
Physica D 444 (2023) 133583

P
a

b

c

i
r

1

o
e
(
e
k
i
w
c

p

h
0

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

One-shot learning of stochastic differential equationswith data
adapted kernels
Matthieu Darcy a,∗, Boumediene Hamzi c, Giulia Livieri b, Houman Owhadi a,
eyman Tavallali a
Department of Computing and Mathematical Sciences, Caltech, CA, USA
Scuola Normale Superiore, Pisa, Italy
JPL, Caltech, CA, USA

a r t i c l e i n f o

Article history:
Received 16 February 2022
Received in revised form 17 October 2022
Accepted 27 October 2022
Available online 11 November 2022
Communicated by R. Kuske

Keywords:
Stochastic differential equations
Times series forecasting
Computational graph completion
Kernel methods
Machine learning
Gaussian Processes

a b s t r a c t

We consider the problem of learning Stochastic Differential Equations of the form dXt = f (Xt)dt +
σ (Xt)dWt from one sample trajectory. This problem is more challenging than learning deterministic
dynamical systems because one sample trajectory only provides indirect information on the unknown
functions f , σ , and stochastic process dWt representing the drift, the diffusion, and the stochastic forc-
ing terms, respectively. We propose a method that combines Computational Graph Completion [1] and
data adapted kernels learned via a new variant of cross validation. Our approach can be decomposed
as follows: (1) Represent the time-increment map Xt → Xt+dt as a Computational Graph in which f ,
σ and dWt appear as unknown functions and random variables. (2) Complete the graph (approximate
unknown functions and random variables) via Maximum a Posteriori Estimation (given the data) with
Gaussian Process (GP) priors on the unknown functions. (3) Learn the covariance functions (kernels)
of the GP priors from data with randomized cross-validation. Numerical experiments illustrate the
efficacy, robustness, and scope of our method.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Forecasting a stochastic or a deterministic time series is a fundamental problem in, e.g., Econometrics or Dynamical Systems, which
s commonly solved by learning and/or inferring a stochastic or a deterministic dynamical system model from the observed data,
espectively; see, e.g., [2–19], among many others.

.1. On the kernel methods to forecasting time series

Among the various learning-based approaches, methods based on kernels hold potential for considerable advantages in terms
f theoretical analysis, numerical implementation, regularization, guaranteed convergence, automatization, and interpretability over,
.g., methods based on variants of Artificial Neural Networks (ANNs); see, e.g., [1,20]. In particular, Reproducing Kernel Hilbert Spaces
RKHS) [21] have provided a strong mathematical foundations for studying dynamical systems [22–35] and surrogate modeling (see,
.g., [36] for a survey). However, these emulators’ accuracy hinges on the kernel’s choice; nonetheless, the problem of selecting a good
ernel has received less attention so far. Numerical experiments have recently shown that when the time series is regularly [37] or is
rregularly sampled [38], simple kernel methods can successfully reconstruct the dynamics of prototypical chaotic dynamical systems
hen kernels are also learned from data via Kernels Flows (KF), a variant of cross-validation [39]. KF approach has then been applied to
omplex, large-scale systems, including geophysical data [40–42], and to learning non-parametric kernels for dynamical systems [43].

∗ Corresponding author.
E-mail addresses: mdarcy@caltech.edu (M. Darcy), boumediene.hamzi@gmail.com (B. Hamzi), giulia.livieri@sns.it (G. Livieri), owhadi@caltech.edu (H. Owhadi),

eyman.tavallali@jpl.nasa.gov (P. Tavallali).
ttps://doi.org/10.1016/j.physd.2022.133583
167-2789/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.physd.2022.133583
https://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2022.133583&domain=pdf
mailto:mdarcy@caltech.edu
mailto:boumediene.hamzi@gmail.com
mailto:giulia.livieri@sns.it
mailto:owhadi@caltech.edu
mailto:peyman.tavallali@jpl.nasa.gov
https://doi.org/10.1016/j.physd.2022.133583

M. Darcy, B. Hamzi, G. Livieri et al. Physica D 444 (2023) 133583

1

t
t
e
c
a
r
P
c

1

f
S
o

2

w
o
s
e

N
r

T

2

n
c
W
i

I

.2. On the learning of stochastic differential equations (SDEs)

While time series produced by deterministic dynamical systems offer a direct observation of the vector-field (i.e., of the drift) driving
hose systems, those produced by SDEs only present an indirect observation of the underlying drift, diffusion, and stochastic forcing
erms. A popular approach employed to recover the drift and the diffusion of an SDE is the so-called Kramers–Moyal expansion; see,
.g., [16,44]. In this manuscript, we formulate the problem of learning stochastic dynamical systems described by SDEs as that of
ompleting a computation graph [1], which represents the functional dependencies between the observed increments of the time-series
nd the unknown quantities. Our approach to solving this Computational Graph Completion (CGC) problem can be summarized as (1)
eplacing unknown functions and variables with Gaussian Processes (GPs) and (2) approximating those functions by the Maximum a
osteriori (MAP) estimator of those GPs given available data. The covariance kernels of these GPs are learned from data via a randomized
ross-validation procedure.

.3. Outline of the article

Section 2 describes the problem we focus on in this manuscript and our proposed solution. Section 3 describes the MAP estimator
or the GPs in the one dimensional case. Section 4 describes the algorithm we propose to learn the kernels and the hyper-parameters.
ection 5 provides numerical results, with an additional discussion of the impact of the choice of kernels in Section 6 and the impact
f time discretization in Section 6.0.2. We conclude with a brief discussion in Section 8. Appendix A displays additional plots.

. Statement of the problem and proposed solution

We first describe the type of SDEs used here. We consider SDEs of the form:

dXt = f (Xt)dt + σ (Xt)dWt (1)

ith initial condition X0 = x0. In the previous equation, (Wt)t∈[0,T] denotes a Wiener process. We assume that the process in Eq. (1) is
bserved at discrete times tn, n = 1 . . .N , such that the time intervals ∆tn := (tn+1 − tn) between observations Xn := Xtn of the time
eries are not small enough so that σ (Xt) can be efficiently approximated by estimating the quadratic variation of Xt near t , but small
nough so that the following approximation holds:

Xn+1 = Xn + f (Xn)∆tn + σ (Xn)
√

∆tnξn + εn ,

where the i.i.d. random variables ξn
d
∼ N (0, 1) represent Brownian Motion increments and the i.i.d. random variables εn

d
∼

(0, λ) represent discretization noise/misspecification1; henceforth, the notation ‘‘
d
∼ " stands for ‘‘distributed as’’. We seek to

ecover/approximate the unknown functions f and σ from the data (X,Y) = {(Xn, Yn)}1≤n≤N , where

Yn := Xn+1 − Xn.

herefore, the relation between Xn and Yn is given by our modeling assumption:

Yn = f (Xn)∆tn + σ (Xn)
√

∆tnξn + εn . (2)

.1. The computational graph completion problem

In general, a computational graph is defined as a graph representing functional dependencies between a finite number of (not
ecessarily random) variables and functions. We will use nodes to represent variables and arrows to represent functions. We will
olor known functions in black and unknown functions in red. Random variables are drawn in blue and primary variables as squares.
e will distinguish nodes used to aggregate variables by drawing them as circles. Multiple incoming arrows into a square node are

nterpreted as a sum. Now, let f̄n := f (Xn) and σ̄n := σ (Xn) be two intermediate (unobserved) variables. Eq. (2) can thus be rewritten
as:

Yn = f̄n∆tn + σ̄n

√
∆tnξn + εn. (3)

n particular, it can be represented as the following computational graph:

Xn f̄nσ̄n

∆tn

σ̄n
√

∆tnξn f̄n∆tn

ξn

Yn εn

fσ

1 While this assumption is not well justified by theory, the Euler–Maruyama method yields a practical scaling for the variance λ of the error. Because the
Euler–Maruyama method has a strong order of convergence O(∆t), it is therefore reasonable to choose λ = C∆t . In practice, we find that the constant C should be
small and use C = 0.01.
2

M. Darcy, B. Hamzi, G. Livieri et al. Physica D 444 (2023) 133583

f
a
c

R
r
t

3

o
f
p

We now formulate the learning problem in this manuscript as the problem of completing the just displayed computational graph;
see [1]. Let X1, . . . , XN , Y1, . . . , YN and ∆t1, . . . , ∆tN be the N observations data: our goal is to approximate the unknown functions
and σ from these observations. In order to solve this problem, we will use the GP framework: we replace σ and f with GPs and
pproximate them via MAP estimation given the data. More precisely, we assume that f and σ are mutually independent GPs, with
entered Gaussian priors f

d
∼ GP(0,K), σ

d
∼ GP(0,G) defined by the covariance functions/kernels K and G .

emark 2.1. Although in this case the computational graph serves mostly as a visual aid, its underlying formalism (i.e., draw the graph,
eplace unknown functions by GPs, and compute their MAP from the data to complete the graph) is a simple pathway to generalize
he method to learning more complex systems than SDEs.

. MAP estimator

Write f̄ for the vector with entries {f̄n}1≤n≤N and σ̄ for the vector with entries {σ̄n}1≤n≤N . Observe that given σ̄ and f̄ , the identification
f the functions f and σ reduces to two separate simple kernel regression problems. We will therefore first focus on the estimation of
¯ and σ̄ . Since f and σ are independent, f̄ = f (X) and σ̄ = σ (X) are conditionally (on X) independent. Using the shorthand notations
(Y |X) for p(A|X) where A is the event {Yn = f (Xn)∆tn + σ (Xn)

√
∆tnξn + εn, for 1 ≤ n ≤ N}, we deduce that

p(f̄ , σ̄ |Y , X) = p(Y |f̄ , σ̄ , X)
p(f̄ |X)p(σ̄ |X)

p(Y |X)
,

It follows that a MAP estimator of (f̄ , σ̄) is a minimizer of the loss − ln
(
p(Y |X, f̄ , σ̄)p(f̄ |X)p(σ̄ |X)

)
, which up to a constant

(log det K (X, X)+ log detG(X, X)) and a multiplicative factor 1/2 is equal to

L(f̄ , σ̄) := (Y −Λf̄)⊺(Σ + λI)−1(Y −Λf̄)+
N∑

n=1

ln(σ̄ 2
n ∆tn + λ)+ f̄ ⊺K (X, X)−1 f̄ + σ̄ ⊺G(X, X)−1σ̄ . (4)

where K (X, X) is the N × N matrix with entries K (Xi, Xj), G(X, X) is the N × N matrix with entries G(Xi, Xj), Σ is the diagonal N × N
matrix with diagonal entries σ̄n

2∆tn, and Λ is the diagonal N × N matrix with diagonal entries ∆tn.

3.1. Recovery of f

First, observe that given σ̄ , (4) is quadratic in f̄ and its minimizer in f̄ is

f̄ ∗(σ̄) = K (X, X)Λ
(
ΛK (X, X)Λ+Σ + λI

)−1
Y . (5)

Therefore f
d
∼ GP(O,K) conditioned on (X, f (X) = f̄) is normally distributed with (conditional) mean

f ∗(x) := K (x, X)Λ
(
ΛK (X, X)Λ+Σ + λI

)−1
Y , (6)

and (conditional) covariance

K (x, x)− K (x, X)Λ
(
ΛK (X, X)Λ+Σ + λI

)−1
ΛK (X, x) . (7)

We therefore estimate f with f ∗ =(6). Note that (6) and (7) can also be recovered by observing that given σ̄ , Eq. (3) corresponds to a
noisy regression problem, with noise coming from two independent Gaussian variables. This is proved in Appendix B and it is an easy
modification of the proof presented in [45, Page 306]

3.2. Recovery of σ

Taking f̄ = f̄ ∗ =(6) in (4), the estimation of σ̄ reduces to the minimization of the loss

L(f̄ ∗(σ̄), σ̄) = (Y −Λf̄ ∗(σ̄))⊺(Σ + λI)−1(Y −Λf̄ ∗(σ̄))+
N∑

n=1

ln(σ̄ 2
n ∆tn + λ)+ f̄ ∗(σ̄)⊺K (X, X)−1 f̄ ∗(σ̄)+ σ̄ ⊺G(X, X)−1σ̄ . (8)

Write σ̄ † for a minimizer of (8) obtained through a numerical optimization algorithm (e.g., gradient descent). Because the numerical
approximation of σ̄ † is noisy, we then further estimate σ̄ as the mean of the Gaussian vector σ (X) conditioned on σ (X) = σ̄ †

+Z where
the entries Zi of the (noise) vector Z are i.i.d. Gaussian with variance γ . We therefore approximate σ̄ with

σ̄ ∗ = E[σ (X)|σ (X)+ Z = σ̄ †
] = G(X, X)(G(X, X)+ γ I)−1σ †.

and σ with

σ ∗(x) = G(x, X)(G(X, X)+ γ I)−1σ̄ †.
3

M. Darcy, B. Hamzi, G. Livieri et al. Physica D 444 (2023) 133583

3

m
w

g
p
l
g

3

W

Fig. 1. Predicted volatility: well-specified kernel (left), ill specified kernel (middle), and well-specified kernel with learned parameters (right).

.3. Minimization of L

The natural approach to identification of σ̄ † is to minimize (with respect to σ̄) (8) with f̄ ∗ defined as the function (5) of σ̄ . The
inimization of (8) is difficult given that this is a non-convex, non-linear problem. We, therefore use a gradient descent algorithm
ith a step size chosen such that the perturbation is no more than p% in norm. We set p = 1 initially and increment to p ← 0.9p

if the resulting perturbation does not reduce the loss. We optimize until p < 10−20 or a maximum N = 105 iterations. We also use
Newton method with step-size chosen using Armijo’s condition [46] until ∥∇L∥ < 10−8 for a maximum of N = 1000 iterations. The
radient descent algorithm is slow compared to Newton’s method (10–20 s compared to 10–15 min in wall clock time) but consistently
roduces better results and is less sensitive to changes in the initial condition. In our gradient descent algorithm, we ensure that the
oss is decreased at every step and we therefore converge to a local minimum. However, there is no guarantee that we converge to the
lobal minima since the loss is non-convex.

.4. Initial condition

The initialization of the optimization problem requires the specification of an initial condition for σ̄init. We use an estimate of
quadratic variation of the process given the data:

(σ̄init)i =
(Xi − Xi−1)2

∆ti
.

e smooth out this noisy estimate using the mean of the Gaussian process σ conditioned on these values:

σ̄init = E[σ (X)|σ (X)+ Z = σ̄init] = G(X, X)(G(X, X)+ γ I)−1σ̄init.

3.5. Extension to the multivariate case

The extension to the multivariate case is relatively straightforward and is presented in Appendix E.

4. Learning the kernels and the hyperparameters

4.1. Motivation

The computational graph completion approach relies on a choice of prior and hence on a choice of kernel. There are many possible
such choices that encode varying priors on the functions f and σ . For example isotropic kernels such as the Gaussian and Matérn kernel
are used to model the covariance functions of stationary processes [47]. Dot product-based kernels, such as the polynomial kernel, on
the other hand are non-stationary [47]. Moreover, each family of kernels is parameterized by one or several parameters, which can
have a large impact on the recovery of the function. This motivates the development of a method to select the optimal kernel. In the
next section, we present a cross-validation-based method to select the best kernel based on the data. This method is able to not only
select the best parameter but also enables ill-specified kernels to perform comparably to well-specified kernels.

To illustrate this point, consider the Geometric Brownian Motion

dXt = µXtdt + σXtdWt (9)

which has both non-stationary drift and diffusion functions. In Section 6, we will show (see Fig. 1) how our hyper-parameter learning
algorithm enables a non-perfectly-adapted kernel (e.g., a Matérn kernel for approximating the drift and volatility of (9)) to perform
comparably to a perfectly adapted kernel (e.g., a linear kernel for approximating the drift and volatility of (9)). We also note that
learning the kernel improves out-of-sample predictions.

4.2. Methodology

We now describe how to select the kernels K ,G in a family of kernels parameterized by θk, θg , which we learn from data using a
cross-validation approach. Writing

θ := (θ , θ) ,
k g

4

M. Darcy, B. Hamzi, G. Livieri et al. Physica D 444 (2023) 133583

f
w
d

W

d

f

w

m

T

or the vector formed by all the hyperparameters of our approach, we learn θ through a robust-learning cross-validation approach
hich we will now describe. Consider the set of all sets of possible partitions of the training data DT with indices I into two mutually
isjoint subsets of equal size.

A = {(Π, Π c)|Π ∪Π c
= I, Π ∩Π c

= ∅, |Π | =
|I|
2
}.

rite DΠ = (xj, yj)j∈Π for the set of points belonging to the first partition and DΠc = (xj, yj)j∈Πc for the set of points belonging to the
second set. Write E(Π,Πc) for the uniform distribution over A. For (Π, Π c) ∈ A write L(DΠc , f̄ , σ̄) for the MAP loss (4) calculated with
ataset DΠc . Write

LCV(θ; f̄ ∗, σ̄ ∗,DΠ) = − ln p(YΠ |f̄ ∗, σ̄ ∗, XΠ) =
∑

i

(Yi − f̄ ∗i ∆ti)2

2(σ̄ ∗2i ∆ti + λ)
+

1
2
ln(σ̄ ∗2i ∆ti + λ),

or the negative log-likelihood of the validation data DΠ given f̄ ∗, σ̄ ∗. Our proposed cross-validation approach is then to select θ∗ as

θ∗ = argmin
θ

E(Π,Πc){LCV(θ; f̄ ∗, σ̄ ∗,DΠ)}

subject to f̄ ∗, σ̄ ∗ = argmin
f̄ ,σ̄

L(DΠc , f̄ , σ̄)

Note that f̄ ∗, σ̄ ∗ are selected as described in Section 3. In practice, the computation of the exact value of E(Π,Πc){LCV(θ; f̄ ∗, σ̄ ∗,DΠ)} is
intractable. Therefore, we instead approximate E(Π,Πc){LCV} with the empirical average

1
M

M∑
i=1

LCV(θ; f̄ ∗i , σ̄ ∗i ,DΠi) (10)

here the (Πi, Π c
i) are i.i.d. samples from P(Π,Πc) and f̄ ∗i , σ̄ ∗i = argmin

f̄ ,σ̄
L(DΠc

i
, f̄ , σ̄). We use a gradient free optimization algorithm to

inimize (10) (see Section 4.3). This algorithm only uses noisy observations (10) of the true loss.
The proposed cross-validation algorithm can be summarized as follows:

(1) Select a gradient-free optimization algorithm.
(2) At each iteration, given the hyperparameters θk, select M divisions of the data DT into a training set DΠc

i
and a validation set

DΠi .
(3) For each 1 ≤ i ≤ M , recover f̄ ∗i , σ̄ ∗i using training data DΠc

i
using hyper-parameters θk.

(4) For each 1 ≤ i ≤ M , compute the loss L(θk
; f̄ ∗i , σ̄ ∗i ,DΠi) and the empirical average (10).

(5) Minimize (10) with the gradient free optimization algorithm to select θk+1.

4.3. The active learning algorithm

We choose the Bayesian optimization algorithm [48], where the loss function is modeled using a Gaussian Process with Matern
kernel [47], implemented in the scikit-optimize library in Python [49]. In our case, we set M = 1 when using gradient descent
minimization and M = 10 when using Newton’s method for minimization. The maximum number of iterations for the Bayesian
optimization algorithm is set to K = 75 when using gradient descent minimization and K = 150 when using Newton’s method
for minimization. While we can use a greater number of samples and a greater number of iterations with Newton’s method because
of its greater speed, in practice, the gradient descent method offered better performance in our tests.

5. Experimental results

We first illustrate the effectiveness of our methods by considering two systems with non-linear drift or volatility. The two processes
we consider are:

dXt = µXtdt + b exp(−X2
t)dWt Exponential decay volatility.

dXt = sin(2kπXt)dt + b cos(2kπXt)dWt Trigonometric process.

In both cases, we generate trajectories using a Euler–Maruyama discretization. We use 500 points for training and 500 points for
testing.

5.1. Metrics

To measure the performance of each method, we use three metrics. The first is the likelihood of the model given the data of the
test set defined as

L(f̄ ∗, σ̄ ∗|X, Y) = − log(p(Y |f̄ ∗, σ̄ ∗, X)) ∝
M∑
i=1

(Yi − f̄ ∗∆ti)2

2(σ̄ ∗2i ∆ti + λ)
+

1
2
ln(σ̄ ∗2i ∆ti + λ).

he other two metrics are the relative error of the test drift and volatility at the test points:

δf =
∥f − f̄ ∥

∥f ∥

5

M. Darcy, B. Hamzi, G. Livieri et al. Physica D 444 (2023) 133583

W
s
s
c
d

5

p
p

Table 1
Results for the exponential volatility process.

Trajectory 1 Trajectory 2

L(f̄ ∗, σ̄ ∗|X, Y) δf δσ L(f̄ ∗, σ̄ ∗|X, Y) δf δσ

Benchmark −2.547 0.394 0.033 −1.887 0.322 0.085
Non-learned kernel −2.532 0.506 0.081 −1.887 0.472 0.062
Learned kernel −2.546 0.388 0.048 −1.900 0.249 0.035

δσ =
∥σ − σ̄∥

∥σ∥

where f is the vector of drift values at the test points (f)i = f (Xi) and f̄ is the vector of prediction (f̄)i = f̄ (Xi) (likewise for σ , σ̄). Note
that in practice, only L(f̄ ∗, σ̄ ∗|(X, Y)) may be computed without access to the true drift f and true volatility σ . We still compute δf , δσ

to illustrate how a lower loss on the recovery of the drift and volatility yields a lower loss on the likelihood.

5.2. Choice of kernels

In all experiments, we use the Matérn Kernel [47] with smoothness parameter ν = 5
2 defined as

KMatérn(x, y) = σ 2
(
1+

√
5∥x− y∥

l
+

5∥x− y∥2

3l2

)
exp

(
−

√
5∥x− y∥

l

)
. (11)

e learn the parameters (σ , l) of the kernel (the smoothness parameter ν is not learned). Note that the Matérn kernel is not well
pecified for many of the processes we will consider as the processes it defines are only 3 times differentiable (in the mean square
ense [47]) and hence it is overly general. A better specified of kernel can in many cases significantly improve the performance. We
hoose this kernel because it is very general and allows to illustrate how one can obtain good results with few assumptions and little
omain knowledge.

.3. Benchmarks

We compare our method and optimized parameters with two baselines. A first baseline that uses our method and unoptimized
arameters. For kernels using a lengthscale (such as the Matérn kernel (11)), it is set to be the average ℓ2 distance between data
oints:

lunopt =
1

N(N − 1)

∑
i̸=j

Xi − Xj
 .

All other parameters are set to 1.0. This method is labeled as ‘‘non-learned kernel’’.
The second baseline does not use our method to recover the drift and diffusion separately. Instead we assume that Y is the sum of

two Gaussian processes:

y(x) = ξ (x)+W (x)

where ξ is a smooth Gaussian process (such as a Gaussian process with Matérn covariance function) and W is a white noise Gaussian
process with covariance matrix

Kwn(xi, xj) = cδ(xi − xj).

The posterior distribution y conditioned on the data provides a prediction for the conditional mean (the drift of the SDE) and the
conditional variance (the volatility of the SDE).2 The parameters of the kernel are optimized through the minimization of the negative log
marginal likelihood. This method is labeled as ‘‘benchmark’’ and uses the implementation present in [50] and the details are presented
in Appendices B and C. Note that a major drawback of this method is the assumption that the noise σ (Xt) is identically distributed
Gaussian noise, modeled through the white noise kernel δ(xi − xj). This assumption is valid for only a restricted class of SDEs.

5.4. Exponential decay volatility

The discretization of the exponential decay volatility is given by

Xn+1 − Xn = µXn∆t + b exp(−X2
n)
√

∆tξn, X0 = x0, (12)

with timestep ∆t = 0.01. Observe that this process is pushed towards the origin by its drift value, where the volatility is maximized.
Moreover, the volatility decreases exponentially fast away from the origin. We generate two trajectories with the same drift parameter
µ = 5 and different volatility parameter b = 0.5, 1.0. The results for the learned and unlearned kernel are reported in Table 1. The
training and testing data are illustrated in Fig. 2 and the prediction of the drift and volatility are presented in Fig. 3 (see also Figs. 18,
19 in the appendix).

2 Note that this is the usual Gaussian process regression method.
6

M. Darcy, B. Hamzi, G. Livieri et al. Physica D 444 (2023) 133583
Fig. 2. From left to right: drift function, volatility function, sample trajectory and sample increments of the exponential volatility process.

Fig. 3. Predicted drift and volatility on the testing set for trajectory 2 of the exponential volatility process. From left to right: drift (non-learned kernel), volatility
(non-learned kernel), drift (learned kernel), volatility (learned kernel) .

Table 2
Results for the trigonometric process.

Trajectory 1 Trajectory 2

L(f̄ ∗, σ̄ ∗|X, Y) δf δσ L(f̄ ∗, σ̄ ∗|X, Y) δf δσ

Benchmark −3.411 0.327 0.442 −3.808 3.454 0.198
Non-learned kernel −3.675 0.157 0.093 −2.405 0.832 0.665
Learned kernel −3.678 0.269 0.088 −3.642 1.481 0.242

Fig. 4. From left to right: drift function, volatility function, sample trajectory and sample increments of the trigonometric process (trajectory 2).

5.5. Trigonometric process

The discretization of the trigonometric process is given by

Xn+1 − Xn = sin(2kπXt)∆t + b cos(2kπXt)
√

∆tξn, X0 = x0. (13)

In this case, both the drift and volatility functions are non-linear functions of Xt . We generate two trajectories with volatility parameter
b = 1.0, 0.5. For b = 0.5, we set ∆t = 0.01. For the second trajectory, b = 0.5 and the timestep is set ∆t = 0.001. In this case, the
testing data contains points outside the training distribution. Hence the problem of prediction is more challenging than the problem of
recovery at the training points. The results for the learned and unlearned kernel are reported in Table 2. The training and testing data
are illustrated in Fig. 20. For trajectory 2, the optimization of the hyper-parameters of the kernel yield a better recovery and a better
prediction of the volatility outside the training distribution Fig. 4, 5 (see also Fig. 20, Fig. 21 in the appendix).

5.5.1. Benchmark comparison
Generally our method with optimized parameters outperforms our selected benchmark both in recovery of the drift and the volatility

as measured by our metric. Because the standard Gaussian process regressor uses a white noise kernel, it generally does not capture
well a non-constant volatility. Our method on the other hand is able to capture non-constant volatility models. Compare for example
Figs. 5 and 7 (see Fig. 6).
7

M. Darcy, B. Hamzi, G. Livieri et al. Physica D 444 (2023) 133583
Fig. 5. Predicted drift and volatility on the testing set for trajectory 2 of the trigonometric process. From left to right: drift (non-learned kernel), volatility (non-learned
kernel), drift (learned kernel), volatility (learned kernel) .

Fig. 6. Exponential volatility process benchmark prediction. From left to right: drift (trajectory 1), volatility (trajectory 1), drift (trajectory 2), volatility (trajectory 2).

Fig. 7. Trigonometric process benchmark prediction. From left to right: drift (trajectory 1), volatility (trajectory 1), drift (trajectory 2), volatility (trajectory 2).

Fig. 8. From left to right: drift function, volatility function, sample trajectory, and sample increments of GBM.

6. Experimental results: a comparison between perfectly specified and non perfectly specified kernels

We now illustrate how the choice of the kernel can have a significant impact on the recovery of the drift and volatility. The following
examples illustrate how choosing from the correct parametric family of kernels can improve both the recovery and the prediction of
the functions of interest.

6.0.1. Overcoming non perfectly specified kernels
We consider the Geometric Brownian Motion process defined as

dXt = µXtdt + σXtdWt Geometric Brownian motion (GBM).

We generate one trajectory with parameters µ = 2.0, σ = 1.0 and initial condition X0 = 1.0, using the Euler–Maruyama discretization
with timestep ∆t = 0.001. We focus primarily on the recovery of the volatility (the recovery of the drift is very difficult at a fine
time-scale). The generated data is illustrated in Fig. 8.
8

M. Darcy, B. Hamzi, G. Livieri et al. Physica D 444 (2023) 133583
Table 3
Comparison between the linear kernel and the Matern kernel on GBM.

Linear kernel Matern kernel

L(f̄ ∗, σ̄ ∗|X, Y) δf δσ L(f̄ ∗, σ̄ ∗|X, Y) δf δσ

Benchmark −2.755 2.077 0.236 −2.755 2.018 0.237
Non-learned kernel −2.800 0.763 0.015 −1.420 0.962 0.355
Learned kernel −2.800 0.672 0.008 −2.800 0.500 0.010

Fig. 9. Predicted volatility on the testing set for GBM. From left to right: linear kernel, Matern kernel (non-learned parameters) and Matern Kernel (learned parameters).

Fig. 10. GBM benchmark prediction. From left to right: volatility (linear kernel) and volatility (Matern kernel).

Fig. 11. From left to right: drift function, volatility function, sample trajectory, and sample increments of the OU process.

We compare the performance of the Matern kernel (11) family with the family of linear kernels [47] defined as

Klinear(x, y) = σ 2(x⊺y+ c) (14)

and parameterized by (σ , c) which are learned. Note that this kernel induces the Reproducing Kernel Hilbert Space of linear functions
and therefore is perfectly specified for GBM. The results are reported in Table 3. The linear kernel is able to both recover and predict
the volatility with or without learning the hyper-parameters, as it is perfectly specified for this problem. In contrast, without learning
the hyper-parameters, the Matérn kernel is unable to accurately predict the future, reverting to the prior mean 0. Learning the hyper-
parameters, however, enables the Matérn kernel to correctly predict future values. These results are illustrated in Fig. 9. We also observe
that in all cases, our proposed approach outperforms the Gaussian Process Regressor benchmark (see Fig. 10).

6.0.2. A failure case
We now present a case where our methodology fails because of a poor choice of prior. We consider the Ornstein–Uhlenbeck process

defined as

dXt = −µXtdt + σdWt Ornstein–Uhlenbeck (OU).

We discretize the process with parameters µ = −5 and σ = 1.0 and initial condition X0 = 1.0 using the Euler–Maruyama method
with a time discretization of ∆t = 0.001. One of the trajectories is illustrated in Fig. 11.
9

M. Darcy, B. Hamzi, G. Livieri et al. Physica D 444 (2023) 133583

(

C

s

w
M
p

7

W

Table 4
Results for the OU process.

Matérn kernel Linear kernel

L(f̄ ∗, σ̄ ∗|X, Y) δf δσ L(f̄ ∗, σ̄ ∗|X, Y) δf δσ

Benchmark −2.973 1.799 0.006 −2.977 0.212 0.006
Non-learned kernel −2.971 1.038 0.065 −2.957 0.510 0.011
Learned kernel −2.973 0.459 0.012 −2.978 1.066 0.013

Fig. 12. Prediction on the OU process with the Matern kernel. From left to right: benchmark prediction (drift), benchmark prediction (volatility), CGC prediction
drift), CGC prediction (volatility).

Fig. 13. Prediction on the OU process with the linear kernel. From left to right: benchmark prediction (drift), benchmark prediction (volatility), CGC prediction (drift),
GC prediction (volatility).

In this case, the drift is a linear function, and the volatility is a constant function. Hence a Matérn kernel prior is not perfectly
pecified. More precisely, the best prior for the volatility is a white noise kernel

Kwn(x, y) = σ 2δ(x− y).

Therefore, in this case, the benchmark method (Gaussian process regression) is not only better specified than our method, but it is also
optimal. We again use both the Matérn (11) and linear kernels (14). The results are presented in Table 4. In this case, the benchmark
always outperforms our computational graph completion approach in the recovery of the volatility. With a Matérn kernel our method
outperforms the benchmark, but with a perfectly specified linear kernel, the benchmark outperforms our method. Moreover, Fig. 12
shows that the Matérn kernel does not capture the overall shape of the drift and volatility even if the relative error is low compared
to the linear kernel (see Fig. 13). We do note, however our cross-validation method improves the performance.

These results illustrate that choosing a perfectly specified kernel can improve the performance of the proposed method. Therefore,
integrating prior knowledge such as the non-stationarity of the process into the choice of the prior can significantly improve
performance. However, these results also illustrate how learning the parameters of a general kernel (such as the Matérn kernel) can
yield similar performance to a well-specified kernel. A potential solution to this problem could be to learn a kernel which is the sum
of a mix of stationary and non-stationary kernels such as

Ksum(x, y) =
N∑
i=1

αiKi(x, y)

here the weights αi are learned. Learning the weights of a sum of kernels is a well-established problem in the area of Support Vector
achines (see, for example [51]). Future avenues of research could therefore focus on efficient learning of hyper-parameters for this
roblem.

. Experimental results: the effect of time discretization

We now examine the effect of time discretization. In all previous experiments, we observed the exact simulation of the trajectory.
e now consider the cases where the observations do not exactly match the dynamics. More precisely, we generate a trajectory (X)M
i i=1

10

M. Darcy, B. Hamzi, G. Livieri et al. Physica D 444 (2023) 133583

s

w
r
t

Table 5
Results for the exponential decay process for different time step ∆t observations.

Non optimized parameters Optimized parameters

L(f̄ ∗, σ̄ ∗|X, Y) δf δσ L(f̄ ∗, σ̄ ∗|X, Y) δf δσ

k = 1 −1.887 0.472 0.062 −1.887 0.889 0.033
k = 2 −1.872 0.669 0.299 −1.843 0.897 0.181
k = 3 −1.896 0.702 0.419 −1.888 0.881 0.415
k = 4 −1.871 0.886 0.505 −1.922 0.902 0.502
k = 5 37.778 0.805 0.370 −1.928 0.855 0.574
k = 6 −1.802 0.901 0.605 −1.928 0.982 0.590
k = 7 −0.356 0.880 0.641 −1.818 0.865 0.638
k = 8 −1.774 0.913 0.505 −1.496 0.913 0.228
k = 9 −1.044 0.878 0.249 −1.881 0.919 0.659
k = 10 −1.648 0.940 0.439 −1.883 0.952 0.695

Fig. 14. Exponential decay volatility process: prediction of the volatility for different values of k. From left to right: k = 1, 2, 5.

Fig. 15. Exponential decay volatility process: prediction of the drift for different values of k. From left to right: k = 1, 2, 5.

eparated by regular time steps ∆t . We then consider the subs-trajectories (Xik)Nik=1 for k = 1, 2, . . . , 10 where the indexes ik are
chosen such that (Xik)Nik=1 are separated by timesteps k × ∆t . This allows us to measure the impact of the discretization error on the
effectiveness of our method. A priori, we would expect that our method would perform more poorly as k grows larger, given that our
modeling assumption is no longer fulfilled exactly.

We consider both our method with the initial guess of parameters (as detailed in the benchmark Section 5.3) and with the optimized
version of parameters. We also choose a base λ which performs well for k = 1 and set λk = kλ for other values of k.

7.1. Exponential decay volatility

We first consider the exponential decay volatility process described by (12) with time discretization ∆t = 0.01. For each k, we set
N = 500 for both the training and test sets. The results for k are presented in Table 5 and illustrative examples are presented in Figs. 14
and 15. We note that the choice of the Matérn kernel for the drift function induces a large error. A better choice of the kernel (such as
the linear kernel discussed in Section 6) would yield a better performance.

7.2. Trigonometric process

We now consider the trigonometric process described by (13) with time discretization ∆t = 0.001. For each k, we set N = 500 for
both the training and test sets. The results for k are presented in Table 6 and illustrative examples are presented in Figs. 16 and 17.

In general, we note that, as expected, as k gets larger, our method has worse performance. Moreover, for values of k ̸= 1, our cross-
validation method does not perform as well, suggesting the need to adapt the cross-validation procedure to learning the parameter λ.
There are, however some exceptions, such k = 8, 9 for the exponential volatility process and k = 7, 9 for the trigonometric process
here one of the functions is better recovered. This suggests that a good choice of parameters via cross-validation leads to a good
ecovery even if the modeling assumption is incorrect, consistent with observations that cross-validation methods are somewhat robust
o model misspecification [52].
11

M. Darcy, B. Hamzi, G. Livieri et al. Physica D 444 (2023) 133583

8

p
S
g
m
d
r

p
b
c

a
v

t
t

D

i
f

Table 6
Results for the trigonometric process for different time step ∆t observations.

Non optimized parameters Optimized parameters

L(f̄ ∗, σ̄ ∗|X, Y) δf δσ L(f̄ ∗, σ̄ ∗|X, Y) δf δσ

k = 1 −3.675 0.259 0.093 −3.674 0.163 0.092
k = 2 −3.883 0.717 0.300 −3.807 0.792 0.299
k = 3 −3.729 0.702 0.419 −3.725 0.654 0.434
k = 4 −3.784 0.836 0.499 −3.798 0.848 0.495
k = 5 −4.027 0.904 0.587 −4.019 0.852 0.593
k = 6 −3.910 0.911 0.594 −3.942 0.952 0.597
k = 7 −3.909 0.954 0.636 −3.562 0.925 0.211
k = 8 −3.652 0.772 0.668 −3.930 0.767 0.669
k = 9 −3.939 0.880 0.657 −3.424 0.935 0.145
k = 10 −3.505 0.888 0.254 −3.926 0.880 0.705

Fig. 16. Trigonometric process: prediction of the volatility for different values of k. From left to right: k = 1, 2, 3.

Fig. 17. Trigonometric process: prediction of the drift for different values of k. From left to right: k = 1, 2, 5.

. Experimental results: discussion

We make the following observations regarding our results.
First, we observe that our method provides comparable or greater performance compared to simple kernel regression with hyper-

arameters optimized through the minimization of the log marginal likelihood. Which method is preferable depends on the underlying
DE. We observe that for SDEs with constant volatility functions, such as the Ornstein–Uhlenbeck process, the simple kernel regression
enerally outperforms our method as measured by the likelihood. This is likely due to the better recovery of the volatility as the
odeling assumption of the kernel regression (i.i.d. noise) better captures the true model (constant volatility). Nonetheless, our method
oes occasionally outperform kernel regression in predicting the drift of the SDE. Our method, however, notably outperforms kernel
egression for SDEs with non-constant volatility, such as the trigonometric process and the exponential volatility process.

Second, we observe that the randomized cross-validation algorithm for hyper-parameter optimization reliably improves the
erformance of our method. In all cases, the selected parameters have better performance compared to the initial guess, as measured
y the likelihood of the model. Moreover, as the Geometric Brownian Motion example illustrates, learning the parameters of the kernels
an enable ill-specified kernels to perform comparably to well-specified kernels.
We also observe that a better likelihood generally implies a better capture of the drift and volatility. Hence, while these quantities

re unobserved, better performance as measured by the likelihood generally implies that the model captures well both the drift and
olatility.
Finally, we note that as the observations increasingly depart from the true dynamics, our method performs more poorly. This suggests

he need for a better model for the discretization error term, either through learning the parameter λ or a better modeling assumption
han the i.i.d. Gaussian noise presented in Section 2.

eclaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing
nterests: Matthieu Darcy reports financial support was provided by Air Force Office of Scientific Research. Boumediene Hamzi reports
inancial support was provided by Air Force Office of Scientific Research. Houman Owhadi reports financial support was provided by Air
12

M. Darcy, B. Hamzi, G. Livieri et al. Physica D 444 (2023) 133583

F
f

D

A

2
(

A

A

A

Fig. 18. From left to right: drift function, volatility function, sample trajectory, and sample increments of the exponential volatility process.

Fig. 19. Predicted drift and volatility on the testing set for trajectory 1 of the exponential volatility process. From left to right: drift (non-learned kernel), volatility
(non-learned kernel), drift (learned kernel), volatility (learned kernel) .

Fig. 20. From left to right: drift function, volatility function, sample trajectory, and sample increments of the trigonometric process.

orce Office of Scientific Research. Matthieu Darcy reports financial support was provided by Beyond Limits. Houman Owhadi reports
inancial support was provided by Beyond Limits. Peyman Tavallali reports financial support was provided by Beyond Limits.

ata availability

Data will be made available on request.

cknowledgments

MD, BH, HO acknowledge partial support by the Air Force Office of Scientific Research, USA under MURI award number FA9550-
0-1-0358 (Machine Learning and Physics-Based Modeling and Simulation). MD, PT and HO acknowledge support from Beyond Limits
Learning Optimal Models) through CAST (The Caltech Center for Autonomous Systems and Technologies).

ppendix A. Additional plots

In this section, we provide additional plots of the results of the numerical experiments.

.1. Exponential volatility process

The following figures illustrate the results on the second trajectory of the exponential volatility process (see Fig. 18 and Fig. 19)

.2. Trigonometric process

The following figures illustrate the results of the first trajectory of the trigonometric process (see Fig. 20 and Fig. 21).
13

M. Darcy, B. Hamzi, G. Livieri et al. Physica D 444 (2023) 133583

a
a

T
c
t

i
f
w

N
d

w

w

I

Fig. 21. Predicted drift and volatility on the testing set for trajectory 1 of the trigonometric process. From left to right: drift (non-learned kernel), volatility (non-learned
kernel), drift (learned kernel), volatility (learned kernel) .

Appendix B. Gaussian Process Regression and Extension of [45, Page 306]

In this section, we give a very brief overview of Gaussian processes for regression. We suppose that the values of Y (X) are distributed
ccording to a Gaussian process, namely Y (X)

d
∼ GP(O,K). In particular, in the case of SDEs, given the data (X, Y), the predicted drift

nd diffusion for a new point x∗ are given by

f̄ (x∗) = K (x∗, X)K (X, X)−1Y

σ̄ (x∗) = K (x∗, x∗)− K (x∗, X)K (X, X)−1K (X, x∗)

he above expressions are valid in noisy observation with independent and identical Gaussian noise. We derive this distribution in the
ase where the observations are noisy with independent, but not necessarily identical, Gaussian noise; the proof is generalized from
he one presented in [45, 306].

Formally, suppose that we have at our disposal the noisy observations (Xn, Yn)1≤n≤N , where Yi = f (Xi) + Wi and the Wi are
ndependent but not necessarily identically distributed N (0, σ 2(Xi)) random variables. The problem is the identification of the unknown
unction f given these noisy observations. Set fi = f (Xi), so that f := (fi)1≤i≤N . In addition, set Y := (Yi)1≤i≤N . Observe that Y |f

d
∼ N (f ,Σ)

here (Σ)ij = δijσ
2(Xi), and assume that f

d
∼ N (0,K). Then, [45, Page 93],

p(Y) =
∫

p(Y |f)p(f)df = N (0,K + Σ).

ow, let C = K + Σ so that C ij = k(Xi, Xj)+σ 2
i δij. Denote Y N+1 = (Y1, . . . , YN+1), Y N = (Y1, . . . , YN). We wish to derive the conditional

istribution p(YN+1|Y N). First, observe that

p(Y N+1) = N (0, CN+1).

here CN+1 is the (N + 1)× (N + 1) with entries defined as previously for the vector Y N+1. We may partition the covariance matrix as

CN+1 =

(
CN K
K T c

)
here c = K (XN+1, XN+1) + σ 2

N+1 and K is the vector with entries K i = K (XN+1, Xi). Then p(YN+1|Y N) = N (m(XN), σ 2(XN)) and the
conditional mean and covariance are given by

m(XN+1) = K
T
C−1yN = K

T
(K + Σ)−1yN

σ 2(XN) = c − K
T
C−1K = c − K

T
(K + Σ)−1K .

Note that in our case, the observations actually of the form Yi = ∆tif (Xi) +Wi. The same proof holds with the slight modification
that the entries of the covariance matrix now become

C ij = ∆ti∆tjk(Xi, Xj)+ σ 2
i δij

K i = ∆tiK (XN+1, Xi)

which yields Eqs. (6) and (7).

Appendix C. Log-marginal likelihood for hyper-parameter optimization

In this section, we briefly present the log-marginal likelihood method for hyper-parameter optimization. The marginal log-likelihood
over the kernel parameters can be expressed as:

− log(p(Y |θ, X)) ∝
1
2
Y TK (X, X)−1Y + log(|K (X, X)|).

Therefore, the optimal parameters θ are obtained via the minimization of the function in the previous equation (with respect to θ).
n the case of noisy observations, the kernel K can be defined as

K (X , X) = K ′(X , X)+ δ(X , X)
1 2 1 2 1 2

14

M. Darcy, B. Hamzi, G. Livieri et al. Physica D 444 (2023) 133583

w

f

r
(

o
e

a

N
h

(

A
s

G
w

M

W

a

here K ′ is a standard kernel and δ is the white noise kernel defined as

δ(X1, X2) :=
{
c if X1 = X2,

0 otherwise,

where c is the noise level, a kernel parameter that must be optimized. It is important to note that this kernel can only account for a
constant level of noise, which is not the case for many SDEs.

Appendix D. Randomized cross-validation for hyper-parameter learning

In this section, we describe the general framework of Randomized cross-validation we use in our optimization.
The general problem is the following: we have a set of training data (X, Y) := {(Xi, Yi)}1≤i≤N and we are trying to recover a

unction f : X → Y . In particular, we assume that we have a class of functions S indexed by a set of parameters wp ∈ W ,
i.e. S := {f (· , wp) : wp ∈ W and f (· , wp) : X → Y }. Notice that in practice, this could be approximated via reproducing kernels as in
this paper or via neural networks. We assume that we have a method to find the optimal parameter w∗p ∈ W for a given training set of
data (X, Y). In our case, we assume that such a method involves the minimization of some loss function L(f (X, wp), Y) with respect to
wp, where L : Y×Y → R. Moreover, like in many Machine Learning (ML) algorithms, we assume that we have a set of hyper-parameters
θ ∈ Θ that affect the recovery of the optimal f̂ ∈ S. Such hyper-parameters θ can parametrize the function f̂ := f̂θ := f (· ;wp, θ),
egularize the loss function L (often through some prior distribution on the parameters wp) or affect the minimization of the loss L
such as the learning rate of a gradient descent). We summarize this point by saying that f̂ is recovered by minimizing Lθ .

In the present work, in order to recover the function f : X → Y , we apply the Robust Learning Algorithm, whose rationale is
explained in the following paragraph.

Robust learning algorithm via randomized cross-validation. Many ML algorithms are built upon minimizing a loss function L : Y×Y → R
ver the set of parameters (wp, θ) of a class of models f̂

(
· , wp; θ

)
. In other words, ideally, we can define the risk function R as the

xpected value of the loss function L with respect to the data probability density function p (x, y):

R
(
wp, θ

)
:= E(X,Y)∼p(x,y)

{
L

(
f̂ (X, wp; θ), Y

)}
(15)

nd then find the set of optimal parameters according to(
w∗p, θ

∗
)
:= argmin

wp,θ
R

(
wp, θ

)
. (16)

otice that, in this setup, by the assumption that one has access to p (x, y), there is no theoretical distinction between parameters and
yper-parameters.
However, in practice, one only sees a realization of (X, Y), namely D = {(X i, Yi)}i∈I . Therefore, it is impossible to use Eqs. (15) and

16). Moreover, in order to achieve generalization, in practice, wp is optimized by minimizing a loss function dependent on θ:

w∗p = argmin
wp

Lθ

(
f̂
(
X;wp, θ

)
, Y

)
t this point, the best parameters θ can be chosen via a cross-validation approach where the function f̂θ is evaluated on an unseen test
et (Xu, Yu):

R(θ) = L
(
f̂
(
Xu;w

∗

p, θ
)
, Yu

)
enerally, the optimization of hyper-parameters [48,53–57] is usually done on a prefixed number of cross validation sets. In this work,
e propose an approach that is not bound to a fixed number of cross-validation sets. Our algorithm can be summarized as follows:

(1) Partition the available data D = {(X i, Yi)}i∈I into a training subset DT = {(X i, Yi)}i∈T and a test subsets DU = {(X i, Yi)}i∈U ; the
two subsets are mutually exclusive.

(2) Randomly partition the training set DT into two mutually exclusive subsets of almost equal size: D∏
= {(X i, Yi)}i∈

∏
(T) and

D∏c = {(X i, Yi)}i∈
∏c (T). Here,

∏
(T) returns the first half of the random permutation of indices in T and

∏c
(T) returns the

second half of the same permutation.
(3) Train a ML model on D∏ and evaluate the random loss on D∏c representing a realization of the generalization error.
(4) Repeat steps (2) and (3) to optimize the expected loss over the random sets D∏c with respect to wp.
(5) Check the goodness of fit by evaluating the loss over DU .

ore precisely, the optimization problem is the following one:

θ∗ = argmin
θ

EΠ

{
RI−

∏ (
w̄p, θ

)}
s.t. w̄p = argmin

wp
R∏ (

wp, θ
)
.

here,

R∏ (
wp, θ

)
= EX,Y∼D∏ {

Lθ

(
f̂
(
X;wp, θ

)
, Y

)}
,

nd

R ∏ (
w , θ

)
= E ∏ {

L
(
f̂
(
X;w , θ

)
, Y

)}
.
I− p X,Y∼D c p

15

M. Darcy, B. Hamzi, G. Livieri et al. Physica D 444 (2023) 133583

I
n

E

e

b

w

n the previous Equations, EX,Y∼D∏ { . } means that the expected value is taken over the empirical distribution defined by D∏. A similar
otion applies to EX,Y∼D∏c { . }. Furthermore, EΠ { . }means that this expected value is taken over all permutations of the train set. Note

that the recovery of w̄p is done through the minimization of Lθ which we refer to as the train loss function, whereas the evaluation of
f̂
(
X;wp, θ

)
is done through L which we refer to as the test loss function. The Robust Learning Algorithm is presented here below in (1):

Algorithm 1 Robust Learning Algorithm
Require:

(1) Pick a model class f̂θ
(2) Pick an initial guess θ(0).
(3) Pick an active learning algorithm Al.
(4) Set S = φ, n = 0 and C = 0.

nsure: Partition the data D = {(xi, yi)}i∈I into two mutually exclusive training DT = {(xi, yi)}i∈T and test subsets DU = {(xi, yi)}i∈U .
while C = 0 do

n← n+ 1
while 1 ≤ j ≤ K do

j← j+ 1
Pick a random index permutation

∏
n (T) of T .

Divide the train set DT into D∏
n
and D∏c

n
.

Train f̂
(
X;wp, θ

(n−1)) on D∏
n
with respect to R∏

n

(
wp, θ

(n−1)) to obtain w̄p.
Evaluate ej = RI−

∏
n

(
w̄p, , θ

(n−1)) on D∏c
n
.

end while
Set RI−

∏
n
=

1
K

∑K
j=1 ej.

Set S ← S ∪
{(

θ(n−1), RI−
∏

n

(
w̄p, , θ

(n−1)))}.
if Al (S) has converged then

C = 1(
w∗p, θ

∗
)
=

(
w̄p, , θ

(n−1)).
else if Al (S) has not converged then

θ(n)
= Al (S)

end if
end while
Check the loss over DU .

In particular, notice that RI−
∏

n
=

1
K

∑K
j=1 ej is a (noisy) approximation of

EX,Y∼D∏c

{
L

(
f̂
(
X;wp, θ

)
, Y

)}
.

Appendix E. Extension to the multivariate case

We now examine the case where the SDE is multi-dimensional. In such a case

dX t = f (X t)dt + σ(X t)dW t

where X t ∈ Rd, f : Rd
↦→ Rd, σ : Rd

↦→ Rd×m and W t = (W i
t)i≤m is a standard multivariate Wiener process.

For simplicity, we place independent GP priors on each dimension, which is equivalent to using a matrix-valued kernel with diagonal
ntries:

K (x, y) =
(
K1(x, y) 0

0 K2(x, y)

)
More generally, we may consider matrix-valued kernels with non-zero off-diagonals, but the use of diagonal matrices is practical

ecause it makes all optimization problems independent for each dimension. Then the problem leads to d equations:

dX i
t = f (X t)idt +

d∑
j=1

σi,j(X t)dW
j
t

hich can all be optimized independently. The optimal value of f̄ (X t) conditioned on σ̄ is given by the posterior mean equation:

f̄ (Xn)i = E[f (Xn)i] = K i(Xn,X)Λ(ΛK i(X,X)Λ+Σ i
+ λI)−1Y i

where Σ i
=

∑
j Σ

j is the sum of the (diagonal) matrices with entries Σ
j
k,k = (σ̄(X k)j)2∆tk, 1 ≤ k ≤ N, 1 ≤ j ≤ d. On the other hand,

the MAP estimate for can be computed jointly for all entries of the matrix σ i with entries σ i
k as

argmin
i

(Y i
−Λf (σ)i)⊺(Σ i

+ λI)−1(Y i
−Λf (σ)i)+

N∑
ln

(
∆tk

d∑
(σ i

k)
2
+ λ

)
+

d∑
f (σ)i

⊺
K i(X,X)−1f (σ)i +

d∑
σi⊺Gi(X,X)−1σi.
σ k=1 i=1 i=1 i=1

16

M. Darcy, B. Hamzi, G. Livieri et al. Physica D 444 (2023) 133583
Additional assumptions can be made regarding the structure of the noise values, such as assuming that the noise is separate across
all dimensions (i.e., σ is a diagonal matrix) or that the diffusion function σ is identical across all dimensions (i.e., σ is a diagonal matrix
with identical values along the diagonals).

References

[1] Houman Owhadi, Computational graph completion, Res. Math. Sci. 9 (27) (2022).
[2] Holger Kantz, Thomas Schreiber, Nonlinear Time Series Analysis, Cambridge University Press, USA, 1997.
[3] Martin Casdagli, Nonlinear prediction of chaotic time series, Physica D 35 (3) (1989) 335–356.
[4] Ashesh Chattopadhyay, Pedram Hassanzadeh, Krishna V. Palem, Devika Subramanian, Data-driven prediction of a multi-scale Lorenz 96 chaotic system using a

hierarchy of deep learning methods: Reservoir computing, ANN, and RNN-LSTM, 2019, CoRR, arXiv:1906.08829.
[5] Steven L. Brunton, Joshua L. Proctor, J. Nathan Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proc.

Natl. Acad. Sci. 113 (15) (2016) 3932–3937.
[6] Jaideep Pathak, Zhixin Lu, Brian R. Hunt, Michelle Girvan, Edward Ott, Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents

from data, Chaos 27 (12) (2017) 121102.
[7] A. Nielsen, Practical Time Series Analysis: Prediction with Statistics and Machine Learning, O’Reilly Media, 2019.
[8] H. Abarbanel, Analysis of Observed Chaotic Data, in: Institute for Nonlinear Science, Springer New York, 2012.
[9] David Kleinhans, Rudolf Friedrich, Quantitative estimation of drift and diffusion functions from time series data, in: Joachim Peinke, Peter Schaumann, Stephan

Barth (Eds.), Wind Energy, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 129–133.
[10] Cedric Archambeau, Dan Cornford, Manfred Opper, John Shawe-Taylor, Gaussian process approximations of stochastic differential equations, in: Neil D. Lawrence,

Anton Schwaighofer, Joaquin Quiñonero Candela (Eds.), Gaussian Processes in Practice, in: Proceedings of Machine Learning Research, vol. 1, PMLR, Bletchley
Park, UK, 2007, pp. 1–16.

[11] Cagatay Yildiz, Markus Heinonen, Jukka Intosalmi, Henrik Mannerstrom, Harri Lahdesmaki, Learning stochastic differential equations with Gaussian processes
without gradient matching, in: 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing, MLSP, 2018, pp. 1–6.

[12] Saba Infante, César Luna, Luis Sánchez, Aracelis Hernández, Approximations of the solutions of a stochastic differential equation using Dirichlet process mixtures
and Gaussian mixtures, Stat. Optim. Inf. Comput. 4 (4) (2016) 289–307.

[13] Noura Dridi, Lucas Drumetz, Ronan Fablet, Learning stochastic dynamical systems with neural networks mimicking the Euler-Maruyama scheme, 2021, CoRR,
arXiv:2105.08449.

[14] S. Siegert, R. Friedrich, J. Peinke, Analysis of data sets of stochastic systems, Phys. Lett. A 243 (5–6) (1998) 275–280.
[15] Yu Klimontovich, The reconstruction of the Fokker-Planck and master equations on the basis of experimental data: H-theorem and S-theorem, Int. J. Bifurcation

Chaos 3 (1993) 113.
[16] Rudolf Friedrich, Joachim Peinke, Muhammad Sahimi, M. Reza Rahimi Tabar, Approaching complexity by stochastic methods: From biological systems to

turbulence, Phys. Rep. 506 (5) (2011) 87–162.
[17] Felix Dietrich, Alexei Makeev, George Kevrekidis, Nikolaos Evangelou, Tom Bertalan, Sebastian Reich, Ioannis G. Kevrekidis, Learning effective stochastic

differential equations from microscopic simulations: combining stochastic numerics and deep learning, 2021, arXiv:2106.09004.
[18] Manfred Opper, Variational inference for stochastic differential equations, Annal. Phys. 531 (3) (2019) 1800233.
[19] Rob Hyndman, G. Athanasopoulos, Forecasting: Principles and Practice, third ed., OTexts, Australia, 2021.
[20] Yifan Chen, Bamdad Hosseini, Houman Owhadi, Andrew M. Stuart, Solving and learning nonlinear PDEs with gaussian processes, J. Comput. Phys. (2021).
[21] Felipe Cucker, Steve Smale, On the mathematical foundations of learning, Bull. Amer. Math. Soc. 39 (2002) 1–49.
[22] J. Bouvrie, B. Hamzi, Balanced reduction of nonlinear control systems in reproducing kernel Hilbert space, in: Proc. 48th Annual Allerton Conference on

Communication, Control, and Computing, 2010, pp. 294–301, https://arxiv.org/abs/1011.2952.
[23] B. Haasdonk, B. Hamzi, G. Santin, D. Wittwar, Greedy kernel methods for center manifold approximation, in: Proc. of ICOSAHOM 2018, International Conference

on Spectral and High Order Methods, no. 1, 2018, https://arxiv.org/abs/1810.11329.
[24] B. Haasdonk, B. Hamzi, G. Santin, D. Wittwar, Kernel methods for center manifold approximation and a weak data-based version of the center manifold theorems,

Physica D (2021).
[25] P. Giesl, B. Hamzi, M. Rasmussen, K. Webster, Approximation of Lyapunov functions from noisy data, J. Comput. Dyn. (2019) https://arxiv.org/abs/1601.01568.
[26] Andreas Bittracher, Stefan Klus, Boumediene Hamzi, Péter Koltai, Christof Schütte, Dimensionality reduction of complex metastable systems via kernel

embeddings of transition manifolds, 2019, https://arxiv.org/abs/1904.08622.
[27] Boumediene Hamzi, Fritz Colonius, Kernel methods for the approximation of discrete-time linear autonomous and control systems, SN Appl. Sci. 1 (7) (2019)

1–12.
[28] Stefan Klus, Feliks Nüske, Boumediene Hamz, Kernel-based approximation of the Koopman generator and Schrödinger operator, Entropy 22 (2020) https:

//www.mdpi.com/1099-4300/22/7/722.
[29] Stefan Klus, Feliks Nüske, Sebastian Peitz, Jan-Hendrik Niemann, Cecilia Clementi, Christof Schütte, Data-driven approximation of the Koopman generator: Model

reduction, system identification, and control, Physica D 406 (2020) 132416.
[30] Romeo Alexander, Dimitrios Giannakis, Operator-theoretic framework for forecasting nonlinear time series with kernel analog techniques, Physica D 409 (2020)

132520.
[31] Andreas Bittracher, Stefan Klus, Boumediene Hamzi, Peter Koltai, Christof Schutte, Dimensionality reduction of complex metastable systems via kernel

embeddings of transition manifold, 2019, https://arxiv.org/abs/1904.08622.
[32] Jake Bouvrie, Boumediene Hamzi, Empirical estimators for stochastically forced nonlinear systems: Observability, controllability and the invariant measure, in:

Proc. of the 2012 American Control Conference, 2012, pp. 294–301, https://arxiv.org/abs/1204.0563v1.
[33] Jake Bouvrie, Boumediene Hamzi, Kernel methods for the approximation of nonlinear systems, SIAM J. Control Optim. (2017) https://arxiv.org/abs/1108.2903.
[34] Jake Bouvrie, Boumediene Hamzi, Kernel methods for the approximation of some key quantities of nonlinear systems, J. Comput. Dyn. 1 (2017) http:

//arxiv.org/abs/1204.0563.
[35] Boumediene Hamzi, Christian Kuehn, Sameh Mohamed, A note on kernel methods for multiscale systems with critical transitions, Math. Methods Appl. Sci. 42

(3) (2019) 907–917.
[36] Gabriele Santin, Bernard Haasdonk, Kernel methods for surrogate modeling, 2019, https://arxiv.org/abs/1907.105566.
[37] Boumediene Hamzi, Houman Owhadi, Learning dynamical systems from data: A simple cross-validation perspective, part I: Parametric kernel flows, Physica D

421 (2021) 132817.
[38] Jonghyeon Lee, Edward De Brouwer, Boumediene Hamzi, Houman Owhadi, Learning dynamical systems from data: A simple cross-validation perspective, part

III: Irregularly-sampled time series, 2021.
[39] H. Owhadi, G.R. Yoo, Kernel flows: From learning kernels from data into the abyss, J. Comput. Phys. 389 (2019) 22–47.
[40] Boumediene Hamzi, Houman Owhadi Romit Maulik, Simple, low-cost and accurate data-driven geophysical forecasting with learned kernels, Proc. R. Soc. Lond.

Ser. A Math. Phys. Eng. Sci. 477 (2252) (2021).
[41] Sai Prasanth, Ziad S. Haddad, Jouni Susiluoto, Amy J. Braverman, Houman Owhadi, Boumediene Hamzi, Svetla M. Hristova-Veleva, Joseph Turk, Kernel flows to

infer the structure of convective storms from satellite passive microwave observations, 2021, preprint.
[42] Jouni Susiluoto, Amy Braverman, Philip G. Brodrick, Boumediene Hamzi, Maggie Johnson, Otto Lamminpaa, Houman Owhadi, Clint Scovel, Joaquim Texeira,

Michael Turmon, Radiative transfer emulation for hyperspectral imaging retrievals with advanced kernel flows-based Gaussian process emulation, 2021, preprint.
[43] M. Darcy, B. Hamzi, J. Susiluo, A. Braverman, H. Owhadi, Learning dynamical systems from data: a simple cross-validation perspective, part II: nonparametric

kernel flows, 2021, Preprint.
[44] H. Risken, H. Haken, The Fokker-Planck Equation: Methods of Solution and Applications Second Edition, Springer, 1989.
17

http://refhub.elsevier.com/S0167-2789(22)00287-1/sb1
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb2
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb3
http://arxiv.org/abs/1906.08829
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb5
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb5
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb5
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb6
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb6
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb6
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb7
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb8
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb9
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb9
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb9
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb10
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb10
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb10
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb10
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb10
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb11
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb11
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb11
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb12
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb12
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb12
http://arxiv.org/abs/2105.08449
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb14
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb15
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb15
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb15
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb16
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb16
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb16
http://arxiv.org/abs/2106.09004
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb18
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb19
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb20
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb21
https://arxiv.org/abs/1011.2952
https://arxiv.org/abs/1810.11329
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb24
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb24
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb24
https://arxiv.org/abs/1601.01568
https://arxiv.org/abs/1904.08622
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb27
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb27
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb27
https://www.mdpi.com/1099-4300/22/7/722
https://www.mdpi.com/1099-4300/22/7/722
https://www.mdpi.com/1099-4300/22/7/722
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb29
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb29
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb29
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb30
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb30
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb30
https://arxiv.org/abs/1904.08622
https://arxiv.org/abs/1204.0563v1
https://arxiv.org/abs/1108.2903
http://arxiv.org/abs/1204.0563
http://arxiv.org/abs/1204.0563
http://arxiv.org/abs/1204.0563
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb35
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb35
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb35
https://arxiv.org/abs/1907.105566
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb37
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb37
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb37
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb38
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb38
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb38
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb39
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb40
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb40
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb40
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb41
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb41
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb41
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb42
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb42
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb42
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb43
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb43
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb43
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb44

M. Darcy, B. Hamzi, G. Livieri et al. Physica D 444 (2023) 133583
[45] C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.
[46] Jorge Nocedal, Stephen J. Wright, Numerical Optimization, second ed., Springer, New York, NY, USA, 2006.
[47] Carl Edward Rasmussen, Christopher K.I. Williams, Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning), The MIT Press,

2005.
[48] Jasper Snoek, Hugo Larochelle, Ryan P. Adams, Practical Bayesian optimization of machine learning algorithms, 2012, arXiv:1206.2944.
[49] Bayesian optimization with skopt, 2021, https://scikit-optimize.github.io/stable/auto_examples/bayesian-optimization.html. (Accessed 7 September 2021).
[50] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine learning in Python, J. Mach. Learn. Res. 12 (2011) 2825–2830.
[51] Gert Lanckriet, Nello Cristianini, Peter Bartlett, Laurent Ghaoui, Michael Jordan, Learning the kernel matrix with semi-definite programming, J. Mach. Learn. Res.

5 (2002) 323–330.
[52] Yifan Chen, Houman Owhadi, Andrew Stuart, Consistency of empirical Bayes and kernel flow for hierarchical parameter estimation, Math. Comp. (2021).
[53] James Bergstra, Rémi Bardenet, Yoshua Bengio, Balázs Kégl, Algorithms for hyper-parameter optimization, in: J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira,

K.Q. Weinberger (Eds.), Advances in Neural Information Processing Systems, vol. 24, Curran Associates, Inc., 2011.
[54] James Bergstra, Yoshua Bengio, Random search for hyper-parameter optimization, J. Mach. Learn. Res. 13 (null) (2012) 281–305.
[55] Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, Sequential model-based optimization for general algorithm configuration, in: Carlos A. Coello Coello (Ed.),

Learning and Intelligent Optimization, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 507–523.
[56] Dougal Maclaurin, David Duvenaud, Ryan P. Adams, Gradient-based hyperparameter optimization through reversible learning, 2015.
[57] Luca Franceschi, Michele Donini, Paolo Frasconi, Massimiliano Pontil, Forward and reverse gradient-based hyperparameter optimization, 2017, arXiv:1703.01785.
18

http://refhub.elsevier.com/S0167-2789(22)00287-1/sb45
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb46
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb47
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb47
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb47
http://arxiv.org/abs/1206.2944
https://scikit-optimize.github.io/stable/auto_examples/bayesian-optimization.html
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb50
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb50
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb50
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb51
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb51
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb51
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb52
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb53
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb53
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb53
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb54
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb55
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb55
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb55
http://refhub.elsevier.com/S0167-2789(22)00287-1/sb56
http://arxiv.org/abs/1703.01785

	One-shot learning of stochastic differential equations with data adapted kernels
	Introduction
	On the kernel methods to forecasting time series
	On the learning of Stochastic Differential Equations (SDEs)
	Outline of the article

	Statement of the problem and proposed solution
	The Computational Graph Completion problem

	MAP estimator
	Recovery of f
	Recovery of σ
	Minimization of L
	Initial condition
	Extension to the multivariate case

	Learning the kernels and the hyperparameters
	Motivation
	Methodology
	The active learning algorithm

	Experimental results
	Metrics
	Choice of kernels
	Benchmarks
	Exponential decay volatility
	Trigonometric process
	Benchmark comparison

	Experimental results: a comparison between perfectly specified and non perfectly specified kernels
	Overcoming non perfectly specified kernels
	A failure case

	Experimental results: the effect of time discretization
	Exponential decay volatility
	Trigonometric process

	Experimental results: discussion
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A. Additional Plots
	Exponential volatility process
	Trigonometric process

	Appendix B. Gaussian Process Regression and Extension of [Page 306]bishop2006pattern
	Appendix C. Log-marginal likelihood for hyper-parameter optimization
	Appendix D. Randomized cross-validation for hyper-parameter learning
	Appendix E. Extension to the multivariate case
	References

