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a b s t r a c t

This work is concerned with establishing the feasibility of a data-on-demand (DoD)

uncertainty quantification (UQ) protocol based on concentration-of-measure inequal-

ities. Specific aims are to establish the feasibility of the protocol and its basic properties,

including the tightness of the predictions afforded by the protocol. The assessment is

based on an application to terminal ballistics and a specific system configuration

consisting of 6061-T6 aluminum plates struck by spherical S-2 tool steel projectiles at

ballistic impact speeds. The system’s inputs are the plate thickness and impact velocity

and the perforation area is chosen as the sole performance measure of the system. The

objective of the UQ analysis is to certify the lethality of the projectile, i.e., that the

projectile perforates the plate with high probability over a prespecified range of impact

velocities and plate thicknesses. The net outcome of the UQ analysis is an M=U ratio, or

confidence factor, of 2.93, indicative of a small probability of no perforation of the plate

over its entire operating range. The high-confidence ð499:9%Þ in the successful

operation of the system afforded the analysis and the small number of tests (40)

required for the determination of the modeling-error diameter, establishes the

feasibility of the DoD UQ protocol as a rigorous yet practical approach for model-based

certification of complex systems.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Steady advances in computational power are presently forcing a reevaluation of computational paradigms and of the
very notion of scientific prediction. Many applications of interest are concerned with systems that exhibit complex behavior
and that are stochastic, be it as a result of uncertainties in the inputs of the system during normal operating conditions,
uncertainties in the properties of the system, or the intrinsic stochasticity of the system itself. The performance of systems
is characterized by outputs, or performance measures, whose value must remain within acceptable limits in order for
the systems to operate safely and according to specifications. A fundamental question in systems engineering is whether
the safe operation of a system can be certified with sufficient confidence to warrant deployment or continued operation.
The ability to certify a system with high confidence is particularly important where high-consequence decisions are
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concerned regarding systems whose failure may result in high economic or societal costs (for instance, for background on
the question of certification from a national security perspective see, e.g., Sharp and Wood-Schultz, 2003; Leader, 2005;
Pilch et al., 2006; Committee on the Evaluation of Quantification of Margins and Uncertainties Methodology for Assessing
and Certifying the Reliability of the Nuclear Stockpile, 2008; Helton, 2009). In these cases, it is often not enough to simply
probe the performance of the system by performing a limited number of hero calculations, or even computing the mean
performance and design margin of the system by means of extensive sampling. Instead, it is imperative to be able to
predict the performance of the system with rigorously quantified uncertainties, so that design margins can be carefully
weighed against the attendant uncertainties. This requirement for uncertainty quantification (UQ) represents a paradigm
shift in predictive science in that it requires a careful assessment of the extent to which the performance of the system is
likely to deviate from its mean. In particular, uncertainty quantification necessitates a systematic exploration of the
performance of the system over its entire range of operation. A current grand challenge in predictive science thus concerns
how to precisely effect such an exploration through a judicious combination of experiment and physics-based modeling
and simulation, leading to a rigorous quantification of margins and uncertainties in the performance of complex systems.

This paper is concerned with the formulation and critical assessment of a rigorous protocol, which we term data-on-

demand (DoD) protocol, for uncertainty quantification analysis of the performance of complex systems. In this approach,
the precise sequence of tests and simulations required for uncertainty quantification of the system diameter is determined
by an optimization algorithm and it is not known a priori. Thus, the feasibility of the protocol depends critically on the
ability to execute tests on demand over the entire operating range of input parameters, hence the name of data-on-demand

given to the protocol.
Following Lucas et al. (2008), we specifically take a certification point of view of uncertainty quantification. For

definiteness, we consider systems whose operation can be described in terms of N scalar performance measures
ðY1, . . . ,YNÞ � Y 2 RN . The response of the systems of interest is stochastic due to the intrinsic randomness of the system,
or randomness in the input parameters defining the operation of the system, or both. Suppose that the safe operation of
the system requires that Y 2 A for some measurable admissible set A � RN . Ideally, we would then like Y to be always
contained within A, i.e.,

P½Y 2 A� ¼ 1 ð1Þ

where P denotes probability in the sense of some appropriate probability space.1 Systems satisfying this condition can be
certified with complete certainty. However, this absolute guarantee of safe performance may be unattainable, e.g., if P
lacks compact support. In these cases, we may relax condition (1) to

P½Y 2 Ac
�rE ð2Þ

for some appropriate certification tolerance E, where Ac
¼RN

\A is the inadmissible set. Inequality (2) expresses the requirement
that the probability of failure of the system be acceptably small.

However, in many cases the probability of failure P½Y 2 Ac
� is not readily available, e.g., if its determination is

prohibitively expensive or unfeasible due to restrictions on testing or other constraints. In these cases, A conservative

certification criterion can still be obtained if the probability of failure P½Y 2 Ac
� can be bounded from above and the upper

bound is verified to be below the certification tolerance E. Evidently, for an upper bound to be useful it must be tight, i.e., it
must be close to the actual probability of failure P½Y 2 Ac

� and accessible in the laboratory, by computational means, or by
a combination of both. In many areas of application, considerable effort is invested in the development of physics-based,
high-fidelity computational models of the systems of interest (cf., e.g., Blue Ribbon Panel on Simulation-based Engineering
Science, 2006). In addition, considerable resources are allocated to the development and deployment of computational
platforms of ever increasing capacity, and to the development and deployment of new laboratory facilities with unique
observational capabilities. Therefore, within the present certification approach to UQ the essential mathematical, experimental

and computational challenge is to devise a methodology leading to the determination of tight upper bounds on the probability of

failure of complex systems.

Following Lucas et al. (2008), we specifically consider probability-of-failure upper bounds of the concentration-of-

measure type (Boucheron et al., 2004; McDiarmid, 1989; Lugosi, 2006; Ledoux, 2001). In the simplest form of the approach,
the system is characterized by a deterministic response function Y ¼ GðXÞ that maps system inputs into outputs. When
McDiarmid’s (1989) inequality is used to bound probabilities of failure, the system may be certified on the sole knowledge
of its mean performance E½Y� and a certain measure DG of the spread of the response, known as system diameter, which
provides a rigorous quantitative measure of the uncertainty in the response of the system. The quantification of system
uncertainties, as measured by the system diameter DG, entails the solution of N global optimization problems for the
evaluation of subdiameters for each of the input parameters of the system. Every objective function evaluation in each of
those N optimization problems requires two evaluations of the response function of the system for two different sets of
input parameters. Since global optimization algorithms typically converge slowly, the evaluation of uncertainties directly
from laboratory testing may be prohibitively expensive.
1 Here and subsequently throughout this work we use standard notation of probability theory (cf, e.g., Chapter 2 of Evans, 2004 for an introduction).
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A common response to such challenges is to devise physics-based models, often requiring extensive use of computational
resources, capable of predicting the response of the system with high-fidelity in lieu of testing. Within the present context, a
model is a function F : E � RN-R that maps input parameters into performance measures. Evidently, a simple replacement of
the test G by a model F does not result in rigorous certification in general, since there is no a priori guarantee that the
predictions of the model are of sufficient fidelity. The assessment of model fidelity inevitably requires testing, though the tests
need not be necessarily integral, cf. Topcu et al. (2011). Thus, the central challenge of model-based UQ is to rigorously certify

complex systems with a maximum of computation and a minimum of testing. Specifically, the objective of model-based certification
is the determination of rigorous upper bounds on the probability of failure of the system by a judicious combination of simulation
and testing.

The main goal of the present work is to demonstrate the feasibility of the DoD UQ protocol for uncertainty
quantification in its simplest form by means of an actual example of application, namely, the terminal ballistics of
6061-T6 aluminum plates impacted by spherical S-2 tool-steel projectiles. All tests of the system were conducted at
Caltech’s GALCIT Powder-Gun Plate-Impact Facility. The system’s inputs are the plate thickness and impact velocity and,
for simplicity, we choose the perforation area as the sole performance measure of the system. The objective of the
uncertainty quantification analysis is to certify the lethality of the projectile, i.e., that the projectile perforates the plate
with high probability over a prespecified range of impact velocities and plate thicknesses.

Terminal ballistics sets in motion complex deformation and material failure mechanisms and it therefore poses a
challenging and exacting test of uncertainty quantification protocols. The response function of the system exhibits a
number of features that renders certification particularly challenging. For instance, the dependence of the perforation area
on projectile velocity exhibits a threshold, or ballistic limit, below which the perforation area vanishes. The extent of
perforation rises rapidly for projectile velocities in excess of the ballistic limit and eventually saturates at sufficiently high
projectile velocities, a type of response sometimes known as cliff behavior. The terminal ballistics application considered in
this work thus provides an effective basis for ascertaining a number of theoretical and practical questions raised by
uncertainty-quantification protocols, including: matters of feasibility, such as the number of tests required for the
determination of system uncertainties; and issues of robustness, such as the tightness of the probability-of-failure upper
bounds supplied by the protocol.

The paper is structured as follows. A summary of the theoretical basis of the DoD UQ protocol is provided in Section 2,
with particular focus on McDiarmid’s inequality (McDiarmid, 1989) and model-based certification. The application to
terminal ballistics is presented in Section 3. This section begins with a brief description of the facility and of the
experimental set-up, Section 3.1. The computational model used to simulate the terminal ballistics system, namely, the
Optimal-Transportation MeshFree (OTM) method of Li et al. (2010), is described in Section 3.2. The optimization
framework used for the computation of the system diameter and the modeling-error diameter is presented in Section 3.3.
Finally, the results of the DoD UQ analysis are reported in Section 3.4. Concluding remarks and a segue to further
extensions of this study are collected in Section 4.

2. Concentration-of-measure approach to UQ

The use of concentration-of-measure inequalities and, specifically, McDiarmid’s inequality, as a basis for rigorous UQ
was proposed by Lucas et al. (2008). We proceed to summarize the salient aspects of the resulting UQ protocol, which we
term data-on-demand (DoD) protocol. We specifically consider systems characterized by N uncorrelated real random
inputs X ¼ ðX1, . . . ,XNÞ 2 EDRN and a single real performance measure Y 2 R. We also begin by supposing that the
function G : RN-R that describes the response function of the system is deterministic and is known exactly, either
experimentally or through the availability of an exact model. We additionally suppose that the system fails when Yra,
where a is a threshold for the safe operation of the system, and that the mean performance E½Y� is known exactly. These
assumptions represent ideal conditions in which all uncertainty regarding the response of the system is aleatoric

uncertainty, i.e., stems from the randomness of the system inputs, and there is no epistemic uncertainty, i.e., the behavior of
the system is known exactly, including its mean response.

2.1. McDiarmid’s inequality

McDiarmid’s (1989) inequality is a result in probability theory that provides an upper bound on the probability that the
value of a function depending on multiple independent random variables deviate from its expected value. It is an example
of a general class of inequalities in probability known as concentration-of-measure inequalities (Boucheron et al., 2004;
Lugosi, 2006; Ledoux, 2001).

A central device in McDiarmid’s inequality is the diameter of a function. We begin by recalling that the oscillation

oscðf ,EÞ of a real function f : E-R over a set E 2 R is

oscðf ,EÞ ¼ supf9f ðyÞ�f ðxÞ9 : x,y 2 Eg ð3Þ

Thus, oscðf ,EÞ measures the spread of values of f that may be attained by allowing the independent variable to range over
its entire domain of definition. For functions f : E � Rn-R of several real values, component-wise suboscillations can be
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defined as

osciðf ,EÞ ¼ supf9f ðxÞ�f ðyÞ9 : x,y 2 E, xj ¼ yj for jaig ð4Þ

Thus, osciðf ,EÞ measures the maximum oscillation among all one-dimensional fibers in the direction of the ith coordinate.
The diameter Dðf ,EÞ of the function f : E-R is obtained as the root-mean square of its component-wise suboscillations, i.e.,

Dðf ,EÞ ¼
Xn

i ¼ 1

osc2
i ðf ,EÞ

 !1=2

ð5Þ

and it provides a measure of the spread of the range of the function. In particular, DðC,EÞ ¼ 0 for all constant functions C.
An important property of the diameter is that it defines a seminorm.

Proposition 2.1. For each subset E � RN , the diameter is a seminorm on the space of bounded real-valued functions on E.

Proof. Evidently, Dðf ,EÞZ0 for any function f and set E. In addition, the homogeneity property:

Dðlf ,EÞ ¼ 9l9Dðf ,EÞ ð6Þ

of the diameter follows directly from the definition. Finally, for any pair of functions f ,g : E � Rn-R we have

osciðf þg,EÞ ¼ supf9f ðxÞ�f ðyÞþgðxÞ�gðyÞ9 : x,y 2 E, xj ¼ yj for jaig

rsupf9f ðxÞ�f ðyÞ9þ9gðxÞ�gðyÞ9 : x,y 2 E, xj ¼ yj for jaig

rsupf9f ðxÞ�f ðyÞ9 : x,y 2 E, xj ¼ yj for jaigþsupf9gðxÞ�gðyÞ9 : x,y 2 E, xj ¼ yj for jaig

¼ osciðf ,EÞþosciðf ,EÞ ð7Þ

whereupon

Dðf þg,EÞ ¼
Xn

i ¼ 1

osc2
i ðf þg,EÞ

 !1=2

r
Xn

i ¼ 1

ðosciðf ,EÞþosciðg,EÞÞ2
 !1=2

r
Xn

i ¼ 1

osc2
i ðf ,EÞ

 !1=2

þ
Xn

i ¼ 1

osc2
i ðg,EÞ

 !1=2

¼Dðf ,EÞþDðg,EÞ ð8Þ

and the diameter satisfies the triangular inequality. &

The diameter provides a measure of the variability of a function value given the variability of its inputs. The diameter
fails to be a norm since, as noted earlier, it vanishes for constant functions. However, the triangular-inequality property
of the diameter will prove invaluable in subsequent developments as a means of deriving useful upper bounds for the
diameters of functions.

The diameter may also be thought of as providing a quantitative measure of the uncertainty in the value of a function
whose inputs are themselves uncertain. Evidently, it is possible to contrive many other measures of uncertainty, and a
wide range of such ad hoc measures have been proposed, often without much justification other than convenience. Within
the present framework, what sets diameters apart—and confers them a privileged status as an uncertainty measure—is
that they supply just the information that is required to formulate a rigorous upper bound on the probability of failure of
the system. Specifically, we have the following.

Theorem 2.2 (McDiarmid (1989) inequality). Assume that the random variables X1, . . . ,XN are independent random variables,

let f : E � RN-R be integrable and let Dðf ,EÞ be its diameter. Then, for every rZ0:

P½f ðXÞZE½f �þr�rexp �2
r2

D2
ðf ,EÞ

 !
ð9Þ

McDiarmid’s inequality may be taken as a basis for rigorous uncertainty quantification, as discussed next.
2.2. UQ based on McDiarmid’s inequality

Suppose, that the mean performance E½G� and the diameter DG ¼DðG,EÞ of the system are known exactly. Then,
McDiarmid’s inequality (9) gives the following upper bound, not necessarily optimal (Owhadi et al., submitted for
publication), on the probability of failure of the system (Lucas et al., 2008), namely,

P½GðXÞra�rexp �2
ðE½G��aÞ2þ

D2
G

 !
ð10Þ
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where we write xþ :¼ maxð0,xÞ and DG �DðG,EÞ for the diameter of the response function. From (10) it in turn follows that the
inequality

M

U
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

ffiffiffi
1

E

rs
ð11Þ

supplies a conservative certification criterion, where

M¼ ðE½G��aÞþ ð12aÞ

U ¼DG ð12bÞ

are the system margin and system uncertainty, respectively. With these identifications, the certification criterion can be expressed
in the form:

CF¼
M

U
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

ffiffiffi
1

E

rs
ð13Þ

where CF is the confidence factor.
Remarkably, if follows from the preceding analysis that systems can be rigorously certified solely on the basis of their

the mean performance and their diameter. It also bears emphasis that, in formulating the McDiarmid bound, only ranges of
input parameters, and not their detailed probability distribution functions, are required. McDiarmid’s inequality supplies
rigorous quantitative definitions of system margin and system uncertainty. In particular, the latter is measured by the
system diameter DG. We note from definition (5) that

DG ¼
XN

i ¼ 1

osciðG,EÞ2
( )1=2

ð14Þ

where the oscillation osciðG,EÞ may now be regarded as the subdiameter corresponding to variable Xi. That subdiameter
may in turn be regarded as a measure of the uncertainty contributed by the variable Xi to the total uncertainty of the
system.

We note that the quantification of system uncertainty, as measured by the system diameter DG, entails the solution of N

global optimization problems for the evaluation of the subdiameters osciðG,EÞ. Every objective function evaluation in each
of those N optimization problems requires the execution of two tests for the evaluation of GðX1, . . . ,Xi, . . . ,XNÞ and
GðX1, . . . ,X0i, . . . ,XNÞ. The precise sequence of tests required for the evaluation of the system diameter is determined by the
optimization algorithm and it is not known a priori. Thus, the feasibility of the protocol depends critically on the ability to
execute tests on demand over the entire operating range of input parameters, hence the name of data-on-demand given to
the protocol.

2.3. Empirical mean estimation

In the foregoing we have assumed that the mean performance E½G� of the system is known a priori. However, in many
situations of practical interest such information is not available and the mean performance must instead be estimated.
Suppose that, to this end, we perform m tests based on an unbiased sampling of the input parameters, resulting in
predicted performances Y1,Y2, . . . ,Ym. We may then define an empirical mean performance as

Em½G� ¼
1

m

Xm

i ¼ 1

Yi
ð15Þ

Under these conditions, the probability of failure P½Y 2 Ac
� of the system can now only be determined to within confidence

intervals reflecting the randomness of the empirical mean Em½G�, namely (Lucas et al., 2008),

P P½Y 2 Ac
�Zexp �2

½Em½G��a�a�2þ
D2

G

 !" #
rE0 ð16Þ

where E0 is a prespecified estimation tolerance and

a¼DGm�1=2ð�log E0Þ1=2
ð17Þ

Thus, with probability 1�E0 we have

P½Y 2 Ac
�rexp �2

½Em½G��a�a�2þ
D2

G

 !
ð18Þ

and the certification criterion (2) in turn becomes

½Em½G��a�a�þ
DG

Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

ffiffiffi
1

E

rs
ð19Þ
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This certification criterion is again of the form (13) with margin and uncertainty given by

M¼ ½Em½G��a�a�þ ð20aÞ

U ¼DG ð20bÞ

Comparison of (12) and (20) shows that the estimation of the mean performance of the system by means of an empirical
mean effectively reduces the margin in the amount a. Evidently, this margin hit can be reduced to an arbitrarily small
value by carrying out a sufficiently large number of tests. The certification criterion (20) again shows that, in the absence of
epistemic uncertainty, certification can be rigorously achieved from the sole knowledge of the system diameter and an
empirical mean performance.

2.4. Model-based UQ

As noted in the foregoing, the direct determination of system diameters by means of laboratory testing may require a
large number of tests and hence be prohibitively expensive. However, suppose that a model of the system is available, i.e.,
a function F : E � RN-R that maps input parameters into performance measures and that approximates the actual
response function G of the system. Evidently, a simple replacement of G by a model F does not result in rigorous
certification in general, since there is no a priori guarantee that the predictions of the model are of sufficient fidelity. The
aim of model-based certification is to achieve rigorous certification with a maximum use of modeling and simulation and a
minimum use of testing.

Models can be worked into the certification protocol described in the foregoing as follows. Begin by noting the
monotonicity property

exp �2
M2

D2
G

 !
rexp �2

M2

U2

 !
ð21Þ

provided that

UZDG ð22Þ

Hence, (18) remains a conservative upper bound with probability 1�E0 provided that the margin M is computed according
to (20a) and the uncertainty U satisfies the inequality (22). A convenient upper bound on the system diameter follows from
the triangular-inequality property of the diameter, cf. Proposition 2.1, as

DG ¼DG�Fþ F rDG�FþDF �U ð23Þ

where again we write DG�F ¼DðG�F,EÞ and DF ¼DðF,EÞ for short. We note that U indeed supplies an upper bound on the
diameter DG of the system. The diameter DF may be regarded as a predicted model diameter, i.e., the system diameter
predicted by the model. From the definition of the diameter it follows that DF is computed by exercising the model in the
absence of any testing. The requisite quantitative measure of model fidelity is supplied by the model-error diameter DG�F .
This diameter measures the discrepancy between model prediction and experimental observation. Evidently, many such
measures may be contrived in an ad hoc manner. However, what confers the diameters DF and DG�F their unique value is
that they furnish a rigorous upper bound on the probability of failure of the system and, therefore, may be taken as a basis
for conservative certification.

We note that the quantification of the model-error diameter DG�F , entails the solution of N global optimization
problems for the evaluation of the subdiameters osciðG�F,EÞ. Every objective function evaluation in each of those N

optimization problems requires the execution of two integral tests for the evaluation of GðX1, . . . ,Xi, . . . ,XNÞ and
GðX1, . . . ,X0i, . . . ,XNÞ, respectively and, simultaneously, two nominally identical simulations FðX1, . . . ,Xi, . . . ,XNÞ and

FðX1, . . . ,X0i, . . . ,XNÞ. Thus, the approach is practical if the error function G�F is better behaved than either G or F separately

and, hence, the computation of the diameter DG�F may be effected by means of rapidly converging iterative schemes, with
the result that the number of tests is minimized. This expectation is indeed born out in the terminal ballistics example of
Section 3.1.

2.5. UQ as an optimization problem

The McDiarmid concentration-of-measure approach to UQ is attractive because it requires tractable information on
response functions (subdiameters) and measures (independence and mean response function). In the preceding sections
we have described how to insert this information into McDiarmid’s concentration inequality to obtain an upper bound on
probabilities of deviation. A question of theoretical and practical importance concerns whether it is possible to obtain an
optimal concentration inequality from the same information. A related question concerns the possible use of information
other than subdiameters and mean values. These questions have been addressed in Owhadi et al. (submitted for
publication) and we proceed to summarize their main results for completeness. Assume, for definiteness, that we want to
certify that

P½GðXÞZa�rE ð24Þ
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based on the information that osciðG,EÞrDi, X ¼ ðX1, . . . ,XNÞ, E½G�r0 and that the inputs X1, . . . ,XN are independent under
P. In this situation, the optimal bound UðAMcDÞ on the probability of failure P½GðXÞZa� is the solution of the following
optimization problem:

UðAMDÞ ¼ sup
ðf ,mÞ2AMD

m½f ðXÞZa� ð25Þ

where

AMD ¼ ðf ,mÞ

f :E1 � � � � � EN-R

m 2MðE1Þ � � � � �MðEmÞ

Em½f �r0

osciðf ,EÞrDi

����������

8>>>><
>>>>:

9>>>>=
>>>>;

ð26Þ

and MðEkÞ denotes the set of probability measures on Ek. McDiarmid’s concentration-of-measure inequality provides the
following upper bound:

UðAMDÞrexp �2
a2PN

i ¼ 1 D2
i

 !
ð27Þ

Similarly, an information set A other than (26) results in an optimal probability of deviation:

UðAÞ ¼ sup
ðf ,mÞ2A

m½f ðXÞZa� ð28Þ

In practical applications, the available information does not determine ðG,PÞ uniquely but an information set A consisting
of possible values of ðG,PÞ. Optimal Uncertainty Quantification (OUQ) (Owhadi et al., submitted for publication), is based
on the observation that, given a set of assumptions and information about the system, there exist optimal bounds on
uncertainties; these are obtained as extreme values of well-defined optimization problems corresponding to extremizing
probabilities of deviation subject to the constraints imposed by assumptions and information.

Although the optimization problems (25) and (28) are extremely large (with optimization variable in infinite-
dimensional spaces of measures and functions), under general moment and independence conditions, Owhadi et al.
(submitted for publication) have shown that they have finite-dimensional reductions. The reduction theorems are a
generalization of classical Chebyshev inequalities and of the Markov–Krein theorem (Karlin and Studden, 1966; Marshall
and Olkin, 1979). The reduction theorems rely on an extension of Choquet theory (von Weizsäcker and Winkler, 1979;
Winkler, 1988) and on characterization of simplices and vector lattices (Kendall, 1962).

An application of OUQ that is relevant to the present work concerns the development of explicit and optimal
concentration inequalities of the McDiarmid type. Namely, it is shown in Owhadi et al. (submitted for publication) that

UðAMDÞ ¼ UðACÞ ð29Þ

where

UðACÞ :¼ sup
ðC,aÞ2AC

a½hC
Za� ð30Þ

is a finite-dimensional (therefore computationally tractable) optimization problem defined by

AC ¼ ðC,aÞ
C � f0;1gN ,

a 2#N
i ¼ 1Mðf0;1gÞ,

Ea½h
C
�r0

��������

8>><
>>:

9>>=
>>;

hC is a real function mapping f0;1gN onto R, parameterized by C (a coloring of the nodes of the N-dimensional hypercube),
and defined as follows:

hC
ðtÞ ¼ a�min

s2C

X
i:siati

Di

Explicit solutions of problem (30) can be computed for N¼2 and N¼3. For N¼2, we have

UðAMDÞ ¼

0 if D1þD2ra
ðD1þD2�aÞ2

4D1D2
if 9D1�D29rarD1þD2

1� a
maxðD1 ,D2Þ

if 0rar9D1�D29

8>><
>>: ð31Þ

We also refer to Owhadi et al. (submitted for publication) for an explicit expression for N¼3 and for the tail of the
distribution (in a) for NZ4. The preceding optimal bounds provide a means of improving on the simple McDiarmid bounds
that are taken as the basis for the present work. Since the bounds are optimal, further improvements inevitably require
information other than—or in addition to—system diameters and mean performance.
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3. Application to ballistic penetration

We proceed to demonstrate the feasibility and performance of the DoD UQ protocol introduced in the foregoing by
means of an application to terminal ballistics. The particular system under consideration consists of 6061-T6 aluminum
plates struck by spherical S-2 tool steel projectiles. The system’s inputs are the plate thickness and impact velocity. For
simplicity, we choose the perforation area as the sole performance measure of the system. The objective of the uncertainty
quantification analysis is to certify the lethality of the projectile, i.e., that the projectile perforates the plate with high
probability over a prespecified range of impact velocities and plate thicknesses.

3.1. Experimental facility

All tests required for the determination of the modeling error diameter DF�G were conducted at Caltech’s GALCIT
Powder-Gun Plate-Impact Facility. This facility thus plays several crucial roles as part of the uncertainty quantification
analysis: it defines the system to be certified and provides a specific and concrete realization of that system; and it
supplies the data-on-demand required for the computation of the modeling error diameter DF�G, cf. Section 2.4. A brief
description of the facility follows for completeness.

3.1.1. Materials

An aluminum alloy (6061-T6) was used as a target material. Selected material properties of this alloy are listed in Table 1.
Four different plate thicknesses, 0:81 mm ð0:032 inÞ, 1:02 mm ð0:040 inÞ, 1:27 mm ð0:050 inÞ and 1:62 mm ð0:063 inÞ were
used in the tests. The plates were cut from plate stock to nominally 152:4 mm ð6 inÞ square in size. The projectile was a
7:94 mm ð5=16 inÞ diameter S-2 tool-steel grade 200 steel sphere with high hardness and strength (Rc 55–58, yield strength
2 GPa). This aluminum/steel target/projectile system is greatly overmatched and, at impact velocities exceeding the ballistic
limit, the projectile perforates the target without much plastic deformation.

3.1.2. Experimental setup

A general view of the powder gun used in the tests is shown in Fig. 1a. The gun consists of a pressure chamber fitted
with a smooth-bore steel barrel of 25.4 mm ð1 inÞ in inner diameter and 152 cm ð5 feetÞ in length. The target plate is
positioned at the end of the barrel and attached to a 25.4 mm ð1 inÞ wide steel frame. The two vertical edges of the plate
are simply supported and the other two edges (top and bottom) are clamped to the steel frame as shown in Fig. 1b, which
results in a 101:6 mm ð4 inÞ � 101:6 mm ð4 inÞ target area. The spherical projectile is glued on to a light-weight styrofoam
sabot 25.4 mm ð1 inÞ in diameter and 50 mm ð2 inÞ in length, Fig. 1c. In tests, the projectile is first inserted into the end of
the barrel. Subsequently, the gun chamber is filled with helium and the pressure is set to the desired value of 138–552 kPa
(20–80 psi), depending on the required velocity. The gas in the chamber is then released by rapid opening of a valve,
resulting in the projectile being propelled in the barrel and eventually impacting the center of the target. Near the impact
end of the barrel, light emitting diodes are placed in two orifices on the periphery of the barrel and two fast-response
photo detectors are placed in orifices diametrically opposite to the diodes. The two detectors are 108 mm ð4:25 inÞ apart.
When the projectile passes through these orifices it generates a ramp pulse whose duration is recorded using a high-speed
WaveSurfer 24Xs oscilloscope (LeCroy, Chestnut Ridge, NY), which has a bandwidth of 200 MHz and a sampling rate of 2.5
Giga samples/s. The projectile velocity is then calculated from the time of travel of the projectile across the two detectors.
The calculated projectile velocity is verified by calculating the pulse duration corresponding to the projectile crossing a
single detector. The velocity of the projectile is calibrated against gas pressure and can be controlled within þ2–5 m/s in
the impact velocity range of 100–400 m/s. The perforation area is measured using high-precision gage pins and verified
using a surface profile scanning technique. The surface-profile scanning technique employs a ConoScan 3000 (Optimet,
North Andover, MA), which uses a conoscopic holography technology and has a precision of 10 m over a scan area of up to
120� 120 mm2.

3.1.3. Experimental results

Targets were removed from the clamping frame fixture post-mortem and the perforated area was measured. Typical
images of the aft and rear faces of a perforated plate are shown in Fig. 2a and b. The perforated area was measured using
Table 1
Physical and mechanical properties of 6061-T6 aluminum alloy.

Density ðkg=m3Þ Melting point (1C) Young’s modulus (GPa) Shear modulus (GPa) Brinell hardness

2700 652 68.9 26 95

Tensile yield strength (MPa) Ultimate tensile strength (MPa) Shear strength (MPa) Fracture toughness ðMPa
ffiffiffiffiffi
m
p
Þ

276 310 207 29



Fig. 1. Experimental set up. (a) General view of Caltech’s GALCIT Powder-Gun Plate-Impact Facility. (b) 6061-T6 aluminum alloy target held in the fixture

at the end of the barrel. (c) S-2 tool steel (7.94 mm diameter) projectile glued to a styrofoam sabot.
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high precision gage-pins and verified using the surface profile scanning system. A typical image of a scanned surface of a
perforated plate is shown in Fig. 2c. Beyond the ballistic limit, the perforated area is fairly independent of the projectile
velocity and plate thickness. For the material system under consideration, perforation happens by the classical mechanism
of plugging. The projectile velocity at which the 6061-T6 aluminum alloy plate is fully perforated is plotted in Fig. 3a as a
function of plate thickness. Using the data from the gage-pins, the perforated area is plotted in Fig. 3b as a function of
projectile velocity for different plate thicknesses. This information was used to establish the ballistic limit of the aluminum
alloy for a given plate thickness. For the range of plate thicknesses investigated here, this ballistic limit is in the range of
120–150 m/s. As expected, the ballistic limit increases with increasing plate thickness.

3.2. Computational model

The accurate simulation of terminal ballistics is a grand challenge in scientific computing that places exacting demands
on physics models, solvers and computing resources. In order to meet these challenges, in calculations we use the Optimal-
Transportation MeshFree (OTM) method of Li et al. (2010) extended to account for contact and fracture (cf. Schmidt et al.,
2009). The OTM method combines: (i) optimal transportation concepts such as the Wasserstein distance between
successive mass densities in order to discretize the action integral in time; (ii) Maximum-entropy (max-ent) meshfree
interpolation (Arroyo and Ortiz, 2006) from a nodal-point set in order to avoid mesh entanglement and the need for



Fig. 2. Typical images of the perforated 6061-T6 aluminum plate: (a) Impact face; (b) Rear face and (c) Scanned profile.
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continuous remeshing in simulations of unconstrained flows; and (iii) material-point sampling in order to track the local
state of material points and carry out constitutive updates. A detailed description of the OTM terminal ballistic model
employed in the present work may be found in Li et al. (2012).

The optimal-transportation approach to time discretization leads to geometrically exact updates of the local volumes
and mass densities, thus bypassing the need for solving a costly Poisson equation for the pressure and entirely eliminating
the mass conservation errors that afflict Eulerian formulations. In addition, by adopting a discrete Hamilton principle
based on the time-discrete action furnished by optimal transportation, the discrete trajectories have exact conservation
properties including symplecticity, linear and angular momentum. The total energy can also be exactly conserved, subject
to solvability constraints, if time is taken as an independent generalized coordinate and the successive time steps are
computed so as to render the action stationary (Kane et al., 1999). Max-ent interpolation (Arroyo and Ortiz, 2006) offers
the advantage of being mesh-free and entirely defined—essentially explicitly—by the current nodal-set positions. In
addition, max-ent interpolation satisfies a Kronecker-delta property at the boundary, which greatly facilitates the
enforcement of essential boundary conditions, and has good accuracy, convergence and monotonicity properties that
render it well-suited to applications involving shocks.



Fig. 3. (a) Ballistic limit for 6061-T6 aluminum alloy as a function of plate thickness. (b) Perforated area versus impact velocity for different thicknesses

of 6061-T6 aluminum plates.
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All local state data is stored—and constitutive calculations are performed—at an evolving material point set. As their
name indicates, material points designate fix material points of the body and, therefore, are convected by the deformation.
Material points also carry a fixed volume and mass and serve the purpose of integration points for the calculation of the
effective nodal forces and masses. In calculations, the max-ent shape functions are recalculated at every time step, which
effectively results in a dynamic or on-the-fly reconnection of nodes and material points. Since max-ent functions have
essentially local support, the calculation of the max-ent functions and derivatives at a material point involves a local

neighborhood of nodal points only. Such local neighborhoods are updated dynamically using range searches. Conveniently,
the resulting reconnection between material points and nodes leaves the material points invariant, thus entirely
eliminating the need for state-variable remapping.

In addition to transporting mass efficiently, a terminal ballistics solver must account for complex contact, fracture and
fragmentation phenomena. A convenient feature of OTM, which is common to other material point methods (Sulsky et al.,
1994) is that seizing contact is accounted for automatically, essentially for free, by simply allowing nodal points from
different bodies to belong to the local neighborhoods of material points. The ensuing cancelation of linear momenta then
automatically accounts for dynamic contact interactions of the seizing type. A final component of the material model
concerns the simulation of fracture and fragmentation. Specifically, we simulate fracture by a variational material-point
failure scheme known as eigenfracture (Schmidt et al., 2009). In this scheme, the energy-release rate attendant to the
failure of a material point is estimated by a local energy-averaging procedure, and material points are failed when the
attendant energy-release rate exceeds the specific fracture energy of the material. The eigenfracture scheme is known to
properly converge to Griffith fracture in the limit of vanishingly small mesh sizes (Schmidt et al., 2009).

We conclude this section with some typical calculations for purposes of illustration. All materials are described by
means of engineering J2-viscoplasticity models with power-law hardening, rate-sensitivity and thermal softening.
Specifically, the sensitivity law is assumed to be of the form:

_Ep
¼ _Ep

0

s�scðEp,TÞ

s0

� �m

ð32Þ



Table 2
Mechanical constants.

Material r ðkg=m3Þ E (GPa) n sy0 (MPa) Ep
0

n _Ep
0

m

Al6061-T6 2700 69 0.33 276 0.001 13.5 1000 11.5

S2 tool steel 12 695 193 0.3 2000 0.001 22 1 340

Table 3
Thermal constants.

Material c (J/kgK) T0 (K) Tm (K) l b

Al6061-T6 896 298 853 0.5 0.9

S2 Tool steel 477 298 1777 1.17 0.9
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where Ep is the Mises effective plastic strain, s is a Mises effective stress, T is the absolute temperature, _Ep
0 is a reference

effective plastic-strain rate, s0 is a reference stress and m is the rate-sensitivity exponent. The critical stress for plastic
yielding is assumed of the form:

scðEp,TÞ ¼ syðTÞ 1þ
Ep

Ep
0

 !1=n
2
4

3
5 ð33Þ

where syðTÞ is the yield stress, Ep
0 is a reference effective plastic strain, and n is the hardening exponent. Finally, the yield

stress is assumed of the form:

syðTÞ ¼ sy0 1�
T

T0

� �l

ð34Þ

where sy0 is the yield stress at zero absolute temperature, T0 is the melting temperature and l is the thermal softening
exponent. The elastic response is assumed to be quadratic in the elastic logarithmic strains, with isotropic elastic
coefficients depending linearly on temperature and vanishing at the melting temperature. The equation of state, which
governs the volumetric response of the material, is assumed to be of the Mie–Gruneisen type. The material constants used
in calculations are collected in Tables 2 and 3.

Fig. 4 shows a snapshot of a calculation concerned with an aluminum plate struck by a spherical steel impactor at
370 m/s. The thickness of the plate is 1.6 mm and the diameter of the projectile is 7.94 mm. Fig. 4a shows the nodal set
color coded according to von-Mises stress, and Fig. 4b shows the material point set colored according to energy-release
rate. Fig. 5a and b shows level contours of Mises effective plastic stress and temperature, respectively, at the same moment
in time. As may be seen from the figures, the projectile easily defeats the plate, which is perforated by a conventional
plugging mechanism. As expected, the energy-release rate is concentrated around the shear rupture that separates the
plug from the rest of the plate. The temperate field also peaks at the plug boundary, resulting in thermal softening of the
plate. This thermal softening in turn facilitates and promotes localization of deformation, eventually resulting in plug
formation. The large plastic deformations undergone by the plate are also noteworthy. By contrast, the projectile remains
comparatively undeformed.

Typical comparisons between experimental data and model predictions are shown in Fig. 6. As may be seen from the
figure, the OTM model qualitatively predicts the ballistic limit, the subsequent steep rise in perforation area, and the
eventual plateau at impact velocities greatly in excess of the ballistic limit. It also predicts qualitatively the boundary
between perforation and non-perforation in the thickness-impact velocity plane. Whereas the predictions of the
simulations may thus be regarded to compare favorably with experiment, whether the accuracy of the predictions
suffices or not depends critically on their intended application and needs to be quantified accordingly. In the specific
framework of the DoD UQ protocol under consideration here, the appropriate quantitative measure of model fidelity is
supplied by the modeling-error diameter DF�G, cf. Sections 2.4 and 3.4.
3.3. Optimization framework

Our implementation of the DoD UQ protocol utilizes an approximate global optimization algorithm to compute the
model diameter DF, where the accuracy depends primarily on the optimum being found within a fixed tolerance. The
computation of the model-error diameter DG�F is also done by approximate global optimization. Because each evaluation
of G requires an expensive experimental measurement, the optimization of DG�F has the additional requirement of
minimizing the number of evaluations of G. The details of the computations of DF and DG�F are presented below.



Fig. 4. Snapshot of aluminum plate after perforation by steel sphere. (a) Nodal point set. (b) Material point set. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Snapshot of aluminum plate after perforation by steel sphere. (a) Mises effective plastic stress. (b) Temperature.
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Fig. 6. Typical comparison between experimental data and model predictions. (a) Ballistic curve for 50 mil plate thickness. (b) Boundary between perforation

and non-perforation in the thickness-impact velocity plane.
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3.3.1. The model diameter DF as an optimization problem

D2
F is the sum of the N subdiameters osc2

i ðF,EÞ, Eq. (14), and computing each subdiameter requires solving a global
optimization problem. During the computation of the i th subdiameter, the optimization algorithm takes an Nþ1-dimensional
set of input parameters P ¼ ðX1, . . . ,Xi,X

0
i, . . . ,XNÞ and the current measure of oscillation CðPÞ ¼�½FðX1, . . . ,X0i, . . . ,XNÞ�

FðX1, . . . ,Xi, . . . ,XNÞ�
2 as inputs, and produces an updated instance of P. The optimization loop iterates until the condition

CðPÞo�ðosc2
i �EÞ is satisfied. The final set P contains the optimal (worst) input parameter set ðX1, . . . ,Xi,X

0
i, . . . ,XNÞ resulting in

the largest oscillation in the response function.
3.3.2. Computing the model diameter DF

Due their stochastic nature, global search algorithms often require hundreds of iterations and thousands of function
evaluations to find a global optimum. Local methods, such as Powell’s (1989,1994) method, may require orders of
magnitude fewer iterations and evaluations, but do not generally converge to a global optimum for complex, highly non-
convex objective functions. To compute diameters, we use a lattice-Powell method that carries out local optimizations at
the centers of lattice cubes in parameter space. The local optimizations are quadratically convergent, based on a multi-
variate gradient descent algorithm and do not require implicit first derivatives. Specifically, we partition the range of each
parameter i to be optimized into ni equal pieces giving a total of M¼

Q
ini cubes. If we let ni-1, then we are guaranteed a
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global optimum albeit at the expense of long execution times. However, in our experience modest values of ni tend to
produce good results for the class of problems under consideration. In addition, the algorithm allows for the execution of
the M local optimizations in parallel. After all M optimizations are completed, the optimal P for DF is returned.

A computation of DF for the computational model of ballistic impact described in Section 3.2 was performed using the
lattice-Powell method. The physical system is described in Section 3.1 and consists of a steel sphere impacting an
aluminum plate of thickness h at a speed v and obliquity y¼ 0 from plate normal. We assume that the thickness and speed
are independent random variables and calculate subdiameters for h and v. Each subdiameter calculation utilized M local
searches constrained to the input parameter range chosen for the UQ analysis, namely, h 2 ½32;63�mils and
v 2 ½200;400� km s�1. These ranges were partitioned into nh¼5 and nv ¼ 3 intervals for an M¼15 lattice. While this
partition is somewhat coarse, it was selected due to the rough planarity of the response function F in the region of interest.
Optimizations terminated when the relative error between the tenth previous generation and the current generation was
less than a prespecified tolerance. The maximum number of iterations was set to 20 in order to terminate optimizations
meandering in a shallow well. Computations were performed in parallel on sixteen cores: two evaluations of F at a time
utilizing eight cores each. This scheme trivially scales to much larger computational resources. The computation of DF was
expedited by storing previously computed values of F(X) as pairs /X,FðXÞS in a table. Given an X0, a match is the smallest
9X�X09or, if any, for some fixed search radius r. This radius must be chosen small enough so that the optimization
converges to the true value. If there was no match, then FðX0Þwas computed from scratch and stored in the table. For h and
v, the radii were rh¼2.5 and rv ¼ 20, respectively.

The results of the computation of DF are presented in Section 3.4. Each of the M optimizations reached numerical
convergence in roughly five iterations. The total number of evaluations of F required over all M optimizations was 23,000
for DF

h
and 36,000 for Dv

F . All but 1000 of the F evaluations were already in the table. Increasing the ni to produce a finer
lattice showed no significant improvement. As argued in Section 2.4, the large number of function evaluations required for
the computation of DF clearly points to the infeasibility of performing the uncertainty quantification analysis solely on the
basis of laboratory testing.

3.3.3. Computing the modeling error DG�F

Computing the model error diameter DG�F also requires solving N global optimization problems for the evaluation of
the subdiameters osc2

i ðG�F,EÞ, and is formulated similarly to the computation of DF. However, each evaluation of G

requires an experiment and, therefore, we need to modify our optimization strategy in order to minimize these
evaluations. One approach is to use expert judgement to choose an appropriate starting point for a local optimization
algorithm with a fast convergence rate. Alternatively, if an analytical surrogate function Gs is available that provides a good
approximation of the experimental function G, we can perform a calculation of DGs�F to determine a good set of starting
points for the evaluation of DG�F . In our calculations, we use a surrogate fitted to the experimental data presented in
Section 3.1 for guidance on initial starting points for the DG�F computation. The surrogate is fitted to the experimental data
by the least squares method. The least square residual is 6.14 mm2 and the maximum difference between the
experimental measurements and surrogate is 1.86 mm2. This difference is indeed small compared to the empirical mean
of 48.08 mm2.

For the computation of DGs�F , the lattice-Powell solver described in the previous section was used with M¼15 cubes.
Each of the optimizations reached numerical convergence in less than three iterations. The total number of function
evaluations for the computation of Dh

Gs�F was 6200, and 10,400 evaluations were required for Dv
Gs�F . The values for Dv

Gs�F

and Dh
Gs�F were sorted by size, thus producing an ordered set of local optima based on the surrogate. The five largest

corresponding input parameter sets P were selected and used as starting points for the computations of Dv
G�F and Dh

G�F .
Again, each of the optimizations reached numerical convergence in less than three iterations, and less than 40 function
evaluations of G (experiments) were required to obtain the final modeling-error diameter. It bears emphasis that each of
these 40 experiments were carried out concurrently with the model simulations and according to input parameters
prescribed by the optimization iteration. In particular, the precise sequence of experiments required was not known a

priori, and the experimental data was supplied on-demand during the course of the optimization iteration.

3.4. UQ analysis

The results of the UQ analysis are shown in Table 4. The operating range of the gun assumed in the analysis corresponds
to an impact velocity in the range of 200–400 m/s. This operating range excludes the cliff immediately above the ballistic
limit in the curve of perforation area versus impact velocity for plates with a thickness in the range of 0.81–1.62 mm, cf.
Fig. 3. The average perforation area is 48.08 mm 2, computed by reusing the tests run for the calculation of DF�G. The
margin hit due to estimation of mean performance by an empirical mean is 6.68 mm2. The total model diameter DF, which
measures the variability of the perforation area as predicted by the model, is computed to be 7.79 mm2, which is a small
fraction of the average perforation area. Thus, the model predicts a modest variation of the perforation area over the entire
range of impact velocities and plate thicknesses. Likewise the total modeling-error diameter DF�G, which measures the
‘badness’ of the model as compared with experiment, is computed to be 6.36 mm2, which is also a small fraction of the
average perforation area. In addition, the amount of scatter in the experimental measurements is small and is neglected in



Table 4
Summary of results from the UQ analysis of a spherical S-2 tool-steel projectiles/6061-T6 aluminum plate system.

The lethality of the projectiles for plate thicknesses in the range 0.81–1.62 mm, and impact velocities in the range

200–400 m/s, can be certified with exceedingly large confidence.

Model diameter DF Thickness 5.92 mm2

Velocity 5.06 mm2

Total 7.79 mm2

Modeling-error diameter DF�G Thickness 4.78 mm2

Velocity 4.19 mm2

Total 6.36 mm2

Total uncertainty U ¼DFþDF�G 14.15 mm2

Empirical mean Em½G� 48.08 mm2

Margin hit a ðe0 ¼ 0:1%Þ 6.68 mm2

Confidence factor M/U 2.93 mm2
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the computation of uncertainties. With this approximation, the total perforation-area uncertainty is U ¼DFþDF�G ¼

14:15 mm2, whereas the total margin is M¼ ½Em½G��a�þ ¼ 41:4 mm2, which gives an M/U ratio, or confidence factor,
of 2.93.

This is a large confidence factor indicative of an exceedingly small probability of no-perforation of the plate over
its entire operating range. Indeed, McDiarmid’s inequality gives an upper bound of 3:5� 10�8 for the probability of failure,
or no-perforation, of the system. The lethality of the system is thus certified with a large degree of confidence (i.e. 99.9%
since E0 ¼ 0:1% is larger than 3:5� 10�8). Moreover, the iterative computation of the modeling-error diameter
DF�G converges quickly and requires 40 function evaluations, a clear indication of the high fidelity of the model,
whereas the computation of the model diameter DF requires in the order of 59,000 function evaluations. It seems
reasonable to assume that a direct determination of the system diameter DG by means of laboratory testing would require
a comparable number of tests ð 	 59;000Þ. The net pay-off of model-based certification, and the feasibility of the DoD UQ
protocol, may thus be identified with the striking reduction (from 	 59;000 to 	 40) in the number laboratory tests that it
affords.
3.5. Optimal UQ analysis

McDiarmid’s inequality is not the only certification method that can be applied to the diameter and mean performance data
summarized in Table 4. Alternatively, the Optimal Concentration Inequalities of Owhadi et al. (submitted for publication) can be
applied. Since the McDiarmid subdiameters are seminorms and satisfy the triangle inequality, Table 4 implies that the
subdiameters of G with respect to plate thickness h and impact velocity v are bounded as follows:

Dh
Gr ð5:92þ4:78Þmm2 ¼ 10:70 mm2 ð35Þ

Dv
Gr ð5:06þ4:19Þmm2 ¼ 9:25 mm2 ð36Þ

We also conclude that, with probability at least 0.999 on the experimental samples, the mean of G over the specified parameter
ranges satisfies

E½G�Z ð48:08�6:68Þmm2 ¼ 41:40 mm2 ð37Þ

It then follows from Owhadi et al. (submitted for publication, Theorem 4.2) that, with probability at least 0.999 on the
experimental samples, the maximal probability of non-perforation is 0, and the perforation area G is in fact strictly positive
throughout the domain of certification (this result can also be stated with probability 1 using the fact that G is almost surely
bounded from below by its empirical mean minus its maximum variation Dh

GþDv
G).

Observe that the information associated with the (bounds on) subdiameters DG
h

and Dv
G is deterministic in nature (i.e.,

these subdiameters are solely functionals of G and do not depend on P) whereas the information on E½G� is a functional of
both, G and P (the measure of probability on velocity and thickness). In situations where the mean is unknown, Owhadi
et al. (submitted for publication, Theorem 4.2) provide a bound on the probability of non-perforation as a function of E½G�
that is optimal, given the information contained in the (bounds on) subdiameters DG

h
and Dv

G and the knowledge that h and
v are independent random variables. This optimal bound is

P½G¼ 0�r

0 if Dh
GþDv

GrE½G�

ðDh
GþDv

G�E½G�Þ
2

4Dh
GDv

G

if 9Dh
G�Dv

G9rE½G�rDh
GþDv

G

1� E½G�

maxðDh
G ,Dv

GÞ
if 0rE½G�r9Dh

G�Dv
G9

8>>>><
>>>>:

ð38Þ
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Using the numerical values given in (35) we obtain that

P½G¼ 0�r

0 if 19:95 mm2rE½G�

1� E½G�
19:9 mm2

� �2
if 1:45 mm2rE½G�r19:95 mm2

1� E½G�
10:7 mm2 if 0rE½G�r1:45 mm2

8>>><
>>>:

ð39Þ

We observe from Eqs. (39) and (40) that if E½G�rDh
G�Dv

G then the optimal bound on the probability of non-perforation
does not depend on Dv

G. More precisely, if E½G�r1:45 mm2, reducing the uncertainty bound on velocity corresponding to
Dv

G down to zero does not change the optimal bound 1�E½G�=10:7 mm2 on the probability of non-perforation. This is a non-
trivial phenomenon having its origin in the fact that DG

h
and Dv

G act as constraints for an infinite-dimensional optimization
problem and extremizers may not live on boundaries defined by these constraints. This phenomenon can be understood as
a screening effect where uncertainties in velocity are completely screened by uncertainties in thickness. From a broader
point of view, these results show that uncertainties in input parameters, which propagate to output uncertainties in the
classical sensitivity analysis paradigm, may not do so when the transfer functions (or probability distributions) are
imperfectly known. Observe that this is a stronger statement than saying that input uncertainties do not add up on output.
We refer to Owhadi et al. (submitted for publication) for additional discussions of this phenomenon.

4. Summary and concluding remarks

The UQ case study presented in the foregoing is chiefly concerned with the assessment of the feasibility of a data-on-

demand (DoD) UQ protocol based on concentration-of-measure probability-of-failure inequalities. The assessment is based
on a particularly simple system configuration consisting of 6061-T6 aluminum plates struck spherical S-2 tool steel
projectiles at ballistic impact speeds. The system’s inputs are the plate thickness and impact velocity and, for simplicity,
the perforation area is chosen as the sole performance measure of the system. The objective of the UQ analysis is to certify
the lethality of the projectile, i.e., that the projectile perforates the plate with high probability over a prespecified range of
impact velocities and plate thicknesses. The requisite experimental input for uncertainty quantification was supplied by
Caltech’s GALCIT Powder-Gun Plate-Impact Facility. A principal emphasis of the DoD UQ protocol under consideration
concerns the achievement of rigorous certification through modeling and simulation with a minimum of testing. This
emphasis places a high premium on high-fidelity physics-based models capable of effecting accurate predictions. In our
study we have used the Optimal-Transportation MeshFree (OTM) method (Li et al., 2010) extended to account for contact
and fracture in order to simulate terminal ballistics (cf. also Li et al., 2012). The materials were described by means of
engineering viscoplasticity models with power-law hardening, rate-sensitivity and thermal softening combined with a
Mie–Gruneisen equation of state. Given the low degree of scatter in the data, the total performance uncertainty reduces to
the sum of the model diameter and the modeling-error diameter. The calculation of these diameters was carried out using
the lattice-Powell method of McKerns et al. (2009, accepted).

The net outcome of the UQ analysis is an M/U ratio, or confidence factor, of 2.93. This is a large confidence factor indicative
of an exceedingly small probability of no perforation of the plate over its entire the operating range. The lethality of the system
can thus be certified with an exceedingly large degree of confidence. Indeed, McDiarmid’s inequality gives an upper bound of
3:5� 10�8 for the probability of failure, or no-perforation, of the system. This low probability of failure showcases the ability of
concentration-of-measure inequalities to deal effectively with rare failure events. The high-confidence in the successful
operation of the system afforded by the analysis, together with the small number of tests (40) required for the determination of
the modeling-error diameter, establishes the feasibility of the DoD UQ protocol as a rigorous yet practical approach for model-
based certification of complex systems. Moreover, the striking reduction in the number of tests required for rigorous
certification (from 	 59;000, as estimated by the number of function evaluations required for the computation of the system
diameter DF, to 	 40, the number of tests required for the determination of the modeling-error diameter DF�G) vividly
showcases the high potential pay-off afforded by model-based certification.

A number of attributes of the DoD UQ protocol are worth emphasizing further. Firstly, the quantitative and reductionist
qualities of the protocol are remarkable. Thus, the protocol supplies—and reduces the quantification of uncertainties
to—two quantitative figures of merit: the system diameter DF and the modeling-error diameter DF�G. The former provides
a measure of the oscillation of the response over the operating range of the system, i.e., it measures how well that response
of the system can be pinned down, or how predictable the system is. The latter provides a measure of the badness of the
model, i.e., of the extend of the divergence between model and reality. Together (in the absence of significant experimental
scatter), those two measures aggregate to one single quantitative measure of system uncertainty. Evidently, many
alternative uncertainty measures can be contrived, but in general there is no assurance that such ad hoc uncertainty
measures can be taken as a basis for rigorous certification, which greatly detracts from their interest. What sets the system
and modeling-error diameters apart from other ad hoc uncertainty measures is precisely their property that, together, they
supply a rigorous upper bound on the probability of failure of the system and, therefore, can be taken as a basis for
rigorous certification.

A common practice in uncertainty quantification is to compute sensitivities of performance measures with respect to
input parameters. The present work shows that such sensitivities are not sufficient for rigorous certification in general.
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Thus, the computation of the system diameter requires the careful quantification of variations in performance resulting
from arbitrary and finite perturbations of the input parameters. Only such nonlinear sensitivity analysis is capable of
quantifying uncertainties in system performance in a manner that enables rigorous certification.

It should also be carefully noted that uncertainty quantification based solely on mathematical or computational models is a

fortiori incomplete as it does not account for the uncertainty due to the lack of model fidelity. In the DoD UQ protocol developed
in this work, the modeling-error diameter supplies precisely the requisite quantitative measure of uncertainty. It is interesting
to contrast such unambiguous quantification of model fidelity with traditional validation, which correctly emphasizes the need
to assess models against experimental data but, in general, leaves unspecified the precise quantitative means by which such a
comparison should be effected. This ambiguity is not surprising, since the specification of a precise validation measure must
necessarily be goal oriented, i.e., whether a model is of sufficient fidelity or not depends critically on the intended application.
Here again, certification provides a clear mathematical goal, namely, the bounding of probabilities of failure, that effectively
disambiguates the choice model-fidelity measure. In particular, within this certification-oriented framework a model is of
sufficient fidelity, and thus validated for the system and application at hand, if the resulting modeling-error diameter is
sufficiently small, i.e., it constitutes a small fraction of the total uncertainty budget.

Finally, we point to some limitations of the approach and areas for further extensions. The system considered in this work,
namely, the spherical S-2 tool steel projectile/6061-T6 aluminum target plate terminal ballistics system, is particularly clean in
that all the input parameters are controllable and, by virtue of the large size of the projectile relative to the target plate
thickness, the experimental data exhibits negligibly small scatter. Evidently, the controllability of the parameters, i.e., the ability
to dial in specific values of the system for purposes of laboratory testing, is essential to the practical implementation of the DoD
UQ protocol. In addition, the lack of significant experimental scatter greatly simplifies the quantification of system
uncertainties. In a sequel to this work (Adams et al., in press), we extend the DoD UQ protocol to systems where those
simplifying circumstances do not arise, i.e., to systems where some of the input systems cannot be dialed in at will and where
the experimental data exhibits non-negligible scatter. It should also be pointed out that the McDiarmid’s inequality employed
in the present study tends to degrade, in the sense of loss of tightness, when the operating range of the system includes a cliff in
the response function. In such cases, the determination of tight probability-of-failure bounds requires more elaborate bounding
methods such as those based on the partitioning of the input domain (Sullivan et al., 2011).
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