NOTES ON OPERATOR VALUED KERNELS,
FEATURE MAPS AND GAUSSIAN PROCESSES

HOUMAN OWHADI

ABsTRACT. These notes serve as a short introduction to operator-valued kernels, their
associated feature maps and Gaussian processes.

1. Introduction

Operator-valued kernels were introduced in [2] as a generalization of vector-valued
kernels [1]. The following notes, taken almost verbatim from parts of [5], serve as a short
introduction to such kernels, their associated feature maps and Gaussian processes.

2. Operator valued kernels

Let X and )Y be separable Hilbert spaces endowed with the inner products <-, > y and
<-, '>y' Write £()) for the set of bounded linear operators mapping ) to Y. We call
K : X x X > L()) an operator-valued kernel if

(1) K is Hermitian, i.e.
K(z,2') = K(a',2)T for z,2" € X, (2.1)

writing AT for the adjoint of the operator A with respect to <-, '>y’ and
(2) non-negative, i.e.

m
2 <yi,K($i,wj)yj>y >0 for (z;,y;) € X x Y, meN. (2.2)
ij=1
We call K non-degenerate if 33", (yi, K (i, xj)yj>y = 0 implies y; = 0 for all ¢ when-
ever x;  x; for ¢ & j.

3. Reproducing kernel Hilbert space

Each non-degenerate, locally bounded and separately continuous operator-valued ker-
nel K (which we will refer to as a Mercer’s kernel) is in one to one correspondence with
a reproducing kernel Hilbert space H of continuous functions f : X — ) obtained as
the closure of the linear span of functions z —» K(z,z)y ((x,y) € X x )) with respect to
the inner product identified by the reproducing property

<fa K(vx)y>y = <f(m)’y>y (31)
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4. Feature maps

Let F be a separable Hilbert space (with inner product <-, ->F and norm ||| ) and let
v X — L(Y,F) be a continuous function mapping X to the space of bounded linear
operators from ) to F.

Definition 4.1. We say that F and ¢ : X — L(Y,F) are a feature space and a feature
map for the kernel K if, for all (x,2',y,y') € X% x V2,

y K (z, ')y = )y, vy - (4.1)

Write 97 (z), for the adjoint of 1(z) defined as the linear function mapping F to )
satisfying

<¢(x)y,a>]__ = <ya ¢T($)a>y (42)

for z,y,a € X x Y x F. Note that ¥ : X — L(F,)) is therefore a function mapping
X to the space of bounded linear functions from F to Y. Writing o’/ := (a, o/>]E for
the inner product in F we can ease our notations by writing

K(z,2") = ¢" (2)y(a") (4.

3)
which is consistent with the finite-dimensional setting and y” K (z, z')y’ = (¢ (z)y)” (¢ (z")y")
(writing y”'y’ for the inner product in ))). For a € F write ¢/”a for the function X — Y
mapping « € X to the element y € Y such that

<y',y>y = <y',wT(a:)a>y = (P(z)y, a>f forally’ €. (4.4)

We can, without loss of generality, restrict F to be the range of (z,y) — ¥ (x)y so that
the RKHS H defined by K is the (closure of) linear space spanned by T a for a € F.
Note that the reproducing property (3.1) implies that for a € F

<¢T(')a7 ¢T()¢($)?/>H = <¢T(x)a7y>y = <O‘71/}(‘/B)y>]: (45)
for all x,y € X x ), which leads to the following theorem.

Theorem 4.2. The RKHS H defined by the kernel (4.3) is the linear span of ! o over
a € F such that |||z < oo. Furthermore, <wT(-)a,1/JT(-)0/>H = <04,0/>}. and

|97 (Yal3, = lal for a,a’ € F. (4.6)

5. Interpolation

We employ the setting of supervised learning, which can be expressed as solving the
following problem.

Problem 1. Let fT be an unknown continuous function mapping X to Y. Given the

information' fT(X) =Y with the data (X,Y) € XN x YN approzimate fT.

IFor a N-vector X = (X1,...,Xn) € XY and a function f : X — Y, write f(X) for the N vector
with entries (f(X1),...,f(Xn)) (we will keep using this generic notation).
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Using the relative error in | - |5-norm as a loss, the minimax optimal recovery solution
of Problem (1) is [0, Thm. 12.4,12.5] the minimizer (in H) of

Minimize | f]3 (5.1)
subject to  f(X)=Y '
By the representer theorem [3], the minimizer of (5.1) is
N
FO) =2 K. X)Z;, (5-2)
j=1
where the coefficients Z; € Y are identified by solving the system of linear equations
N
Y K(Xi,X;)Zj =Y, forall ie{1,...,N}, (5.3)
j=1

ie. K(X,X)Z =Y where Z = (Z1,...,Zx), Y = (Yi,...,Yy) € YV and K(X, X) is
the N x N block-operator matrix® with entries K(X;, X;). Therefore, writing K (-, X)
for the vector (K (-, X1),...,K(-, Xy)) € H¥, the minimizer of (5.1) is
which implies that the value of (5.1) at the minimum is

1l = YTE (X, X7 (5.5)

where K (X, X)™! is the inverse of K(X,X) (whose existence is implied by the non-
degeneracy of K combined with X; + X; for i + j).

6. Ridge regression

Let A > 0. A ridge regression solution (also known as Tikhonov regularizer) to Problem
1 is a minimizer of

N
inf \ | f? Y —Yi|3. 6.1
nf \If\IH+;\I ; 15 (6.1)

The minimizer of (6.1) is

f@) = K(z, X)(K(X, X) + AI) "

Y, (6.2)
(writing I for the identity matrix) and the value of (6.1) at the minimum is
AYT(K(X,X) +AI)7Y. (6.3)

2For N > 1 let YV be the N-fold product space endowed with the inner-product <Y, Z>yN =
SV Y Zyyy, for Y o= (Yi,...,YN),Z = (Z1,...,Zn) € YN, A e LOV) given by A =
Aig - Aln
: where A; ; € L£()), is called a block-operator matrix. Its adjoint AT with re-
Ani -+ ANN
spect to (-, ), is the block-operator matrix with entries (A7):; = (4;,:)".
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7. Function-valued Gaussian processes

The following definition of function-valued Gaussian processes is a natural extension
of scalar-valued Gaussian fields.

Definition 7.1. Let K : X x X — L()) be an operator-valued kernel. Let m be a
function mapping X to Y. We call € : X — L(Y,H) a function-valued Gaussian process
if € is a function mapping v € X to £(x) € L(Y,H) where H is a Gaussian space and
L(Y,H) is the space of bounded linear operators from Y to H. Abusing notations we
write <§(a:),y>y for &(x)y. We say that & has mean m and covariance kernel K and

write &€ ~ N(m, K) if <£(a:), y>y ~ N(m(:ﬁ), yT K (x, :L')y) and
Cov (C&(2), 9y CE),o'5y) = ¥ K (,27) (7.1)

We say that £ is centered if it is of zero mean.

If K(z,x) is trace class (Tr[K(z,z)] < o) then £(z) defines a measure on ) (i.e. a
Y-valued random variable), otherwise it only defines a (weak) cylinder-measure in the
sense of Gaussian fields.

Theorem 7.2. The distribution of a function-valued Gaussian process is uniquely deter-
mined by its mean and covariance kernel K. Conversely given m and K there exists a
function-valued Gaussian process having mean m and covariance kernel K. In particular
if K has feature space F and map ¥, the e; form an orthonormal basts of F, and the Z;
are i.i.d. N'(0,1) random variables, then

E=m+> Z'le (7.2)

1s a function-valued GP with mean m and covariance kernel K.

Proof. The proof is classical, see [6, Sec. 7&17]. Note that the separability of F ensures
the existence of the e;. Furthermore E[(§ —m)(§ — m)T] =Ty = K. O

Theorem 7.3. Let & be a centered function-valued GP with covariance kernel K @ X x
X — L(Y). Let X, Y e XN x YN, Let Z = (Z1,...,2ZN) be a random Gaussian vector,
independent from &, with i.5.d. N'(0,\Iy) entries (A = 0 and Iy is the identity map on
V). Then & conditioned on £(X) + Z is a function-valued GP with mean

E[{(w)‘f(X) +Z=Y|=K( X)(KX,X)+ /\Iy)_lY = (6.2) (7.3)
and conditional covariance operator

Kz, a') := K(z,2") — K(z, X) (K(X, X) + Ay) ' K(X,2). (7.4)
In particular, if K 1s trace class, then

o2 (@) i= E| |¢(@) — EE@)[6(X) + 2 = Y][3e(X) + Z =V | = T [K  (@,2)] . (75)

Proof. The proof is a generalization of the classical setting [0, Sec. 7&17|. Writing
7 (z)y for (§(x), y),, observe that y"¢(z)¢" (z)y = y" K (z,2")y’ implies E[¢(2)¢7 ()] =
K(z,2'). Since £ and Z share the same Gaussian space the expectation of £(x) con-
ditioned on &(X) + Z is A(§(X) + Z) where A is a linear map identified by 0 =
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Cov (&(x) — A(E(X) + 2),€(X) + Z) = E[¢(2) - A(E(X) + 2)(€7(X) + 27)] =
K(z,X)—A(K(X,X)+Aly), which leads to A = K (z X)(K : +/\Iy) and (7.3).
The conditional covariance is then given by K= (z,z') [(f x) — K(x, )( (X, X)+

)‘Iy)_l(f(X)"‘Z))(g(fE/)_K(l’le)(K(X,X)-i-)\Iy) (309 —i—Z)) ]Whlchleads to
(7.4). 0

8. Deterministic error estimates for function-valued Kriging

The following theorem shows that the standard deviation (7.5) provides deterministic
a prior error bounds on the accuracy of the ridge regressor (7.3) to f7 in Problem 1.
Local error estimates such as (8.1) are classical in Kriging 7] where o?(x) is known as
the power function/kriging variance (see also |4||Thm. 5.1] for applications to PDEs).

Theorem 8.1. Let fT be the unknown function of Problem 1 and let f(z) = (7.3) = (77)
be its GPR /ridge regression solution. Let H be the RKHS associated with K and let H)
be the RKHS associated with the kernel KA = K + Ay. It holds true that

|1(@) = f(@)]y, < o (@) £ (8.1)

and

|11 @) = f@)]y, < Vo (@) + Adim()] [ 3, , (8.2)
where o(x) is the standard deviation (7.5).

Proof. Let y € Y. Using the reproducing property (3.1) and Y = fT(X) we have
g (@) = f@) =y [l > —y K (2, X)(K(X.X) +Aly) ()

= (fL K2y — K, X)(K(X, X) + Ay) T K(X,2)y),,
Using Cauchy-Schwartz 1nequahty, we deduce that
2
v (@)~ f@)] < 1By K @)y (8.3)

where K is the conditional covariance (7.4). Summing over y ranging in basis of )
implies (8.1). The proof of (8.2) is similar, simply observe that

yT(fT(x) - f(x)) = <fT7 K)\('v .fU)y - K/\('7 X) (K(X7 X) + )\Iy)_lK(X,x)y%{A
<1 e B G m)y = B X) (K (X, X) + Ay) T K (X, 2)y],,,

which implies

V(@) = 1@ <15 B Ty + K @ 2)y) (8.4
g

Remark 8.2. Since Thm. 8.1 does not require X to be finite-dimensional, its estimates
do not suffer from the curse of dimensionality but from finding a good kernel for which
both ||fT# and yT K (z,z)y are small (over x sampled from the testing distribution,).
Indeed both (8.1) and (8.2) provide a priori deterministic error bounds on fT—f depending
on the RKHS norms ||ff|3; and ||fT|3,. Although these norms can be controlled in the
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PDE setting [] via compact embeddings of Sobolev spaces, there is no clear strategy for
obtaining a-priori bounds on these morms for general machine learning problems.
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