# On learning kernels for numerical approximation and learning 

## Houman Owhadi

JHU Applied Math \& Statistics department seminar, March 25, 2021


## Interpolation problem

$$
\begin{aligned}
& \text { Recover } f^{\dagger}: D \subset \mathbb{R}^{d} \rightarrow \mathbb{R} \\
& \text { Given } f^{\dagger}\left(X_{1}\right), \ldots, f^{\dagger}\left(X_{N}\right)
\end{aligned}
$$

## Family of kernels

$$
\begin{aligned}
& K_{\theta}: D \times D \rightarrow \mathbb{R} \\
& \theta: \text { Hierarchical parameter }
\end{aligned}
$$

## Kernel/GP interpolant

$$
\begin{aligned}
& f(\cdot, \theta, X)=K_{\theta}(\cdot, X) K_{\theta}(X, X)^{-1} f^{\dagger}(X) \\
& f^{\dagger}(X):=\left(f^{\dagger}\left(X_{1}\right), \ldots, f^{\dagger}\left(X_{N}\right)\right) \in \mathbb{R}^{N} \\
& K_{\theta}(X, X): N \times N \text { matrix with entries } K_{\theta}\left(X_{i}, X_{j}\right) \\
& K_{\theta}(x, X): 1 \times N \text { vector with entries } K_{\theta}\left(x, X_{i}\right)
\end{aligned}
$$

## Question

Which $\theta$ do we pick?

## Main objectives of this talk

## Show why this question is important <br> Cover the following answers

- Bayesian (MLE, MAP)
- Cross validation
- Deep Learning (Bayesian, MAP)

Kernel Flows: from learning kernels from data into the abyss.
H. Owhadi and G. R. Yoo, arXiv:1808.04475.

Journal of Computational Physics, 2019


Consistency of Empirical Bayes And Kernel Flow For Hierarchical Parameter Estimation. Y. Chen, H. Owhadi, A. M. Stuart. 2020. arXiv:2005.11375


Andrew Stuart

## Empirical Bayes answer

Place a prior on $\theta$
Assume that $f^{\dagger} \mid \theta \sim \mathcal{N}\left(0, K_{\theta}\right)$
Select the $\theta$ maximizing the marginal probability of $\theta$ subject to conditionning on $f^{\dagger}(X)$

Uninformative prior on $\theta$


Maximum Likelihood Estimate

$$
\theta^{E B}=\underset{\theta}{\operatorname{argmin}} L^{E B}\left(\theta, X, f^{\dagger}\right)
$$

$L^{E B}\left(\theta, X, f^{\dagger}\right)=f^{\dagger}(X)^{T} K_{\theta}(X, X)^{-1} f^{\dagger}(X)+\log \operatorname{det} K_{\theta}(X, X)$

Pick a $\theta$ such that subsampling the data does not influence the interpolant much $\theta^{K F}=\underset{\theta}{\operatorname{argmin}} L^{K F}\left(\theta, X, \pi X, f^{\dagger}\right)$

$$
L^{K F}\left(\theta, X, \pi X, f^{\dagger}\right)=\frac{\|f(\cdot, \theta, X)-f(\cdot, \theta, \pi X)\|_{K_{\theta}}^{2}}{\|f(\cdot, \theta, X)\|_{K_{\theta}}^{2}}
$$

$f(\cdot, \theta, X)=K_{\theta}(\cdot, X) K_{\theta}(X, X)^{-1} f^{\dagger}(X)$
$\pi$ : subsampling operator, $\pi X$ is a subvector of $X$ -••••••••••••••••••• ••••••• $X$
$\|\cdot\|_{K_{\theta}}$ : RKHS norm determined by $K_{\theta}$
A kernel is good if subsampling the data does not influence the interpolant much

## Question

How do $\theta^{E B}$ and $\theta^{K F}$ behave as $\#$ of data $\rightarrow \infty$

## Model

- Domain $D=\mathbb{T}^{d}=[0,1]_{\text {per }}^{d}$
- Lattice data $X_{q}=\left\{j \cdot 2^{-q}, j \in J_{q}\right\}$

$$
\text { where } J_{q}=\left\{0,1, \ldots, 2^{q}-1\right\}^{d}, \# \text { of data } 2^{q d}
$$

- Kernel $K_{\theta}=(-\Delta)^{-\theta}$
- Subsampling in KF: $\pi X_{q}=X_{q-1}$

Theorem (Chen, O., Stuart, 2020)
If $f^{\dagger} \sim \mathcal{N}\left(0,(-\Delta)^{-s}\right)$ for some $s>d / 2$, then as $q \rightarrow \infty$ $\theta^{E B} \rightarrow s$ and $\theta^{K F} \rightarrow \frac{s-\frac{d}{2}}{2}$ in probability

## Question?

How are the limits $s$ and $\frac{s-\frac{d}{2}}{2}$ special?

Experiment $d=1, s=2.5, \#$ of data $N=2^{9}$

$L^{2}$ error vs $\log$ (\# data points)


- $s(=2.5)$ is the $\theta$ that minimizes the mean squared error
- $\frac{s-\frac{d}{2}}{2}(=1)$ is the smallest $\theta$ that suffices to achieve fastest rate in $L^{2}$


## Takeaway message

- EB selects the $\theta$ that minimizes the mean squared error.
- KF selects the smallest $\theta$ that suffices for the fastest rate of convergence in mean squared error.


## More comparisons

- EB may be brittle (not robust) to model misspecification
- KF has some degree of robustness to model misspecification
G. Wahba and J. Wendelberger. Some new mathematical methods for variational objective analysis using splines and cross validation. 1980.
M. L. Stein. A comparison of generalized cross validation and modified maximum likelihood for estimating the parameters of a stochastic process. 1990.
F. Bachoc. Cross validation and maximum likelihood estimations of hyperparameters of Gaussian processes with model misspecification. 2013.

Chen, O., Stuart. Consistency of Empirical Bayes And Kernel Flow For Hierarchical Parameter Estimation. 2020.

## Extrapolation problem

## Given time series $z_{1}, \ldots, z_{N}$

predict $z_{N+1}, z_{N+2}, z_{N+3}, \ldots$

## Assumption

$$
\begin{aligned}
& z_{k+1}=f^{\dagger}\left(z_{k}, \ldots, z_{k-\tau^{\dagger}+1}\right) \\
& f^{\dagger}, \tau^{\dagger} \text { unknown }
\end{aligned}
$$

## Fundamental problem

[Box, Jenkins, 1976]: Time Series Analysis
Mezíc, Klus, Budišić, R. Mohr,...: Koopman operator
[Alexander, Giannakis, 2020]: Operator theoretic framework
[Bittracher et al, 2019]: kernel embeddings of transition manifolds
[Brunton, Proctor, Kutz, 2016]: SINDy
Brian, Hunt, Ott, Pathak, Lu, Hunt, Girvan, Ott,...: Reservoir computing
Ralaivola, Chattopadhyay,...: LSTM
Dietrich, Mahdi Kooshkbaghi, Bollt, Kevrekidis: Manifold learning

## Simplest solution

Approximate $f^{\dagger}$ with Kernel interpolant $f$

$$
f\left(z_{k}, \ldots, z_{k-\tau^{\dagger}+1}\right)=z_{k+1} \quad k=\tau^{\dagger}, \tau^{\dagger}+1, \ldots, N-1
$$

$$
f(x)=K(x, X) K(X, X)^{-1} Y
$$

$$
X_{k}=\left(z_{k}, \ldots, z_{k-\tau^{\dagger}+1}\right)
$$

$$
Y_{k}=z_{k+1}=f^{\dagger}\left(X_{k}\right)
$$

Predict future values of the time series by simulating the dynamical system

$$
s_{k+1}=f\left(s_{k}, \ldots, s_{k-\tau^{\dagger}+1}\right)
$$

Learning dynamical systems from data: a simple cross-validation perspective. B. Hamzi and H. Owhadi. 2020. arXiv:2007.05074

## Example: Bernoulli map

$$
z_{k+1}=2 z_{k} \bmod 1
$$

$$
K\left(x, x^{\prime}\right)=e^{-\left\|x-x^{\prime}\right\|^{2}}
$$



## Example: Bernoulli map

$$
z_{k+1}=2 z_{k} \bmod 1
$$

$$
K\left(x, x^{\prime}\right)=\alpha_{0} \max \left\{0,1-\frac{\left\|x-x^{\prime}\right\|^{2}}{\sigma_{0}}\right\}+\alpha_{1} e^{-\frac{\left\|x-x^{\prime}\right\|^{2}}{\sigma_{1}^{2}}}
$$

$\alpha_{0}, \sigma_{0}, \alpha_{1}, \sigma_{1}^{2}:$
Learned parameters (using Kernel Flows)


## Example: Hénon map

$$
\begin{aligned}
x(k+1) & =1-a x(k)^{2}+y(k) \\
y(k+1) & =b x(k)
\end{aligned}
$$






Learned kernel

## Example: Lorenz system

$$
\begin{aligned}
\frac{d x}{d t} & =s(y-x) \\
\frac{d y}{d t} & =r x-y-x z \\
\frac{d z}{d t} & =x y-b z
\end{aligned}
$$

$$
k_{i}(x, y)=\alpha_{i}+\left(\beta_{i}+\|x-y\|_{2}^{\kappa_{i}}\right)^{\sigma_{i}}+\delta_{i} e^{-\|x-y\|_{2}^{2} / \mu_{i}^{2}}
$$

True dynamic Predicted dynamic with learned kernel


## Data-driven geophysical forecasting

HYCOM: 800 core-hours per day of forecast on a Cray XC40 system
CESM: 17 million core-hours on Yellowstone, NCAR's high-performance computing resource Architecture optimized LSTM: 3 hours of wall time on 128 compute nodes of the Theta supercomputer.
Our method: 40 seconds to train on a single node machine (laptop) without acceleration


Romit
Maulik
(ANL)


Boumediene Hamzi

Data-driven geophysical forecasting: Simple, lowcost, and accurate baselines with kernel methods,
Hamzi, Maulik, O.


## NOAA-SST data set (low noise dataset)


(a) Prediction error

(b) CESM error

|  | RMSE $\left({ }^{\circ}\right.$ Celsius) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 | Week 7 | Week 8 |  |
| NAS-LSTM | 0.62 | 0.63 | 0.64 | 0.66 | 0.63 | 0.66 | 0.69 | 0.65 |  |
| CESM | 1.88 | 1.87 | 1.83 | 1.85 | 1.86 | 1.87 | 1.86 | 1.83 |  |
| HYCOM | 0.99 | 0.99 | 1.03 | 1.04 | 1.02 | 1.05 | 1.03 | 1.05 |  |
| Predicted | 0.76 | 0.67 | 0.66 | 0.69 | 0.69 | 0.72 | 0.77 | 0.76 |  |

## NAM (North American Mesoscale Forecast System) dataset (high noise dataset)



## Takeaway message

## Kernel methods can perform well on extrapolation problems if the kernel is also learned from data



Learning dynamical systems from data: a simple cross-validation perspective. B. Hamzi and H. Owhadi. 2020. arXiv:2007.05074

Kernel Mode Decomposition and programmable/interpretable regression networks, O., Scovel, Yoo, 2019
arXiv:1907.08592

## Which kernel do we pick?

- Deep learning approach

- Do ideas have shape? Plato's theory of forms as the continuous limit of artificial neural networks. [arXiv:2008.03920, O., 2020]

$f^{\dagger}$ : Unknown
Given $f^{\dagger}(X)=Y$ with $(X, Y) \in \mathcal{X}^{N} \times \mathcal{Y}^{N}$ approximate $f^{\dagger}$
$\mathcal{X}, \mathcal{Y}:$ Finite-dimensional Hilbert spaces
$X:=\left(X_{1}, \ldots, X_{N}\right) \in \mathcal{X}^{N}$
$f^{\dagger}(X):=\left(f^{\dagger}\left(X_{1}\right), \ldots, f^{\dagger}\left(X_{N}\right)\right) \in \mathcal{Y}^{N}$
$Y:=\left(Y_{1}, \ldots, Y_{N}\right) \in \mathcal{Y}^{N}$


$$
\mathcal{X} \xrightarrow{f^{\dagger}} \mathcal{Y}
$$

$f^{\dagger}$ : Unknown Given $f^{\dagger}(X)=Y$ with $(X, Y) \in \mathcal{X}^{N} \times \mathcal{Y}^{N}$ approximate $f^{\dagger}$

Ridge regression solution Approximate $f^{\dagger}$ with minimizer of

$$
\begin{aligned}
& \min _{f} \lambda\|f\|_{K}^{2}+\|f(X)-Y\|_{\mathcal{Y}^{N}}^{2} \\
& f(x)=K(x, X)(K(X, X)+\lambda I)^{-1} Y
\end{aligned}
$$

$K: \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{L}(\mathcal{Y})$ $\mathcal{L}(\mathcal{Y})$ : Set of bounded linear operators on $\mathcal{Y}$.
$K(X, X): N \times N$ block matrix with blocks $K\left(X_{i}, X_{j}\right)$
$K(x, X): 1 \times N$ block vector with blocks $K\left(x, X_{i}\right)$
[Alvarez et Al, 2012]: Vector-valued kernels [Kadri et Al, 2016]: Operator-valued kernels

## Artificial neural network solution Approximate $f^{\dagger}$ with

$$
\begin{aligned}
& f=f_{D} \circ \cdots \circ f_{1}
\end{aligned}
$$

$$
\begin{aligned}
& f_{k}(x)=\mathbf{a}\left(W_{k} x+b_{k+1}\right)
\end{aligned}
$$

a: Activation function / Elementwise nonlinearity $\mathcal{L}\left(\mathcal{X}_{k}, \mathcal{X}_{k+1}\right)$ : Set of bounded linear operators from $\mathcal{X}_{k}$ to $\mathcal{X}_{k+1}$
$W_{k} \in \mathcal{L}\left(\mathcal{X}_{k}, \mathcal{X}_{k+1}\right), b_{k+1} \in \mathcal{X}_{k+1}$ identified as minimizers of

$$
\min _{W_{k}, b_{k}} \quad\|f(X)-Y\|_{\mathcal{Y}^{N}}^{2}
$$

$$
\|Y\|_{\mathcal{Y}^{N}}^{2}:=\sum_{i=1}^{N}\left\|Y_{i}\right\|_{\mathcal{Y}}^{2}
$$

Residual neural network solution Approximate $f^{\dagger}$ with
[He et Al, 2016]

$$
f=F_{D} \circ \cdots \circ F_{1}
$$

$$
\begin{aligned}
& F_{k}=f_{k} \circ\left(I+v_{L_{k}}^{k}\right) \circ \cdots \circ\left(I+v_{1}^{k}\right) \\
& f_{k}: \mathcal{X}_{k} \rightarrow \mathcal{X}_{k+1} \quad f_{k}(x)=\mathbf{a}\left(W_{k} x+b_{k+1}\right) \\
& v_{s}^{k}: \mathcal{X}_{k} \rightarrow \mathcal{X}_{k} \quad v_{k}^{s}(x)=\mathbf{a}\left(W_{k}^{s} x+b_{k}^{s}\right)
\end{aligned}
$$

$\min _{W_{k}, b_{k}, W_{k}^{s}, b_{k}^{s}} \quad\|f(X)-Y\|_{\mathcal{Y}^{N}}^{2}$

## Mechanical regression

Approximate $f^{\dagger}$ with

$$
f^{\ddagger}=f \circ \phi_{L}
$$

$$
\begin{aligned}
\phi_{L} & : \mathcal{X} \rightarrow \mathcal{X} \\
\phi_{L} & =\left(I+v_{L}\right) \circ \cdots \circ\left(I+v_{1}\right)
\end{aligned}
$$

$f: \mathcal{X} \rightarrow \mathcal{Y}$ and $v_{s}: \mathcal{X} \rightarrow \mathcal{X}$ identified as minimizers of

$$
\min _{f, v_{1}, \ldots, v_{L}} \frac{\nu L}{2} \sum_{s=1}^{L}\left\|v_{s}\right\|_{\Gamma}^{2}+\lambda\|f\|_{K}^{2}+\left\|f \circ \phi_{L}(X)-Y\right\|_{\mathcal{Y}^{N}}^{2}
$$

$$
\begin{aligned}
K & : \mathcal{X} \times \mathcal{X}
\end{aligned} \rightarrow \mathcal{L}(\mathcal{Y}), ~(\mathcal{X} \times \mathcal{X} \rightarrow \mathcal{L}(\mathcal{X})
$$

Particular case: ResNet block with L2 regularization on weights and biases!

$$
\Gamma\left(x, x^{\prime}\right)=\varphi^{T}(x) \varphi\left(x^{\prime}\right) I_{\mathcal{X}}
$$

$$
K\left(x, x^{\prime}\right)=\boldsymbol{\varphi}^{T}(x) \varphi\left(x^{\prime}\right) I_{y}
$$

$$
\boldsymbol{\varphi}(x)=(\mathbf{a}(x), 1)
$$

$$
\varphi: \mathcal{X} \rightarrow \mathcal{X} \oplus \mathbb{R}
$$

$\mathbf{a}(x)$ : Activation function $\quad \mathbf{a}: \mathcal{X} \rightarrow \mathcal{X}$
$\tilde{w} \in \mathcal{L}(\mathcal{X} \oplus \mathbb{R}, \mathcal{Y})$ and $w_{s} \in \mathcal{L}(\mathcal{X} \oplus \mathbb{R}, \mathcal{X})$ minimizers of
$\min _{\tilde{\mathcal{w}}, w_{1}, \ldots, w_{L}} \frac{\nu L}{2} \sum_{s=1}^{L}\left\|w_{s}\right\|_{\mathcal{L}(\mathcal{X} \oplus \mathbb{R}, \mathcal{X})}^{2}+\lambda\|\tilde{w}\|_{\mathcal{L}(\mathcal{X} \oplus \mathbb{R}, \mathcal{Y})}^{2}+\left\|f \circ \phi_{L}(X)-Y\right\|_{\mathcal{Y}^{N}}^{2}$

This is one ResNet block with L2 regularization on weights and biases!

## Mechanical regression

Approximate $f^{\dagger}$ with

$$
f^{\ddagger}=f \circ \phi_{L}
$$

$$
\begin{aligned}
& \phi_{L}: \mathcal{X} \rightarrow \mathcal{X} \\
& \phi_{L}=\left(I+v_{L}\right) \circ \cdots \circ\left(I+v_{1}\right)
\end{aligned}
$$

$f: \mathcal{X} \rightarrow \mathcal{Y}$ and $v_{s}: \mathcal{X} \rightarrow \mathcal{X}$ identified as minimizers of

$$
\min _{f, v_{1}, \ldots, v_{L}} \frac{\nu L}{2} \sum_{s=1}^{L}\left\|v_{s}\right\|_{\Gamma}^{2}+\lambda\|f\|_{K}^{2}+\left\|f \circ \phi_{L}(X)-Y\right\|_{\mathcal{Y}^{N}}^{2}
$$

$$
\begin{aligned}
K & : \mathcal{X} \times \mathcal{X}
\end{aligned} \rightarrow \mathcal{L}(\mathcal{Y}), ~=\mathcal{X}(\mathcal{X})
$$

## Theorem

As $L \rightarrow \infty$, adherence values of $f \circ \phi_{L}(x)$ are

$$
f \circ \phi^{v}(x)
$$

$$
\left\{\begin{array}{l}
\dot{\phi}(x, t)=v(\phi(x, t), t) \\
\phi(x, 0)=x
\end{array}\right.
$$

$v: \mathcal{X} \times[0,1] \rightarrow \mathcal{X}$ and $f: \mathcal{X} \rightarrow \mathcal{Y}$ are minimizers of

$$
\min _{v, f} \frac{\nu}{2} \int_{0}^{1}\|v(\cdot, t)\|_{\Gamma}^{2} d t+\lambda\|f\|_{K}^{2}+\left\|f \circ \phi^{v}(X, 1)-Y\right\|_{\mathcal{Y}^{N}}^{2}
$$

## What kind of optimization problem is this?

Looks like an image registration/computational anatomy variational problem

## Image registration

How to best align image $I$ and image $I^{\prime}$ ?


I

$I^{\prime}$

[Grenander, Miller, 1998]: Computational anatomy
[Joshi, Miller, 2000], [Micheli, 2008], [Beg, Miller, Trouvé, Younes, 2005], [Dupuis, Grenander, Miller, 1998], [Vialard, Risser, Rueckert, Cotter, 2012].

## Image registration



$$
\begin{aligned}
& \min _{v} \lambda \int_{0}^{1}\|\Delta v(\cdot, t)\|_{L^{2}\left([0,1]^{2}\right)}^{2} d t+\left\|I\left(\phi^{v}(\cdot, 1)\right)-I^{\prime}\right\|_{L^{2}\left([0,1]^{2}\right)}^{2} \\
& \left\{\begin{array}{l}
\dot{\phi}(x, t)=v(\phi(x, t), t) \\
\phi(x, 0)=x
\end{array}\right.
\end{aligned}
$$

## Image registration with landmarks



$$
\begin{aligned}
& \min _{v} \lambda \int_{0}^{1}\|\Delta v\|_{L^{2}\left([0,1]^{2}\right)}^{2} d t+\sum_{i}\left|\phi^{v}\left(X_{i}, 1\right)-Y_{i}\right|^{2} \\
& \left\{\begin{array}{l}
\dot{\phi}(x, t)=v(\phi(x, t), t) \\
\phi(x, 0)=x
\end{array}\right.
\end{aligned}
$$

[Joshi, Miller, 2000]: Landmark matching

## Image registration with landmark matching


$\min _{v} \lambda \int_{0}^{1}\|\Delta v\|_{L^{2}\left([0,1]^{2}\right)}^{2} d t+\sum_{i}\left|\phi^{v}\left(X_{i}, 1\right)-Y_{i}\right|^{2}$

$$
\left\{\begin{array}{l}
\dot{\phi}(x, t)=v(\phi(x, t), t) \\
\phi(x, 0)=x
\end{array}\right.
$$

## Generalization

$$
\min _{v, f} \frac{\nu}{2} \int_{0}^{1}\|v(\cdot, t)\|_{\Gamma}^{2} d t+\lambda\|f\|_{K}^{2}+\left\|f \circ \phi^{v}(X, 1)-Y\right\|_{\mathcal{Y}^{N}}^{2}
$$

$$
X_{i}, X_{j} \in \mathcal{X}=\mathbb{R}^{1024}
$$



Image registration


## Generalization



|  | Image registration | Idea registration |
| :--- | :---: | :---: |
|  | Image $I:[0,1]^{2} \rightarrow \mathbb{R}_{+}$ | Idea $\quad I: \mathcal{X} \rightarrow \mathcal{F}$ |
|  | $I^{\prime}:[0,1]^{2} \rightarrow \mathbb{R}_{+}$ | $I^{\prime}: \mathcal{Y} \rightarrow \mathcal{F}$ |
| $X_{i}, Y_{i}$ | Landmark/material points | Data points |
|  | $X_{i} \in[0,1]^{2}, Y_{i} \in[0,1]^{2}$ | $X_{i} \in \mathcal{X}, Y_{i} \in \mathcal{Y}$ |
| $\phi$ | Deforms $[0,1]^{2}$ | Deforms $\mathcal{X}$ |
|  | and $I:[0,1]^{2} \rightarrow \mathbb{R}_{+}$ | and $I: \mathcal{X} \rightarrow \mathcal{F}$ |

## Idea registration is ridge regression with a warped kernel

(IR) $\min _{v, f} \frac{\nu}{2} \int_{0}^{1}\|v(\cdot, t)\|_{\Gamma}^{2} d t+\lambda\|f\|_{K}^{2}+\left\|f \circ \phi^{v}(X, 1)-Y\right\|_{\mathcal{Y},}^{2}$

$$
f^{\mathrm{IR}}=f \circ \phi^{v}(x)
$$

$$
\left\{\begin{array}{l}
\dot{\phi}(x, t)=v(\phi(x, t), t) \\
\phi(x, 0)=x
\end{array}\right.
$$

(RR) $\min _{f} \lambda\|f\|_{K^{v}}^{2}+\|f(X)-Y\|_{\mathcal{Y}^{N}}^{2} \quad K^{v}\left(x, x^{\prime}\right)=K\left(\phi^{v}(x, 1), \phi^{v}\left(x^{\prime}, 1\right)\right)$

$$
f^{R R}=f
$$

Theorem $\quad f^{\mathrm{IR}}=f^{\mathrm{RR}}$

See also Diffeomorphic learning: [Younes, 2019], [Rousseau, Fablet, 2018],
[Zammit-Mangion et al, 2019], [O., Yoo, 2018]

## Idea registration is Gaussian Process Regression with a prior learned from data

(IR) $\min _{v, f} \frac{\nu}{2} \int_{0}^{1}\|v(\cdot, t)\|_{\Gamma}^{2} d t+\lambda\|f\|_{K}^{2}+\left\|f \circ \phi^{v}(X, 1)-Y\right\|_{\mathcal{Y},}^{2}$

$$
f^{\mathrm{IR}}=f \circ \phi^{v}(x)
$$

$$
\left\{\begin{array}{l}
\dot{\phi}(x, t)=v(\phi(x, t), t) \\
\phi(x, 0)=x
\end{array}\right.
$$

(RR) $\min _{f} \lambda\|f\|_{K^{v}}^{2}+\|f(X)-Y\|_{\mathcal{Y}^{N}}^{2} \quad K^{v}\left(x, x^{\prime}\right)=K\left(\phi^{v}(x, 1), \phi^{v}\left(x^{\prime}, 1\right)\right)$

$$
f^{R R}=f
$$

Theorem $\quad f^{\mathrm{IR}}=f^{\mathrm{RR}}$

$$
f^{\mathrm{IR}}(x)=\mathbb{E}_{\substack{ \\Z \sim \mathcal{N}\left(0, K^{v}\right)}}[\xi(x) \mid \xi(X)=Y+Z]
$$

$$
f^{\mathrm{IR}}(x)=\mathbb{E}_{\substack{\xi \sim \mathcal{N}\left(0, K^{v}\right) \\ Z \sim \mathcal{N}(0, \lambda I)}}[\xi(x) \mid \xi(X)=Y+Z]
$$

[O., Scovel, Sullivan, Apr 2013]: Bayesian inference is brittle w.r. to perturbations of the prior
[McKerns, SyiPy, June 2013]: Bayesian brittleness can lead machine learning algorithms to be increasingly confident in incorrect solutions
https://youtu.be/o-nwSnLC6DU?t=74
Mystic: a framework for predictive science; SciPy 2013 Presentation

## machine learning \& bayesian inference

- why use machine learning algorithms \& bayesian inference?
- several easy-to-use open source software packages exist
- can yield solutions to hard-to-solve problems in predictive science
- "in general" or "normally" the solutions are "good"

- why NOT to use machine learning algorithms \& bayesian inference:
- with an inexact prior or approximate model, there is no guarantee better than a random choice between optimal upper and lower bounds
- it has been proven to be operator-biased
- it can lead you to be increasingly confident in incorrect solutions
see: Bayesian Brittleness, Owhadi et al, http:/lariv.org/abs/1304.6772
[Biggio et al, 2012-2018], [Moisejevs et al, 2019]:
ANNs are brittle to data poisining
[Szegedy et al, Dec 2013]: ANNs are brittle to adversarial noise
"pig"

"airliner"
$+0.005 x$

[Madry, Schmidt, 2018]


## How do we fix it?

$$
f^{\mathrm{IR}}=f \circ \phi^{v}(x)
$$

## Training without regularization

$$
\min _{v, f} \frac{\nu}{2} \int_{0}^{1}\|v(\cdot, t)\|_{\Gamma}^{2} d t+\lambda\|f\|_{K}^{2}+\left\|f \circ \phi^{v}(X, 1)-Y\right\|_{\mathcal{Y}^{N}}^{2}
$$

$$
\left\{\begin{array}{l}
\dot{\phi}(x, t)=v(\phi(x, t), t) \\
\phi(x, 0)=x
\end{array}\right.
$$

## Training with regularization


$\min _{v, f, q, Y^{\prime}} \frac{\nu}{2} \int_{0}^{1}\|v(\cdot, t)\|_{\Gamma}^{2} d t+\frac{1}{r} \int_{0}^{1}\|\dot{q}-v(q(t))\|_{\mathcal{X}^{N}}^{2} d t$

$$
\begin{gathered}
+\lambda\|f\|_{K}^{2}+\frac{\lambda}{\rho}\left\|f(q(1))-Y^{\prime}\right\|_{\mathcal{Y}^{N}}^{2}+\left\|Y^{\prime}-Y\right\|_{\mathcal{Y}^{N}}^{2} \\
q:[0,1] \rightarrow \mathcal{X}^{N} \\
q(0)=X
\end{gathered}
$$

Equivalent to metamorphosis in image registration:
[Micheli, 2008], [Niethammer et al, 2011], [Charon, Charlier, Trouvé, 2018]

Kernel methods
Idea registration

## Kernel:

i
Feature map:

RKHS space:

## Kernel representation

 iFeature map representation


Idea registration 1

## Bayesian interpretation

## Theorem

$f \circ \phi^{v}(\cdot, 1)$ is a MAP estimator of $\xi \circ \phi^{\sqrt{\frac{\lambda}{\nu}} \zeta}(\cdot, 1)$ given the information

$$
\xi \circ \phi \sqrt{\frac{\lambda}{\nu}} \zeta(X, 1)+\sqrt{\lambda} Z=Y
$$

$\xi \sim \mathcal{N}(0, K)$
$\phi^{\zeta}(x, t)$ : solution of

$$
\begin{cases}\dot{z} & =\zeta(z, t) \\ z(0) & =x\end{cases}
$$

$\zeta$ centered GP defined by norm $\int_{0}^{1}\|v(\cdot, t)\|_{\Gamma}^{2} d t \quad$ (independent from $\xi$ ) $Z=\left(Z_{1}, \ldots, Z_{N}\right)$ : centered random Gaussian vector, independent from $\zeta$ and $\xi$, with i.i.d. $\mathcal{N}(0, I \mathcal{Y})$ entries

See also: Deep Gaussian processes [Damianou, Lawrence, 2013] and Brownian flow of diffeomorphisms [Kunita, 1997], [Baxendale., 1984], [Dupuis, Grenander, Miller, 1998].

## Idea registration

$$
\begin{aligned}
& \min _{v, f} \frac{\nu}{2} \int_{0}^{1}\|v(\cdot, t)\|_{\Gamma}^{2} d t+\lambda\|f\|_{K}^{2}+\left\|f \circ \phi^{v}(X, 1)-Y\right\|_{\mathcal{Y}^{N}}^{2}
\end{aligned}
$$

Theorem

$$
v(x, t)=\Gamma(x, q) \Gamma(q, q)^{-1} \dot{q}
$$

$q$ position variable in $\mathcal{X}^{N}$ started from $q(0)=X$, minimizing the least action principle

$$
\min _{f, q} \frac{\nu}{2} \int_{0}^{1} \dot{q}^{T} \Gamma(q, q)^{-1} \dot{q}+\lambda\|f\|_{K}^{2}+\|f(q(1))-Y\|_{\mathcal{Y}^{N}}^{2}
$$

## Idea registration

$$
\min _{v, f} \frac{\nu}{2} \int_{0}^{1}\|v(\cdot, t)\|_{\Gamma}^{2} d t+\lambda\|f\|_{K}^{2}+\left\|f \circ \phi^{v}(X, 1)-Y\right\|_{\mathcal{Y}^{N}}^{2}
$$

$$
\left\{\begin{array}{l}
\dot{\phi}(x, t)=v(\phi(x, t), t) \\
\phi(x, 0)=x
\end{array}\right.
$$

Corollary $v(x, t)=\Gamma(x, q) p$

$$
p=\Gamma(q, q)^{-1} \dot{q}
$$

$(q, p)$ position and momentum variables in $\mathcal{X}^{N}$ started from $q(0)=X$

$$
\left\{\begin{array}{ll}
\dot{q}_{i} & =\partial_{p_{i}} \mathfrak{H}(q, p) \\
\dot{n}_{.} & =-\lambda \quad \mathfrak{H}(a r
\end{array}\right) \quad \mathscr{H}(q, p)=\frac{1}{2} p^{T} \Gamma(q, q) p
$$

See also ODE interpretations of ResNets: [E, 2017], [Haber, Ruthotto, 2017], [Chen, Rubanova, Bettencourt, Duvenaud, 2018], [Chang et al 2018]

Idea registration/Resnet learn warping kernels of the form

$$
K^{v}\left(x, x^{\prime}\right)=K\left(\phi^{v}(x, 1), \phi^{v}\left(x^{\prime}, 1\right)\right.
$$

$K$ : Base kernel
$\phi^{v}$ : Warping of the input space

$$
\left\{\begin{array}{l}
\dot{\phi}(x, t)=v(\phi(x, t), t) \\
\phi(x, 0)=x
\end{array}\right.
$$

$v(x, t)=\Gamma(x, q) \Gamma(q, q)^{-1} \dot{q}$
$q$ position variable in $\mathcal{X}^{N}$ started from $q(0)=X$, minimizing the least action principle

$$
\min _{f, q} \frac{\nu}{2} \int_{0}^{1} \dot{q}^{T} \Gamma(q, q)^{-1} \dot{q}+\lambda\|f\|_{K}^{2}+\|f(q(1))-Y\|_{\mathcal{Y}^{N}}^{2}
$$

Replace MAP estimation (idea registration) with cross validation to learn the warping (kernel flows, no need for backpropagation)

$$
K^{v}\left(x, x^{\prime}\right)=K\left(\phi^{v}(x, 1), \phi^{v}\left(x^{\prime}, 1\right)\right]^{[\mathrm{O} \text { and Yoo, 2018, } 2019]}
$$

$K$ : Base kernel
$\phi^{v}$ : Warping of the input space

$$
\left\{\begin{array}{l}
\dot{\phi}(x, t)=v(\phi(x, t), t) \\
\phi(x, 0)=x
\end{array}\right.
$$

$$
v(x, t)=\Gamma(x, q) \Gamma(q, q)^{-1} \dot{q}
$$

$q$ : position variables in $\mathcal{X}^{N}$ started from $q(0)=X$

$$
\dot{q}=-\nabla \rho(q)
$$

$\rho$ : Kernel flow loss

The effective dynamical system

$Y_{i}$ : Label of $X_{i}$
$u$ : interpolate $\left(\left(q_{i}, Y_{i}\right)\right)_{1 \leq i \leq N}$ with $K$

The effective dynamical system

$\pi(1), \ldots, \pi(N / 2):$ random selection of $N / 2$ points out of $N$ colored yellow
$w:$ interpolate $\left(q_{\pi(i)}, Y_{\pi(i)}\right)_{1 \leq i \leq \frac{N}{2}}$ with $K$

$$
\rho(q)=\mathbb{E}_{\pi}\left[\frac{\|u-w\|_{K}^{2}}{\|u\|_{K}^{2}}\right]
$$

## Application: Swiss Roll Cheesecake


$N=100$ data points $x_{i} \in \mathbb{R}^{2}$
$Y_{i}=+1$ if point at $X_{i}$ is red
Objective:
Visualize $t \rightarrow q(t)$
$Y_{i}=-1$ if point at $X_{i}$ is blue

|  |
| :---: |
|  |
|  |
| $\square$ |

$\square$

Application to Fashion-MNIST



## Composed idea registration

$$
X_{i}, X_{j} \in \mathbb{R}^{1024}
$$



Composed idea registration blocks
time discretization
ANNs and ResNets
Projected equivariant kernels for $K$ and $\Gamma$

CNNs and their generalization to arbitrary groups of symmetries

- Deep kernel learning. [Wilson et al, 2016], [Bohn, Rieger, Griebel. 2019]
- Computational anatomy and image registration. [Joshi, Miller, 2000], [Micheli, 2008], [Beg, Miller, Trouvé, Younes, 2005], [Dupuis, Grenander, Miller, 1998], [Vialard, Risser, Rueckert, Cotter, 2012].
- Statistical numerical approximation. [O. 2015, 2017], [O., Scovel, 2019], [O., Scovel, Schäfer, 2019], [Raissi, Perdikaris, Karniadakis, 2019], [Cockayne, Oates, Sullivan, Girolami, 2019], [Hennig, Osborne, Girolami, 2015]
- ODE interpretations of ResNets. [E, 2017], [Haber, Ruthotto, 2017], [Chen, Rubanova, Bettencourt, Duvenaud, 2018], [Chang, Meng, Haber, Ruthotto, Begert, Holtham, 2018]
- Warping kernels [O., Zhang, 2005], [Sampson, Guttorp, 1992], [Perrin, Monestiez, 1999], [Schmidt, O'Hagan, 2003]
- Kernel Flows [O., Yoo, 2019], [Chen, O., Stuart, 2020], [Hamzi, O., 2020], [Yoo, O., 2020]
- Deep Gaussian processes. [Damianou, Lawrence, 2013]
- Brownian flow of diffeomorphisms [Kunita, 1997], [Baxendale., 1984]
- Equivariant kernels [Reisert, Burkhardt, 2007]
- Operator valued kernels [Kadri et al, 2016]
- Diffeomorphic learning: [Younes, 2019], [Rousseau, Fablet, 2018], [ZammitMangion et al, 2019]


## This work

- Do ideas have shape? Plato's theory of forms as the continuous limit of artificial neural networks. [arXiv:2008.03920, O., 2020]


## Why is our main question (which kernel do we pick?) relevant to numerical approximation?

## ANNs

Physics-Informed Machine Learning: Karniadakis, Kevrekidis, Lu, Perdikaris, Wang, Yang, 2021. Nature Physics Review

## Kernel methods

"Statistical Numerical Approximation", O., Scovel, Schäfer, Notices of the AMS, 2019

Solving and learning nonlinear PDEs with Gaussian Processes. Chen, Hosseini, O., Stuart, 2021

- Provably convergent.
- Inherits the state of the art complexity vs accuracy guaratees of linear solvers for dense kernel matrices.
- Interpretable and amenable to numerical analysis.


## Most numerical approximation methods are kernel interpolation methods



Sard (1963)


Larkin (1972)


Diaconis (1986)

See also: Sul'din (1959). Kimeldorf and Wahba (1970).
Survey: "Statistical Numerical Approximation", O., Scovel, Schäfer, Notices of the AMS, 2019

Book: Cambridge University Press, O., Scovel, 2019

## Cardinal splines

[Schoenberg, 1973]

https://slideplayer.com/slide/4635359/
Cardinal spline interpolants are optimal recovery (kernel interpolants) splines

Polyharmonic splines [Harder and Desmarais, 1972], [Duchon, 1977]

$$
\begin{aligned}
& \left\{\begin{aligned}
-\Delta f^{\dagger} & =g, \\
f^{\dagger} & =0, \\
& x \in \Omega,
\end{aligned} \quad g \in L^{2}(\Omega)\right. \\
& \Omega \subset \mathbb{R}^{d} \\
& d \leq 3 \\
& \text { Problem: Given } f^{\dagger}(X) \text { recover } f^{\dagger} \\
& \int \text { Minimize } \quad \int_{\Omega}|\Delta f|^{2} \\
& \text { subject to } \quad f(X)=Y \\
& \left\|f^{\dagger}-f\right\|_{L^{2}(\Omega)} \lesssim N^{-\frac{2}{d}}\|g\|_{L^{2}}
\end{aligned}
$$

The convergence can be arbitrarily bad if the kernel is not adapted

$$
\begin{aligned}
\begin{cases}-\operatorname{div}\left(a \nabla f^{\dagger}\right)=g, & x \in \Omega, \\
f^{\dagger}=0, & x \in \partial \Omega,\end{cases} \\
\Omega \in L^{2}(\Omega)
\end{aligned}
$$

The convergence of $\chi(N)$ towards zero can be arbitrarily slow
[Babuška, Osborn, 2000]: Can a finite element method perform arbitrarily badly?

## PDE adapted kernel

$$
\left\{\begin{aligned}
-\operatorname{div}\left(a \nabla f^{\dagger}\right) & =g, \quad x \in \Omega, \\
f^{\dagger} & =0, \quad x \in \partial \Omega,
\end{aligned}\right.
$$

$\Omega \subset \mathbb{R}^{d}$ $d \leq 3$


$$
\left\{\begin{array}{ll}
\text { Minimize } & \int_{\Omega}|\operatorname{div}(a \nabla f)|^{2} \\
\text { subject to } & f(X)=Y
\end{array}\left\|f^{\dagger}-f\right\|_{L^{2}(\Omega)} \lesssim N^{-\frac{2}{d}}\|g\|_{L^{2}}\right.
$$

[O., Berlyand, Zhang, 2014]: Rough polyharmonic splines
[O., 2014]: Bayesian Numerical Homogenization
[O., 2015], [O., Zhang, 2016], [O., Scovel, 2019], [Schäfer, Sullivan, O., 2017]: Gamblets [Schäfer, Katzfuss and O., 2020]

## Generalization to non-linear PDE [Chen, Hosseini, O., Stuart, 2021]

$$
\left\{\begin{array}{rrr}
-\Delta f^{\dagger}+\tau\left(f^{\dagger}\right) & =g, & x \in \Omega, \\
f^{\dagger} & =b, & x \in \partial \Omega,
\end{array}\right.
$$


Minimize
$\|f\|_{K}^{2}$
subject to
$-\Delta f\left(X_{i}\right)+\tau\left(f\left(X_{i}\right)\right)=g\left(X_{i}\right), \quad X_{i} \in \Omega$, and $f\left(X_{i}\right)=b\left(X_{i}\right), \quad X_{i} \in \partial \Omega$,

Theorem $f \rightarrow f^{\dagger}$, as fill distance (in $\bar{\Omega}$ ) of collocation points goes to 0 , provided that

$$
f^{\dagger} \in \mathcal{H} \Subset H^{s}(\Omega) \quad \text { with } s>2+d / 2
$$

$\begin{cases}\text { Minimize } & \|f\|_{K}^{2} \\ \text { subject to } & -\Delta f\left(X_{i}\right)+\tau\left(f\left(X_{i}\right)\right)=g\left(X_{i}\right), \quad X_{i} \in \Omega, \\ \text { and } & f\left(X_{i}\right)=b\left(X_{i}\right), X_{i} \in \partial \Omega,\end{cases}$
$\left\{\begin{array}{l}\min _{z^{(1)}, z^{(2)}\left\{\begin{array}{l}\min _{f}\|f\|_{K}^{2} \\ \text { s.t. } f\left(X_{i}\right)=z_{i}^{(1)} \text { and }-\Delta f\left(X_{i}\right)=z_{i}^{(2)} \\ z_{i}^{(2)}+\tau\left(z_{i}^{(1)}\right)=g\left(X_{i}\right) \text { for } X_{i} \in \Omega \\ z_{i}^{(1)}=b\left(X_{i}\right) \text { for } X_{i} \in \partial \Omega\end{array}\right.}\end{array} \begin{array}{l}\end{array}\right.$,

$$
\begin{aligned}
& z=\left(z^{(1)}, z^{(2)}\right) \\
& \phi=\left(\phi^{(1)}, \phi^{(2)}\right) f(x)=K(x, \phi) K(\phi, \phi)^{-1} z
\end{aligned}
$$

$$
\phi_{i}^{(1)}=\delta_{X_{i}}
$$

$$
\min _{z^{(1)}, z^{(2)} z^{T}} K(\phi, \phi)^{-1} z
$$

$$
z_{i}^{(2)}+\tau\left(z_{i}^{(1)}\right)=g\left(X_{i}\right) \text { for } X_{i} \in \Omega
$$

$$
\phi_{i}^{(2)}=\delta_{X_{i}} \circ \Delta
$$

$$
z_{i}^{(1)}=b\left(X_{i}\right) \text { for } X_{i} \in \partial \Omega
$$



Near linear complexity with [Schäfer, Katzfuss and O., 2020]

## Burger's

$$
\begin{aligned}
\partial_{t} u+u \partial_{s} u-\nu \partial_{s}^{2} u & =0, \quad \forall(s, t) \in[-1,1] \times[0, \infty) \\
u(s, 0) & =-\sin (\pi x) \\
u(-1, t) & =u(1, t)=0 .
\end{aligned}
$$

$$
K\left((x, t),\left(x^{\prime}, t^{\prime}\right)\right)=\exp \left(-\alpha\left|x-x^{\prime}\right|^{2}-\beta\left|t-t^{\prime}\right|^{2}\right)
$$

| $N$ | 64 | 256 | 1024 | 4096 |
| :--- | :---: | :---: | :---: | :---: |
| $L^{2}$ error | $2.7797 \mathrm{e}+00$ | $2.1015 \mathrm{e}-02$ | $5.6348 \mathrm{e}-04$ | $8.5275 \mathrm{e}-05$ |








## Eikonal

$$
\left\{\begin{aligned}
\|\nabla u(x)\|^{2} & =f(x)^{2}+\epsilon \Delta u(x), \quad \forall x \in \Omega \\
u(x) & =0, \quad \forall x \in \partial \Omega
\end{aligned}\right.
$$

$$
K\left(x, x^{\prime}\right)=\exp \left(-\alpha\left|x-x^{\prime}\right|^{2}\right)
$$

| $N$ | 1200 | 1800 | 2400 | 3000 |
| :--- | :--- | :--- | :--- | :--- |
| $L^{2}$ error | $3.7942 \mathrm{e}-04$ | $1.3721 \mathrm{e}-04$ | $1.2606 \mathrm{e}-04$ | $1.1025 \mathrm{e}-04$ |
| $L^{\infty}$ error | $5.5768 \mathrm{e}-03$ | $1.4820 \mathrm{e}-03$ | $1.3982 \mathrm{e}-03$ | $9.5978 \mathrm{e}-04$ |





## Inverse Problem

$\left\{\begin{aligned}-\operatorname{div}(\exp (a) \nabla u)(x) & =f(x), & & x \in \Omega, \\ u(x) & =0, & & x \in \partial \Omega .\end{aligned}\right.$
$a, u$ : Unknown. $u$ observed at pink points.
Problem: Recover $a$ and $u$.

$\begin{cases}\text { Minimize } & \|u\|_{K}^{2}+\|a\|_{\Gamma}^{2} \\ \text { subject to } & -\operatorname{div}(\exp (a) \nabla u)\left(X_{i}\right)=f\left(X_{i}\right), \quad X_{i} \in \Omega, \\ \text { and } & u\left(X_{i}\right)=Y_{i}, \quad\left(X_{i}, Y_{i}\right) \text { is data point, } \\ \text { and } & u\left(X_{i}\right)=0, \quad X_{i} \in \partial \Omega,\end{cases}$

## Inverse Problem

$$
\left\{\begin{aligned}
-\operatorname{div}(\exp (a) \nabla u)(x) & =f(x), & & x \in \Omega, \\
u(x) & =0, & & x \in \partial \Omega .
\end{aligned}\right.
$$

$a, u$ : Unknown. $u$ observed at pink points.
Problem: Recover $a$ and $u$.







## Thank you

## Main messages

It is all about learning kernels.

## WIERTES

## 

ANNs are are essentially discretized solvers for a generalization of image registration/computational anatomy variational problems.


