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a b s t r a c t

Regressing the vector field of a dynamical system from a finite number of observed states is a natural
way to learn surrogate models for such systems. We present variants of cross-validation (Kernel
Flows (Owhadi and Yoo, 2019) and its variants based on Maximum Mean Discrepancy and Lyapunov
exponents) as simple approaches for learning the kernel used in these emulators.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Linear stochastic models (autoregressive (AR), moving average
MA), ARMA models) and chaotic dynamical systems are natural
redictive models for time series [1–5].
The prediction of chaotic systems from time-series (initially

nvestigated in [6]) has been investigated from the regression
erspectives of support vector machines [7,8], reservoir comput-
ng [9,10], deep feed-forward artificial neural networks (ANN),
nd recurrent neural networks with long short-term memory
RNN-LSTM) [11–14]. Reservoir computing was observed to be
fficient for predictions but not very accurate for estimating Lya-
unov exponents. On the other hand, RNN-LSTM were observed
o be accurate for estimating Lyapunov exponents but not as good
s reservoir computing for predictions (see [15] for a survey).
lthough Reproducing Kernel Hilbert Spaces (RKHS) [16] has pro-
ided strong mathematical foundations for analyzing dynamical
ystems [17–27], the accuracy of these emulators depends on the
ernel and the problem of selecting a good kernel has received
ess attention.

We investigate Kernel Flows [28] (KF) as a generic tool for
electing the kernel used to learn chaotic dynamical systems.
he KF strategy is to induce an ordering (quantifying the quality
f a kernel) in a space of kernels and use gradient descent to
dentify a good kernel. KF is an efficient method of learning
ernels with predictive capabilities using random projections that

∗ Corresponding author.
E-mail addresses: boumediene.hamzi@gmail.com (B. Hamzi),

whadi@caltech.edu (H. Owhadi).
ttps://doi.org/10.1016/j.physd.2020.132817
167-2789/© 2020 Elsevier B.V. All rights reserved.
guarantees good performance while reducing computational cost.
KF is also a variant of cross-validation (see discussion in [29]) in
the sense that it operates under the premise that a kernel must
be good if the number of points used to interpolate the data can
be halved without significant loss in accuracy, i.e., the method
presented in [28] uses the regression relative error between two
interpolants (measured in the RKHS norm of the kernel) as the
quantity to minimize.

In this paper, we use this metric along two new ones to
learn the parameters of the kernel. The first one is the difference
between two estimations of the maximal Lyapunov exponent
(the second estimator using a random half of the data points of
the first). The second metric is the Maximum Mean Discrepancy
(MMD) [30] computed from two different samples of a time series
or between a sample and a subsample of half length. Our paper
is numerical in nature and we refer to [29] for a rigorous analysis
of KF (and comparisons with Empirical Bayes for learning PDEs)
and to [31] for its applications to training neural networks.

The main contributions of this paper are as follows.

• We show that combining KF with the kriging of the vector
field significantly improves the accuracy of (1) the pre-
diction of chaotic time series (2) the reconstruction of at-
tractors (3) the reconstruction of the dynamics from lower
dimensional projections of the state space.
• We show that Kernel Mode Decomposition can recover time

delays in the reconstruction of the dynamics.
• We introduce Lyapunov exponents and MMD as two new
cross validation metrics for kriging vector fields.

https://doi.org/10.1016/j.physd.2020.132817
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2020.132817&domain=pdf
mailto:boumediene.hamzi@gmail.com
mailto:owhadi@caltech.edu
https://doi.org/10.1016/j.physd.2020.132817
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he remainder of the manuscript is structured as follows. We
escribe the problem in Section 2 and propose three cross-
alidation metrics to learn the parameters of the kernel used
or approximating the vector field of the dynamical system. In
ection 3, we investigate the performance of these methods for
he Bernoulli map, the logistic map, the Hénon map and the
orenz system. In the Appendix, we recall optimal recovery
heoretical foundations of KF.

. The problem and its proposed cross-validation solutions

Let x1, . . . , xk, . . . be a time series in Rd. Our goal is to forecast
n+1 given the observation of x1, . . . , xn. We work under the as-
sumption that this time series can be approximated by a solution
of a dynamical system of the form

zk+1 = f †(zk, . . . , zk−τ†+1), (1)

where τ †
∈ N∗ and f † may be unknown. Given τ ∈ N∗, the

approximation of the dynamical can then be recast as that of
interpolating f † from pointwise measurements

f †(Xk) = Yk for k = 1, . . . ,N, (2)

with Xk := (xk+τ−1, . . . , xk), Yk := xk+τ and N = n − τ . Given
a reproducing kernel Hilbert space1 of candidates H for f †, and
using the relative error in the RKHS norm ∥ · ∥H as a loss, the
regression of the data (Xk, Yk) with the kernel K associated with
H provides a minimax optimal approximation [32] of f † in H .
This interpolant (in the absence of measurement noise) is

f (x) = K (x, X)(K (X, X))−1Y , (3)

where X = (X1, . . . , XN ), Y = (Y1, . . . , YN ), k(X, X) for the
N × N matrix with entries k(Xi, Xi), and k(x, X) is the N vector
with entries k(x, Xi). This interpolation has also a natural inter-
pretation in the setting of Gaussian process (GP) regression: (i)
(3) is the conditional mean of the centered GP ξ ∼ N (0, K )
with covariance function K conditioned on ξ (Xk) = Yk, and
(ii) the interpolation error between f † and f is bounded by the
conditional standard deviation of the GP ξ , i.e.

|f †(x)− f (x)| ≤ σ (x)∥f †
∥H , (4)

with

σ 2(x) = K (x, x)− K (x, X)(K (X, X))−1K (x, X)T . (5)

Evidently the accuracy of the proposed approach depends on
the kernel K and one of our goals is to also learn that kernel from
the data (Xk, Yk) with Kernel Flows (KF) [28].

Given a family of kernels Kθ (x, x′) parameterized by θ , the KF
algorithm can then be described as follows [28,31]:

i. Select random subvectors Xb and Y b of X and Y (through
uniform sampling without replacement in the index set
{1, . . . ,N})

ii. Select random subvectors X c and Y c of Xb and Y b (by
selecting, at random, uniformly and without replacement,
half of the indices defining Xb)

iii. Let2

ρ(θ, Xb, Y b, X c, Y c) := 1−
Y c,TKθ (X c, X c)−1Yc

Y f ,TKθ (Xb, Xb)−1Y b , (6)

be the squared relative error (in the RKHS norm ∥ · ∥Kθ
defined by Kθ ) between the interpolants ub and uc obtained
from the two nested subsets of the dataset and the kernel
Kθ

1 A brief overview of RKHSs is given in the Appendix.
2 ρ := ∥ub

− uc
∥
2
Kθ
/∥ub
∥
2
Kθ
, with ub(x) = Kθ (x, Xb)Kθ (Xb, Xb)−1Y b and

uc (x) = Kθ (x, X c )Kθ (X c , X c )−1Y c , and ρ admits the representation (6) enabling
its computation.
2

iv. Evolve θ in the gradient descent direction of ρ, i.e. θ ←
θ − δ∇θρ

v. Repeat.

Since the motivation of learning a dynamical system from data
is not necessarily about only making prediction but also about
emulating the qualitative behavior of the dynamical systems,
we also consider different metrics in step 3 of the algorithm
described above. The first new metric is by considering, in the
case of chaotic systems, that a kernel is good if the estimate of
the Lyapunov exponent obtained from the kernel approximation
of the dynamics does not change if half of the data is used. So we
will minimize3

ρL = |λmax,N − λmax,N/2|, (7)

instead of (6) with λmax,N is the estimate of the maximal Lya-
punov exponent from the kernel approximation of the dynamics
with N sample points and λmax,N/2 is the estimate of the max-
imal Lyapunov exponent from the kernel approximation of the
dynamics with N/2 sample points. We use the algorithm of Eck-
mann et al. [33] to estimate the Lyapunov exponents from data
by considering the kernel approximation of the dynamics. We
use the Python implementation in [34] to estimate the Lyapunov
exponents from data.

The second new metric is based on the Maximum Mean Dis-
crepancy (MMD) [30] that is a distance on the space of probability
measures with a representer theorem for empirical distributions
which we recall in the Appendix. Our strategy for learning the
kernel K will then simply be to minimize the MMD

ρMMD = MMD(S1, S2), (8)

between two different samples,4 S1 = xσ1 , . . . , xσm and S2 =
xµ1 , . . . , xµm , of the time series.

[α0, σ0, α1, σ1] No. of iterations R1 R2

ρ [1.31, 1.01, 0.99, 0.99] 100 0.019 0.015
ρMMD [0.830, 2.780, 0.562, 2.926] 1000 0.027 0.011
No learning [0, 1, 1, 1] 0 0.182 0.118

3. Numerical experiments

We now numerically investigate the efficacy of the cross-
validation approaches described in the previous section in learn-
ing chaotic dynamical systems.

3.1. Bernoulli map

We first use the Bernoulli map

x(k+ 1) = 2x(k) mod 1 , (9)

which is a prototypical chaotic dynamical system [35]. We ini-
tialize (9) from an (irrational) initial condition x(0) = π/3 and
use 200 points to train the kernel and for interpolation. We use
a parameterized family of kernels of the form

k(x, y) = α0 max{0, 1−
∥x− y∥22|

σ0
} + α1 e

∥x−y∥22
σ21 . (10)

e set the initial kernel to be the Gaussian kernel and initialize
he parameters with (α0, σ0, α1, σ1) = (0, 1, 1, 1). The parameters
of the kernel after training with ρ and ρMMD and the Root Mean

3 One could also look at a metric that involves estimates of all Lyapunov
xponents instead of just the maximal one.
4 One could also consider the MMD between a sample S1 of size m and a

subsample of S of size m/2.
1
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Fig. 1. (a) Time series generated by the true dynamics (red) and the approximation (blue) with the learned kernel (left) and the initial kernel (right), for an irrational
initial condition π/10, (b) Time series generated by the true dynamics (red), the approximation with the learned kernel (blue), the kernel approximation without
learning the kernel (green), for a rational initial condition 0.1. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Fig. 2. Prediction results for the logistic map.
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Square Errors5 (RMSEs) with 5000 points are summarized in the
following table with R1 being the RMSE for x(0) = π/10 and R2
the RMSE for x(0) = 0.1.

Fig. 1 shows results for an irrational initial condition x(0) =
/10 and 5000 points and a rational initial condition x(0) = 0.1.
We also consider a parameterized family of kernels of the form

k(x, y) = α0 max{0, 1−
∥x− y∥22|

σ0
} + α1 e

∥x−y∥22
σ21 + α2e

−
∥x−y∥2
σ22

+ α3e−σ3 sin2(σ4π∥x−y∥2)e
−
∥x−y∥22
σ25 + α4∥x− y∥22. (11)

Results are summarized in Table 1.

3.2. Example 2 (Logistic map)

Consider the logistic map x(k + 1) = 4x(k)(1 − x(k)). To
approximate this map, we use an initial condition x(0) = 0.1 and
use 200 points to train the kernel and for interpolation. We use
a kernel of the form

k(x, y) = α0e−σ1 sin2(πσ2∥x−y∥22)e−∥x−y∥
2
2/σ

2
3 ,

5 The Root Mean Square Error (RMSE) is a standard way to measure the error
f a model in predicting quantitative data. Formally it is defined as RMSE =∑n

i=1(ŷi−yi)
2

n with ŷ1, . . . , ŷn are predicted values, y1, . . . , yn are observed values
and n is the number of observations.
 T

3

and initialize with the set of parameters (α0, σ1, σ2, σ3) = (1, 1, 1,
). Let R1 be the RMSE for an initial condition x(0) = 0.4, R2 for

x(0) = 0.97 with 5000 points.

[α0, σ1, σ2, σ3] No. of it. R1 R2
ρ [0.95, 0.98, 1.20, 0.62] 100 0.0004 0.002
ρL [0.6, 1.8, 2.3, 1.4] 1000 0.001 0.001
No learning [1, 1, 1, 1] 0 0.004 0.004

Fig. 2.a shows the results for an initial condition x(0) = 0.3 and
5000 points. Fig. 2.b shows the prediction errors for the case of
an approximation with a learned kernel using ρ, ρL and a kernel
without learning. Fig. 3 shows the plot of error interval for f †(x)
iven by ∆(f (x)) in (28).
We also consider a parameterized family of kernels of the form

(x, y) = α2
0 max{0, 1−

∥x− y∥22|
σ0

} + α2
1 e
∥x−y∥22
σ21 + α2

2e
−
∥x−y∥2
σ22

+ α2
3e
−σ3 sin2(σ4π∥x−y∥22)e

−
∥x−y∥22
σ25 + α2

4∥x− y∥22. (12)

e initialize with a Gaussian kernel. The results are summarized
n the following table where R1 corresponds to the RMSE with
(0) = 0.4 and R2 corresponds to the RMSE with x(0) = 0.97 (see
able 2).
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Table 1

[α0, σ0, α1, σ1, α2, σ2, α3, σ3, σ4, σ5, α4] No. of it. R1 R2

ρ [23.98, 1.13, 1.13, 0.83, 32.73, 0.72, 32.09, 0.29, 4.47, 0.20, 0.10] 500 0.016 0.014

No learning [0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0] 0 0.182 0.118
Table 2

[α0, σ0, α1, σ1, α2, σ2, α3, σ3, σ4, σ5, α4] No. of it. R1 R2

ρ [0.15, 0.96, 0.99, 1.02, 0.08, 0.98,−3.96 10−05, 0.99, 0.99, 0.99, 0.98] 500 0.0003 0.0004

No learning [0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0] 0 0.004 0.004
W
i
x
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Fig. 3. Uncertainty ∆(f (x)) in formula (27) for an initial condition x0 = π/4.

3.3. Example 3 (Hénon map)

Consider the Hénon map

x(k+ 1) = 1− ax(k)2 + y(k),
y(k+ 1) = bx(k),

with a = 1.4 and b = 0.3. To learn this map, we generate 100
points with initial conditions (x(0), y(0)) = (0.9,−0.9) to learn
two kernels

ki(x, y) = αi + (βi + ∥x− y∥κi2 )
σi + δie−∥x−y∥

2
2/µ

2
i ,

(i = 1, 2) corresponding to the two maps
[
x(k)
y(k)

]
↦→ x(k+ 1) and[

x(k)
y(k)

]
↦→ y(k+1). We initialize with a Gaussian kernel and after

1000 iterations, we get6[
α1 β1 κ1 σ1 δ1 µ1

α2 β2 κ2 σ2 δ2 µ2

]
No. of it. R1

ρ

[
0.99 1.12 0.74 2.21 0.98 0.89
1.00 1.01 3.35 0.008 0.95 1.35

]
1000

[
0.04
0.01

]

No learning

[
0.0 0.0 0.0 0.0 1.0 1.0
0.0 0.0 0.0 0.0 1.0 1.0

]
0

[
0.07
0.01

]

We generate a time series for the initial conditions (x(0), y(0)) =
−0.1, 0.1) and simulate for 5000 points. Fig. 4 shows the true
nd approximated dynamics as well as the difference between

6 We notice that the algorithm converges to non-integer powers. Terms of
he form ∥x−y∥α2 can be represented as eα log ∥x−y∥2 which could be a reproducing
ernel.
4

the true and approximated dynamics using the learned kernel and
without learning the kernel.

We also consider a parameterized family of kernels of the form

k(x, y) = α2
0,i max{0, 1−

∥x− y∥22|
σ0,i

} + α2
1,i e

∥x−y∥22
σ21,i + α2

2,ie
−
∥x−y∥2
σ22,i

+ α2
3,ie
−σ3,i sin2(σ4,iπ∥x−y∥22)e

−
∥x−y∥22
σ25,i + α2

4,i∥x− y∥22. (13)

e initialize with a Gaussian kernel. The results are summarized
n the following table where R1 corresponds to the RMSE with
(0) = 0.4 and R2 corresponds to the RMSE with x(0) = 0.97 and
000 points (see Table 3).

.3.1. Finding τ
Now, we consider the scalar dimensional version of the Hénon

ap as x(k + 1) = 1 − ax(k)2 + bx(k − 1). We aim at learning
he kernel and finding the optimal time delay τ . We start with
n initial condition (x(0), y(0)) = (0.8,−0.9) and generate 100
oints for learning. We use a kernel of the form

(x, y) = α0 + (β0 + ∥x− y∥γ02 )σ0 .

e generate 100 points for different values of τ from 0 to 6.
ig. 5 shows the root mean square error (RMSE) for prediction
ith 5000 points and initial condition (x(0), y(0)) = (0.1,−0.1).

It shows that τ = 1 is where the RMSE starts stabilizing and can
be viewed as an optimal embedding delay.

Another method for finding the embedding delay is the Kernel
Mode Decomposition (KMD) [36] of the time series. We consider
a representation of the time series as

v(t + 1) =
N∑
j=0

αjK (Vτ† (t), Vτ† (j)), (14)

ith Vτ† (t) = [v(t) · · · v(t − τ †)]. Following [36], we define the
odel alignment energy Ei associated to the time-shift τ = i,
= 0, . . . , τmax as

i = v
TK−1KiK−1v, (15)

ith

(x, y) =
τmax∑
i=0

Ki(x, y), (16)

nd Ki(x, y) = K (Six,Siy) with Si the time-truncation operator
hat truncates time-series at the i-th element: given a time series
= {Yt : t ∈ T}, where T is the index set, SiY = {[y(t −

) · · · y(t)] : t ∈ T}.
We use the embedding delay τ † that maximizes Ei. We apply

his method to x(k + 1) = 1 − ax(k)2 + bx(k − 1). We use
(x, y) = 1+ e−∥x−y∥

2
2 to compute the energies of the embedding
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able 3 [
α0,1 σ0,1 α1,1 σ1,1 α2,1 σ2,1 α3,1 σ3,1 σ4,1 σ5,1 α4,1
α0,2 σ0,2 α1,2 σ1,2 α2,2 σ2,2 α3,2 σ3,2 σ4,2 σ5,2 α4,2

]
N R1

ρ

[
4.48 10−08 1.00 2.25 2.41 0.0 1.01 0.17 1.07 1.17 1.21 0.60

0.18 0.96 1.09 2.30 0.20 1.00 0.26 1.03 1.11 0.84 1.65 10−14

]
5000

[
0.05
0.008

]
No learning

[
0.0 1.0 1.0 1.0 0.0 1.0 0.0 1.0 1.0 1.0 0.0
0.0 1.0 1.0 1.0 0.0 1.0 0.0 1.0 1.0 1.0 0.0

]
0

[
0.08
0.01

]

Fig. 4. Prediction results for the Hénon map. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
1
f

K

f
u
(

delays and get that E1 is the maximal value and we deduce that
the optimal embedding delay is 1 which agrees with the model.

Considering the Hénon map in the y-variable, we get y(k+2) =
−

a
b y2(k+1)+by(k). We compute the energy Ei of the embedding

elay i, observe that E1 is the maximal value and deduce that the
ptimal embedding delay is 1 which agrees with the model.
Fig. 5 shows the values of the energies of the time-delays for

oth the x-dynamics and y-dynamics.

.3.2. Using partial information to approximate the dynamics
In order to learn the dynamics with partial information using

easurements from x only, we use the kernel

i(x, y) = α2
1,i max(0, 1−

∥x− y∥2

σ1,i
)+ α2

2,ie
−
∥x−y∥2

σ22,i

+ α2
3,i∥x− y∥2 + α2

4,ie
−
∥x−y∥
σ4,i ,

nd τ = 1, i.e. we learn kernels for the mappings
(

x(k)
x(k− 1)

)
↦→

x(k + 1) and
(

x(k)
x(k− 1)

)
↦→ y(k + 1). We use 50 points with

initial condition x(0), x(1) = (0.9,−0.9) for training and the
arameters of the learned kernel are summarized in the following
able. Fig. 6 shows the results for initial conditions (x(0), x(1)) =
−0.83, 0.57) with RMSE R1 (see Table 4).

3.4. Example 4 (The Lorenz system)

Consider the Lorenz system
dx
dt
= s(y− x), (17)

dy
dt
= rx− y− xz, (18)

dz
= xy− bz, (19)
dt
5

with s = 10, r = 28, b = 10/3. We use the initial condition
(x(0), y(0), z(0)) = (0., 1., 1.05) and generate 10,000 (training)
points with a time step h = 0.01.

We randomly pick N = 100 points out of the original 10,000
points to train the kernel at each iteration (i.e. at each iteration
we use 100 randomly selected points to compute the gradient
of ρ and move the parameters in the gradient descent direction
by one small step) and use the last random selection of N =
00 points for interpolation (prediction). We use a kernel of the
orm

i(x, y) = α0,i + (α1,i + ∥x− y∥2)βi + α2,ie(−∥x−y∥
2
2/σ

2
i ),

or i = 1, 2, 3. The table below summarizes the results for training
sing ρ and ρL as well as the RMSE for an initial condition
x(0), y(0), z(0)) = (0.5, 1.5, 2.5) and 50,000 points⎡⎢⎣α0,1 α1,1 β1 α2,1 σ1

α0,2 α1,2 β2 α2,2 σ2

α0,3 α1,3 β3 α2,3 σ3

⎤⎥⎦ No. of iterations R1

ρ

⎡⎢⎣1.00 0.95 2.02 0.94 1.08
1.00 1.02 1.79 0.98 1.00
1.00 0.99 1.90 0.99 1.00

⎤⎥⎦ 1000

⎡⎢⎣0.0003
0.04
0.01

⎤⎥⎦
ρL

⎡⎢⎣0.55 2.5 0.6 0.55 0.95
0.55 2.5 0.6 0.55 0.95
0.55 2.5 0.6 0.55 0.95

⎤⎥⎦ 10,000

⎡⎢⎣0.39
0.31
0.43

⎤⎥⎦
No learning

⎡⎢⎣0.0 0.0 0.0 1.0 1.0
0.0 0.0 0.0 1.0 1.0
0.0 0.0 0.0 1.0 1.0

⎤⎥⎦ 0

⎡⎢⎣55.55
68.42
50.19

⎤⎥⎦
Fig. 7 shows the results for an initial condition (x(0), y(0), z(0))

= (0.5, 1.5, 2.5) and 10,000 points. Fig. 8 shows the prediction
errors for the case of an approximation with a learned kernel
and a kernel without learning. Fig. 9 shows the projection of
the attractor and its approximation with a learned kernel and
a kernel without learning. Fig. 10 shows the attractor with a
learned kernel and a kernel without learning.
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(
f

Fig. 5. Energy of the time-delays using RMSE and KMD.
Table 4 [
α1,1 σ1,1 α2,1 σ2,1 α3,1 σ3,1 α4,1
α1,2 σ1,2 α2,2 σ2,2 α3,2 σ3,2 α4,2

]
No. of it. R1

ρ

[
1.5 10−15 1.0 7.02 −2.94 −6.75 4.9 10−47 0.07

0.21 0.75 1.70 3.54 3.7 10−27 0.13 0.91

]
5000

[
0.019
0.005

]
No learning

[
0.0 1.0 1.0 1.0 0.0 1.0 1.0
0.0 1.0 1.0 1.0 0.0 1.0 1.0

]
0

[
0.87
0.14

]

Fig. 6. True dynamics (red), approximated dynamics with the learned kernel (blue), with the kernel without learning (green). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. Time series generated by the true dynamics (red) and the approximation with the learned kernel (blue) - x component in the left figure, y component in
the middle figure, z component in the right figure. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
Fig. 8. Difference between the true and the approximated dynamics with the learned kernel using ρ (red (first, third and fifth from the left)), with the initial kernel
green (second, fourth and sixth from the left)). x-component in the two figures at the left, y-component in the middle two figures, z-component in the right two
igures.
6
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Fig. 9. Projection of the true attractor and approximation of the attractor using a learned kernel on the XY, XZ and YZ axes (first, third and fifth from the left),
Projection of the true attractor and approximation of the attractor using with initial kernel on the XY, XZ and YZ axes (second, fourth and sixth from the left).
Fig. 10. True attractor (blue) and approximation of the attractor using a learned kernel (red) [left], True attractor (blue) and approximation of the attractor using
initial kernel (red) [right]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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We also consider a parameterized family of kernels of the form

Ki(x, y) = α2
0,i max{0, 1−

∥x− y∥22|
σ0,i

} + α2
1,i e

∥x−y∥22
σ21,i + α2

2e
−
∥x−y∥2
σ22,i

+ α2
3,ie
−σ3,i sin2(σ4,iπ∥x−y∥22)e

−
∥x−y∥22
σ25,i + α2

4,i∥x− y∥22. (20)

he training and prediction results are shown in the following
able with R1 the RMSE corresponding to 50,000 points with
nitial conditions (0.5, 1.5, 2.5) (see Table 5).

emarks.

i. Convergence results that characterize the error estimates
of the difference between a dynamical system and its ap-
proximation from data using kernel methods can be found
in [22,23].

ii. In the case of very large datasets, it is possible to reduce
the number of points during training by considering greedy
techniques as in [37,38].

iii. It is possible to include new measurements when approx-
imating the dynamics from data without repeating the
learning process. This can be done by working in Newton
basis as in [39].

iv. During the numerical experiments, we noticed a tradeoff
between accuracy and robustness in the choice of family
of kernels, i.e. a richer family kernels can lead to more
accurate results but seems to be less robust to pertur-
bations originating from the optimization algorithm. This
is consistent with the Bayesian interpretation of Gaussian
process regression and the extreme lack of robustness of
Bayesian inference with respect to the selection of the
prior [40–43].

. Conclusion

Our experiments suggest that using cross-validation (with KF
nd variants) to learn the kernel used to approximate the vector
7

ield of a dynamical system, and thereby its dynamics, signifi-
antly improves the accuracy of such approximations. Although
ur paper is entirely numerical, the simplicity of the proposed ap-
roach and the diversity of the experiments raise the question of
he existence of a general and fundamental convergence theorem
or cross-validation.
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ppendix. Reproducing kernel hilbert spaces

We give a brief overview of reproducing kernel Hilbert spaces
s used in statistical learning theory [16]. Early work developing
he theory of RKHS was undertaken by N. Aronszajn [44].

efinition A.1. Let H be a Hilbert space of functions on a set X .
enote by ⟨f , g⟩ the inner product on H and let ∥f ∥ = ⟨f , f ⟩1/2

be the norm in H , for f and g ∈ H . We say that H is a
reproducing kernel Hilbert space (RKHS) if there exists a function
K : X ×X → R such that
i. Kx := K (x, ·) ∈ H for all x ∈ X .
ii. K spans H : H = span{Kx | x ∈ X }.
iii. K has the reproducing property: ∀f ∈ H , f (x) = ⟨f , Kx⟩.

K will be called a reproducing kernel of H . HK will denote
the RKHS H with reproducing kernel K where it is convenient to
explicitly note this dependence.
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Table 5 ⎡⎣α0,1 σ0,1 α1,1 σ1,1 α2,1 σ2,1 α3,1 σ3,1 σ4,1 σ5,1 α4,1
α0,2 σ0,2 α1,2 σ1,2 α2,2 σ2,2 α3,2 σ3,2 σ4,2 σ5,2 α4,2
α0,3 σ0,3 α1,3 σ1,3 α2,3 σ2,3 α3,3 σ3,3 σ4,3 σ5,3 α4,3

⎤⎦ n R1

ρ

⎡⎣ 0.16 0.99 1.59 0.98 0.15 0.99 0.16 1.00 1.00 0.99 −31.28
−1.03 0.99 −10.96 0.10 −1.18 0.97 −1.07 1.00 1.00 0.99 60.87
0.07 0.99 0.68 0.89 0.07 1.00 0.07 1.00 0.99 0.99 0.79

⎤⎦ 1000

⎡⎣1.0 10−11
0.24
0.17

⎤⎦
⎡⎣0.0 1.0 1.0 1.0 0.0 1.0 0.0 1.0 1.0 1.0 0.0
0.0 1.0 1.0 1.0 0.0 1.0 0.0 1.0 1.0 1.0 0.0
0.0 1.0 1.0 1.0 0.0 1.0 0.0 1.0 1.0 1.0 0.0

⎤⎦ 0

⎡⎣ 54.25
70.21
674.92

⎤⎦
o
d
a
a

t

a

v

u
y

d
p
a
h

ρ

w

The important properties of reproducing kernels are summa-
ized in the following proposition.

roposition A.1. If K is a reproducing kernel of a Hilbert space H ,
hen
. K (x, y) is unique.
i. ∀x, y ∈ X , K (x, y) = K (y, x) (symmetry).
ii.

∑q
i,j=1 αiαjK (xi, xj) ≥ 0 for αi ∈ R, xi ∈ X and q ∈ N+ (positive

definiteness).
iv. ⟨K (x, ·), K (y, ·)⟩ = K (x, y).

Common examples of reproducing kernels defined on a com-
pact domain X ⊂ Rn are the (1) constant kernel: K (x, y) = k > 0
(2) linear kernel: K (x, y) = x · y (3) polynomial kernel: K (x, y) =
(1 + x · y)d for d ∈ N+ (4) Laplace kernel: K (x, y) = e−∥x−y∥2/σ

2
,

with σ > 0 (5) Gaussian kernel: K (x, y) = e−∥x−y∥
2
2/σ

2
, with σ > 0

(6) triangular kernel: K (x, y) = max{0, 1− ∥x−y∥
2
2

σ
}, with σ > 0. (7)

ocally periodic kernel: K (x, y) = σ 2e−2
sin2(π∥x−y∥2/p)

ℓ2 e−
∥x−y∥22
2ℓ2 , with

, ℓ, p > 0.

heorem A.1. Let K : X ×X → R be a symmetric and positive
efinite function. Then there exists a Hilbert space of functions H

efined on X admitting K as a reproducing Kernel. Conversely, let
be a Hilbert space of functions f : X → R satisfying ∀x ∈
, ∃κx > 0, such that |f (x)| ≤ κx∥f ∥H , ∀f ∈ H . Then H has a

eproducing kernel K .

heorem A.2. Let K (x, y) be a positive definite kernel on a compact
omain or a manifold X. Then there exist a Hilbert space F and a
unction Φ : X → F such that

(x, y) = ⟨Φ(x),Φ(y)⟩F for x, y ∈ X .

is called a feature map, and F a feature space.7

.1. Function approximation in RKHSs: An optimal recovery view-
oint

In this section we review function approximation in RKHSs
rom the point of view of optimal recovery as discussed in [32].

roblem. P: Given input/output data (x1, y1), . . . , (xN , yN ) ∈ X ×

, recover an unknown function u∗ mapping X to R such that
∗(xi) = yi for i ∈ {1, . . . ,N}.
In the setting of optimal recovery [32] Problem P can be turned

nto a well posed problem by restricting candidates for u to
elong to a Banach space of functions B endowed with a norm
· ∥ and identifying the optimal recovery as the minimizer of the
elative error

invmaxu
∥u− v∥2

∥u∥2
, (21)

7 The dimension of the feature space can be infinite, for example in the case
f the Gaussian kernel.
8

where the max is taken over u ∈ B and the min is taken over
candidates in v ∈ B such that v(xi) = u(xi) = yi. For the validity
f the constraints u(xi) = yi, B∗, the dual space of B, must contain
elta Dirac functions φi(·) = δ(· − xi). This problem can be stated
s a game between Players I and II and can then be represented
s

(Player I) u ∈ B

max
↘↘

v ∈ L(Φ,B)

min↙↙

(Player II)

∥u−v(u)∥
∥u∥ .

(22)

If ∥·∥ is quadratic, i.e. ∥u∥2 = [Q−1u, u]where [φ, u] stands for
he duality product between φ ∈ B∗ and u ∈ B and Q : B∗ → B

is a positive symmetric linear bijection (i.e. such that [φ,Qφ] ≥ 0
and [ψ,Qφ] = [φ,Qψ] for φ,ψ ∈ B∗). In that case the optimal
solution of (21) has the explicit form

v∗ =

N∑
i,j=1

u(xi)Ai,jQφj, (23)

where A = Θ−1 and Θ ∈ RN×N is a Gram matrix with entries
Θi,j = [φi,Qφj].

To recover the classical representer theorem, one defines the
reproducing kernel K as

K (x, y) = [δ(· − x),Q δ(· − y)]

In this case, (B, ∥ · ∥) can be seen as an RKHS endowed with the
norm

∥u∥2 = supφ∈B∗
(
∫
φ(x)u(x)dx)2

(
∫
φ(x)K (x, y)φ(y)dxdy)

nd (23) corresponds to the classical representer theorem
∗(·) = yTAK (x, ·), (24)

sing the vectorial notation yTAK (x, ·) =
∑N

i,j=1 yiAi,jK (xj, ·) with
i = u(xi), A = Θ−1 and Θi,j = K (xi, xj).
Now, let us consider the problem of learning the kernel from

ata. As introduced in [28], the method of KFs is based on the
remise that a kernel is good if there is no significant loss in
ccuracy in the prediction error if the number of data points is
alved. This led to the introduction of

=
∥v∗ − vs∥2

∥v∗∥2
(25)

hich is the relative error between v∗, the optimal recovery (24)
of u∗ based on the full dataset X = {(x1, y1), . . . , (xN , yN )}, and
vs the optimal recovery of both u∗ and v∗ based on half of the
dataset X s

= {(xi, yi) | i ∈ S } (Card(S ) = N/2) which admits the
representation

vs = (ys)TAsK (xs, ·) (26)



B. Hamzi and H. Owhadi Physica D 421 (2021) 132817

w
Θ

i
v

s

v

i

v

w

∆

w
c
a

y

(
t
e

M

R

ith ys = {yi | i ∈ S }, xs = {xi | i ∈ S }, As
= (Θ s)−1,

s
i,j = K (xsi , x

s
j ). This quantity ρ is directly related to the game

n (22) where one is minimizing the relative error of v∗ versus
s. Instead of using the entire the dataset X one may use random
ubsets X s1 (of X) for v∗ and random subsets X s2 (of X s1 ) for vs.
Replacing ∥u∗∥H by the RKHS norm of the interpolant of
∗ (with both testing and training points) in (4) gives an error
nterval for v∗(x) in (24) as
∗(x)±∆(v∗(x)), (27)

ith

(v∗(x)) = σ (x)
√
Y f ,TK (X f , X f )−1Y f , (28)

and where (X f , Y f ) corresponds to the concatenation of the train-
ing and testing points. Local error estimates such as (27) are
classical in Kriging [45] (see also [46][Thm. 5.1] for applications
to PDEs).

A.2. The maximum mean discrepancy

Let P be the set of Borel probability measures on X . Given a
probability distribution P we define its kernel mean embedding
(with respect to a kernel k with RKHS H ) as

µP : P → H

P ↦→
∫

X
k(x, y)dP(y) =: µk(P)

The maximum mean discrepancy (MMD) between two probabil-
ity measures P and Q is then defined as the distance between two
such embeddings and can be expressed as

MMD(P,Q ) := ∥µP − µQ∥H ,

=
(
Ex,x′ (k(x, x′))+ Ey,y′ (k(y, y′))
−2Ex,y(k(x, y))

) 1
2

here x and x′ are independent random variables drawn ac-
ording to P , y and y′ are independent random variables drawn
ccording to Q , and x is independent of y.
Given i.i.d. samples from X := {x1, . . . , xm} and Y := {y1, . . . ,

n}, from P and Q respectively, recall that the MMD in RKHSs is
defined as the difference between the kernel mean embeddings
defined as follows. Given i.i.d, samples (x1, . . . , xm) from P and
y1, . . . , yn) from Q , the MMD between the empirical distribu-
ions (δx1 + · · · + δxm )/m and (δy1 + · · · + δyn )/n is an unbiased
stimate of MMD(P,Q ) with the representation

MD2
u :=

1
m2

m∑
i,j=1

k(xi, xj)+
1
n2

n∑
i,j=1

k(yi, yj)−
2
nm

m∑
i=1

n∑
j=1

k(xi, yj)

(29)
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