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Although numerical approximation and statistical in-
ference are traditionally seen as entirely separate subjects,
they are intimately connected through the common pur-
pose of making estimations with partial information. This
shared purpose is currently stimulating a growing inter-
est in statistical inference/machine-learning approaches to
solving PDEs [8,13], in the use of randomized algorithms
in linear algebra [2], and in the merging of numerical er-
rors withmodeling errors in uncertainty quantification [3].
While this interestmight be perceived as a recent phenome-
non, interplays between numerical approximation and sta-
tistical inference are not new. Indeed, they can be traced
back to Poincaré’s course in probability theory (1896) and
to the pioneering investigations of Sul’din [19], Palasti and
Renyi [12], Sard [14], Kimeldorf and Wahba [4] (on the
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correspondence between Bayesian estimation and spline
smoothing/interpolation), and Larkin [5] (on the corre-
spondence between Gaussian process regression and nu-
merical approximation). Although their study initially “at-
tracted little attention among numerical analysts” [5], it
was revived in information-based complexity (IBC) [20],
Bayesian numerical analysis [1], andmore recently in prob-
abilistic numerics [3]. This short review is an invitation
to explore these connections from the consolidating per-
spective of game/decision theory as presented in [10]. It is
motivated by the suggestion that these confluences might
not just be objects of curiosity but constitute a pathway to
simple solutions to fundamental problems in both areas.

Modeling a Known Function as the Instantiation
of a Random Process
In [1], Diaconis presents a simple but compelling connec-
tion between numerical analysis and Bayesian inference:
Consider the problem of computing

∫
1

0
𝑢(𝑡)𝑑𝑡 (1)

for a given function 𝑢 (e.g., 𝑢(𝑡) = 𝑡𝑒sin√𝑡). Although 𝑢
is perfectly known, it does not have a trivial primitive, and
its integral must be numerically approximated by evalu-
ating 𝑢 at a finite number of points (e.g., 𝑡𝑖 = 𝑖

𝑁 , 𝑖 ∈
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{0, 1,… ,𝑁}) and using a quadrature formula (e.g., ∫10 𝑢(𝑡)
𝑑𝑡 ≈ ∑𝑁

𝑖=1
𝑢(𝑡𝑖)+𝑢(𝑡𝑖−1)

2 Δ𝑡 with Δ𝑡 = 1/𝑁). Surprisingly,
if we instead assume 𝑢 to be generated by a Brownian mo-
tion 𝐵𝑡 and approximate ∫10 𝑢(𝑡)𝑑𝑡 with the conditional

expectation 𝔼[∫10 𝐵𝑡 𝑑𝑡 ∣ 𝐵𝑡𝑖 = 𝑢(𝑡𝑖)∀𝑖], we rediscover
the trapezoidal quadrature rule. Moreover, assuming 𝑢
to be generated by integrals of Brownian motion yields
higher-order quadrature rules.

Although this approach of modelling a perfectly known
function as a sample from a random process may seem
counterintuitive, a natural framework for understanding it
can be found in information-based complexity (IBC) [20],
the branch of computational complexity founded on the
observation that numerical implementation requires com-
putation with partial information and limited resources.
In IBC, the performance of an algorithm operating on in-
complete information can be analyzed in the worst case
or the average case (randomized) setting with respect to
the missing information. Moreover, as observed by Packel
[11], the average case setting could be interpreted as a
mixed strategy in an adversarial game obtained by lifting a
(worst case) minmax problem to a minmax problem over
mixed (randomized) strategies. This observation initiates
[9, 10] a natural connection between numerical approxi-
mation and Wald’s decision theory, evidently influenced
by von Neumann’s theory of games.

Optimal Recovery and Gaussian Process
Regression
The framework of optimal recovery of Micchelli and Rivlin
[7] provides a natural setting for presenting the correspon-
dence between numerical approximation (NA) and Gauss-
ian process regression (GPR) from a game theoretic per-
spective. Consider a Banach spaceℬ andwrite [⋅, ⋅] for the
duality product between ℬ and its dual space ℬ∗. When
ℬ is infinite- (or high-) dimensional, one cannot directly
compute with 𝑢 ∈ ℬ but only with a finite number of
features of 𝑢. The type of features we consider here are
represented as a vector Φ(𝑢) ∶= ([𝜙1, 𝑢],… , [𝜙𝑚, 𝑢])
corresponding to 𝑚 linearly independent measurements
𝜙1,… ,𝜙𝑚 ∈ ℬ∗. The objective is to recover/approxi-
mate 𝑢 from the partial information contained in the fea-
ture vector Φ(𝑢). To quantify errors in the recovery, let
𝑄 ∶ ℬ∗ → ℬ be a bijection that is symmetric and posi-
tive, in that [𝜙,𝑄𝜑] = [𝜑,𝑄𝜙] and [𝜙,𝑄𝜙] ≥ 0 for
𝜙,𝜑 ∈ ℬ∗, and endow ℬ with the quadratic norm ‖ ⋅ ‖
defined by ‖𝑢‖2 ∶= [𝑄−1𝑢,𝑢]. Then, using the relative
error in ‖⋅‖-norm as a loss, the classical numerical analysis
approach is to approximate 𝑢 with the minimizer 𝑣† of

min
𝑣

max
𝑢

‖𝑢− 𝑣(Φ(𝑢))‖
‖𝑢‖ . (2)

The minimum over all possible functions of the 𝑚 linear
measurements is

𝑣† =
𝑚
∑
𝑖=1

[𝜙𝑖, 𝑢]𝜓𝑖, (3)

where the elements

𝜓𝑖 ∶=
𝑚
∑
𝑗=1

Θ−1
𝑖,𝑗 𝑄𝜙𝑗, 𝑖 ∈ {1,… ,𝑚}, (4)

of ℬ, known as optimal recovery splines, are defined us-
ing the components Θ−1

𝑖,𝑗 of the inverse Θ−1 of the Gram
matrix Θ defined by Θ𝑖,𝑗 ∶= [𝜙𝑖,𝑄𝜙𝑗].

The minmax problem (2) can be viewed as the adversar-
ial zero sum game

(Player I) 𝑢 ∈ ℬ

max   A
AA

AA
AA

A 𝑣

min����
��
��
�

(Player II)

‖𝑢−𝑣(Φ(𝑢))‖
‖𝑢‖

(5)

in which Player I chooses an element 𝑢 of the linear space
ℬ and Player II (who does not see 𝑢) must approximate
Player I’s choice based on seeing the finite number of linear
measurements Φ(𝑢) of 𝑢.

The function (𝑢, 𝑣) ↦ ‖𝑢−𝑣(Φ(𝑢))‖
‖𝑢‖ has no saddle

points, so to identify a minmax solution as a saddle point
one can proceed, as in von Neumann’s game theory, by
introducing mixed/randomized strategies and lifting the
problem to probability measures over all possible choices
for Players I and II. To articulate the optimal strategies, ob-
serve that a centered Gaussian field 𝜉 with covariance op-
erator𝑄, denoted 𝜉 ∼ 𝒩(0,𝑄), is an isometry mapping
ℬ∗ to a space of centered Gaussian random variables such
that

[𝜙,𝜉] ∼ 𝒩(0, ‖𝜙‖2
∗), 𝜙 ∈ ℬ∗,

where ‖ ⋅ ‖∗ is the dual norm of ‖ ⋅ ‖ defined by ‖𝜙‖∗ =
sup𝑣∈ℬ[𝜙,𝑣]/‖𝑣‖ = [𝜙,𝑄𝜙] 1

2 . For the lifted version
of the game (5), the optimal strategy of Player I is the cen-
tered Gaussian field 𝜉 ∼ 𝒩(0,𝑄), and the optimal strat-
egy of Player II is the pure (deterministic) strategy defined
by its conditional expectation

𝑣† = 𝔼[𝜉 ∣ [𝜙𝑖, 𝜉] = [𝜙𝑖, 𝑢] for all 𝑖] , (6)

which is equal to the optimal recovery solution (3). The
optimal recovery splines (4) can also be interpreted as ele-
mentary gambles/bets

𝜓𝑖 = 𝔼[𝜉 ∣ [𝜙𝑗, 𝜉] = 𝛿𝑖,𝑗 for all 𝑗], (7)

which we call gamblets, for playing the game. Here the op-
timal strategy of Player II is a pure strategy because ‖ ⋅ ‖
is convex, and the optimal strategy of Player I is Gaussian
because ‖ ⋅ ‖ is quadratic.

As an illustration of this approach, consider again the
numerical quadrature problem associated with computing
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∫10 𝑢(𝑡)𝑑𝑡. Take ℬ = ℋ1[0, 1] endowed with the qua-

dratic norm ‖𝑢‖2 ∶= (𝑢(0))2 + ∫10 (
𝑑𝑢(𝑡)
𝑑𝑡 )2 𝑑𝑡 and con-

sider the problem of recovering 𝑢 ∈ ℬ from the incom-
plete measurements 𝑢(𝑡𝑖) (= ∫10 𝑢𝜙𝑖 with𝜙𝑖 = δ(⋅−𝑡𝑖))
using the relative error in ‖ ⋅ ‖-norm as a loss. Then the
Gaussian field 𝜉 defined by the norm ‖ ⋅ ‖ is a scaled and
shifted Brownian motion, and (6) leads to an approxima-
tion that is optimal in both the optimal recovery (worst
case) sense and the game theoretic sense, identifying [7]
the optimal recovery estimate of the integral with the inte-
gral of the optimally estimated 𝑢. This recovers the trape-
zoidal rule with

∫
1

0
𝑢(𝑡)𝑑𝑡 ≈ ∫

1

0
𝔼[𝜉 ∣ [𝜙𝑖, 𝜉] = [𝜙𝑖, 𝑢] for all 𝑖]

by observing that the splines (7) are the usual piecewise
linear tent basis functions and (6) is the piecewise linear
interpolation of 𝑢.

Figure 1. For 𝑠 > 𝑑/2, 𝜉 is a centered Gaussian process on Ω
with covariance function 𝔼[𝜉(𝑥)𝜉(𝑦)] = 𝐺(𝑥,𝑦), where 𝐺 is
Green’s function of the operator ℒ [10].

In the Setting of Sobolev Spaces
These interplays provide simple solutions to classical prob-
lems in numerical approximation andGaussian process re-
gression, and we will illustrate this in the setting of a linear
operator

ℒ ∶ ℋ𝑠
0 (Ω) → ℋ−𝑠(Ω) (8)

mapping the Sobolev space ℋ𝑠
0 (Ω) to its dual space

ℋ−𝑠(Ω), where 𝑠, 𝑑 ∈ ℕ∗ and Ω ⊂ ℝ𝑑 is a regular
bounded domain. Assume ℒ to be an arbitrary symmet-
ric (∫Ω 𝑢ℒ𝑣 = ∫Ω 𝑣ℒ𝑢), positive (∫Ω 𝑢ℒ𝑢 ≥ 0), and local
(∫Ω 𝑢ℒ𝑣 = 0 if 𝑢 and 𝑣 have disjoint supports) linear bi-
jection. Write [𝜙,𝑢] ∶= ∫Ω 𝜙𝑢 for the duality product
between 𝜙 ∈ ℋ−𝑠(Ω) and 𝑢 ∈ ℋ𝑠

0 (Ω). Let ℬ be the
Sobolev spaceℋ𝑠

0 (Ω) endowed with the quadratic energy
norm ‖𝑢‖2 ∶= [ℒ𝑢,𝑢]. When 𝑠 > 𝑑/2, Green’s function
𝐺 ofℒ is a well-defined continuous symmetric positive def-
inite kernel, and one can consider the centered Gaussian

process 𝜉 with covariance function 𝐺 (see Figure 1).

Figure 2. Ω and 𝑥1,… , 𝑥𝑚 [10].

Consider the problem of finding an approximation of
an unknown element 𝑢 ∈ ℋ𝑠

0 (Ω) given its values at the
points 𝑥1,… , 𝑥𝑚 (see Figure 2). Then, using the relative
error in ‖ ⋅‖, as in (2), as a loss, the minmax recovery of 𝑢
is obtained in (6) by conditioning the Gaussian process 𝜉
on the values of𝑢 at the points 𝑥1,… , 𝑥𝑚, and the optimal
solution (3) corresponds to the formula

𝑣†(𝑥) =
𝑚
∑

𝑖,𝑗=1
𝑢(𝑥𝑖)Θ−1

𝑖,𝑗 𝐺(𝑥𝑗, 𝑥), (9)

where Θ−1
𝑖,𝑗 is the (𝑖, 𝑗)th entry of the inverse Θ−1 of the

kernel matrix Θ defined by Θ𝑖,𝑗 ∶= 𝐺(𝑥𝑖, 𝑥𝑗). Surpris-
ingly, the standard deviation 𝜎(𝑥) of 𝜉(𝑥) conditioned
on the values of 𝜉 at the points 𝑥𝑖 (represented by
𝜎2(𝑥) ∶= 𝐺(𝑥, 𝑥) − ∑𝑚

𝑖,𝑗=1 Θ−1
𝑖,𝑗 𝐺(𝑥, 𝑥𝑗)𝐺(𝑥, 𝑥𝑖)) also

bounds the deterministic interpolation error via

|𝑢(𝑥) − 𝑣†(𝑥)| ≤ 𝜎(𝑥)‖𝑢‖∀𝑥 . (10)

Estimates such as (10) are obtained in radial basis func-
tion interpolation (where the conditional variance 𝜎2(𝑥)
is known as the power function) by identifying (ℋ𝑠

0 (Ω),
‖ ⋅ ‖) as a reproducing kernel Hilbert space (RKHS) with
reproducing kernel 𝐺. In the RKHS framework 𝑣† is iden-
tified as theminimizer of ‖𝑣‖ over 𝑣 ∈ ℋ𝑠

0 (Ω) subject to
𝑣(𝑥𝑖) = 𝑢(𝑥𝑖) for all 𝑖, which, by the representer theorem,
can be expressed as (3) (i.e., 𝑣†(𝑥) = ∑𝑚

𝑗=1 𝑐𝑗𝐺(𝑥𝑗, 𝑥),
and the 𝑐𝑖 are obtained by enforcing the interpolation con-
straints 𝑣†(𝑥𝑖) = 𝑢(𝑥𝑖) for all 𝑖). This recovery approach
is naturally generalized, in regularization and learning
theory, to noisy observations 𝑦𝑖 of the data 𝑢(𝑥𝑖) by min-

imizing ∑𝑚
𝑖=1 (𝑦𝑖 − 𝑣(𝑥𝑖))2 + 𝜆‖𝑣‖2 over 𝑣 ∈ ℋ𝑠

0 (Ω)
(which corresponds to conditioning 𝜉 on 𝑦𝑖 = 𝑢(𝑥𝑖)+𝑍𝑖,
where the𝑍𝑖 are i.i.d. centered Gaussian random variables
with variance 𝜆).

When 𝑠 ≤ 𝑑/2, Green’s function 𝐺 of ℒ exists in the
sense of distributions, and 𝜉 ∼ 𝒩(0,ℒ−1) is defined in
a weak sense as a Gaussian field; that is, after integration
against a test function 𝜙 ∈ ℋ−𝑠(Ω), ∫Ω 𝜉𝜙 ∼ 𝒩(0,
∫Ω2 𝜙(𝑥)𝐺(𝑥,𝑦)𝜙(𝑦)𝑑𝑥𝑑𝑦). Figure 3 shows an instan-
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Figure 3. Simulation of the Gaussian field 𝜉 [10].

tiation of 𝜉 for the divergence form elliptic operator ℒ ∶=
−div(𝑎∇⋅) with a uniformly elliptic, bounded, and
rough conductivity 𝑎(𝑥).

Numerical Homogenization
Consider the problemof identifying𝑚 basis functions that
are (i) as accurate as possible in approximating the solu-
tion space ℒ−1(𝐿2(Ω)) of ℒ and (ii) as localized as possi-
ble. This problem, known as numerical homogenization,
is nontrivial because requirements (i) and (ii) are conflict-
ing. Indeed the optimal basis functions for accuracy are
the eigenfunctions associated with the lowest eigenvalues
of ℒ, which are nonlocalized. Conditioning the Gaussian
process 𝜉 in (7) provides a simple solution [9, 10] to this
problem, along with a generalization [8] of rough poly-
harmonic splines and of variational multiscale/LOD basis
functions [6].

Figure 4. 𝜏𝑖 and 𝑥𝑖. ℎ relates to the size of the 𝜏𝑖 and 𝛿−2 to
their aspect ratios [10].

Given ℎ > 0 and 𝛿 ∈ (0, 1), partition Ω into subsets
𝜏1,… ,𝜏𝑚 such that each𝜏𝑖 is contained in a ball of center
𝑥𝑖 and radius 𝛿−1ℎ and contains a ball of radius 𝛿ℎ (see
Figure 4). Let 𝜙𝑖 ∶= 1𝜏𝑖/√|𝜏𝑖| be the weighted indicator
function of 𝜏𝑖, where |𝜏𝑖| is the volume of 𝜏𝑖, or, for 𝑠 >
𝑑/2, let 𝜙𝑖 ∶= ℎ𝑑/2δ(⋅ − 𝑥𝑖) be the scaled Dirac delta
function located at 𝑥𝑖. Then, the splines 𝜓𝑖, defined in
(4) and (7) and illustrated in Figure 5, achieve the same
accuracy as the eigenfunctions of ℒ associated with the 𝑚

lowest eigenvalues up to a multiplicative constant,1 in that

inf
𝑣∈span{𝜓1,…,𝜓𝑚}

‖ℒ−1𝑓 − 𝑣‖ℋ𝑠
0 (Ω) ≤ 𝐶ℎ𝑠‖𝑓‖𝐿2(Ω),

for 𝑓 ∈ 𝐿2(Ω) (ℎ ≈ 𝑚− 1
𝑑 ), and they are exponentially

localized, in that

‖𝜓𝑖‖ℋ𝑠(Ω\𝐵(𝑥𝑖,𝑛ℎ)) ≤ 𝐶ℎ−𝑠𝑒−𝑛/𝐶. (11)

Figure 5. Left: 𝜓𝑖. Right: 𝑥-axis slice of 𝜓𝑖 [10].

When ℒ is a power of the Laplacian (i.e., ℒ = Δ𝑠) and
the 𝜙𝑖 are (unscaled) Dirac delta functions, then the 𝜓𝑖
provide a generalization of the polyharmonic splines of
Harder and Desmarais (1972) and Duchon (1977) and
of the cardinal splines of Schoenberg [16]. Indeed, when
𝑑 = 1 and the 𝑥𝑖 are located on the grid ℤ of the real
line, the representation (4) identifies the 𝜓𝑖 with cardinal

splines [16] (characterized by 𝜓𝑖(𝑥𝑗) = 𝛿𝑖,𝑗,
𝑑2𝑠𝜓𝑖
𝑑𝑥2𝑠 = 0

on the complement of the points 𝑥𝑖 and the continuity of
derivatives of order 2𝑠 − 2 of 𝜓𝑖). Furthermore, when
𝑑 ≥ 1, the general variational formulation

𝜓𝑖 = argmin
⎧⎪⎪
⎨⎪⎪⎩

Minimize ‖𝜓‖,
Subject to 𝜓 ∈ ℬ,
and [𝜙𝑗,𝜓] = 𝛿𝑖,𝑗 ∀𝑗

(12)

of the optimal recovery splines (4) identifies the 𝜓𝑖 with
polyharmonic splines and, as observed by Madych and
Nelson (1990), also identifies polyharmonic splines as a
multivariate generalization of cardinal splines.

Screening Effect
The above results on exponential decay also provide proof
of a version of the phenomenon known, in Kriging and
geostatistics, as the screening effect [17]. The heuristic idea
(for 𝑠 > 𝑑/2) is that although 𝜉(𝑥) and 𝜉(𝑦) are signif-
icantly correlated due to the slow decay of Green’s func-
tion 𝐺(𝑥,𝑦) in the distance between 𝑥 and 𝑦 (see Figure
1), they become nearly independent after conditioning on
the values of the field at the points in between. For ho-
mogeneously spaced points, this effect is obtained from
the exponential decay of the gamblets as follows. Write

1Throughout, write 𝐶 for a constant depending only on Ω, 𝑠, 𝑑, 𝛿, ℎ, ‖ℒ‖,
and ‖ℒ−1‖.
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Cor(𝑋,𝑌|⋅) for the conditional correlation between ran-
dom variables 𝑋 and 𝑌 and ⟨𝑢, 𝑣⟩ ∶= ∫Ω 𝑢ℒ𝑣 for the
energy scalar product. Then the general identity

Cor ([𝜙𝑖, 𝜉], [𝜙𝑗, 𝜉]|[𝜙𝑙, 𝜉] for 𝑙 ≠ 𝑖, 𝑗)

= − ⟨𝜓𝑖,𝜓𝑗⟩
‖𝜓𝑖‖‖𝜓𝑗‖

,

employed with 𝜙𝑖 ∶= δ(⋅ − 𝑥𝑖), equates the correlation
of the random variables 𝜉(𝑥𝑖) and 𝜉(𝑥𝑗) conditioned on
the values of 𝜉(𝑥𝑙) for all 𝑙 ≠ 𝑖, 𝑗 (see Figure 6) with the
negative cosine of the angle between the gamblets 𝜓𝑖 and
𝜓𝑗. Combined with the exponential decay (11), this leads
to

| Cor (𝜉(𝑥𝑖), 𝜉(𝑥𝑗)|𝜉(𝑥𝑙) for 𝑙 ≠ 𝑖, 𝑗)|≤𝐶𝑒−𝐶−1 |𝑥𝑖−𝑥𝑗|
ℎ .

Figure 6. Consider the correlation between 𝜉(𝑥𝑖) and 𝜉(𝑥𝑗)
given 𝜉(𝑥𝑙) for all 𝑙 ≠ 𝑖, 𝑗 [10].

Operator Adapted Wavelets
Consider the problem of identifying wavelets adapted to
the operator ℒ in the sense that the matrix representation
ofℒ in the basis formed by thesewavelets is block-diagonal
with uniformlywell-conditioned and sparse blocks (Figure
7). The three corresponding properties for these wavelets
are (i) orthogonality across scales in the energy scalar prod-
uct; (ii) uniform boundedness of the condition numbers
of the operator within each subband, i.e., uniform Riesz
stability in the energy norm; and (iii) exponential decay.
As reviewed in [18], although adapted wavelets achieving
two of these properties have been constructed, it was not
known “if there is a practical technique for ensuring all the
three properties simultaneously in general” [18, p. 83].

We now present a solution to this problem [9, 10, 15]
using the construction of the elementary bets of the game
(5), as illustrated in Figure 8. First, construct a hierarchy

𝜙(𝑘)
𝑖 = ∑

𝑗∈ℐ(𝑘+1)
𝜋(𝑘,𝑘+1)

𝑖,𝑗 𝜙(𝑘+1)
𝑗 (13)

of linearly nested elements of ℋ−𝑠(Ω), employed to rep-
resent the process of computing over a hierarchy of levels
of complexity. Figure 8 displays this solution when these

Figure 7. Matrix representation of ℒ in a finite element basis
of fully adapted wavelets [10].

elements are chosen to be the Haar pre-wavelets 𝜙(𝑘)
𝑖 ∶=

1𝜏(𝑘)
𝑖
/√|𝜏

(𝑘)
𝑖 | of Figure 9.

To construct these Haar pre-wavelets, set 𝑞 ∈ ℕ∗∪{∞}
and ℎ,𝛿 ∈ (0, 1). Use 𝑘 as an index for scale and 𝑖 ∈ ℐ(𝑘)
as an index for location, and let the 𝜏(𝑘)

𝑖 be subsets of
Ω such that (a) each 𝜏(𝑘)

𝑖 contains a ball of radius 𝛿ℎ𝑘

and is contained in a ball of radius 𝛿−1ℎ𝑘, (b) (𝜏(𝑘)
𝑖 )𝑖∈ℐ(𝑘)

forms a partition of Ω, and (c) (𝜏(𝑘+1)
𝑖 )𝑖∈ℐ(𝑘+1) forms a

subpartition of (𝜏(𝑘)
𝑖 )𝑖∈ℐ(𝑘) .

2 Now consider the down-
scaling game where Player I chooses an unknown element
𝑢 ∈ ℋ𝑠

0 (Ω) and Player IImust approximate𝑢 after seeing

level 𝑘 measurements ([𝜙(𝑘)
𝑖 , 𝑢])𝑖∈ℐ(𝑘) . Using relative er-

ror in ‖ ⋅‖-norm as a loss, the sequence of optimal bets of
Player II, 𝑢(𝑘) = 𝔼[𝜉 ∣ [𝜙(𝑘)

𝑖 , 𝜉] = [𝜙(𝑘)
𝑖 , 𝑢]∀𝑖 ∈ ℐ(𝑘)],

is obtained by conditioning 𝜉 ∼ 𝒩(0,ℒ−1) and forming
a martingale under the filtration induced by these hierar-
chical measurements. Conditioning 𝜉 on the elementary
measurements [𝜙(𝑘)

𝑖 , 𝜉] = 𝛿𝑖,𝑗, represented in the transi-
tion from left to right in the upper half of Figure 8, pro-
duces the hierarchy of elementary bets, or gamblets,

𝜓(𝑘)
𝑖 ∶= ∑

𝑗∈ℐ(𝑘)
Θ(𝑘),−1

𝑖,𝑗 ℒ−1𝜙(𝑘)
𝑗 , 𝑖 ∈ ℐ(𝑘), (14)

acting as ℒ-adapted pre-wavelets, displayed in more de-
tail in Figure 10. In (14) Θ(𝑘),−1

𝑖,𝑗 is the (𝑖, 𝑗)th coefficient

of the inverse Θ(𝑘),−1 of Θ(𝑘) with entries Θ(𝑘)
𝑖,𝑗 =

∫𝜙(𝑘)
𝑖 ℒ−1𝜙(𝑘)

𝑗 .

The nesting of the 𝜙(𝑘)
𝑖 implies that of the 𝜓(𝑘)

𝑖 . More
specifically, we obtain that

𝜓(𝑘)
𝑖 = ∑

𝑗∈ℐ(𝑘+1)
𝑅(𝑘,𝑘+1)

𝑖,𝑗 𝜓(𝑘+1)
𝑗 , 𝑖 ∈ ℐ(𝑘), (15)

where the interpolation matrix 𝑅(𝑘,𝑘+1) has the entries

𝑅(𝑘,𝑘+1)
𝑖,𝑗 =𝔼[[𝜙(𝑘)

𝑗 , 𝜉]∣[𝜙(𝑘−1)
𝑙 , 𝜉]=𝛿𝑖,𝑙, 𝑙 ∈ ℝℐ(𝑘−1)],

2Let the set of labels ℐ(𝑘) used to label the nested subsets (𝜏(𝑘)
𝑖 )𝑖∈ℐ(𝑘),𝑘∈{1,…,𝑞}

be chosen to be a finite set of 𝑘-tuples of the form 𝑖 = (𝑖1,… , 𝑖𝑘).
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Figure 8. Overview of the construction of operator adapted wavelets [10].

identified, in the upscaling game, as the optimal bet of
Player II on [𝜙(𝑘)

𝑗 , 𝑢] given that [𝜙(𝑘−1)
𝑙 , 𝑢] = 𝛿𝑖,𝑙 for

𝑙 ∈ ℐ(𝑘−1). Since the corresponding linear spaces

Ψ(𝑘) ∶= span{𝜓(𝑘)
𝑖 ∣ 𝑖 ∈ ℐ(𝑘)}

satisfy the nesting relation Ψ(𝑘) ⊂ Ψ(𝑘+1), the ⟨⋅, ⋅⟩-or-
thogonal complement

Ψ(𝑘) = Ψ(𝑘−1) ⊕𝔛(𝑘)

ofΨ(𝑘−1) inΨ(𝑘) is, under conditions to be discussed, iden-
tical to the span

𝔛(𝑘) = span{𝜒(𝑘)
𝑖 ∣ 𝑖 ∈ 𝒥(𝑘)}

of the operator adapted wavelets

𝜒(𝑘)
𝑖 ∶= ∑

𝑗∈ℐ(𝑘)
𝑊(𝑘)

𝑖,𝑗 𝜓(𝑘)
𝑗 , 𝑖 ∈ 𝒥(𝑘), (16)

obtained by taking what amounts to local differences of
the pre-wavelets𝜓(𝑘)

𝑖 . This transition from the optimal re-
covery splines 𝜓(𝑘)

𝑖 to the operator adapted wavelets 𝜒(𝑘)
𝑖

is represented in the transition from top to bottom in the
right half of Figure 8 and is illustrated in more detail in
Figure 11. Here, using 𝒥(𝑘) to label3 the elements 𝜒(𝑘)

𝑖 ,

3Let (𝒥(𝑘))2≤𝑘≤𝑞 be a finite set of 𝑘-tuples of the form 𝑗 = (𝑗1,… , 𝑗𝑘) such
that (𝑗1,… , 𝑗𝑘−1) ∈ ℐ(𝑘−1) and |𝒥(𝑘)| = |ℐ(𝑘)| − |ℐ(𝑘−1)|.

the𝑊(𝑘) are 𝒥(𝑘)×ℐ(𝑘) matrices (with orthonormal rows)
such that Ker(𝜋(𝑘−1,𝑘)) = Im((𝑊(𝑘))𝑇) and 𝑊(𝑘)

𝑖,𝑗 = 0
for (𝑖1,… , 𝑖𝑘−1) ≠ (𝑗1,… , 𝑗𝑘−1). For simplicity write
𝜒(1)
𝑖 for𝜓(1)

𝑖 and 𝔛(1) forΨ(1). Then (i) the 𝜒(𝑘)
𝑖 are scale-

orthogonal across 𝑘 with respect to the energy scalar prod-
uct ⟨⋅, ⋅⟩, (ii) they are exponentially localized, and (iii) ℒ
is well conditioned in each subband𝔛(𝑘), in the sense that
the condition number of the stiffness matrix 𝐵(𝑘) with en-
tries

𝐵(𝑘)
𝑖,𝑗 ∶= ⟨𝜒(𝑘)

𝑖 , 𝜒(𝑘)
𝑗 ⟩ (17)

is uniformly bounded across 𝑘 by

Cond(𝐵(𝑘)) ≤ 𝐶ℎ−2 ∀𝑘 .

Figure 9. The subsets 𝜏(𝑘)
𝑖 . Selecting ℎ ∶= 1

2 and 𝛿 ∶= 1
2 [10].
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Figure 10. Gamblets 𝜓(𝑘)
𝑖 for 1 ≤ 𝑘 ≤ 7 [10].

Fast Solvers
Since the 𝔛(𝑘) are scale-orthogonal, the linear system

ℒ𝑢 = 𝑓 (18)

can be solved independently in each subband 𝔛(𝑘) (using
the 𝜒(𝑘)

𝑖 as finite elements; see Figure 12 for an illustration
of the corresponding subband solutions 𝑢(𝑘) − 𝑢(𝑘−1)),
and this gamblet transform has turned (18) into a set of
uniformly well-conditioned and sparse linear systems that
can be solved independently. The gamblets 𝜒(𝑘)

𝑖 can be
computed in 𝒪(𝑁 log2𝑑+1 𝑁) complexity based on three
properties: (i) the nesting 𝜓(𝑘)

𝑖 = ∑𝑗 𝑅(𝑘,𝑘+1)
𝑖,𝑗 𝜓(𝑘+1)

𝑗 en-

ables the hierarchical computation of the𝜓(𝑘)
𝑖 , (ii) the ex-

ponential decay of the𝜓(𝑘)
𝑖 implies the near-sparsity of the

interpolation matrices𝑅(𝑘−1,𝑘) and stiffness matrices 𝐵(𝑘),
and (iii) the uniform bound on Cond(𝐵(𝑘)). Once these
gamblets have been computed the linear system (18) can
be solved in 𝒪(𝑁 log𝑑+1 𝑁) complexity.

Sparse and Rank-revealing Multiresolution
Representation of Green’s Function
For 𝑞 = ∞ we have the following multiresolution orthog-
onal direct sum decomposition of the solution space,

ℋ𝑠
0 (Ω) =

∞
⨁
𝑘=1

𝔛(𝑘), (19)

and the multiresolution decomposition

𝐺(𝑥,𝑦) =
∞
∑
𝑘=1

∑
𝑖,𝑗∈𝒥(𝑘)

𝐵(𝑘),−1
𝑖,𝑗 𝜒(𝑘)

𝑖 (𝑥)𝜒(𝑘)
𝑗 (𝑦) (20)

Figure 11. 𝜓(1)
𝑖 and scale-orthogonalized gamblets 𝜒(𝑘)

𝑖 for
fixed 𝑖 and 2 ≤ 𝑘 ≤ 7 [10].

Figure 12. Multiresolution decomposition of the solution 𝑢 of
ℒ𝑢 = 𝑓 with 𝑓 ∈ 𝐿2(Ω) [10]. The % numbers below the
subband projections correspond to the relative energy
content of that subband.

of Green’s function 𝐺 of ℒ. The estimates4

𝐶−1ℎ2𝑠𝑘𝐽(𝑘) ≤ 𝐵(𝑘),−1 ≤ 𝐶ℎ2𝑠𝑘𝐽(𝑘) (21)

and

𝐵(𝑘),−1
𝑖,𝑗 ≤ 𝐶ℎ2𝑠𝑘𝑒−

𝑑𝑖,𝑗
𝐶ℎ𝑘 (22)

imply that the representation (20) is (i) rank-revealing, in
the sense that the principal submatrix truncation

𝐺(𝑘)(𝑥, 𝑦) =
𝑘
∑
𝑘′=1

∑
𝑖,𝑗∈𝒥(𝑘′)

𝐵(𝑘′),−1
𝑖,𝑗 𝜒(𝑘′)

𝑖 (𝑥)𝜒(𝑘′)
𝑗 (𝑦)

of 𝐺 is a low rank approximation of 𝐺 that is optimal up
to a multiplicative constant, i.e., ‖𝐺𝑓 − 𝐺(𝑘)𝑓‖ℋ𝑠

0 (Ω) ≤
𝐶ℎ𝑘𝑠‖𝑓‖𝐿2(Ω), and (ii) sparse, in the sense that for 𝑖, 𝑗∈

4Write 𝐽(𝑘) for the 𝒥(𝑘) × 𝒥(𝑘) identity matrix. For 𝑖, 𝑗 ∈ 𝒥(1) write 𝑑𝑖,𝑗
for the distance between the support of𝜙(1)

𝑖 and that of𝜙(1)
𝑗 . For 𝑘 ≥ 2 and

𝑖, 𝑗 ∈ 𝒥(𝑘) write 𝑑𝑖,𝑗 for the distance between the support of𝜙(𝑘−1)
𝑖(𝑘−1) and that

of𝜙(𝑘−1)
𝑗(𝑘−1) .
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𝒥(𝑘) and 𝑓 ∈ ℋ−𝑠(Ω), ‖𝐵(𝑘),−1
𝑖,𝑗 𝜒(𝑘)

𝑖 [𝑓, 𝜒(𝑘)
𝑗 ]‖ℋ𝑠

0 (Ω) ≤

𝐶𝑒−
𝑑𝑖,𝑗
𝐶ℎ𝑘 ‖𝑓‖ℋ−𝑠(Ω) .

Multiresolution Representation of the Gaussian
Field 𝜉
The multiresolution decomposition (20) of Green’s
function naturally corresponds to a multiresolution
decomposition of the Gaussian field 𝜉 ∼ 𝒩(0,ℒ−1). Let-
ting (𝑌(𝑘))𝑘≥1 be independent Gaussian vectors 𝑌(𝑘) ∼
𝒩(0,𝐵(𝑘),−1) with 𝐵(𝑘) defined in (17), we have the de-
composition

𝜉 =
∞
∑
𝑘=1

∑
𝑖∈𝒥(𝑘)

𝑌(𝑘)
𝑖 𝜒(𝑘)

𝑖 (23)

of the Gaussian field 𝜉 into modes 𝜉(𝑘) − 𝜉(𝑘−1) =
∑𝑖∈𝒥(𝑘) 𝑌(𝑘)

𝑖 𝜒(𝑘)
𝑖 oscillating at different scales (see Figure

13). Interpreting the Gaussian field 𝜉 as a randomization
of𝑢, it follows that the subband components𝑢(𝑘)−𝑢(𝑘−1)

of a solution 𝑢 toℒ𝑢 = 𝑓, illustrated in Figure 12, are sim-
ply conditional realizations of the modes 𝜉(𝑘)−𝜉(𝑘−1) on
the information contained in the difference between level
𝑘 and level 𝑘 − 1 measurements.

Figure 13. Simulation of the Gaussian fields 𝜉(1) and
(𝜉(𝑘) −𝜉(𝑘−1))𝑘≥2 [10].

The Cholesky Factorization of Dense Kernel
Matrices
Now, let us demonstrate the confluence of NA and GPR in
elementary linear algebra operations. Let 𝑥1,… , 𝑥𝑁 be 𝑁
homogeneously distributed points ofΩ. For 𝑠 > 𝑑/2 con-
sider the 𝑁×𝑁 symmetric positive definite dense kernel
matrix Θ defined by

Θ𝑖,𝑗 = 𝐺(𝑥𝑖, 𝑥𝑗) . (24)

Since Θ is dense the computational complexities of sim-
ple linear algebra operations (with vanilla methods) are as
follows: (i) storage: 𝒪(𝑁2), (ii) Θ𝑣: 𝒪(𝑁2), (iii) Θ−1𝑣:
𝒪(𝑁3), (iv) det(Θ): 𝒪(𝑁3), and (v) principal compo-
nent analysis of Θ: 𝒪(𝑁3).

Opening these complexity bottlenecks is of practical im-
portance in (i) computational physics, (ii) Gaussian pro-
cess statistics (where Θ is the covariance matrix of the vec-
tor (𝜉(𝑥1),… ,𝜉(𝑥𝑁)) corresponding to the centered
Gaussian process 𝜉 with covariance function 𝐺), and (iii)
kernel methods for machine learning (e.g., support vector
machines).

Figure 14. Decomposition of 𝑥1,… , 𝑥𝑁 into a nested hierarchy
[15].

Here, the link between NA and GPR can be used to de-
rive a simple incomplete Cholesky factorization algorithm
enabling the operations mentioned above in near-linear
complexity [15]. This algorithm (i) selects 𝒪(𝑁 log𝑁
log𝑑 (𝑁/𝜖)) entries of Θ and an ordering 𝑥1,… , 𝑥𝑁, rep-
resented by a permutationmatrix𝑃; (ii) from these entries
and permutation, in complexity 𝒪(𝑁 log𝑁 log𝑑(𝑁/𝜖))
in space and 𝒪(𝑁 log2 𝑁log2𝑑(𝑁/𝜖)) in time, it com-
putes a sparse lower triangular matrix 𝐿 such that the num-
ber of nonzero entries of 𝐿 is𝒪(𝑁 log𝑁 log𝑑(𝑁/𝜖)) and

‖𝑃𝑇Θ𝑃− 𝐿𝐿𝑇‖𝐹 ≤ 𝜖, (25)

where ‖ ⋅ ‖𝐹 is the Frobenius norm.
The idea of the algorithm is to first decompose 𝑥1,… ,

𝑥𝑁 into a nested hierarchy {𝑥𝑖}𝑖∈ℐ(1) ⊂ {𝑥𝑖}𝑖∈ℐ(2) ⊂ ⋯ ⊂
{𝑥𝑖}𝑖∈ℐ(𝑞) (see Figure 14) and order the points from 𝒥(1) =
ℐ(1), 𝒥(2) = ℐ(2)/ℐ(1) to 𝒥(𝑞) = ℐ(𝑞)/ℐ(𝑞−1). We obtain
𝑃𝑇Θ𝑃 by ordering the rows and columns ofΘ accordingly.

Figure 15. The sparsity pattern 𝑆 [15]. For an index 𝑖 at level 𝑘,
e.g., a red point, indices 𝑗 corresponding to points within a
ball of radius ∼ 2−𝑘 ln 1

𝜖 comprise the 𝑖th column in red.
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The next step is to use this hierarchical ordering to de-
fine the sparsity pattern 𝑆 ∶= {𝑖, 𝑗 ∈ ℐ(𝑞) ∣ 𝑖 ∈ 𝒥(𝑘),
𝑗 ∈ 𝒥(𝑙), |𝑥𝑖 −𝑥𝑗| ≤ ln 𝑁

𝜖 2−min(𝑘,𝑙)} corresponding to a
sparse subset of the entries of the matrixΘ (see Figure 15).
The incomplete Cholesky factorization 𝐿𝐿𝑇 of 𝑃𝑇Θ𝑃 is
then computed in Algorithm 1 as one small tweak from
the classical algorithm: skip all operations for which (𝑘, 𝑖),
(𝑘, 𝑗), or (𝑖, 𝑗) are outside the sparsity pattern 𝑆.

Algorithm 1 Incomplete sparse Cholesky factorization of
[15]. Takes the entries (𝑖, 𝑗) ∈ 𝑆 of the𝑁×𝑁 symmetric
positive definite matrix 𝐴 ← 𝑃𝑇Θ𝑃 as input and returns
the 𝑁×𝑁 lower triangular matrix 𝐿 as output.

1: for 𝑖 = 1 to 𝑁 do
2: 𝐿∶𝑖 ← 𝐴∶𝑖/√𝐴𝑖,𝑖
3: for 𝑗 ∈ {𝑖 + 1,… ,𝑁} : (𝑖, 𝑗) ∈ 𝑆 do
4: for 𝑘 ∈ {𝑗,… ,𝑁} : (𝑘, 𝑖), (𝑘, 𝑗) ∈ 𝑆 do
5: 𝐴𝑘,𝑗 ← 𝐴𝑘,𝑗 − 𝐴𝑘,𝑖𝐴𝑖,𝑗

𝐴𝑖,𝑖
6: end for
7: end for
8: end for

Why does it work? The Cholesky factorization computes a
lower triangular matrix 𝐿 that satisfies 𝑃𝑇Θ𝑃 = 𝐿𝐿𝑇. The
resulting factor 𝐿 depends on the ordering of the points
𝑥1,… , 𝑥𝑁 (as represented by 𝑃). Although the factors 𝐿
are dense under the lexicographic ordering, they are near
sparse, that is, approximately sparse, under the hierarchi-
cal ordering of Figure 14. While this observation is new, it
has a simple explanation from a GPR perspective. To sim-
plify notation, assume that the rows and columns ofΘ are
ordered in the hierarchical ordering, and write Θ1∶𝑙,1∶𝑙 for
the {1,… , 𝑙} × {1,… , 𝑙} submatrix of Θ. The Cholesky
factorization algorithm iteratively computes the Schur
complements 𝒮(𝑙) (from 𝑙 = 1 to 𝑙 = 𝑁) of Θ1∶𝑙,1∶𝑙 in Θ,
which have the probabilistic interpretation as conditional
covariance matrices

𝒮(𝑙)
𝑖,𝑗 = Cov(𝜉(𝑥𝑖), 𝜉(𝑥𝑗) ∣ 𝜉(𝑥𝑘), 𝑘 ≤ 𝑙) ,

where 𝜉 is the centered Gaussian process with covariance
function 𝐺. The screening effect implies that as 𝑙 reaches
finer levels of the hierarchy, the conditional correlation
length of 𝜉 decreases and the Schur complements 𝒮(𝑙) be-
come increasingly sparse, leading to near sparsity of the
Cholesky factors 𝐿.

The near sparsity of 𝐿 is also related to the exponen-
tial decay of the gamblets. Choose the hierarchy (13) of
linearly nested measurement functions to be subsampled
Diracs 𝜙(𝑘)

𝑖 ∶= δ(⋅ − 𝑥𝑖) for 𝑖 ∈ ℐ(𝑘). Let 𝜒(𝑘)
𝑖 be the cor-

responding operator adapted wavelets obtained through
(16) with 𝑊(𝑘)

𝑖,𝑗 = 𝛿𝑖,𝑗 and let 𝐵(𝑘) be as in (17). Then Θ

admits the block-Cholesky factorization

Θ = 𝐿̄𝐷𝐿̄𝑇,

where 𝐷 is a block diagonal matrix with the 𝒥(𝑘) × 𝒥(𝑘)

diagonal block equal to 𝐵(𝑘),−1, and, for 𝑖 ∈ 𝒥(𝑘), 𝑗 ∈
𝒥(𝑘′), 𝐿̄𝑖,𝑗 is defined by

𝐿̄𝑖,𝑗 =
⎧⎪⎪
⎨⎪⎪⎩

0, 𝑘 < 𝑘′,
𝛿𝑖,𝑗, 𝑘 = 𝑘′,
[𝜙(𝑘)

𝑖 , 𝜒(𝑘′)
𝑗 ], 𝑘 > 𝑘′.

The near sparsity of 𝐿̄ follows from the exponential decay

of the 𝜒(𝑘′)
𝑗 and the fact that the measurement functions

𝜙(𝑘)
𝑖 are Dirac measures. The estimates (21) and (22) im-

ply the near sparsity of the Cholesky factors 𝐿̂ of 𝐷 and
hence of 𝐿 = 𝐿̄𝐿̂. The approximation error estimate (25)
is then obtained by matching the sparsity set 𝑆 with the
near sparsity structure of 𝐿. Furthermore, the rank reveal-
ing property (20) of gamblets implies that the Cholesky
decomposition is not only sparse but also rank-revealing,
i.e.,

‖𝑃𝑇Θ𝑃− 𝐿(𝑘)𝐿(𝑘),𝑇‖ ≤ 𝐶‖Θ‖𝑘− 2𝑠
𝑑 ,

where 𝐿(𝑘) is the rank-𝑘 matrix defined by the first 𝑘
columns of the Cholesky factor 𝐿 of Θ and ‖Θ‖ is the op-
erator norm of Θ.
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