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Variational integrators for electric circuits
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Variational integrators are symplectic-momentum preserving integrators that are based on a discrete variational formulation of
the underlying system. So far, variational integrators have been mainly developed and used for a wide variety of mechanical
systems. In this work, we develop a variational integrator for the simulation of electric circuits. An appropriate variational
formulation is presented to model the circuit from which the equations of motion are derived. Finally, a corresponding time-
discrete variational formulation provides an iteration scheme for the simulation of the electric circuit. In this way, a variational
integrator is constructed that gains several advantages. A comparison to standard integration techniques shows that even for
simple LCR circuits a better long-time energy behavior and frequency preservation can be obtained.
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1 Variational formulation for electric circuits

Consider a circuit as a connected, directed graph with n edges and m + 1 nodes (and n − m meshes for planar graphs)
(cf. Figure 1 (left)). On the ith edge, there are: a capacitor with capacitance Ci, an inductor with inductance Li, a voltage
source εi and a resistor with resistance Ri, one or several of which can be zeros. Thus, branches in the circuit correspond to
edges in the graph. Let q(t), v(t), u(t), p(t) ∈ Rn be the time-dependent charges, currents, voltages, and flux linkages of the
circuit elements. Furthermore, let K ∈ Rn,m and K2 ∈ Rn,n−m be the Kirchhoff Constraint matrix and the Fundamental
Loop matrix of a given circuit. The Kirchhoff current and voltage constraints are given as KT v = 0 (or K2ṽ = v with the
mesh currents ṽ) and KT

2 u = 0 (or Kû = u with the node voltages û). Note that ker(KT
2 ) = im(K). For simplicity we

focus on ideal linear circuit elements with linear constitutive laws.
We can define a LagrangianL(q, v) = 1

2v
TLv− 1

2q
TCq of the circuit system consisting of the difference between magnetic

and electric energy with L = diag(L1, . . . , Ln) and C = diag
(

1
C1
, . . . , 1

Cn

)
. In the case where no inductor (resp. no

capacitor) is on branch i, it holds Li = 0 (resp. 1
Ci

= 0). Note that the Lagrangian can be degenerate if the Legendre
transform is not invertible, i.e. L is singular. The Lagrangian force of the system fL(q, v, u) = −diag(R)v + diag(E)u
involves resistors and external voltage sources with R = (R1, . . . , Rn)T and E = (ε1, . . . , εn)T . If no resistor (resp. no
voltage source) is on branch i, it holds Ri = 0 (resp. εi = 0). In presence of a voltage source on branch i, it holds εi = 1.

To reduce the system’s dimension, we define the Lagrangian and the forces on the space of meshes. The branch currents
and charges are given by the mesh currents and charges as v = K2ṽ and q = K2q̃ for consistent initial values. We define
the reduced Lagrangian in terms of the mesh variables as LM (q̃, ṽ) = L(K2q̃, K2ṽ) = 1

2 ṽ
TKT

2 LK2ṽ − 1
2 q̃

TKT
2 CK2q̃. The

reduced force is defined as fML (q̃, ṽ, u) = KT
2 fL(K2q̃, K2ṽ, u) = −KT

2 diag(R)K2ṽ + KT
2 diag(E)u. Defining the mesh

fluxes as p̃ = KT
2 p ∈ Rn−m we can derive the equations of motion for the circuit system with the Lagrange-d’Alembert-

Pontryagin principle [2], i.e. we are searching for curves q̃(t), ṽ(t) and p̃(t) fulfilling

δ

∫ T

0

LM (q̃(t), ṽ(t)) +
〈
p̃(t), ˙̃q(t)− ṽ(t)

〉
dt+

∫ T

0

fML (q̃(t), ṽ(t), u(t)) · δq̃(t) dt = 0 (1)

with fixed initial and final variations δq̃(0) = δq̃(T ) = 0. Taking arbitrary variations δṽ and δp̃ and δq̃ we obtain the
Euler-Lagrange equations ∂LM

∂q̃ − ˙̃p+ fML = 0, ˙̃q = ṽ, ∂LM

∂ṽ − p̃ = 0, which simplify for the linear case to the DAE-system

˙̃p = KT
2

(
−CK2q̃ − diag(R)K2ṽ +KT

2 diag(E)u
)
, ˙̃q = ṽ, p̃ = KT

2 LK2ṽ. (2)

If the matrix KT
2 LK2 is regular, the variable ṽ can be eliminated in the algebraic equation. In this case, the Euler-Lagrange

equations (2) represent a non-degenerate Lagrangian system. The following proposition holds (in an analogous way a similar
statement also holds for RCL and RCLV circuits). For a proof we refer to [3].

Proposition 1.1 For LC circuits (including only self inductors), the system is non-degenerate if the number of capacitors
equals the number of independent constraints involving the currents through the capacitives’ branches.
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784 Section 18: Numerical methods for differential equations

2 Variational integrator and numerical results

For the discrete variational derivation (cf. [1]), we introduce a discrete time grid ∆t = {tk = kh | k = 0, . . . , N}, Nh = T ,
N ∈ N. We replace the charge by its discrete version q̃d(∆t), where we view q̃k = q̃d(kh) as an approximation to q̃(kh)
(analogously for ṽ(t), p̃(t), u(t)). We replace the reduced Lagrange-d’Alembert-Pontryagin principle with a discrete version

δ

{
h

N−1∑
k=0

(
LM (q̃k, ṽk) +

〈
p̃k,

q̃k+1 − q̃k
h

− ṽk
〉)}

+ h

N−1∑
k=0

fML (q̃k, ṽk, uk)δq̃k = 0, (3)

where the time derivative q̇(t) is approximated by the forward difference operator. Taking discrete variations δq̃k, δṽk, and
δp̃k with δq̃0 = δq̃N = 0 leads to the discrete Euler-Lagrange equations, which read for the linear case as

p̃k − p̃k−1
h

= KT
2

(
−CK2q̃k − diag(R)K2ṽk +KT

2 diag(E)uk
)
,

q̃k − q̃k−1
h

= ṽk−1, KT
2 LK2ṽk = p̃k. (4)

System (4) (referred to as forward Euler variational integrator (VI EFD)) provides an iteration scheme that is symplectic-
momentum preserving (cf. [1]). The use of different approximation rules in (3) leads to different schemes whose applicability
depends on the degeneracy of the Lagrangian system. For example, the use of the backward difference operator in (3) (VI
EBD) leads to an explicit update for p̃ and an implicit update for q̃ and is only applicable if the system (2) is non-degenerate.
A more detailed analysis regarding the use of different discretization schemes and preservation properties is given in [3].

For the numerical computations we compare the exact solution with those obtained with the three different variational
integrators (VI EBD, VI EFD both of first order and VI of second order (based on midpoint rule)), a Runge-Kutta method of
fourth order (RK4), and a BDF method of second order (MNA BDF). For all methods we use a constant step size h. On edge
1− 5 of the circuit in Figure 1 (left) there is a pair of capacitor and inductor, on edge 6 is only one capacitor is present. Since
no resistor or voltage source is involved, the energy of the system should be preserved. As shown in Figure 1 (middle), the
energy is dissipating for RK and the BDF, whereas for VI it (its median, respectively) is preserved. Adding on each branch
a resistor, the energy in the system decays as shown for the exact solution in Figure 1 (right). The VI solution respects this
energy decay much better than RK and BDF. As second example, we consider the LC circuit given in Figure 2 (left). In
Figure 2 (middle and left) the charge of the first capacitor on two time intervals is depicted. While there are no frequency
damping effects for VI, the amplitude of the faster frequency is damped out for increasing integration time for RK and BDF.
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Fig. 1 Left: Circuit graph. Middle: Energy behavior for LC circuit. Right: Energy behavior for RLC circuit. Step size h = 0.4.
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Fig. 2 Left: LC circuit. Middle and right: Charge on first capacitor for the time span [0, 50] (middle) and [300, 350] (right) for h = 0.6.
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