq + yw)/M we obtain from (159) that

∫
t∈[0,1]

∫
Ba

v(N(x + qtew/M), η).(qew/M)dx dt

=
∫
yw∈[0,1]

∫
s∈[yw/M,(q+yw)/M]

∫
xw∈∂wBa

v(N(xw + sew), η).(ew/M)

× dxw ds dyw

=
∫
s∈[1/M,q/M]

∫
xw∈∂wBa

v(N(xw + sew), η).(ew/M) dx
w ds

+
∫
s∈[0,1/M]

∫
xw∈∂wBa

v(N(xw + sew), η).ews dx
w ds

+
∫
s∈[q/M,(q+1)/M]

∫
xw∈∂wBa

v(N(xw + sew), η).ew(1+q −Ms) dxw ds

(160)
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Thus using the decomposition [1/M, q/M] = ∪q−1
k=1

[
k/M, (k + 1)/M

]
, it follows

from (160) and (158) by obvious change of variables that

N−1
∫
Bb

u(Nx, η)dx =N−1
∫
Ba

u(Nx, η)dx +M−1
q−1∑
k=1

∫
Ba+kew

v(Nx, η).ew dx

+
∫
Ba

(x.ew − a.ew/M + 1/M)v(Nx, η).ew dx

+
∫
Bb

(−x.ew + b.ew/M)v(Nx, η).ew dx

(161)

Since < v >= 0 one has η-a.s.

lim
N→∞

q−1∑
k=1

∫
Ba+kew

v(Nx, η).ew dx = 0 (162)

Now for P ∈ N
∗ (P ≥ M2) write Ek = {x ∈ Bb : (k − 1)/P < −x.ew +

b.ew/M ≤ k/P }. Note that (Ek)1≤k≤P is a partition of Bb (observe that by equa-
tion (150) b/M is not the center of Bb but the upper edge of the cube). Thus we
obtain

∫
Bb

(−x.ew + b.ew/M)v(Nx, η).ew dx ≤
P∑
k=1

∫
Ek

(k/P )v(Nx, η).ew dx

+ 1/P
∫
Bb

|v(Nx, η).ew| dx
(163)

It follows by the ergodic theorem that η-a.s.

lim sup
N→∞

|
∫
Bb

(−x.ew + b.ew/M)v(Nx, η).ew dx| ≤ P−1M−d < |v.ew| >
(164)

And taking the limit P → ∞ one obtains that

lim sup
N→∞

|
∫
Bb

(−x.ew + b.ew/M)v(Nx, η).ew dx| = 0 (165)

Similarly one obtains that

lim sup
N→∞

|
∫
Ba

(x.ew − a.ew/M + 1/M)v(Nx, η).ew dx| = 0 (166)

From (161), (162), (165) and (166) one deduces that for a, b ∈ I (M) × I (M),
q ∈ N

∗ and w ∈ {1, . . . , d} such that b = a + qew. one has

lim sup
N→∞

|N−1
∫
Bb

u(Nx, η)dx −N−1
∫
Ba

u(Nx, η)dx| = 0 (167)

And since any two distinct points of I (M) can be connected by a finite number of
steps of such translations one obtains the equation (156)
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5.1.5. Proof of equation (22) of lemma 3.3 in the continuous case

Let p ∈ F 2
sol . We will prove in this subsection that for µ-almost all η ∈ X

lim
N→∞

‖�Np(η)− (
�Np(η)

)
sol

‖
L2(T dN )

= 0 (168)

Observe that to prove the equation (168), it is sufficient to prove the following
lemma

Lemma 5.4. Forµ-almost allη ∈ X, there exists a sequence (KN(x, η,M))M,N∈N

of skew symmetric matrices with coefficients inH 1(T d1 ) and a sequence of positive
reals h(M) such that limM→∞ h(M) = 0 and for M ≥ 10

lim sup
N→∞

‖p(Nx, η)− divKN(x, η,M)‖L2([0,1]d ) ≤ h(M) (169)

Since p ∈ F 2
sol , it is easy to prove from Weyl decomposition that there exists a

finite sequence hi,j ∈ F 2
pot , (i, j) ∈ {1, . . . d}2 such that hi,j = −hj,i and η-a.s.,

(p)i = ∑d
j=1 hi,j .ej (Fpot is orthogonal to the set of such vectors and any element

of L
2(X,µ) orthogonal to the set of such vectors is in L

2
pot (X,µ)). Write Hi,j

the scalar potentials associated to hi,j , then it follows that η-a.s., divxHi,j (x, η) =
hi,j (x, η). Thus H is a d × d skew symmetric matrix with elements in H 1

loc(R
d)

such that η-a.s., p(x, η) = divH(x, η).
For M ∈ N, M ≥ 10, defining αM(x) as in the subsection 5.1.4 our candidate

for KN will be the skew symmetric T d1 -periodic matrix:

KN(x, η,M) :=N−1(H(Nx, η)−Md

∫
[0,1/M]d

H(Ny, η)dy
)
αM(x) on [0, 1]d

(170)

From this point the proof of lemma 5.4 is trivially similar to the one given in
subsection 5.1.4.

5.2. Applications

In this subsection we will prove theorem 4.4. We will first prove equation (85), the
equations (86) and (87) will be implied by the first one.

5.2.1. Proof of the variational formula (85)

Let us write vEl ∈ F 2
pot the solution of the equation (70) and (using the linearity of

vEl in l one can define vE. as a matrix by vE. l = vEl ). Let us first prove the following
lemma

Lemma 5.5.

σ(a,−E,µ) = t σ (a, E,µ) (171)
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Proof. We shall adapt the proof given by J. R. Norris [Nor97] for the periodic case.
Let l, k ∈ R

d . Since (a + E)(l + vEl ) ∈ L
2
sol(X,µ) and (a − E)(k + v−E

k ) ∈
L

2
sol(X,µ), by the Weyl decomposition (8), there exists q, h ∈ F 2

sol and t, s ∈ R
d

such that

t − q = (a + E)(l + vEl ) (172)

and

s − h = (a − E)(k + v−E
k ) (173)

Observe that by integration with respect to the measure µ, one obtains that

t = σ(a,E,µ)l (174)

and

s = σ(a,−E,µ)k (175)

For f, g ∈ L
2(X,µ) we write

〈
f, g

〉
=

〈
t f g

〉
. Then observe that

〈
σ(a,−E,µ)k, l

〉
=

〈
s, l

〉
=

〈
s − h, l + vEl

〉

=
〈
(a − E)(k + v−E

k ), l + vEl

〉
=

〈
k + v−E

k , (a + E)(l + vEl )
〉

=
〈
k + v−E

k , t − q
〉
=

〈
k, t

〉

=
〈
k, σ (a,E,µ)l

〉
(176)

Which proves that t σ (a,−E,µ) = σ(a,E,µ) and henceforth the lemma.

Let ξ, l ∈ R
d , we will now prove that

|ξ − σ(a,E,µ)l|2
σ−1

sym(a,E,µ)
= inf
ψ,p∈Fpot×Fsol

〈
|ξ − p − (a + E)(l − ψ)|2

a−1

〉

(177)

We will write σsym is the symmetric part of σ(a,E,µ). Let us define

ψ0 := vE.
(
l + 1

2
σ−1

sym(ξ − σ l))
) − v−E

.

1

2
σ−1

sym(ξ − σ l) (178)

and

p0 := ξ − (a + E)(l − ψ0)− a
(
Id − v−E

.

)
σ−1

sym(ξ − σ l) (179)

Observe also that since

ξ − p0 − (a + E)(l − ψ0) = a(Id − v−E
. )σ−1

sym(ξ − σ l) (180)
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And (using lemma 5.5)〈
t (Id − v−E

. )a(Id − v−E
. )

〉 = σsym(a,−E,µ) = σsym(a, E,µ) = σsym (181)

One obtains that〈
|ξ − p0 − (a + E)(l − ψ0)|2a−1

〉
= |ξ − σ(a,E,µ)l|2

σ−1
sym(a,E,µ)

(182)

Moreover ψ0 ∈ F 2
pot and p0 ∈ F 2

sol since

p0 =ξ − (a + E)l − aσ−1
sym(ξ − σ l)

+ (a + E)(Id + vE. )
(
l + 1

2
σ−1

sym(ξ − σ l))

+ (a − E)(Id + v−E
. )

1

2
σ−1

sym(ξ − σ l)

(183)

And by the equation (180), a−1
(
ξ−p0−(a+E)(l−ψ0)

)
is orthogonal in L

2(X,µ)

to F 2
sol and the space {(a+E)v : v ∈ F 2

pot }, it follows that the variational formula
(177) is valid and the minimum is reached at p0 and ψ0.

5.2.2. Proof of the variational formulas (86) and (87)

One obtains the variational formula (86) from the variational formula (85) by ob-
serving that

inf
ξ∈Rd ,ξ⊥l

|ξ − σ(a,E,µ)l|2
σ−1

sym(a,E,µ)
= t lσsym(a, E,µ)l (184)

One obtains the variational formula (87) by taking l = 0 in (85).

5.2.3. Proof of lemma 4.7

Gift L
2(X,µ) with the scalar product (f, g)H = ∑d

i=1 < ξifigi > to obtain
an Hilbert space. By the variational formula (95), t lD(ξ, µ)l is the norm of the
H-orthogonal projection of l on the subspace of L

2(X,µ) H-orthogonal to F 2
pot . It

follows that there exists an unique vl ∈ F 2
pot linear in l realizing the minimum of

(95) and such that (l + vl) is H-orthogonal to F 2
pot .

Thus the vector for l ∈ R
d the vector field pl defined by

pl = ξi(Id + v.)
(
D(ξ, µ)

)−1
l − l (185)

verifies < pl >= 0 and is orthogonal to F 2
pot , thus by the theorem 2.6, it is an

element of F 2
sol . Moreover observing that

〈
ξ−1
i (li + (pl)i)

2
〉
= t lD(ξ, µ)−1l (186)

and since the vector q defined by qi = ξ−1
i (li + (pl)i) = (Id + v.)

(
D(ξ, µ)

)−1
l is

orthogonal to F 2
sol one obtains that the variational formula (4.7) is true and that its

minimum is reached at pl .
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