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Abstract

In previous work, we showed that learning dynamical system [21] with kernel methods can
achieve state of the art, both in terms of accuracy and complexity, for predicting climate/weather
time series [20], when the kernel is also learned from data. While the kernels considered in pre-
vious work were parametric, in this follow-up paper, we test a non-parametric approach and tune
warping kernels (with kernel flows, a variant of cross-validation) for learning prototypical dynamical
systems.

1 Introduction
The ubiquity of time series in many domains of science has led to the development of diverse statis-
tical and machine learning forecasting methods [22, 10, 11, 9, 38, 27, 1].

Amongst various learning-based approaches, kernel-based methods hold potential for consider-
able advantages in terms of theoretical analysis, numerical implementation, regularization, guaran-
teed convergence, automatization, and interpretability [12, 30]. Indeed, reproducing kernel Hilbert
spaces (RKHS) [13] have provided strong mathematical foundations for analyzing dynamical sys-
tems [17, 14, 15, 4, 18, 23, 24, 2, 25, 6, 7, 8, 19] and surrogate modeling (cf. [43] for a survey). Yet,
the accuracy of these emulators depends on the kernel, and the problem of selecting a good kernel
has received less attention. Recently, the experiments by Hamzi and Owhadi [21] show that when
the time series is regularly sampled, or is irregularly sampled [26], kernel flows [29] (an RKHS tech-
nique) can successfully reconstruct the dynamics of some prototypical chaotic dynamical systems.
KFs have subsequently been applied to complex, large-scale systems, including climate data [28, 46].
A KFs version for SDEs is at [37].

In previous work [21, 26, 28], we used the parametric variant of kernel flows [29] (KF) to tune
the kernel used to learn chaotic dynamical systems.

Given a family of kernels parameterized by α , and some input/output data, KF (in its original
form [29]) finds a good α (a good kernel) by minimizing (with respect to α , via stochastic gradient
descent) the loss

ρ = E
[
∥u− v∥2

Kα
/∥u∥2

Kα

]
(1)
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where ∥ · ∥Kα
is the RKHS norm defined by Kα , u is interpolates a random subset of the data, v

interpolates a random subset of the previous subset of half-size and E represents the average with
respect to subsampling. KF is a variant of cross-validation in the sense that it operates under the
premise that a kernel must be good if the number of points used to interpolate the data can be halved
without significant loss in accuracy. The method presented in [29] uses the regression relative error
between two interpolants (measured in the RKHS norm of the kernel) as the quantity to minimize.

In this paper, we use the non-parametric version of KFs with this metric along a second metric
based on the Maximum Mean Discrepancy (MMD) that is computed from two different samples
of a time series or between a sample and a subsample of half-length that was introduced in [21].
The non-parametric version of KFs is essentially a method of kernel warping where samples are
displaced along the direction that minimizes a certain metric which in our current work corresponds
to the relative error in [29] or the metric based on the MMD introduced in [21].

Kernels of the form K(φ(x),φ(x′)) defined by a warping of the space φ have been employed
in numerical homogenization [36] (where they enable upscaling with non separated scales), and in
spatial statistics [41, 40, 45, 47] where they enable the nonparametric estimation of nonstationary
and anisotropic spatial covariance structures.

Parametric vs. non-parametric. Statistical inference has an inherent tradeoff between robust-
ness and accuracy: these are two conflicting requirements [34, 35, 32, 31, 3]. Indeed a model with
a small number of parameters promotes accuracy when well-specified at the cost of a lack of ro-
bustness to misspecification. Conversely, a model with a large number of parameters is less likely
to be misspecified at the cost of a loss of accuracy compared to a well-specified model with a small
number of parameters. We observe this tradeoff when comparing the results of the non-parametric
variants of KF to those obtained from parametric variants. [21] observed highly accurate learning of
the underlying dynamical systems by using a parametric family of kernels able to capture long and
short-range correlations. The warping kernels employed here do not have such information but are
expressive to capture it.

Our contributions. The main contributions of this paper are as follows.

• We show that by using the Gaussian kernel and initially choosing the variance that characterizes
it, combining (non-parametric) KF with the kriging of the vector field improves the accuracy
of the prediction of chaotic time series.

• Training KFs based on the MMD as introduced in [21] gives better results than training KFs
with the relative error in [29].

• The choice of the step size in training is important. If it’s too large, the relative error diverges.
If it’s too small, convergence will be very slow.

Structure of the paper. The remainder of the manuscript is structured as follows. We describe
the problem in Section 2 and describe two cross-validation metrics to learn the parameters of the
kernel used for approximating the vector field of the dynamical system. In section 3, we investigate
the performance of these methods for the Bernoulli map, the Hénon map, and the Lorenz system.

2 The problem and its proposed cross-validation solutions
Let x1, . . . ,xk, . . . be a time series in Rd . Our goal is to forecast xn+1, . . . ,xn+m given the observation
of x1, . . . ,xn. We work under the assumption that this time series can be approximated by a solution
of a dynamical system of the form

zk+1 = f †(zk, . . . ,zk−τ†+1), (2)

where τ† ∈N∗ and f † may be unknown. Given τ ∈N∗, the approximation of the dynamical can then
be recast as that of interpolating f † from pointwise measurements

f †(Xk) = Yk for k = 1, . . . ,N, (3)

with Xk := (xk+τ−1, . . . ,xk), Yk := xk+τ and N = n− τ . Given a reproducing kernel Hilbert space1 of
candidates H for f †, and using the relative error in the RKHS norm ∥ · ∥H as a loss, the regression

1A brief overview of RKHSs is given in part I of this paper [21].
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of the data (Xk,Yk) with the kernel K associated with H provides a minimax optimal approximation
[33] of f † in H . This regressor (in the presence of measurement noise of variance λ > 0) is

f (x) = K(x,X)(K(X ,X)+λ I)−1Y, (4)

where X = (X1, . . . ,XN), Y = (Y1, . . . ,YN), k(X ,X) is the N ×N matrix with entries k(Xi,Xi), k(x,X)
is the N vector with entries k(x,Xi) and I is the identity matrix. This regressor has also a natural
interpretation in the setting of Gaussian process (GP) regression: (i.) (4) is the conditional mean of
the centered GP ξ ∼N (0,K) with covariance function K conditioned on ξ (Xk) =Yk +

√
λZk where

the Zk are centered i.i.d. normal random variables.
Evidently, the accuracy of the proposed approach depends on the kernel K, and one of our goals

is to also learn that kernel from the data (Xk,Yk) with Kernel Flows (KF) [29].
Since the motivation of learning a dynamical system from data is not necessarily about only

making predictions but also about emulating the qualitative behaviour of the dynamical systems, we
also use a metric based on the Maximum Mean Discrepancy (MMD) to train KFs [21]. The MMD
[16] is a distance on the space of probability measures with a representer theorem for empirical
distributions which we recall in the appendix. Our strategy for learning the kernel K will then simply
be to minimize the MMD

ρMMD = EMMD(S1,S2), (5)

between two different samples2, S1 = xσ1 , · · · ,xσm and S2 = xµ1 , · · · ,xµm , of the time series (E repre-
sents, a possibly approximated, average with respect to the subsampling).

2.1 Non-parametric KFs
Write X := (X1, . . . ,XN) and Y := (Y1, . . . ,YN) for the input/output training data. Our goal is to learn
a kernel of the form

Kφ (x,x′) = K(φ(x,1),φ(x′,1)) , (6)

where K is a standard kernel (e.g. Gaussian or Matérn kernels) and φ maps the input space into itself.
The warping of the input space φ satisfies the following ODE{

φ̇(x, t) = v(φ(x, t), t)
φ(x,0) = x

(7)

with
v(x, t) = Γ(x,q)Γ(q,q)−1q̇, (8)

and
q̇ =−∇

[
ρ(q)

]
, (9)

where q corresponds to position variables in X N started from q(0) = X = (X1, · · · ,XN), Γ is an
operator/vector-valued kernel, Γ(q,q) is an N ×N matrix with entries Γ(qi,q j), Γ(x,q) is a 1×N
vector with entries Γ(x,qi), and ρ is the kernel flow loss (possibly randomized through-subsampling)
(1) or (5) associated with the input/output data (q,Y ).

Using an explicit Euler scheme to integrate (7) and regularizing with a nugget λ > 0 leads to an
iteration of the form

φn+1(x) = φn(x)+ εvn(φn(x)). (10)

with φ0(x)= x. Writing X =(X1, . . . ,XN) for the training points and qn := φn(X) :=(φn(X1), . . . ,φn(XN)),
the discretized equations take the form

qn+1 = qn − ε∇ρ(qn) (11)

and
vn(x) = Γ(x,qn)

(
Γ(qn,qn)+λ I

)−1
(qn+1 −qn)/ε (12)

Note that ρ(qn) is the kernel flow loss (1) or (5) associated with the input/output data (qn,Y )
where the averaging operation E can be approximated (via Monte-Carlo sampling from the uniform
distribution without replacement) using a finite number of subsamples (possibly reduced to one per
iteration in n).

2One could also consider the MMD between a sample S1 of size m and a subsample of S1 of size m/2.
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Note also that the proposed (Kernel Flow) algorithm produces a flow φn (randomized through
a sampling of the training data) in the input space, a (stochastic) dynamical system K(φn(x),φn(y))
in kernel space and a (stochastic) dynamical system qn in input space. Since learning becomes
equivalent to integrating a dynamical system, it does not require back-propagation nor guessing the
architecture of the network, which enables the construction of very deep networks and the exploration
of their properties.

3 Numerical experiments
We now numerically investigate the efficacy of the approach described in the previous section in
learning chaotic dynamical systems.

3.1 Example: Bernoulli map
We consider the Bernoulli dynamical system defined by

x(k+1) = 2x(k) mod 1. (13)

For training, we use a 200 point trajectory with x0 = π/3. We choose both K and Γ to be the
Gaussian kernel (K = Γ)

K(x,y) = exp(−||x− y||2

σ2 ). (14)

We set σ2 to the average squared distance between all training points and the regularization
(nugget) to λ = 10−5. For testing we use three trajectories with initial values x0 = 0.1,0.99,π/10.
We generate 500 points from each trajectory and measure the RMSE. The RMSE for each of the
above initialization are denoted R1,R2,R3. Our baseline is Kernel Regression with the kernel K. We
first train Kernel Flows non-parametric (with ρ loss function) for 100000 iterations with learning rate
ε = 2×10−4. The learning rate ε must be chosen small enough so that the explicit Euler scheme (11)
is stable and the flow of the dynamical system is averaged through subsampling and large enough so
that the discretization remains computationally tractable (an adaptive integrator may be used here to
adjust ε to the integration of the potential flow of ρ(q)). At inference time, we set λ = 5×10−3. We
set the batch size to Nb = 100 (50% of the training set).

The results are presented in table 1. We put the change compared to the baseline in parentheses
(the baseline is presented in the first line) with the best result highlighted. We repeat the experiment
with a larger training set of 800 points. The batch size is set to Nb = 200 (25% of the training set).
The results are recorded in table 2. We also increase the training iterations to 500000 with a lower
learning rate of ε = ×10−4. Finally, we run the same experiment with the ρMMD loss function. We
train the kernel over 50000 iterations, with a training size of 800 (Nb = 200) and a learning rate of
ε = 1× 10−5. This numerical experiment illustrates how the ρMMD can achieve better results with
fewer iterations. Figure 1 illustrates the time dynamics of the first trajectory (for R2 and R3, see
figure 9 in the appendix).

We also illustrate the deformation of the input space X by the flow function φt for different values
of t in figure . We observe that in this simple 1-dimensional case, the flow rotates the data round the
x axis(figure 2), which amounts to learning to separate between the two maps:

T (x) =

{
2x, if 0 ≤ x < 1

2
2x−1, 1

2 ≤ x ≤ 1.
(15)

Finally, we illustrate the convergence properties of both loss functions in figure 3. We observe that
while both loss functions converge, ρMMD does so much more quickly than the original ρ , possibly
due to the lower noise in the loss. Hence, larger learning rates ε can be used for quicker convergence
in a lower number of iterations. The effect of the learning rate is further discussed in section 3.3.
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Table 1: Bernoulli map: 200 training points.

Method R1 R2 R3

Kernel Regression 0.107 (0.0%) 0.119(0.0%) 0.114 (0.0%)
Kernel Flows ρ 0.102 (-5.3%) 0.112 (-5.7 %) 0.103 (-9.3 %)

Table 2: Bernoulli map: 800 training points.

Method R1 R2 R3

Kernel Regression 0.1053 (0.0%) 0.1168 (0.0%) 0.1125 (0.0%)
Kernel Flows ρ 1×105 iterations 0.0990 (-6.0%) 0.1010 (-13.5 %) 0.0994 (-11.7 %)
Kernel Flows ρ 5×105 iterations 0.0923 (-12.3%) 0.0924 (-20.8 %) 0.0900 (-20.0 %)
Kernel Flows ρMMD 5×104 iterations 0.0562 (-46.6%) 0.0528 (-54.8 %) 0.0518 (-53.9 %)

(a) Time series (red) and the prediction
(blue) without learning for x0 = 0.1

(b) Time series (red) and the prediction
(blue) by the learned kernel with ρ for
x0 = 0.1

(c) Time series (red) and the prediction
(blue) by the learned kernel with ρMMD
for x0 = 0.1

Figure 1: Prediction results for the Bernoulli map R1

Figure 2: Deformation of input case for different iterations of the flow function φL (left) and deformed
final data (right).
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Figure 3: Convergence of the ρ and ρMMD losses.

3.2 Example: The Lorenz system
Consider the Lorenz system

dx
dt

= s(y− x), (16)

dy
dt

= rx− y− xz, (17)

dz
dt

= xy−bz, (18)

with s = 10, r = 28, b = 10/3. We use the initial condition (x(0),y(0),z(0)) = (0.0,1.0,1.05) and
generate 3000 (training) points with a time step h = 0.01. The test set consists of another trajectory
of the same size with initial condition (x(0),y(0),z(0)) = (0.5,1.5,2.5). For the Lorenz system, the
inference task is separated into the prediction of the three functions:xn

yn
zn

 7→ xn+1,

xn
yn
zn

 7→ yn+1,

xn
yn
zn

 7→ zn+1 (19)

We train and predict using Kernel Flows separately for each of these three functions, and the RMSE
for each of the above functions are denoted as R1,R2,R3 For training we use the Gaussian kernel (14)
for K with σ2 = 1.0 and regularization (nugget) of λ = 10−5, with a batch size of Nb = 300 (10% of
the training set). We choose Γ to be the vector valuated kernel Γ = KI3 obtained by multiplying K
with I3, the 3×3 identity matrix.

We train KF with both the ρ loss function and ρMMD (without the averaging operation E). The
first is trained with a learning rate of ε = 10−6, the second with a learning rate of 10−2. We compare
the performance of the two on all three dimensions of the Lorenz system. Our baseline is again
Kernel Regression. The results of the experiment are recorded in Table 3 with the best performance
highlighted. The recovered dynamics for the first dimension is provided in figure 4 (see figure 10 for
dimensions 2 and 3), and the full dynamics is provided in figure 5.

We observed that in the case of the Lorenz system, the ρMMD loss function consistently out-
performed the original loss ρ and the base estimator. These improvements may be due to the better
convergence properties of ρMMD (in the absence of the averaging operation E): for all three variables,
Kernel Flows with ρMMD converged quickly whereas with a ρ loss function, no convergence was ob-
served (see figure 6 for illustrations). Because of the lack of convergence, KF with ρ loss function
does not improve over the base model, but it is possible that with a better learning rate schedule, the
ρ loss function will yield better results. However, the choice ρMMD has the advantage of being much
less sensitive to the choice of learning rate and will converge to a good solution for multiple values.

We also considered another way of running KFs with the ρ loss function. Since the Lorenz system
has multivariate outputs, we apply a standard recipe to normalize the data so that it is zero mean and
unit variance. More specifically, after subtracting the mean, we compute the eigendecomposition of
the training (input) data covariance matrix and project our inputs on the three eigenvectors. We then
scale each transformed dimension to have unit variance. The warping of the space with training data,
and the predictions (warping training data and performing regression for the warped inputs) after that
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are both run in this transformed space. This requires carrying out the transformation operation also
for the testing data. Since we don’t have a maximum covariance parameter in our model, we also
perform the same transformation for the training data labels. That way, the marginal variance of our
data is consistent with that of the kernel.

As in the other examples, we use a spherical Gaussian kernel. The length scale of the kernel
is computed from the average Euclidean distance between the training inputs in the transformed
space, and comes down to 2.16. We use small nuggets for training and prediction, 1e−7 and 1e−6,
respectively.

The warping is computed in non-parametric KF from the instantaneous gradients of the loss
function with respect to the training inputs. In some cases, a few gradients dominate; we use gradient
clipping to regularize the flow and clip the magnitudes of the gradient vectors at the 0.8th quantile
of all gradient magnitudes. The learning rate is scaled adaptively so that at each step, the maximum
distance traveled by any of the inputs is 1e-5 in the transformed space. We perform 2000 iterations
of KF in this experiment. The results are reported in Table 3.

Table 3: Lorenz system: original data.

Method R1 R2 R3

Kernel regression. 2.15 (0.0%) 2.57(0.0%) 5.45 (0.0%)
Kernel Flows ρ 2.15 (0.0%) 2.57(0.0%) 3.81 (-30%)
Kernel flows ρMMD 1.60 (-26%) 2.29 (-11%) 3.81 (-30%)

Table 4: Lorenz system: pre-processed data.

Variable R′
1 R′

2 R′
3 R′

4
x 0.25788 0.29009 0.01351 0.01714
y 0.86578 1.14942 0.04364 0.05669
z 0.84734 1.23247 0.01543 0.02203

where R′
1 is the RMSE in the warped coordinates, R′

2 : is the RMSE in the original coordinates,
R′

3 is the relative error in the warped coordinates, R′
4 is the relative error in the original coordinates.

The relative errors are reduced by NPKF training by 21.179, 23.0148, 29.943 percents, due to the
training.

3.3 Learning rate and convergence
We now discuss one possible advantage of the ρMMD loss function over the ρ loss function. As
was seen in the previous sections, for a particular dynamical system (the Lorenz system), Kernel
Flows with ρ did not improve over the base estimator in our tests, whereas Kernel Flows with ρMMD
achieved significant improvements. For the Bernoulli map, while both versions improved over the
base estimator, ρMMD yielded a better performance and converged faster. One possible explanation
is that the algorithm is more sensitive to the choice of learning rate ε with ρ compared to ρMMD.

To illustrate this sensitivity, we retrain the network on the Bernoulli dynamical system with the
same parameters as in section 3.1, but with higher learning rates of 2× 10−4, 3× 10−4 for both
loss functions and compare the results with the originally trained kernel in tables 5 and 6. For
the ρ loss function, we note that higher learning rates do not necessarily yield better results, even
though convergence of the loss is achieved in all cases. In some cases, the performance significantly
worsened compared to the base estimator.

We suspect that this is due to the instability of the explicit Euler scheme (11) in integrating (9).
Indeed there are two potential sources of instabilities when ρ is defined as in (1) and the time steps
are too large: (1) The instability of the explicit Euler scheme itself, (2) the fact ρ is not averaged but
randomized at each time step (which produces an effective dynamic with the correct average drift
when the time steps are small enough but does add instability when they are not).

Due to these instabilities and the inherent stochasticity of the loss function, as observed in [29],
it is possible for the learned kernel to converge to so-called ”degenerate” kernels if the learning rate
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is too high. This may explain why Kernel Flows with ρ did not perform well on the Lorenz system:
a high learning rate leads to convergence to a poor solution. We hypothesize that a better choice
of learning rate (such as an adaptive learning rate) is required for the kernel to converge to a good
solution.

On the other hand, for ρMMD increasing the learning rate improves the results as long as the
kernel achieves convergences. Hence, ρMMD yields a more stable system which is less sensitive to
small changes in hyper-parameter choices. We suspect that this is due to the fact that ρMMD is not
inherently stochastic.

Table 5: Bernoulli map learned with ρ for different learning rates

Learning rate R1 R2 R3

ε = 1×10−4 0.0923 (-12.3%) 0.0924 (-20.8%) 0.112 (-20.0%)
ε = 2×10−4 0.0940 (-10.9%) 0.159(+36.2%) 0.0938 (-16.6%)
ε = 3×10−4 0.1030 (-2.1%) 0.105(-10.1%) 0.104 (-7.5%)

Table 6: Bernoulli map learned with ρMMD for different learning rates

Learning rate R1 R2 R3

ε = 1×10−4 0.0562 (-46.6%) 0.0528 (-54.8 %) 0.0518 (-53.9 %)
ε = 2×104 0.04883 (-53.6%) 0.0425(–63.6%) 0.0420 (-62.4%)
ε = 3×10−4 0.0441 (-58.1%) 0.0375 (-67.9%) 0.0370 (-67.1%)

Figure 4: Comparison between the different predictions of the first variables for the baseline, ρ training
and ρMMD training (left, middle, right).

Figure 5: Recovered dynamics: base estimator (left), kernel flows with ρMMD (right).
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Figure 6: Loss functions through training of the first variable for ρ (left) and ρMMD (right).

Figure 7: Times series predictions.

Figure 8: Losses.

Remarks
i. Convergence results that characterize the error estimates of the difference between a dynamical

system and its approximation from data using kernel methods can be found in [5, 15].

ii. In the case of very large datasets, it is possible to reduce the number of points during training
by considering greedy techniques as in [42, 44].
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iii. It is possible to include new measurements when approximating the dynamics from data with-
out repeating the learning process. This can be done by working in Newton basis as in [39]
(check also section 4 of [43]). The Newton basis is just another basis for the space spanned by
the kernel on the points, i.e., span{k(.,x1), ....,k(.,xN)}= span{v1, ...,vN}.
The kernel expansion of f writes as f (x) = ∑

N
i=1 ciK(x,xi) = ∑

N
i=1 bivi(x) with < vi,v j >H= δi j

(i.e., the basis is orthonormal in the RKHS inner product).
If we add a new point xN+1, ...,xN+m, we’ll have corresponding elements vN+1, ...,vN+m of
the Newton basis, still orthonormal to the previous ones. So we will have a new interpolant
fnew(x) = ∑

N+m
i=1 bivi(x) that can be rewritten in terms of the old interpolant as

fnew(x) =
N+m

∑
i=1

civi(x) = f (x)+
N+m

∑
i=N+1

civi(x),

where f can still be written in terms of the basis K, but with different coefficients c′.
If A is the kernel matrix on the first N points, on can compute a Cholesky factorization A = LLT

with L lower triangular. Let B := L−T , then v j(x) = ∑
N
i=1(B)i jK(x,xi).

When we add new points, we have an updated kernel matrix A′, and the Cholesky factor of A
can be easily updated to the one of A′.

iv. In our simulations, the kernels in (6) and (8) are both Gaussian, a possible extension is to
consider that they are different kernels and to learn them using parametric KFs.

4 Conclusion
In this paper, numerical experiments show that by using the Gaussian kernel and initially choosing
the variance that characterizes it, combining two variants of non-parametric KFs with the kriging of
the vector field improves the accuracy of the prediction of chaotic time series. Extensions of this
approach to other classes of dynamical systems remain open.
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6 Additional figures

6.1 Bernoulli time series

(a) Time series (red) and the prediction
(blue) without learning for x0 = 0.99.

(b) Time series (red) and the prediction
(blue) by the learned kernel with ρ for
x0 = 0.

(c) Time series (red) and the prediction
(blue) by the learned kernel with ρMMD
for x0 = 0.99.

(d) Time series (red) and the prediction
(blue) without learning forx0 = π/10

(e) Time series (red) and the prediction
(blue) by the learned kernel with ρ for
x0 = π/10.

(f) Time series (red) and the prediction
(blue) by the learned kernel with ρMMD
for x0 = π/10.

Figure 9: Prediction results for the Bernoulli map for different initial conditions.

6.2 Lorenz time series

Figure 10: Lorenz system: comparison between the different predictions of the second and third vari-
ables (top, bottom) for the baseline, ρMMD training and ρ training (left, middle, right).
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6.3 Convergence of the loss

Figure 11: Convergence of the ρ (left) and ρMMD (right) for higher learning rates on the Bernoulli time
series.

Figure 12: Loss functions through training for the second and third variables of the Lorenz times series
(top, bottom) for ρ (left) and ρMMD (right).

References
[1] H. Abarbanel. Analysis of Observed Chaotic Data. Institute for Nonlinear Science. Springer

New York, 2012.

12



[2] Romeo Alexander and Dimitrios Giannakis. Operator-theoretic framework for forecasting
nonlinear time series with kernel analog techniques. Physica D: Nonlinear Phenomena,
409:132520, 2020.

[3] Hamed Hamze Bajgiran, Pau Batlle Franch, Houman Owhadi, Clint Scovel, Mahdy Shirdel,
Michael Stanley, and Peyman Tavallali. Uncertainty quantification of the 4th kind; opti-
mal posterior accuracy-uncertainty tradeoff with the minimum enclosing ball. arXiv preprint
arXiv:2108.10517, 2021.

[4] Andreas Bittracher, Stefan Klus, Boumediene Hamzi, Péter Koltai, and Christof Schütte. Di-
mensionality reduction of complex metastable systems via kernel embeddings of transition
manifolds. 2019. https://arxiv.org/abs/1904.08622.

[5] J. Bouvrie and B. Hamzi. Kernel methods for the approximation of nonlinear systems. SIAM
J. Control and Optimization, 2017. https://arxiv.org/abs/1108.2903.

[6] Jake Bouvrie and Boumediene Hamzi. Empirical estimators for stochastically forced nonlinear
systems: Observability, controllability and the invariant measure. Proc. of the 2012 American
Control Conference, pages 294–301, 2012. https://arxiv.org/abs/1204.0563v1.

[7] Jake Bouvrie and Boumediene Hamzi. Kernel methods for the approximation of nonlinear
systems. SIAM J. Control and Optimization, 2017. https://arxiv.org/abs/1108.
2903.

[8] Jake Bouvrie and Boumediene Hamzi. Kernel methods for the approximation of some key
quantities of nonlinear systems. Journal of Computational Dynamics, 1, 2017. http://
arxiv.org/abs/1204.0563.

[9] Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations
from data by sparse identification of nonlinear dynamical systems. Proceedings of the National
Academy of Sciences, 113(15):3932–3937, 2016.

[10] Martin Casdagli. Nonlinear prediction of chaotic time series. Physica D: Nonlinear Phenom-
ena, 35(3):335 – 356, 1989.

[11] Ashesh Chattopadhyay, Pedram Hassanzadeh, Krishna V. Palem, and Devika Subramanian.
Data-driven prediction of a multi-scale lorenz 96 chaotic system using a hierarchy of deep
learning methods: Reservoir computing, ann, and RNN-LSTM. CoRR, abs/1906.08829, 2019.

[12] Yifan Chen, Bamdad Hosseini, Houman Owhadi, and Andrew M Stuart. Solving and learning
nonlinear pdes with gaussian processes. arXiv preprint arXiv:2103.12959, 2021.

[13] Felipe Cucker and Steve Smale. On the mathematical foundations of learning. Bulletin of the
American Mathematical Society, 39:1–49, 2002.

[14] B.Haasdonk ,B.Hamzi , G.Santin , D.Wittwar. Kernel methods for center manifold approxima-
tion and a weak data-based version of the center manifold theorems. Physica D, 2021.

[15] P. Giesl, B. Hamzi, M. Rasmussen, and K. Webster. Approximation of Lyapunov functions
from noisy data. Journal of Computational Dynamics, 2019. https://arxiv.org/abs/
1601.01568.

[16] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander
Smola. A kernel two-sample test. Journal of Machine Learning Research, 13(25):723–773,
2012.

[17] B. Haasdonk, B. Hamzi, G. Santin, and D. Wittwar. Greedy kernel methods for center manifold
approximation. Proc. of ICOSAHOM 2018, International Conference on Spectral and High
Order Methods, (1), 2018. https://arxiv.org/abs/1810.11329.

[18] Boumediene Hamzi and Fritz Colonius. Kernel methods for the approximation of discrete-time
linear autonomous and control systems. SN Applied Sciences, 1(7):1–12, 2019.

[19] Boumediene Hamzi, Christian Kuehn, and Sameh Mohamed. A note on kernel methods for
multiscale systems with critical transitions. Mathematical Methods in the Applied Sciences,
42(3):907–917, 2019.

[20] Boumediene Hamzi, Romit Maulik, and Houman Owhadi. Data-driven geophysical forecast-
ing: Simple, low-cost, and accurate baselines with kernel methods.

[21] Boumediene Hamzi and Houman Owhadi. Learning dynamical systems from data: A simple
cross-validation perspective, part i: Parametric kernel flows. Physica D: Nonlinear Phenomena,
421:132817, 2021.

13

https://arxiv.org/abs/1904.08622
https://arxiv.org/abs/1108.2903
https://arxiv.org/abs/1204.0563v1
https://arxiv.org/abs/1108.2903
https://arxiv.org/abs/1108.2903
http://arxiv.org/abs/1204.0563
http://arxiv.org/abs/1204.0563
https://arxiv.org/abs/1601.01568
https://arxiv.org/abs/1601.01568
https://arxiv.org/abs/1810.11329


[22] Holger Kantz and Thomas Schreiber. Nonlinear Time Series Analysis. Cambridge University
Press, USA, 1997.

[23] Stefan Klus, Feliks Nuske, and Boumediene Hamzi. Kernel-based approximation of the koop-
man generator and schrödinger operator. Entropy, 22, 2020. https://www.mdpi.com/
1099-4300/22/7/722.
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