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We describe how Uncertainty Quantification (UQ) is currently ill-posed. We then describe the LANL 
and CalTech opening gambit, Optimal Uncertainty Quantification (OUQ), to resolve this situation and 
develop a science of UQ. When applied to a problem of seismic safety of structures, we show how 
the OUQ framework produces rigorous guarantees on the probability of failure of the structure as a 
function of the magnitude of the earthquake size. Finally, we mention that this framework can be used 
to develop a framework for UQ for modeling, which, along with a theory of validation, certification, and 
extrapolation, produces a rigorous scientific theory of certification without testing.

While everyone agrees that Uncertainty Quantification (UQ) is a 
fundamental component of objective science, it appears not only 

that there is no universally accepted notion of the objectives of UQ, 
there is also no universally accepted framework for the communication 
of UQ results. In particular, most people do not understand what UQ is, 
and among those that do, there is much disagreement. This dilemma 
has its origins, in part, in the fact that UQ, as it currently stands, has 
all the symptoms of an ill-posed problem–e.g. Oreskes et al. [1] assert 
that validation is impossible, and [2,3] describe rigorous methods 
for it. Moreover, often the appropriate problem is not validation but 
certification–using a model to assess the performance of a physical 
system.

Indeed, it appears that UQ is currently at the stage where probability 
theory was before its rigorous formalization by Kolmogorov. In an effort 
to resolve this situation we seek foundations for UQ. For example, in 
linear algebra we have vector spaces, linear transformations, the Jordan 
form, the spectral theorem, and the QR algorithm. Calculus has integrals 
and derivatives and the fundamental theorem of calculus. Linear 
Programming has linear programming problems and the fundamental 
theorems of linear programming, giving rise to the simplex algorithm. If 
UQ is going to be a science, then the following questions naturally come 
to mind:

• What are the fundamental objects of UQ?

• What are the fundamental theorems of UQ?

One important application of these ideas for the modeling community is: 
“What are the fundamental theorems of validation and certification?”

In an effort to resolve this situation, LANL has teamed with the 
Predictive Science Academic Alliance Program (PSAAP) at CalTech in 
an opening gambit. Our approach, which we call Optimal Uncertainty 
Quantification (OUQ), is very simple and follows John Dewey’s [4] 
assertions that “a problem well formulated is half solved” and “without 
a problem, there is blind groping in the dark.” That is, quantitatively 
express the problem to be solved, while quantitatively stating the 
assumptions being made. The main results of [5] describe OUQ 
optimization problems that, if solved, provide rigorous optimal solutions 
to UQ problems. Moreover, we describe finite dimensional reductions for 
a large class of these OUQ Optimization Problems. With the advent of 
ever more powerful computing platforms, such as the upcoming exascale 
systems, solutions to many of these OUQ problems may now be within 
our reach. Nick Hengartner at LANL tells us that this situation is similar 
to that experienced by the Bayesians. Namely, the Bayesian framework 
was not used until computers were powerful enough to compute the 
posteriors.

Let us apply the OUQ framework to the problem of the Seismic 
Safety Assessment of the structure in Fig. 1. As is standard in the 
seismic engineering community, we say that the structure is safe if 
the displacements of all the members of the truss system are less 
than the corresponding yield strains. Moreover, we use a standard 
model of the response of the truss system to ground acceleration and 
assume this model to be a correct representation of reality. When an 
earthquake hits at a fixed distance R and magnitude M on the Richter 
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scale, we represent the impulse structure 
of the earthquake in a standard way 
as a series of boxcar impulses with the 
magnitudes and timings of the boxcars 
being random variables. Moreover, the 
transfer function, defined by the structure 
of the earth, is also defined by some 
random components. The result of the 
earthquake is that the truss structure 
responds according to the response model, 
with the ground acceleration as input; the 
ground acceleration is determined by the 
random transfer function convolved with the 
random impulse model of the earthquake. 
So far, this is the standard methodology. 
Where our approach differs is that in the 
standard approach the random components 
are specified in terms of a large set of well-
recognized distributions, such as Gaussians, 
by specifying their means and variances. We 

instead specify an independence structure and some simple bounds on 
the ranges and first moments of these random inputs. Figure 2 describes 
the optimal probability of failure as a function of the magnitude M for 
such an assumption set. The curve does not represent the probability 
of failure of the system, but an optimal upper bound on the probability 
of failure given this simple set of assumptions. Namely, there is a 
random model that satisfies these same assumptions but for which its 
probability of failure is at the value of this curve. The lower optimal 
bound is identically zero.

Now you may say “I don't like your assumptions!”—tell me what 
assumptions you do like and we will input them into our methodology 
and provide you with an optimal estimate of the probability of failure.

So how does this affect the modeling community? In [6] we are 
using this methodology to develop a comprehensive framework for 
uncertainty quantification for modeling, which includes, in addition to a 
comprehensive framework for validation, certification, and extrapolation, 
a scientifically rigorous approach to the problem of certification without 
testing. 

Fig. 1. Truss structure
Fig. 2. Optimal upper bound on probability of failure –given the assumptions 


