
Journal of Computational Physics 389 (2019) 22–47
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Kernel Flows: From learning kernels from data into the abyss

Houman Owhadi a,∗, Gene Ryan Yoo b

a California Institute of Technology, 1200 E California Blvd, MC 9-49, Pasadena, CA 91125, USA
b California Institute of Technology, 1200 E California Blvd, MC 253-47, Pasadena, CA 91125, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 September 2018
Received in revised form 17 March 2019
Accepted 20 March 2019
Available online 28 March 2019

Keywords:
Learning Kernels
Kriging
Deep learning
Data driven dynamical system
Support vector machine
Reproducing Kernel Hilbert space

Learning can be seen as approximating an unknown function by interpolating the training
data. Although Kriging offers a solution to this problem, it requires the prior specification
of a kernel and it is not scalable to large datasets. We explore a numerical approximation
approach to kernel selection/construction based on the simple premise that a kernel
must be good if the number of interpolation points can be halved without significant
loss in accuracy (measured using the intrinsic RKHS norm ‖ · ‖ associated with the
kernel). We first test and motivate this idea on a simple problem of recovering the
Green’s function of an elliptic PDE (with inhomogeneous coefficients) from the sparse
observation of one of its solutions. Next we consider the problem of learning non-
parametric families of deep kernels of the form K1(Fn(x), Fn(x′)) with Fn+1 = (Id +
εGn+1) ◦ Fn and Gn+1 ∈ span{K1(Fn(xi), ·)}. With the proposed approach constructing
the kernel becomes equivalent to integrating a stochastic data driven dynamical system,
which allows for the training of very deep (bottomless) networks and the exploration
of their properties. These networks learn by constructing flow maps in the kernel and
input spaces via incremental data-dependent deformations/perturbations (appearing as the
cooperative counterpart of adversarial examples) and, at profound depths, they (1) can
achieve accurate classification from only one data point per class (2) appear to learn
archetypes of each class (3) expand distances between points that are in different classes
and contract distances between points in the same class. For kernels parameterized by the
weights of Convolutional Neural Networks, minimizing approximation errors incurred by
halving random subsets of interpolation points, appears to outperform training (the same
CNN architecture) with relative entropy and dropout.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Despite their popularity and impressive achievements [14] Artificial Neural Networks (ANNs) remain difficult to analyze.
From a deep kernel learning perspective [35], the action of the last layer of an ANN can be seen as that of regressing the
data with a kernel parameterized by the weights of all the previous layers. Therefore analysing the problem of performing a
regression of the data with a kernel that is also learnt from the data could help understand ANNs and elaborate a rigorous
theory for deep learning. Hierarchical Bayesian Inference [29] (placing a prior on a space of kernels and conditioning on the
data) and Maximum Likelihood Estimation [34] (choosing the kernel which maximizes the probability of observing the data)
are well known approaches for learning the kernel. In this paper we explore a numerical approximation approach (motivated

* Corresponding author.
E-mail addresses: owhadi@caltech.edu (H. Owhadi), gyoo@caltech.edu (G.R. Yoo).
https://doi.org/10.1016/j.jcp.2019.03.040
0021-9991/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2019.03.040
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:owhadi@caltech.edu
mailto:gyoo@caltech.edu
https://doi.org/10.1016/j.jcp.2019.03.040
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2019.03.040&domain=pdf

H. Owhadi, G.R. Yoo / Journal of Computational Physics 389 (2019) 22–47 23
Fig. 1. The game theoretic interpretation of the step n → n + 1 of Kernel Flow. (1) Starting from Fn and the N data points (Fn(xi), yi) (2) Select N f indices
out of N (3) Select N f /2 indices out of N f (4) Consider the zero sum adversarial game where Player I chooses the labels of the N f points to be yi and
Player II sees half of them and tries to guess the other and let ρ be the loss of Player II in that game (using relative error in the RKHS norm associated
with K1) (5, 6) Move the N f selected points Fn(xi) to decrease the loss of Player II (7) Move the remaining N − N f (and any other point x) points via
interpolation with the kernel K1 (this specifies Fn+1) (8) Repeat.

by interplays between Gaussian Process Regressions and Numerical Homogenization [21]) based on the simple premise that
a kernel must be good if the number of points N used to perform the interpolation of data can be reduced to N/2 without
significant loss in accuracy (measured using the intrinsic RKHS norm ‖ · ‖ associated with the kernel). Writing u and v

for the interpolation of the data with N and N/2 points, the relative error ρ = ‖u−v‖2

‖u‖2 induces a data dependent ordering
on the space of kernels. The Fréchet derivative of ρ identifies the direction of the gradient descent and leads to a simple
algorithm (Kernel Flow) for its minimization: (1) Select N f (≤ N) points (at random, uniformly, without replacement) from
the N training data points (2) Select Nc = N f /2 points (at random, uniformly, without replacement) from the N f points
(3) Perturb the kernel in the gradient descent direction of ρ (computed from the current kernel and the N f , Nc points) (4)
Repeat.

To provide some context for this algorithm, we first summarize (in Section 2) interplays between Kriging, Gaussian
Process Regression, Game Theory and Optimal Recovery. The identification (in Sec. 3) of ρ and its Fréchet derivative leads
(in Sec. 4) to the proposed algorithm in a parametric setting.

In Sec. 5 we describe interplays between the proposed algorithm and Numerical Homogenization [21] by implementing
and testing the parametric version of Kernel Flow for the (simple and amenable to analysis) problem of (1) recovering the
unknown conductivity a of the PDE − div(a∇u) = f based on seeing u ∈ H1

0((0, 1)) at a finite number N of points (2)
approximating u between measurement points. For this problem, a, u and f are all unknown, we only know that f ∈ L2

and we try to learn the Green’s function of the PDE (seen as a kernel parameterized by the unknown conductivity a).
Experiments suggest that, by minimizing ρ (parameterized by the conductivity), the algorithm can recover the conductivity
and significantly improve the accuracy of the interpolation.

Next (in Sec. 6) we derive a non parametric version of the proposed algorithm that learns a kernel of the form

Kn(x, x′) = K1(Fn(x), Fn(x′)) , (1.1)

where K1 is a standard kernel (e.g. Gaussian K1(x, x′) = e−γ |x−x′ |2) and Fn maps the input space into itself, n → Fn is
a discrete flow in the input space, and Fn+1 is obtained from Fn by interrogating random subsets of the training data as
described in Fig. 1 (which also summarizes the game theoretic interpretation of the proposed Algorithm, note that the game
is incrementally rigged to minimize the loss of Player II).

The proposed algorithm (see Fig. 2 for a summary of its structure) can be reduced to an iteration of the form

Kn(x, x′) = Kn−1(x + εGn(x), x + εGn(x′)). (1.2)

Writing xi for the training points and F1(x) = x and Fn(x) = (Id + εGn) ◦ Fn−1(x), the network Fn (composed of n layers)
is learnt from the data in a recursive manner (across layers) by (1) using g(n)

i := Gn ◦ Fn−1(xs f ,n(i)) for a random subset
{xs f ,n(i)|1 ≤ i ≤ N f } of the points {xi |1 ≤ i ≤ N} as training parameters and interpolating Gn with the kernel K1 in between
the points Fn−1(xs (i)) (2) selecting g(n) in the direction of the gradient descent of ρ at each step.
f ,n i

24 H. Owhadi, G.R. Yoo / Journal of Computational Physics 389 (2019) 22–47
Fig. 2. The Kernel Flow Algorithm. (1) N f indices s f ,n(1), . . . , s f ,n(N f) are randomly sampled out of N and Gn+1 belongs to the linear span of the
K (F (x(n)

s f ,n(i)), x) (2) the coefficients in the representation of Gn+1 are found as the direction of the gradient descent of ρ (3) The value of Fn+1(xi) is
the sum of Fn(xi) a small perturbation depending on the joint values of the Fn(xs f ,n(j)).

Fig. 3. Swiss Roll Cheesecake. N = 100. Red points have label −1 and blue points have label 1. Fn(xi) for 8 different values of n. (For interpretation of the
colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 4. Results for Fashion-MNIST. N = 60000, N f = 600 and Nc = 300. (1, 3, 5) Training data xi (class 3, 5 and 6) (2, 4, 6) Fn(xi) (class 3, 4 and 6) for
n = 50000.

H. Owhadi, G.R. Yoo / Journal of Computational Physics 389 (2019) 22–47 25
Writing (xi, yi) for the N training data points, Gn+1 ends up being of the form

Gn+1(x) =
N f∑
i=1

c(n)
i K1(Fn(xs f ,n(i)), x) (1.3)

where s f ,n(1), . . . , s f ,n(N f) are N f indices sampled at random (uniformly without replacement) from {1, . . . , N}. Note that
the kernel Kn produced at any step n, is a Deep Hierarchical Kernel (in the sense of [35,31]) satisfying the nesting equations

Kn(x, x′) = Kn−1(x + ε

N f∑
i=1

c(n−1)
i Kn−1(xs f ,n−1(i), x), x′ + ε

N f∑
i=1

c(n−1)
i Kn−1(xs f ,n−1(i), x′)) . (1.4)

Furthermore, the structure of the network defined by that kernel is randomized through the random selection of the N f

points (see Fig. 2.3). The coefficients c(n)
i in (1.3) are identified through one step of gradient descent of the relative error ρ

(measured in the RKHS norm associated with K1) of the approximation of the labels (the ys f ,n(i)) of those N f points upon
seeing half of them. From the game theoretic perspective of Fig. 1, ρ is the loss of Player II (attempting the guess the unseen
labels) and the points Fn+1(xs f ,n(i)) are perturbations of the points Fn(xs f ,n(i)) in a direction which seeks to minimize this
loss. Note also that the proposed (Kernel Flow) algorithm produces a flow Fn (randomized through sampling of the training
data) in the input space and a (stochastic) dynamical system K1(Fn(x), Fn(y)) in the kernel space. Since learning becomes
equivalent to integrating a dynamical system, it does not require back-propagation nor guessing the architecture of the
network, which enables the construction of very deep networks and the exploration of their properties.

We implement this algorithm (and visualize its flow) for MNIST [37], Fashion-MNIST [36], the Swiss Roll Cheesecake.
See Fig. 3 and Fig. 4 for illustrations of the flow Fn(x) for the Swiss Roll Cheesecake and Fashion-MNIST. For these datasets
we observe that (1) the flow Fn unrolls the Swiss Roll Cheesecake (2) the flow Fn expands distances between points that
are in different classes and contracts distances between points in the same class (towards archetypes of each class) (3) at
profound depths (n = 12000 layers for MNIST and n = 50000 layers for Fashion-MNIST) the resulting kernel Kn achieves a
small average error (1.5% for MNIST and 10% for Fashion-MNIST) using only 10 points as interpolation points (i.e. one point
for each class) (4) the incremental data-dependent perturbations εGn+1 seem to take advantage of a cooperative mechanism
appearing as the counterpart of the one associated with adversarial examples [32,23].

Furthermore, since N f can be chosen independently from N , the proposed algorithms appears to provide a solution
toward making Kriging/SVM scalable by producing a kernel capable of generalization from few samples.

Finally (in Sec. 10) we derive an ANN version of the algorithm by identifying the action of the last layer of the ANN
as that of regressing the data with a kernel parameterized by the weights of all the previous layers (learnt by minimizing
ρ or its analogous L2 version). This algorithm is then tested for the MNIST and Fashion-MNIST data sets and shown to
contract in-class distances and inter-class distances in a similar manner as above (thereby achieving accuracies comparable
to the state of the art with a small number of interpolation points). For kernels parameterized by the weights of a given
Convolutional Neural Network, minimizing ρ or its L2 version, appears, for the MNIST and fashion MNIST data sets, to
outperform training (the same CNN architecture) with relative entropy and dropout.

This paper is not aimed at identifying the state of the art algorithm in terms of accuracy nor complexity. It is simply
motivated by an attempt to offer some insights (from a numerical approximation perspective) on mechanisms that may be
at play in deep learning.

2. Learning as an interpolation problem

It is well understood [27] that “learning techniques are similar to fitting a multivariate function to a certain number of
measurement data”, e.g. solving the following problem.

Problem 1. Given input/output data (x1, y1), . . . , (xN , yN) ∈ X × Y recover an unknown function u† mapping X to Y such
that

u†(xi) = yi for i ∈ {1, . . . , N} . (2.1)

Optimal recovery In the setting of optimal recovery [16] the ill posed Problem 1 can be turned into a well posed one by
restricting candidates for u to belong to a space of functions B endowed with a norm ‖ · ‖ and identifying the optimal
recovery as the minimizer of the relative error

min
v

max
u

‖u − v‖2

‖u‖2
, (2.2)

where the max is taken over u ∈ B and the min is taken over candidates in v ∈ B such that v(xi) = u(xi). Observe that B∗ ,
the dual space of B, must contain delta Dirac functions

26 H. Owhadi, G.R. Yoo / Journal of Computational Physics 389 (2019) 22–47
φi(·) := δ(· − xi) , (2.3)

for the validity of the constraints u(xi) = yi . Consider now the case where ‖ · ‖ is quadratic, i.e. such that

‖u‖2 = [Q −1u, u] , (2.4)

where [φ, u] stands for the duality product between φ ∈ B∗ and u ∈ B and Q : B∗ → B is a positive symmetric linear
bijection (i.e. such that [φ, Q φ] ≥ 0 and [φ, Q ϕ] = [ϕ, Q φ] for ϕ, φ ∈ B∗). In that case the optimal solution of (2.2) has the
explicit form (writing yi for u(xi))

v† =
N∑

i, j=1

yi Ai, j Q φ j , (2.5)

where A = �−1 and � is the N × N Gram matrix with entries �i, j = [φi, Q φ j]. Furthermore v† can also be identified as
the minimizer of{

Minimize ‖ψ‖
Subject to ψ ∈ B and [φi,ψ] = yi, i ∈ {1, . . . , N}. (2.6)

Kriging Defining K as the kernel

K (x, x′) = [δ(· − x), Q δ(· − x′)] , (2.7)

(B, ‖ · ‖) can be seen as a Reproducing Kernel Hilbert Space endowed with the norm

‖u‖2 = sup
φ∈B∗

(
∫

φ(x)u(x)dx)2∫
φ(x)K (x, y)φ(y)dx dy

, (2.8)

and (2.5) corresponds to the classical representer theorem

v†(·) = yT AK (x., ·) , (2.9)

using the vectorial notations yT AK (x., ·) = ∑N
i, j=1 yi Ai, j K (x j, ·) with A = �−1 and �i, j = K (xi, x j).

Gaussian process regression numerical approximation games Writing ξ for the centered Gaussian Process with covariance func-
tion K , (2.9) can also be recovered via Gaussian Process Regression as

v†(x) = E
[
ξ(x) | ξ(xi) = yi

]
. (2.10)

This link between Numerical Approximation and Gaussian Process Regression emerges naturally by viewing (2.2) as an
adversarial zero sum game [21,18,20,28] between two players (I and II where I tries to maximize the relative error and II
tries to minimize it after seeing the values of u at the points xi) and observing that ξ and v are optimal mixed/randomized
strategies for players I and II (forming a saddle point for the minimax lifted to measures over functions).

3. What is a good kernel?

Although the optimal recovery of u† has a well established theory, it relies on the prior specification of a quadratic norm
‖ · ‖ or equivalently of a kernel K . In practical applications the performance of the interpolant (2.9) (e.g. when employed in a
classification problem) is sensitive to the choice of K . How should K be selected to achieve generalization? Although ANNs
[14] seem to address this question (by performing variants of the interpolation (2.9) with the last layer of the network using
a kernel K parameterized by the weights of the previous layers and learnt by adjusting those weights) they remain difficult
to analyze and the introduction of regularization steps (such as dropout or early stop) introduced to achieve generalization
appear to be discovered through a laborious process of trial and error [38].

Is there a systematic way of identifying a good kernel? What is good kernel?
We will now explore these questions from the perspective of interplays between numerical approximation and inference

[21] and the simple premise that a kernel must be good if the number of points N used to perform the interpolation of data
can be reduced to m = round(N/2) without significant loss in accuracy (measured using the intrinsic RKHS norm associated
with the kernel).

To label the m sub-sampled (test) data points, let s(1), . . . , s(m) be a selection of m distinct elements of {1 . . . , N}.
Observe that {xs(1), . . . , xs(m)} forms a strict subset of {x1, . . . , xN }. Write vs for the optimal recovery of u† upon seeing
its values at the points xs(1), . . . , xs(m) , and observe that vs(·) = ∑m

i=1 ȳi Āi, j K (xs(j), i) with ȳi = ys(i) and Ā = �̄−1 with
�̄i, j = �s(i),s(j) . Let π be the corresponding m × N sub-sampling matrix defined by πi, j = δs(i), j and observe that

vs = yT ÃK (x., ·) (3.1)

with Ã = π T Āπ and Ā = (π�π T)−1.

H. Owhadi, G.R. Yoo / Journal of Computational Physics 389 (2019) 22–47 27
Proposition 3.1. For v† and vs defined as in (2.9) and (3.1), we have

‖v† − vs‖2 = yT Ay − yT Ã y . (3.2)

Proof. Proposition 3.1 is particular case of [21, Prop. 13.29]. The proof follows simply from ‖v†‖2 = yT Ay, ‖vs‖2 = ȳT Ā ȳ =
yT Ã y and the orthogonal decomposition ‖v†‖2 = ‖vs‖2 + ‖v† − vs‖2 implied by the fact that vs is the minimizer of ‖ψ‖2

subject to the constraints [φs(i), ψ] = ys(i) and that v† satisfies those constraints. �
Let ρ be the ratio

ρ := ‖v† − vs‖2

‖v†‖2
. (3.3)

Note that a value of ρ close to zero indicates that vs is a good approximation of v† (and that most of the energy of v†

is contained in vs) which is a desirable condition for the kernel K to achieve generalization. Furthermore, Proposition 3.1
implies that ρ ∈ [0, 1] and

ρ = 1 − yT Ã y

yT Ay
. (3.4)

Fixing y and π , ρ can be seen as a function of A which we will write ρ(A). Since A = �−1, ρ can also be viewed as a
function of � which, abusing notations, we will write ρ(�). Motivating by the application of ρ to the ordering of space of
kernels (a small ρ being indicative of a good kernel) we will, in the following proposition, compute its Fréchet derivative
with respect to small perturbations of A or of �.

Proposition 3.2. Write z := A−1 Ã y with Ã := π T (π A−1π T)−1π defined as above.1 It holds true that

ρ(A + εS) = ρ(A) + ε
(1 − ρ(A))yT S y − zT Sz

yT Ay
+O(ε2) , (3.5)

and, writing2 ŷ := �−1 y and ẑ := π T (π�π T)−1π y,

ρ(� + εT) = ρ(�) − ε
(1 − ρ(�)) ŷT T ŷ − ẑT T ẑ

ŷT � ŷ
+O(ε2) . (3.6)

Proof. Observe that

ρ(A + εS) = 1 − yT π T (π(A + εS)−1π T)−1π y

yT (A + εS)y
(3.7)

and recall the approximation

(A + εS)−1 = A−1 − ε A−1 S A−1 +O(ε2) . (3.8)

(3.5) then follows from straightforward calculus. The proof of (3.6) is identical and can also be obtained from (3.5) and the
first order approximation (� + εT)−1 = �−1 − ε�−1T �−1 +O(ε2). �
4. The algorithm with a parametric family of kernels

Let W be a finite dimensional linear space and let K (x, x′, W) be a family of kernels parameterized by W ∈W . Let N f ≤
N and Nc = round(N f /2). Let s f (1), . . . , s f (N f) be a selection of N f distinct elements of {1, . . . , N}. Let sc(1), . . . , sc(Nc)

be a selection of Nc distinct elements of {1, . . . , N f }. Let π be the corresponding Nc × N f sub-sampling matrix defined by
πi, j = δsc(i), j . Let y f ∈RN f and yc ∈RNc be the corresponding subvectors of y defined by y f ,i = ys f (i) and yc,i = y f ,sc(i) .

Using the notations of sections 2 and 3 write �(W) for the N f × N f matrix with entries �i, j = K (xs f (i), xs f (j), W) and
let

ρ(W , s f , sc) := 1 − yT
c (π�π T)−1 yc

yT
f �

−1 y f
. (4.1)

The following corollary derived from Proposition 3.2 allows us to compute the gradient of ρ respect to W .

1 The operator P := Ã A−1 is a projection with Im(P) = Im(π T) and Ker(P) = A Ker(π) and from the perspective of numerical homogenization Ã can be
interpreted as the homogenized version of A [21, Sec. 13.10.3], see [21, Chap. 13.10] for further geometric properties.

2 Note that ẑ = �−1 z = Ã y.

28 H. Owhadi, G.R. Yoo / Journal of Computational Physics 389 (2019) 22–47
Corollary 4.1. Write � := �(W), ŷ := �−1 y f and ẑ := π T (π�π T)−1π y f . Write W i for the entries of the vector W . It holds true
that

∂W i ρ(W) = − (1 − ρ(W)) ŷT (∂W i �(W)) ŷ − ẑT (∂W i �(W))ẑ

yT
f �

−1 y f
. (4.2)

Proof. Proposition 3.2 implies that

ρ(W + εW ′) = ρ(W) − ε
(1 − ρ(W)) ŷT T ŷ − ẑT T ẑ

yT
f �

−1 y f
+O(ε2) , (4.3)

with T = (W ′)T ∇W �(W), which proves the result. �
The purpose of Algorithm 1 is to learn the parameters W (of the kernel K) from the data. The value of N f (and hence

Nc) corresponds to the size of a batch. The initialization of W in step 1 may be problem dependent or at random.

Algorithm 1 Learning W in the K (·, ·, W).
1: Initialize W
2: repeat
3: Select s f (1), . . . , s f (N f) out of {1, . . . , N}.
4: Select sc(1), . . . , sc(Nc) out of {1, . . . , N f }.
5: W ′ = −∇W ρ(W , s f , sc)

6: W = W + εW ′
7: until End criterion

5. A simple PDE model

To motivate, illustrate and study the proposed approach, it is useful to start with an application to the following simple
PDE model amenable to detailed analysis [21]. Let u be the solution of{

−div
(
a(x)∇u(x)

) = f (x) x ∈
;
u = 0 on ∂
,

(5.1)

where
 ⊂ Rd , is a regular subset and a is a uniformly elliptic symmetric matrix with entries in L∞(
). Write L :=
− div(a∇·) for the corresponding linear bijection from H1

0(
) to H−1(
).
In this proposed simple application we seek to recover the solution of (5.1) from the data (xi, yi)1≤i≤N and the infor-

mation u(xi) = yi . If the conductivity a is known then [21,20] interpolating the data with the kernel (1) L−1 leads to a
recovery that is minimax optimal in the (energy) norm ‖u‖2 = ∫

(∇u)a∇u (d = 1 is required to ensure the continuity of

the kernel). (2) (LTL)−1 leads to a recovery that is minimax optimal in the norm ‖u‖ = ‖ div(a∇u)‖L2(
) (d ≤ 3, the recov-
ery is equivalent to interpolating with Rough Polyharmonic Splines [24]). (3) (LT �L)−1 leads to a recovery that is minimax
optimal in the norm ‖u‖ = ‖ div(a∇u)‖H1

0(
) (d ≤ 5).

Which kernel should be used for the recovery of u when the conductivity a is unknown? Consider the case when d = 1
and
 is the interval (0, 1). For b ∈ L∞(
) with essinf
(b) > 0 write Gb for the Green’s function of the operator − div(b∇·)
mapping H1

0(
) to H−1(
). Observe that the {Gb|b} is a set of kernels parameterized b and any kernel in that set could
be used to interpolate the data. Which one should we pick? The answer proposed in Sec. 3 and 4 is to use the ordering
induced by ρ to select the kernel.

Fig. 5 provides a numerical illustration of that ordering. In that example
 is discretized over 28 equally spaced inte-
rior points (and piecewise linear tent finite elements) and Fig. 5.1-3 shows a, f and u. For k ∈ {1, . . . , 8} and i ∈ I(k) :=
{1, . . . , 2k − 1} let x(k)

i = i/2k and write v(k)

b for the interpolation of the data (x(k)
i , u(x(k)

i))i∈I(k) using the kernel Gb (note
that v(8)

b = u). Let ‖v‖b be the energy norm ‖v‖2
b = ∫

(∇v)T b∇v . Take b ≡ 1. Fig. 5.4 shows (in semilog scale) the values

of ρ(a) = ‖v(k)
a −v(8)

a ‖2
a

‖v(8)
a ‖2

a
and ρ(b) = ‖v(k)

b −v(8)

b ‖2
b

‖v(8)
b ‖2

b

vs k. Note that the value of ratio ρ is much smaller when the kernel Ga is used

for the interpolation of the data. The geometric decay ρ(a) ≤ C2−2k ‖ f ‖L2(
)

‖u‖2
a

is well known and has been extensively studied
in Numerical Homogenization [21].

Fig. 5.5 shows (in semilog scale) the values of the average prediction errors e(a) and e(b) (vs k) defined (after normal-
ization) to be proportional to ‖v(k)

a (x) − u(x)‖L2(
) and ‖v(k)

b (x) − u(x)‖L2(
) . Note again that the prediction error is much
smaller when the kernel Ga is used for the interpolation.

H. Owhadi, G.R. Yoo / Journal of Computational Physics 389 (2019) 22–47 29
Fig. 5. (1) a (2) f (3) u (4) ρ(a) and ρ(b) vs k, geometric (5) e(a) and e(b) vs k, geometric (6) ρ(a) and ρ(b) vs k, random (5) e(a) and e(b) vs random
realization.

Fig. 6. (1) a and b for n = 1 (2) a and b for n = 350 (2) ρ(b) vs n (4) e(b) vs n.

Now let us consider the case where the interpolation points form a random subset of the discretization points. Take
N f = 27 and Nc = 26. Let X = {x1, . . . , xN f } be a subset N f distinct points of (the discretization points) {i/28|i ∈ I(8)}
sampled with uniform distribution. Let Z = {z1, . . . , zNc } be a subset of Nc distinct points of X sampled with uniform
distribution. Write v f

b for the interpolation of the data (xi, u(xi)) using the kernel Gb and write vc
b for the interpolation

of the data (zi, u(zi)) using the kernel Gb . Fig. 5.6 shows in (semilog scale) 20 independent random realizations of the
values of ρ(a) = ‖v f

a − vc
a‖2

a/‖v f
a ‖2

a and ρ(b) = ‖v f
b − vc

b‖2
b/‖v f

b ‖2
b . Fig. 5.7 shows in (semilog scale) 20 independent random

realizations of the values of the prediction errors e(a) ∝ ‖u − vc
a‖L2(
) and e(b) ∝ ‖u − vc

b‖L2(
) . Note again that the values
of ρ(a), e(a) are consistently and significantly lower than those of ρ(b), e(b).

Fig. 6 provides a numerical illustration of an implementation of Algorithm 1 with N f = N = 27, Nc = 26 and nc = 1. In
this implementation a, f and u are as in Fig. 5.1-3. The training data corresponds to N f points X = {x1, . . . , xN f } uniformly
sampled (without replacement) from {i/28|i ∈ I(8)} (Since N = N f these points remain fixed during the execution the of
the algorithm). n. The purpose of the algorithm is to learn the kernel Ga in the set of kernels {Gb(W)|W } parameterized by
the vector W via

log b(W) =
26∑

i=1

(W c
i cos(2π ix) + W s

i sin(2π ix)) . (5.2)

Using n to label its progression, Algorithm 1 is initialized at n = 1 with the guess b ≡ 1 (i.e. W ≡ 0) (Fig. 6.1). At each step
(n → n + 1) the algorithm performs the following operations:

1. Select Nc points Z = {z1, . . . , zNc } uniformly sampled (without replacement) from X .

2. Write v f
b and vc

f for the interpolation of the data (xi, u(xi)) and (zi, u(zi)) using the kernel Gb , and ρ(W) =
‖v f

b − vc
b‖2

b/‖v f
b ‖2

b . Compute the gradient ∇W ρ(W) using Corollary 4.1 (and the identity ∂W i �(W) = −π0(A0(W))−1 ×
∂W i A0(W)(A0(W))−1π T

0 for �(W) = π0(A0(W))−1π T
0).

3. Update W → W − λ∇W ρ(W) (with λ ∝ 0.01/‖∇W ρ(W)‖L2).

30 H. Owhadi, G.R. Yoo / Journal of Computational Physics 389 (2019) 22–47
Fig. 7. u and u(k) −u(k−1) . Number below sub-figures show relative energy content ‖u(k) −u(k−1)‖2/‖u‖2. Used from forthcoming book [21] with permission
from Cambridge University Press.

Fig. 6.2 shows the value of b for n = 350. Fig. 6.3 shows the value of ρ(b) vs n. Fig. 6.4 shows the value of the prediction
error e(b) ∝ ‖u − vc

b‖L2(
) vs n. The lack of smoothness of the plots of ρ(b), e(b) vs n originate from the re-sampling of the
set Z at each step n.

Remark 5.1. For d ≥ 1, let
 = (0, 1)d and for k ≥ 1, let τ (k)
i be a nested (in k) hierarchy of sub-cubes of (0, 1)d with

locations indexed by i. For L = − div(a∇) let ξ ∼N (0, L−1) and let u(k) :=E[ξ | ∫
τ

(x)
i

ξ = ∫
τ

(x)
i

ξu for all i]. Fig. 7 shows (for

d = 2) the corresponding increments u(k) − u(k−1) and the relative energy content ‖u(k) − u(k−1)‖2/‖u‖2 of each increment
for a solution of (5.1) with f ∈ L2(
). The quick decay of ‖u(k) − u(k−1)‖2/‖u‖2 with respect to k illustrates the accuracy of
the Green’s function of (5.1) used as a kernel for interpolating partial linear measurements made on solutions of (5.1). This
numerical homogenization phenomenon [21,18] is one motivation for minimizing ρ in the kernel identification problem
described above (‖u(k) − u(k−1)‖2/‖u‖2 ≈ ρk with ρk := ‖u(k) − u(k−1)‖2/‖u(k)‖2).

6. Kernel Flows (KF)

6.1. Non parametric family of kernels and bottomless networks without guesswork

Composing a symmetric positive kernel with a function produces a symmetric positive kernel [4]. We will now use this
property to learn a kernel from the data within a non-parametric family of kernels constructed by composing layers of
functions. For n ≥ 2 let Gn : X → X (X is the input space mentioned Pb. 1) be a sequence of functions determining the
layers of this network. Let ε > 0 be a small parameter, let F1 := Id be the identity function and for n ≥ 2, let Fn be the
sequence of functions inductively defined by

Fn+1 = (Id + εGn+1) ◦ Fn . (6.1)

Let Kn be the sequence of symmetric positive kernels obtained by composing a kernel K1 with this sequence of functions,
i.e. Kn(x, x′) = K1(Fn(x), Fn(x′)) and

Kn+1(x, x′) = Kn
(
x + εGn+1(x), x′ + εGn+1(x′)

)
. (6.2)

Our purpose is to use the training data (x1, y1), . . . , (xN , yN) ∈ X ×Y to learn the functions G1, . . . , Gn∗ and then approxi-
mate u† with un∗ obtained by interpolating a subset of the training data with Kn∗ .

When applied to a classification problem with n = 1 the proposed algorithm is a support-vector network (in the sense of
[3]) with kernel K1. As n progresses the algorithm incrementally modifies the kernel via small perturbations of the identity
operator (εGn+1 is reminiscent of the residual term of deep residual networks [8]). Since the training does not require any
back propagation, achieving profound depths (with 10000 layers or more) is not difficult (since training is akin to simulating
a stochastic dynamical system the network is essentially bottomless) and one purpose of this section is to explore properties
of such bottomless networks (see [9] for a review of the motivations/challenges associated with the exploration of very deep
networks).

H. Owhadi, G.R. Yoo / Journal of Computational Physics 389 (2019) 22–47 31
6.2. The algorithm

We will adapt Algorithm 1 to learn the functions G1, . . . , Gn, . . . by induction over n. As in Sec. 4 let N f ≤ N and
Nc = round(N f /2).

For n = 1 let x(n)
i := xi for i ∈ {1, . . . , N}.

Let n ≥ 1 Assume x(n)
1 , . . . , x(n)

N to be known. Let s f ,n(1), . . . , s f ,n(N f) be N f distinct elements of {1, . . . , N} obtained
through random sampling (with uniform distribution) without replacement. Let sc,n(1), . . . , sc,n(Nc) be Nc distinct elements
of {1, . . . , N f } also obtained through random sampling (with uniform distribution) without replacement. Let π be the cor-

responding Nc × N f sub-sampling matrix defined by π(n)
i, j = δsc,n(i), j . Let y(n)

f ∈ RN f and y(n)
c ∈ RNc be the corresponding

subvectors of y defined by y(n)

f ,i = ys f ,n(i) and y(n)
c,i = y f ,sc,n(i) . For i ∈ {1, . . . , N f } let x(n)

f ,i := x(n)
s f ,n(i) and write �(n) for the

N f × N f matrix with entries

�
(n)
i, j = K1(x(n)

f ,i, x(n)

f , j) , (6.3)

and let

ρ(n) := 1 − (y(n)
c)T (π(n)�(n)(π(n))T)−1 y(n)

c

(y(n)

f)T (�(n))−1 y(n)

f

. (6.4)

Let ŷ(n)

f := (�(n))−1 y(n)

f , ẑ(n)

f := (π(n))T (π(n)�(n)(π(n))T)−1π(n) y(n)

f and for i ∈ {1, . . . , N f } let

ĝ(n)

f ,i := 2
(1 − ρ(n)) ŷ(n)

f ,i(∇x K1)(x(n)

f ,i, x(n)

f ,·) ŷ(n)

f − ẑ(n)

f ,i(∇x K1)(x(n)

f ,i, x(n)

f ,·)ẑ(n)

f

yT
f (�

(n))−1 y f

(6.5)

Let Gn+1 be the function obtained by interpolating the data (x(n)

f ,i, ̂g
(n)

f ,i) with the kernel K1, i.e.

Gn+1(x) = (ĝ(n)

f ,·)
T (

K1(x(n)

f ,·, x(n)

f ,·)
)−1

K1(x(n)

f ,·, x) . (6.6)

Note that G(n+1)(x(n)

f ,i) = ĝ(n)

f ,i . For i ∈ {1, . . . , N}, let

x(n+1)
i = x(n)

i + εGn+1(x(n)
i) . (6.7)

Remark 6.1. In the description above the input space X (of the function u to be interpolated) is assumed to a finite-
dimensional vector space and the output space Y (of the function u to be interpolated) is assumed to be contained in
the real line R. If the output space Y is a finite-dimensional vector space (e.g. RdY) then y(n)

f and y(n)
c are N f × dY and

Nc × dY matrices and (6.4) and (6.5) must be replaced by

ρ(n) := 1 − Tr
[
(y(n)

c)T (π(n)�(n)(π(n))T)−1 y(n)
c

]
Tr

[
(y(n)

f)T (�(n))−1 y(n)

f

] . (6.8)

and

ĝ(n)

f ,i := 2
Tr

[
(1 − ρ(n)) ŷ(n)

f ,i(∇x K1)(x(n)

f ,i, x(n)

f ,·) ŷ(n)

f − ẑ(n)

f ,i(∇x K1)(x(n)

f ,i, x(n)

f ,·)ẑ(n)

f

]
Tr

[
yT

f (�
(n))−1 y f

] , (6.9)

where, in (6.9), ŷ(n)

f ,i ∈ RdY , ŷ(n)

f ∈ RN f ×dY , (∇x K1)(x(n)

f ,i, x
(n)

f ,·) ∈ RdX ×N f (writing dX for the dimension of the input space,
∇x K1 refers to the gradient over the first component of K1). The product results in a dY × dX × dY tensor and the trace
(taken with respect to the dY dimensions) results in a vector in RdX , i.e. writing xs for the sth entry of x,

(ĝ(n)

f ,i)s = 2

∑dY
l=1

∑N f
t=1(1 − ρ(n))(ŷ(n)

f)i,l∂xs K1(x(n)

f ,i, x(n)

f ,t)(ŷ(n)

f)t,l − (ẑ(n)

f)i,l∂xs K1(x(n)

f ,i, x(n)

f ,t)(ẑ(n)

f)t,l

Tr
[

yT
f (�

(n))−1 y f
] .

This simple modification (via the trace operator) is equivalent to endowing the space of functions v = (v1, . . . , vdY)

mapping X to Y with the RKHS norm ‖v‖2 = ∑dY
i=1 ‖vi‖2 with ‖vi‖2 = supφ

(
∫
X φ(x)vi(x) dx)2∫

X2 φ(x)Kn(x,x′)φ(x′) dx dx′ and using that norm to
compute ρ and its gradient.

32 H. Owhadi, G.R. Yoo / Journal of Computational Physics 389 (2019) 22–47
6.3. Rationale of the algorithm

Observe that the algorithm is randomized through the random samples s f ,n(i) and sc,n(i) (taking values in the training
data). Observe also that, given those random samples, the functions Gn, Fn and kernels Kn are entirely determined by the
values of the learning parameters ĝ(n)

f ,i = G(n+1)(x(n)

f ,i).

As in Algorithm 1, the ĝ(n)

f ,i are selected in (6.5) in the direction of the gradient descent of the ratio ρ: we apply

Proposition 3.2 to compute the Fréchet derivative of ρ(n) (6.4) with respect to small perturbations x(n)

f ,i + εg(n)

f ,i to the x(n)

f ,i

and select the g(n)

f ,i in the direction of the gradient descent.

More precisely let g(n)

f ,i be candidates for the values of G(n+1)(x(n)

f ,i) and write x̃(n+1)

f ,i = x(n)

f ,i + εg(n)

f ,i . Write �̃(n+1) for the
N f × N f matrix with entries

�̃
(n+1)
i, j = K1(x̃(n+1)

f ,i , x̃(n+1)

f , j) , (6.10)

and let

ρ̃(n + 1) := 1 − (y(n)
c)T (π(n)�̃(n+1)(π(n))T)−1 y(n)

c

(y(n)

f)T (�̃(n+1))−1 y(n)

f

. (6.11)

Then the following proposition identifies ĝ(n)

f ,i as the direction of the gradient descent of ρ̃(n + 1) with respect to the

parameters g(n)

f ,i .

Proposition 6.2. It holds true that

ρ̃(n + 1) = ρ(n) − ε

N f∑
i=1

(g(n)

f ,i)
T ĝ(n)

f ,i +O(ε2) , (6.12)

where the ĝ(n)

f ,i are as in (6.5).

Proof. We deduce from (6.2) that, to the first order in ε ,

Kn+1(x, x′) ≈Kn
(
x, x′) + ε

(
(Gn+1 ◦ Fn(x))T (∇x K1)

(
Fn(x), Fn(x′)

+ (Gn+1 ◦ Fn(x′))T (∇x′ K1)
(

Fn(x), Fn(x′)
)
.

(6.13)

Therefore, using the symmetry of K1, we have

�̃(n+1) = �(n) + εT (n) +O(ε2) (6.14)

with

T (n)
i, j = (g(n)

f ,i)
T (∇x K1)(x(n)

f ,i, x(n)

f , j) + (g(n)

f , j)
T (∇x K1)

(
x(n)

f , j, x(n)

f ,i) . (6.15)

We deduce from Proposition 3.2 that

ρ(�̃(n+1)) = ρ(�(n)) − ε
(1 − ρ(�(n)))(ŷ(n)

f)T T (n) ŷ(n)

f − (ẑ(n)

f)T T (n) ẑ(n)

f

(ŷ(n)

f)T �(n) ŷ(n)

f

+O(ε2) , (6.16)

which implies the result after simplification. �
The following corollary is a direct application of Proposition 6.2.

Corollary 6.3. Let K1(x, x′) = e−γ |x−x′ |2 . It holds true that

ρ(�̃(n+1)) = ρ(�(n)) − ε

N f∑
i=1

(g(n)
i)T ĝ(n)

i +O(ε2) , (6.17)

with ĝ(n)
i := 4γ

(y(n)
)T (�(n))−1 y(n)

∑N f

j=1 �
(n)
i, j x(n)

f , j ,

f f

H. Owhadi, G.R. Yoo / Journal of Computational Physics 389 (2019) 22–47 33
Fig. 8. Swiss Roll Cheesecake. N = 100. Red points have label −1 and blue points have label 1.

�
(n)
i, j =δi, j ẑ

(n)

f ,i(�
(n) ẑ(n)) f ,i − ẑ(n)

f ,i�
(n)
i, j ẑ(n)

f , j

− (1 − ρ(�(n)))δi, j ŷ(n)

f ,i y(n)

f ,i + (1 − ρ(�(n))) ŷ(n)

f ,i�
(n)
i, j ŷ(n)

f , j .
(6.18)

and ẑ(n)

f = (π(n))T (π(n)�(n)(π(n))T)−1π(n) y f , ŷ(n)

f = (�(n))−1 y(n)

f .

7. The flow of the KF algorithm on the Swiss Roll Cheesecake

From a numerical analysis perspective, the flow Fn(x) associated with the Sec. 6 KF algorithm approximates, in the sense
of Smoothed Particle Hydrodynamics [7], a flow F (t, x) mapping R × X into X . Writing xi for the N training data points
in X , as ε ↓ 0, Fn(xi) approximates Xi(t) := F (t, xi) which (after averaging the effect of the randomized batches) can be
identified as the solution of a system of ODEs of the form

dX

dt
= G(X, N, N f , K1) . (7.1)

7.1. Implementation of the KF algorithm

We will now explore a few properties of this approximation by implementing the KF algorithm for the Swiss Roll Cheese-
cake illustrated in Fig. 8. The dataset is composed of N = 100 points xi in R2 in the shape of two concentric spirals. Red
points have label −1 and blue points have label 1. Since our purpose is limited to illustrating properties of the discrete flow
Fn(x) associated with the Kernel Flow algorithm we will consider all those points as training points (will not introduce a
test dataset) and visualise the trajectories n → Fn(xi) of the data points xi .

The KF algorithm is implemented with the Gaussian kernel of Corollary 6.3 with γ −1 = 4. Training is done in random
batches of size N f and we use Nc = N f /2 to compute the ratio ρ and learn the parameters of the network. We start with
N f = N and as training progresses points of the same color start merging. Therefore to avoid near singular matrices caused
by batches with points of the same color sharing nearly identical coordinates, once the distance between two points of the
same color is smaller than 10−4 (in Fig. 3, 9 and 10) we drop one of them out of the set of possible candidates for the batch
and decrease N f by 1 (the point left out remains advected by εGn+1 but is simply no longer available as an interpolation
point defining Gn+1).

Fig. 3 shows Fn(xi) vs n for 1 ≤ n ≤ 7000. In Fig. 3 the value of ε is chosen at each step n so that the perturbation of
each data point xi of the batch is no greater than p% with p = 10 for 1 ≤ n ≤ 1000 and p = 10/

√
n/1000 for n ≥ 1000. The

two spirals quickly unroll into two linearly separable clusters.
Fig. 9 shows Fn(xi) vs n for 1 ≤ n ≤ 500000. The value of ε is chosen at each step n so that the perturbation of each data

point xi of the batch is no greater than 0.5%. The two intertwined spirals unroll into straight (vibrating) segments. The final
unrolled configuration appears to be unstable (some red points are ejected out of the unrolled red segment towards the
end of the simulation) and although this instability seems to be alleviated by adjusting ε to a smaller value at the end of
the simulation it seems to also be caused by a combination of (1) the stiffness of the flow being simulated (2) the process
of permanently removing points from the pool of possible candidates for the batch. Although these points remain advected
by the flow and are initially at distance less than 10−4 of a point of the same color, the stiffness of the flow can quickly
increase this distance and separate the point from its group if ε is not small enough.

7.2. Addition of nuggets

The instabilities observed in Fig. 9 seem to vanish (even with significantly larger values of ε) after the addition of a
nugget (white noise kernel accounting for measurement noise in kriging) to the kernel K1. In Fig. 10 we consider a longer

34 H. Owhadi, G.R. Yoo / Journal of Computational Physics 389 (2019) 22–47
Fig. 9. Fn(xi) for 8 different values of n. ε is chosen at each step n so that the perturbation of each data point xi of the batch is no greater than 0.5%.

Fig. 10. N = 250. Fn(xi) for 8 different values of n. ε is chosen at each step n so that the absolute perturbation of each data point xi of the batch is no
greater than 0.05. K1(x, x′) = e−γ |x−x′ |2 + δ(x − x′)e−γ 62

.

version of the Swiss Roll Cheesecake (N = 250). The kernel is K1(x, x′) = e−γ |x−x′ |2 + δ(x − x′)e−γ 62
(γ −1 = 4). ε is chosen

at each step n so that the absolute perturbation (maximum translation) of each data point xi of the batch is no greater than
0.05. Fig. 10 shows Fn(xi) vs n for 1 ≤ n ≤ 500000. The two intertwined spirals unroll into stable clusters slowly drifting
away from each other.

7.3. Instantaneous and average vector fields

With the addition of the nugget, the permanent removal of close points from the pool of candidates is no longer required
for avoiding singular matrices. In Figs. 11, 12 and 13 (see [25] for videos) we consider the N = 100 version of the Swiss Roll
Cheesecake. The kernel is K1(x, x′) = e−γ |x−x′ |2 + δ(x − x′)e−γ 62

(γ −1 = 4). ε is chosen at each step n so that the absolute
perturbation (maximum translation) of each data point xi of the batch is no greater than 0.2. Only a nugget is added and
close points are not removed from the pool of candidates (which eliminates the instabilities observed in Fig. 9). Fig. 11
shows Fn(xi) vs n for 1 ≤ n ≤ 180000 and the decision boundary between the two classes vs n. The two intertwined spirals
unroll into stable clusters. Fig. 12 shows the instantaneous velocity field Fn+1(x) − Fn(x). Fig. 13 shows the average velocity
field 10(Fn+300(x) − Fn(x))/300. The difference between the instantaneous and average velocity fields is and indication of
the presence of multiple time scales caused by the randomization process and the stiffness of the underlying flow.

7.4. The continuous flow

The intriguing behavior of these flows, calls for their investigation from the numerical integration perspective (note that
an ODE perspective emerges as ε ↓ 0, an SDE perspective is relevant when ε is non-null due to the randomization of the

H. Owhadi, G.R. Yoo / Journal of Computational Physics 389 (2019) 22–47 35
Fig. 11. Fn(xi) and decision boundary for 8 different values of n.

Fig. 12. Instantaneous velocity field Fn+1(x) − Fn(x). (1-4) show 4 successive values. (5) shows the instantaneous velocity field for the final configuration.

Fig. 13. Average velocity field 10(Fn+300(x) − Fn(x))/300 for 5 different values of n.

batches, a PDE perspective emerges as ε ↓ 0 and N → ∞, and an SPDE approximation perspective is relevant when ε is
non-null and N is finite).

Note that the KF flow Fn(x) can be seen (as ε ↓ 0) as the numerical approximation of a continuous flow F (t, x). Identified
as the solution of the dynamical system

36 H. Owhadi, G.R. Yoo / Journal of Computational Physics 389 (2019) 22–47
Table 1
MNIST test errors using NI interpolation points.

NI Average error Min error Max error Standard deviation

6000 0.014 0.0136 0.0143 1.44 × 10−4

600 0.014 0.0137 0.0142 9.79 × 10−5

60 0.0141 0.0136 0.0146 2.03 × 10−4

10 0.015 0.0136 0.0177 7.13 × 10−4

∂ F (t, x)

∂t
= −EX,π

[
K1

(
F (t, x), Z

)(
K1(Z , Z)

)−1(∇Zρ(X, Z ,π)
)∣∣

Z=F (X,t)

]
, (7.2)

with initial condition F (0, x) = x and where the elements of (7.2) are defined as follows. X is a random vector of X N f

representing the random sampling of the training data in a batch size N f . Writing u(X) ∈YN f for the vector whose entries
are the labels of the entries of X ∈X N f and π for a random Nc × N f matrix corresponding to the selection of Nc elements
at out N f (at random, uniformly, without replacement), ρ , in (7.2), is defined as follows

ρ(X, Z ,π) = 1 − u(X)T π T (K1(π Z ,π Z))−1πu(X)

u(X)T (K1(Z , Z))−1u(X)
. (7.3)

The average vector field in Fig. 13 is an approximation of the right hand side of (7.2) and the convergence of Fround(t/ε)(x)
towards F (t, x) as ↓ 0 is in the sense of two-scale flow convergence described in [33].

Consider now the case where X is the vector containing the location of all the training data points and Y is the corre-
sponding vector of labels. Then (7.2) and (7.3) become

∂ F (t, x)

∂t
= −Eπ

[
K1

(
F (t, x), Z

)(
K1(Z , Z)

)−1(∇Zρ(Z ,π)
)∣∣

Z=F (X,t)

]
, (7.4)

and

ρ(Z ,π) = 1 − Y T π T (K1(π Z ,π Z))−1πY

Y T (K1(Z , Z))−1Y
. (7.5)

Note that Z := F (t, X) solves

dZ

dt
= −∇ZEπ

[
ρ(Z ,π)

]
. (7.6)

Note that F (t, x) is not a function of Z(t) but a function of (Z(s))0≤s≤t . Furthermore we have,

∂t F (t, x) = K1
(

F (t, x), Z
)(

K1(Z , Z)
)−1 dZ

dt
. (7.7)

8. Numerical experiments with the MNIST dataset

We will now implement, test and analyze the Sec. 6 KF algorithm on the MNIST dataset [37]. This training set is com-
posed of 60000, 28 × 28 images of handwritten digits (partitioned into 10 classes) with a corresponding vector of 60000
labels (with values in {1, . . . , 9, 0}). The test set is composed of 10000, 28 × 28 images of handwritten digits with a corre-
sponding vector of 10000 labels.

8.1. Learning with small random batches of the full training dataset

We first implement the Sec. 6 KF algorithm with the full training set, i.e. N = 60000. Images are normalized to have
L2 norm one and we use the Gaussian kernel of Corollary 6.3 and set γ −1 equal to the mean squared distance between
training images. Training is performed in random batches of size N f = 600 and we use Nc = 300 to compute the ratio ρ
and learn the parameters of the network (we do not use a nugget and we do not exclude points that are too close from
those batches). The value of ε is chosen at each step n so that the perturbation of each data point xi of the batch is no

greater than 1% (ε = 0.01 × maxi
|x(n)

f ,i |L2

|ĝ(n)

f ,i |L2
).

Classification of the test data is performed by interpolating a subset of NI images/labels (xi, yi) of the training data with
the kernel Kn (the kernel at step/layer n in the Sec. 6.2 Kernel Flow algorithm). Here each xi is a 28 × 28 image and each yi
is a unit vector e j in R10 pointing in the direction of the class of the images (e.g. yi = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0) = e1 if the
class of image xi is j = 1 and yi = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1) = e10 if the class of image xi is j = 0). The interpolant un is a
function from R28×28 to R10 and the class of an image x is simply identified as argmax j eT · un(x). The Sec. 6.2 Kernel Flow
j

H. Owhadi, G.R. Yoo / Journal of Computational Physics 389 (2019) 22–47 37
Fig. 14. Results for MNIST. N = 60000, N f = 600 and Nc = 300. (1) Test error vs depth n with NI = 6000 (2) Test error vs depth n with NI = 600 (3)
Test error vs depth n with NI = 60 (4) Test error vs depth n with NI = 10 (5, 6) Test error vs depth n with NI = 6000, 600, 60, 10 (7) ρ vs depth n (8)
Mean-squared distances between images Fn(xi) (all, inter class and in class) vs depth n (9) Mean-squared distances between images (all) vs depth n (10)
Mean-squared distances between images (inter class) vs depth n (11) Mean-squared distances between images (in class) vs depth n (12) Ratio (10)/(11).

algorithm is implemented (using Remark 6.1) with N = 60000, N f = 600 and Nc = 300 and ended for n = 12000 (resulting
in a network with 12000 layers).

Table 1 shows test errors (with the test data composed of 10000 images) obtained with NI = 6000, 600, 60 and 10
interpolation points (selected at random uniformly without replacement and conditioned on containing an equal number
of example from each class to avoid degeneracy for NI = 10, 60). The second column shows errors averaged over the last
100 layers of the network (i.e. obtained by interpolating the NI data points with Kn for n = 11901, 11902, . . . , 12000). The
third, fourth and fifth columns show the min, max and standard deviation of the error over the same last 100 layers of
the network. Surprisingly, around layer n = 12000, the kernel Kn achieves an average error of about 1.5% with only 10 data
points (by using only 1 random example of each digit as an interpolation point). Multiple runs of the algorithm suggest that
those results are stable.

Fig. 14 shows test errors vs depth n (with NI = 6000, 600, 60, 10 interpolation points), the value of the ratio ρ vs n (com-
puted with N f = 600 and Nc = 300) and the mean squared distances between (all, inter class and in class) images Fn(xi)

vs n. Observe that all mean-squared distances increase until n ≈ 7000. After n ≈ 7000 the in class mean-squared distances
decreases with n whereas the inter-class mean-squared distances continue increasing. This suggests that after n ≈ 7000 the
algorithm starts clustering the data per class. Note also that while the test errors, with NI = 6000, 600 interpolation points,
decrease immediately and sharply, the test errors with NI = 10 interpolation points increase slightly until n ≈ 3000 towards
60%, after which they drop and seem to stabilize around 1.5% towards n ≈ 10000.

It is known that iterated random functions typically converge because they are contractive on average [5,6]. Here training
appears to create iterated functions that are contractive with each class but expansive between classes.

Fig. 15 shows 10 × xi and 10 × Fn(xi) and 20 × (Fn(xi) − xi) for n = 12000, training images and test images. The algorithm
appears to introduce small, archetypical, and class dependent, perturbations in those images.

8.2. Bootstrapping, brittleness and data archetypes

In Sec. 8.1 we used the whole training set of N = 60000 images to train our network and Fig. 14. Although the accuracy
the network increases (between n = 1 and n = 12000) when using only NI = 6000, 600, 60, 10 interpolation points, the
accuracy of the network with NI = 60000 (the full training set as interpolation points) does not seem to be significantly
impacted by the training (the error with NI = 60000 is 0.0128 at n = 1 and n = 0.0144 at n = 12000). In that sense, all the
algorithm seems to do is to transfer the information contained in the 60000 data-points to the kernel Kn . Can the accuracy

38 H. Owhadi, G.R. Yoo / Journal of Computational Physics 389 (2019) 22–47
Fig. 15. Results for MNIST. N = 60000, N f = 600 and Nc = 300. (1, 3, 5) Training data xi (2, 4, 6) Fn(xi) for n = 12000 (7) Fn(xi) − xi for training data and
n = 12000 (8) Test data xi (9) Fn(xi) for test data and n = 12000 (10) Fn(xi) − xi for test data and n = 12000.

Fig. 16. (1) Test error vs n (2) ρ vs n (3) xi and Fn(xi) for n = 8000 and i corresponding to the first 12 training images (4) xi and Fn(xi) for n = 8000 and
i corresponding to the first 12 test images. MNIST with classes 2 and 4, 600 training images and 100 test images.

Fig. 17. MNIST with all classes, 1200 training images and 2000 test images. (1) Test error vs n (2) ρ vs n (3) Training images xi (4) 10 × abs(Fn(xi) − xi)

for n = 900.

of the interpolation with the full training set be improved? Can the algorithm extract information that cannot already be
extracted by performing a simple interpolation (with a simple Gaussian kernel) with the full training dataset? To answer
these questions we will now implement the Sec. 6.2 Kernel Flow algorithm with subsets of training and test images and
train the network with N f = N (the size of each batch is equal to the total number of training images), Nc = N f /2 and
possibly subsets of the set of all classes. We work with raw images (not normalized to have L2 norm one). We use the
Gaussian kernel of Corollary 6.3 and identify γ −1 as the mean squared distance between training images. We first take

H. Owhadi, G.R. Yoo / Journal of Computational Physics 389 (2019) 22–47 39
Fig. 18. MNIST with classes 2 and 4, 600 training images and 100 test images. Step sizes are too large, ρ decreases but the modes collapse. (1) xi and
Fn(xi) for n = 1, 100, 1800 and i corresponding to the first 12 training images (2) xi and Fn(xi) for n = 1, 100, 1800 and i corresponding to the first 12 test
images (3) ρ vs n (4) Test error vs n.

N = 600 (600 training images) showing only twos and fours and attempt to classify 100 test images (with only twos and
fours). Fig. 16 corresponds to a successful outcome (with small adapted step sizes ε) and shows the test error vs depth n, ρ
vs n and xi and Fn(xi) for n = 8000. These illustrations suggest that the network can bootstrap data and improve accuracy
by introducing small (nearly imperceptible to the naked eye) perturbations to the dataset. Fig. 17 shows another successful
run with N = 1200 training images, 1200 test images and the full set of 10 classes.

Mode collapse from going too deep, too fast, with N f = N Fig. 18 shows a failed outcome (with very large step sizes ε , the
other parameters are the same as in Fig. 16). Although the ratio ρ decreases during training the error blows up towards
50% and the Fn(xi) seem to collapse towards two images: a four and a random blur. We will explain and analyze this mode
collapse below.

8.3. Mode collapse, brittleness of deep learning

The mode collapse observed in Fig. 18 is interesting for several reasons. First it shows that a decreasing ρ is not sufficient
to ensure generalization and learning. Indeed writing w for a function exactly interpolating (fitting) the training data the
kernel K w(x, y) = w(x)w(y) would lead to a perfect fit (and hence a value ρ = 0) of the training set with any number of
interpolation points (and in particular one). Although this K w is positive but degenerate, if the space of kernels explored by
the algorithm is large enough, then, unless N f � N , it is not clear what would prevent the algorithm from over-fitting and
converging towards those pathological kernels.

The brittleness of deep learning [32] is a well known phenomenon predicted [15] from the brittleness of doing inference
in large dimensional spaces [22,19,23,26]. The mechanisms at play in [23] suggest that those instabilities may be unavoid-
able if the inference space is too large and could to some degree be alleviated through a compromise between accuracy
and robustness [26]. From that perspective the learning of the Green’s function in Sec. 5 appears to be stable because of
strong constraints imposed on the space of kernels (by the structure of the underlying PDE). In Sec. 8.1 the difference in
size between the training dataset (N) and that of the batches (N f) seems to have a stabilizing effect on the algorithm.
The pathologies observed in Fig. 18, and mechanisms leading to brittleness [22,19,23,26,17] seem to suggest that will small
data sets and a large space of admissible kernels instabilities may occur and could be alleviated by introducing further
constraints on the space of kernels.

8.4. Classification archetypes

The brittleness of deep learning [22,32] has lead to the construction of libraries of adversarial examples whose persis-
tence in the physical work [12] be exploited by an adversary [10]. These adversarial examples are constructed via small
(near-undetectable to the naked eye) data-dependent (non-random) perturbations of the original images. The Kernel Flow
algorithm seems to exploit the brittleness of deep learning in the opposite direction (towards improved performance), i.e.
as suggested in Fig. 15 and 16 the Kernel Flow algorithm seems to improve performance through the construction of resid-
ual maps introducing small (data-dependent) perturbations to the original images. The resulting images Fn(xi) at profound
depths could be interpreted as archetypes of the classes being learned.

40 H. Owhadi, G.R. Yoo / Journal of Computational Physics 389 (2019) 22–47
Fig. 19. Minimizing mean squared interpolation error rather than ρ may not lead to generalization for KF. (1) Mean squared interpolation error e2(n)

calculated with random subsets of the training data (N f = 600 and Nc = 300) (2) Mean squared interpolation error e2(n) calculated with the test data
(NI = 6000) (3) Classification accuracy (using NI = 6000 interpolation points and all 10000 test data points) vs n (4) Classification accuracy (using NI = 600
interpolation points and all 10000 test data points) vs n.

Table 2
Fashion-MNIST test errors (between layers 15000 and 25000) using NI inter-
polation points.

NI Average error Min error Max error Standard deviation

6000 0.0969 0.0944 0.1 7.56 × 10−4

600 0.0977 0.0951 0.101 8.57 × 10−4

60 0.114 0.0958 0.22 0.0169
10 0.444 0.15 0.722 0.096

Table 3
Fashion-MNIST test errors (between layers 49901 and 50000) using NI inter-
polation points.

NI Average error Min error Max error Standard deviation

6000 0.10023 0.0999 0.1006 1.6316 × 10−4

600 0.10013 0.0999 0.1004 1.1671 × 10−4

60 0.10018 0.0999 0.1005 1.445 × 10−4

10 0.10018 0.0996 0.1009 2.2941 × 10−4

8.5. On generalization

Why the KF algorithm does not seem to overfit the data? Why is it capable of generalization? From an initial perspective
the KF algorithm appears to promote generalization by grouping data points into clusters according to their classes. However
the reason for its generalization properties appears to be more subtle and defining ρ through the RKHS norm seems to also
play a role (minimizing ρ by aligning the eigensubspace corresponding to the lowest eigenvalues of the kernel with the
training data.).

Indeed, using the notations of Sec. 6, let v(x(n)

f ,i) be the predicted labels of the N f points x(n)

f ,i obtained by interpolating

a random subset of Nc = N f /2 points (xi, yi) with the kernel K1 and write e2 := ∑N f

i=1 |y(n)

f ,i − v(x(n)

f ,i)|2 for the mean
squared error between training labels and predicted labels. Then minimizing e2 instead of ρ may lead to a decreasing
test classification accuracy rather than an increasing one as shown in Fig. 19 (using the MNIST dataset with N = 60000
training points, 10000 test points, N f = 600, Nc = 300 for the random batches and NI = 600, 6000 interpolation points for
calculating classification accuracies). Note that although the mean squared interpolation error decreases for the training and
the test data, the classification error (on the 10000 test data points of MNIST using 6000 interpolation points) increases.

9. Numerical experiments with the fashion-MNIST dataset

We now implement and test the Sec. 6 KF algorithm with the Fashion-MNIST dataset [36]. As with the MNIST dataset
[37], the Fashion-MNIST dataset is composed of 60000, 28 × 28 images portioned into 10 classes (T-shirt/top, trouser,
pullover, dress, coat, sandal, shirt, sneaker, bag, ankle boot) with a corresponding vector of 60000 labels (with values in
{0, . . . , 9}). The test set is composed of 10000, 28 × 28 images of handwritten digits with a corresponding vector of 10000
labels.

9.1. Network trained to depth n = 50000

The KF algorithm is implemented with the exact same parameters as for the MNIST dataset (Sec. 8.1, in particular it does
not require any manual tuning of hyperparameters nor a laborious process of guessing an architecture for the network). In
particular, images are normalized to have L2 norm one we use the Gaussian kernel of Corollary 6.3 and set γ −1 equal to

H. Owhadi, G.R. Yoo / Journal of Computational Physics 389 (2019) 22–47 41
Fig. 20. Results for Fashion-MNIST. N = 60000, N f = 600 and Nc = 300. (1) Test error vs depth n with NI = 6000 (2) Test error vs depth n with NI = 600
(3) Test error vs depth n with NI = 60 (4) Test error vs depth n with NI = 10 (5,6) Test error vs depth n with NI = 6000, 600, 60, 10 (7) ρ vs depth n (8)
Mean-squared distances between images Fn(xi) (all, inter class and in class) vs depth n (9) Mean-squared distances between images (all) vs depth n (10)
Mean-squared distances between images (inter class) vs depth n (11) Mean-squared distances between images (in class) vs depth n (12) Ratio (10)/(11).

the mean squared distance between training images. Training is performed in random batches of size N f = 600 and we use
Nc = 300 to compute the ratio ρ and learn the parameters of the network (we do not use a nugget and we do not exclude
points that are too close from those batches). The value of ε is chosen at each step n so that the perturbation of each data

point xi of the batch is no greater than 1% (ε = 0.01 × maxi
|x(n)

f ,i |L2

|ĝ(n)
f ,i |L2

).

The network is trained to depth n = 50000. Table 2 shows test error statistics (on the full test dataset) using the kernel
Kn for 15000 ≤ n ≤ 25000 and NI = 6000, 600, 60, 10 interpolation points. Table 3 shows test error statistics (on the full test
dataset) using the kernel Kn for 49901 ≤ n ≤ 50000 and NI = 6000, 600, 60, 10 interpolation points. Fig. 20 plots test errors
vs n using NI = 6000, 600, 60, 10 interpolation points and shows average distances between Fn(xi) vs n (for xi selected
uniformly at random amongst all training images, within the same or in different classes).

Note that although the network achieves an average test error of 9.7% between layers 15000 and 25000 with NI = 600,
average test errors for NI = 60, 10 interpolation points require a depth of more than 37000 layers to achieve comparable
accuracies. Note that the average error around layer 50000 with NI = 10 interpolation points is 10% and does not seem to
significantly depend on NI . The average error (≈ 9.7%) of the classifier with NI = 600, 6000 interpolation points between
layers 15000 and 25000 and the slight increase of average test errors with NI = 600, 6000 interpolation points between
layers 25000 and 50000 (from ≈ 9.7% to ≈ 10%) seem to decrease with the value of ε . (6.1) could be interpreted an
underlying stochastic differential equation with an explicit scheme with time steps ε and the efficiency of the resulting
classifier seems to improve as ε ↓ 0.

Note from Fig. 20.(8-12), 21 and 4 that Fn(xi) converges towards an archetype of the class of xi and that (after layer
n ≈ 25000) the KF algorithm contracts distances within each class while continuing to expand distances between different
classes.

Interpolation with K1 and all NI = N = 60000 training points used as interpolation points results in 12.75% test error
and interpolation with Kn with n = 50000 and all NI = N = 60000 training points used as interpolation points results in
10% test error. Therefore the KF algorithm appears to bootstrap information contained in the training data in the sense
discussed in Sec. 8.2.

42 H. Owhadi, G.R. Yoo / Journal of Computational Physics 389 (2019) 22–47
Fig. 21. Results for Fashion-MNIST. N = 60000, N f = 600 and Nc = 300. (1) Training data xi (2) Fn(xi) training data and n = 50000 (3) Test data xi (9)
Fn(xi) for test data and n = 50000.

Fig. 22. Results for Fashion-MNIST. N = 60000, N f = 600 and Nc = 300. Left: Training data xi for class 5. Right: Fn(xi) training data and n = 11000.

9.2. Sign of unsupervised learning?

Fig. 22 shows xi and Fn(xi) for a group of images in the class 5 (sandal). The network is trained to depth n = 11000
and the value of ε is chosen at each step n so that the perturbation of each data point xi of the batch is no greater than

10% (ε = 0.1 × maxi
|x(n)

f ,i |L2

|ĝ(n)

f ,i |L2
). Note that this value of ε is 10 times larger than the one of Sec. 9.1. Surprisingly the flow

Fn accurately clusters that class (sandal) into 2 sub-classes: (1) high heels (2) flat bottom. This is surprising because the
training labels contain no information about such sub-classes: KF has created those clusters/sub-classes without supervision.

H. Owhadi, G.R. Yoo / Journal of Computational Physics 389 (2019) 22–47 43
Fig. 23. Convolutional filters used for MNIST classification [1].

Table 4
Test error statistics using NI = 12000 interpolation points at iteration 10000 over 5
runs.

Algorithm Average error Min error Max error Standard deviation

Minimizing e2 0.596% 0.55% 0.63% 0.032%
Minimizing ρ 0.640% 0.60% 0.70% 0.034%

10. Kernel Flows and convolutional neural network

10.1. MNIST

The proposed approach can also be applied to families of kernels parameterized by the weights of a Convolutional Neural
Network (CNN) [13]. Such networks are known to achieve superior performance by, to some degree, encoding (i.e. providing
prior information about) known invariants (e.g. to translations) and the hierarchical structure of data generating distribution
into the architecture of the network.

We will first consider an application the MNIST dataset [37] with L2 normalized test and training images. The structure
of the CNN is the one presented in [1] and its first layers are illustrated in Fig. 23. Given an input/image x, the last
layer produces a vector F (x) ∈ R300 used for SVN classification [3] with the Gaussian kernel K (x, x′) = K1(F (x), F (x′)) =
e−γ |F (x)−F (x′)|2 where 4/γ is the mean squared distance between the F (xi) (writing xi for the training images).

The training of the filters (weights of the network) is done as described in sections 3 and 4 using random batches of
N f = 500 images (sampled uniformly without replacement out of N = 60000 training images) and sub-batches of Nc = 250
images (sampled uniformly without replacement out of the batch of N f = 500 images). As in Sec. 3, write v† and vs for
optimal recoveries using the kernel K , and respectively, the batch of N f and the sub-batch of Nc interpolation points.

Writing yi ∈ R10 for the label of the image xi , the relative approximation error (in the RKHS norm associated with K)
caused by halving the number of points is (using, for simplicity, the notations of Sec. 3 to describe the computation of ρ
for one batch)

ρ = 1 − Tr (yT Ã y)

Tr (yT Ay)
. (10.1)

where y ∈RN f ×10, Ã, A ∈RN f ×N f . We will also consider the mean squared error

e2 = 2

N f

N f∑
i=1

∣∣yi − vs(xi)
∣∣2

, (10.2)

where the sum is taken over the N f elements of the batch (note that yi − vs(xi) = 0 when i is in the sub-batch of Nc

elements used as interpolation points for vs).
To train the network we simply let the Adam optimizer [11] in TensorFlow minimize ρ or e2 (used as cost functions,

which does not require the manual identification of their Fréchet derivatives with respect to the weights of the network).
Table 4 shows statistics of the corresponding test errors using the kernel K learned above (using all N = 60000 images

in batches of size N f = 500) and five randomly selected subsets of NI = 12000 training images as interpolation points. Each
run consisted of 10000 iterations and test errors were calculated on the final iteration. Fig. 24 shows the values of ρ and
e2 evaluated at every 100 iterations for both algorithms (minimizing ρ and e2). When trained with relative entropy and
dropout [30] Gorner reports [1] a minimum classification error of 0.65% testing every 100 iterations over 5 runs. Since we
are using the same CNN architecture, this appears to suggest that the proposed approach (of minimizing ρ or e2) might
lead to better test accuracies than training with relative entropy and dropout.

44 H. Owhadi, G.R. Yoo / Journal of Computational Physics 389 (2019) 22–47
Fig. 24. (1) and (2) show ρ and e2 respectively evaluated at the n-th batch using the e2 minimizing network. (3) and (4) show analogous plots for the ρ
minimizing network.

Fig. 25. (1) Classification test errors for NI = 10, 60, 600, 6000, 12000, 30000 evaluated at the n-th batch for 0 ≤ n ≤ 10000 using the network minimizing
e2. (2) same as (1) with 1000 ≤ n ≤ 10000. (3), (4) same as (1), (2) for the network minimizing ρ .

Table 5
Test error statistics using NI interpolation points between iterations 9900
and 10000 over 5 runs of optimizing e2.

NI Average error Min error Max error Standard deviation

6000 0.575% 0.42% 0.72% 0.052%
600 0.628% 0.48% 0.83% 0.062%
60 0.728% 0.51% 1.23% 0.103%
10 1.05% 0.58% 4.81% 0.375%

Table 6
Test error statistics using NI interpolation points between iterations 9900
and 10000 over 5 runs of optimizing ρ .

NI Average error Min error Max error Standard deviation

6000 0.646% 0.51% 0.78% 0.046%
600 0.676% 0.56% 0.82% 0.047%
60 0.850% 0.58% 3.98% 0.357%
10 4.434% 0.97% 18.91% 2.320%

Fig. 26. A “bad” (top) and “good” (bottom) selection of 10 interpolation points.

10.1.1. Interpolation with small subsets of the training set
Fig. 25 shows test errors using the kernel K learned above (using all N = 60000 images in batches of size N f = 500) and

randomly selected subsets of NI = 30000, 12000, 6000, 600, 60, 10 training images as interpolation points.
Tables 5 and 6 show test errors statistics using the kernel K (learned above with N f = 500) with NI = 6000, 600, 60, 10

interpolation points sampled at random (all use the same convolutional filters obtained in a single optimization run). Aver-
ages, min, max and STD are computed over iterations between iterations 9900 to 10000 using 5 independent runs of the
Adam optimizer [11] with ρ and e2 as objective functions.

Observe that, although as with Kernel Flow, using only a small fraction of the training data as interpolation points is
sufficient to achieve low classification errors (the minimum error with 10 interpolation points is 0.58%), interpolation with
only one image per class appears to be more sensitive to the particular selection of 10 interpolation points. Fig. 26 shows
an example of a “good” and a “bad” selection for the interpolation with 10 points.

H. Owhadi, G.R. Yoo / Journal of Computational Physics 389 (2019) 22–47 45
Fig. 27. (1) Mean-squared distance between F (xi) (all, in-class, and inter-class) vs iteration n for the network optimizing e2 (2) Ratio between inter-class
and in-class mean-squared distance for the network optimizing e2. (3) and (4) are identical except for the network which optimizes ρ .

Fig. 28. Convolutional filters used for Fashion MNIST classification [2].

Table 7
Test error statistics using NI = 12000 interpolation points at iteration 10000 over 5
runs.

Algorithm Average error Min error Max error Standard deviation

Optimizing e2 8.474% 8.24% 8.70% 0.147%
Optimizing ρ 8.412% 8.29% 8.56% 0.091%

Fig. 29. (1) and (2) show ρ and e2 respectively evaluated at the n-th batch using the e2 minimizing network. (3) and (4) show analogous plots for the ρ
minimizing network.

The clustering of the F (xi) (xi are training images and F (x) ∈R300 is the output of the last layer of the CNN with input
x) is a possible explanation for this extreme generalization. Fig. 27 shows the average mean squared Euclidean distance
between F (xi) in the same class and in distinct classes. Note that the ratio between average square distances between two
inter-class and two in-class points approaches 12 (for the network optimizing e2), suggesting that the map F clusters of
images per class.

10.2. Fashion MNIST

We now apply the proposed approach to the Fashion-MNIST database. The architecture of the CNN is derived from [2]
and the first layers of the network are shown in Fig. 28.

The classification of test images is done as in Sec. 10.1.
Table 7 shows test errors statistics (over 5 runs) after training (using 10000 iterations and computing test errors at the

final iteration) by minimizing ρ or e2 (as defined in (10.1) and (10.2)) using NI = 12000 interpolation points Mahajan [2]
reports a testing error of 8.6% when using the validation set to obtain the convolutional filters. As above, this suggests that
the proposed approach could lead to better test accuracies than training with relative entropy and dropout. Finally, Fig. 29
shows ρ and e2 evaluated at every 100 iterations for both algorithms.

10.2.1. Interpolation with small subsets of the training set
Fig. 30 shows test errors using the kernel K learned above (using all N = 60000 images in batches of size N f = 500) and

randomly selected subsets of NI = 30000, 12000, 6000, 600, 60, 10 training images as interpolation points.

46 H. Owhadi, G.R. Yoo / Journal of Computational Physics 389 (2019) 22–47
Fig. 30. (1) Classification test errors for NI = 10, 60, 600, 6000, 12000, 30000 evaluated at the n-th batch for 0 ≤ n ≤ 10000 using the network minimizing
e2. (2) same as (1) with 1000 ≤ n ≤ 10000. (3), (4) same as (1), (2) for the network minimizing ρ .

Table 8
Test error statistics using NI interpolation points between iterations 9900
and 10000 over 5 runs of optimizing e2.

NI Average error Min error Max error Standard deviation

6000 8.561% 8.23% 8.97% 0.135%
600 8.724% 8.31% 9.26% 0.161%
60 9.677% 8.77% 11.48% 0.486%
10 15.261% 10.00% 32.69% 3.196%

Table 9
Test error statistics using NI interpolation points between iterations 9900
and 10000 over 5 runs of optimizing ρ .

NI Average error Min error Max error Standard deviation

6000 8.526% 8.17% 8.96% 0.120%
600 8.810% 8.36% 9.29% 0.140%
60 11.677% 9.32% 18.03% 1.437%
10 36.642% 23.44% 53.56% 4.900%

Fig. 31. (1) Mean-squared distance between F (xi) (all, in-class, and inter-class) vs iteration n for the network optimizing e2 (2) Ratio between inter-class
and in-class mean-squared distance for the network optimizing e2. (3) and (4) are identical except for the network which optimizes ρ .

Further, the minimum errors in Fig. 30.1, 3 are observed to be 8.02% and 7.89% respectively, where both minima used
NI = 30000.”

Tables 8 and 9 show test errors statistics using the kernel K (learned above with N f = 500) with NI = 6000, 600, 60, 10
interpolation points sampled at random (all use the same convolutional filters obtained in a single optimization run). Av-
erages, min, max and STD are computed over iterations between 9900 and 10000 using 5 independent runs of the Adam
optimizer [11] with ρ and e2 as objective functions.

It can again be observed that using only a small fraction of the training data as interpolation points yields relatively low
classification errors. The instability of test errors with NI = 10 interpolation points, compared to the Kernel Flow algorithm
proposed in Sec. 6 seem to suggest that deep architectures might be required to achieve stable results with only one
interpolation point per class.

The clustering of the F (xi) (xi are training images and F (x) ∈R300 is the output of the last layer of the CNN with input
x) using the network optimizing e2 is shown in Fig. 31. The figure shows the average mean squared Euclidean distance
between F (xi) in the same class and in distinct classes. Note that the ratio between average square distances between two
inter-class and two in-class points approaches 4.5, suggesting that the map F aggregates images per class.

Acknowledgements

The authors gratefully acknowledge this work supported by the Air Force Office of Scientific Research and the DARPA
EQUiPS Program under award number FA9550-16-1-0054 (Computational Information Games) and the Air Force Office of

H. Owhadi, G.R. Yoo / Journal of Computational Physics 389 (2019) 22–47 47
Scientific Research under award number FA9550-18-1-0271 (Games for Computation and Learning). We also thank Andrew
Stuart and Yifan Chen for helpful discussions for the clarification of Section 7.4.

References

[1] Learn tensorflow and deep learning, without a ph.d, https://cloud .google .com /blog /big -data /2017 /01 /learn -tensorflow-and -deep -learning -without -a -
phd.

[2] Playing with fashion mnist, https://pravarmahajan .github .io /fashion/.
[3] Corinna Cortes, Vladimir Vapnik, Support-vector networks, Mach. Learn. 20 (3) (1995) 273–297.
[4] Nello Cristianini, John Shawe-Taylor, et al., An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods, Cambridge Univer-

sity Press, 2000.
[5] Diaconis Persi, David Freedman, Iterated random functions, SIAM Rev. 41 (1) (1999) 45–76.
[6] Matthew M. Dunlop, Mark Girolami, Andrew M. Stuart, Aretha L. Teckentrup, How deep are deep gaussian processes?, arXiv preprint: arXiv:1711.11280,

2017.
[7] Robert A. Gingold, Joseph J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astron. Soc.

181 (3) (1977) 375–389.
[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2016, pp. 770–778.
[9] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, Kilian Q. Weinberger, Densely connected convolutional networks, in: CVPR, vol. 1, 2017, p. 3.

[10] Ling Huang, Anthony D. Joseph, Blaine Nelson, Benjamin I.P. Rubinstein, J.D. Tygar, Adversarial machine learning, in: Proceedings of the 4th ACM
Workshop on Security and Artificial Intelligence, ACM, 2011, pp. 43–58.

[11] D.P. Kingma, J.L. Ba Adam, A method for stochastic optimization, https://arxiv.org /abs /1412 .6980, 2014.
[12] Alexey Kurakin, Ian Goodfellow, Samy Bengio, Adversarial examples in the physical world, arXiv preprint: arXiv:1607.02533, 2016.
[13] Yann LeCun, Yoshua Bengio, et al., Convolutional networks for images, speech, and time series, in: The Handbook of Brain Theory and Neural Networks,

vol. 3361(10), 1995, p. 1995.
[14] Yann LeCun, Yoshua Bengio, Geoffrey Hinton, Deep learning, Nature 521 (7553) (2015) 436.
[15] M. McKerns, Mystic: a framework for predictive science: scipy 2013 presentation, https://youtu .be /o -nwSnLC6DU ?t =96, June 2013.
[16] C.A. Micchelli, T.J. Rivlin, A survey of optimal recovery, in: Optimal Estimation in Approximation Theory, Springer, 1977, pp. 1–54.
[17] Jeffrey W. Miller, David B. Dunson, Robust Bayesian inference via coarsening, J. Am. Stat. Assoc. (2018) 1–13, https://doi .org /10 .1080 /01621459 .2018 .

1469995.
[18] H. Owhadi, Multigrid with rough coefficients and multiresolution operator decomposition from hierarchical information games, SIAM Rev. 59 (1) (2017)

99–149.
[19] H. Owhadi, C. Scovel, Brittleness of Bayesian inference and new Seiberg formulas, Commun. Math. Sci. 14 (1) (2016) 83–145.
[20] H. Owhadi, C. Scovel, Universal scalable robust solvers from computational information games and fast eigenspace adapted multiresolution analysis,

arXiv:1703 .10761, 2017.
[21] H. Owhadi, C. Scovel, Operator Adapted Wavelets, Fast Solvers, and Numerical Homogenization From a Game Theoretic Approach to Numerical Approx-

imation and Algorithm Design, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, 2020.
[22] H. Owhadi, C. Scovel, T.J. Sullivan, Brittleness of Bayesian inference under finite information in a continuous world, Electron. J. Stat. 9 (2015) 1–79,

arXiv:1304 .6772.
[23] H. Owhadi, C. Scovel, T.J. Sullivan, On the brittleness of Bayesian inference, SIAM Rev. (Res. Spotlights) (2015).
[24] H. Owhadi, L. Zhang, L. Berlyand, Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization, ESAIM Math. Model. Numer.

Anal. 48 (2) (2014) 517–552.
[25] Owhadi Houman, Kernel flows, Youtube, https://www.youtube .com /watch ?v =h9wB8FVH7YM &list =PLdWd7x7FVuLphAODzEvj2KRNws7z7Sv87.
[26] Houman Owhadi, Clint Scovel, Qualitative robustness in Bayesian inference, ESAIM Probab. Stat. 21 (2017) 251–274.
[27] Tomaso Poggio, Steve Smale, The mathematics of learning: dealing with data, Not. Am. Math. Soc. 50 (5) (2003) 537–544.
[28] F. Schäfer, T.J. Sullivan, H. Owhadi, Compression, inversion, and approximate PCA of dense kernel matrices at near-linear computational complexity,

arXiv:1706 .02205, 2017.
[29] Anton Schwaighofer, Volker Tresp, Kai Yu, Learning gaussian process kernels via hierarchical bayes, in: Advances in Neural Information Processing

Systems, 2005, pp. 1209–1216.
[30] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov, Dropout: a simple way to prevent neural networks from

overfitting, J. Mach. Learn. Res. 15 (1) (2014) 1929–1958.
[31] Ingo Steinwart, Philipp Thomann, Nico Schmid, Learning with hierarchical gaussian kernels, arXiv preprint: arXiv:1612 .00824, 2016.
[32] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, Rob Fergus, Intriguing properties of neural networks,

arXiv preprint: arXiv:1312 .6199, 2013.
[33] Molei Tao, Houman Owhadi, Jerrold E. Marsden, Nonintrusive and structure preserving multiscale integration of stiff odes, sdes, and hamiltonian

systems with hidden slow dynamics via flow averaging, Multiscale Model. Simul. 8 (4) (2010) 1269–1324.
[34] Christopher K.I. Williams, Carl Edward Rasmussen, Gaussian processes for regression, in: Advances in Neural Information Processing Systems, 1996,

pp. 514–520.
[35] Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, Eric P. Xing, Deep kernel learning, in: Artificial Intelligence and Statistics, 2016, pp. 370–378.
[36] Han Xiao, Kashif Rasul, Roland Vollgraf, Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms, arXiv preprint: arXiv:

1708 .07747, 2017.
[37] LeCun Yann, Cortes Corinna, J.B. Christopher, The mnist database of handwritten digits, http://yhann .lecun .com /exdb /mnist, 1998.
[38] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, Oriol Vinyals, Understanding deep learning requires rethinking generalization, arXiv

preprint: arXiv:1611.03530, 2016.

https://cloud.google.com/blog/big-data/2017/01/learn-tensorflow-and-deep-learning-without-a-phd
https://pravarmahajan.github.io/fashion/
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib636F7274657331393935737570706F7274s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib637269737469616E696E6932303030696E74726F64756374696F6Es1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib637269737469616E696E6932303030696E74726F64756374696F6Es1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib646961636F6E6973313939396974657261746564s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib64756E6C6F703230313764656570s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib64756E6C6F703230313764656570s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib67696E676F6C6431393737736D6F6F74686564s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib67696E676F6C6431393737736D6F6F74686564s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib68653230313664656570s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib68653230313664656570s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib6875616E673230313764656E73656C79s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib6875616E6732303131616476657273617269616Cs1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib6875616E6732303131616476657273617269616Cs1
https://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib6B7572616B696E32303136616476657273617269616Cs1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib6C6563756E31393935636F6E766F6C7574696F6E616Cs1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib6C6563756E31393935636F6E766F6C7574696F6E616Cs1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib6C6563756E3230313564656570s1
https://youtu.be/o-nwSnLC6DU?t=96
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib6D69636368656C6C6931393737737572766579s1
https://doi.org/10.1080/01621459.2018.1469995
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib4F77686164694D756C7469677269643A32303135s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib4F77686164694D756C7469677269643A32303135s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib4F776861646953636F76656C3A32303133s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib67616D626C65743137s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib67616D626C65743137s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib4F776853636F626F6F6B32303138s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib4F776853636F626F6F6B32303138s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib4F53533A32303133s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib4F53533A32303133s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib6F7768616469426179657369616E736972657632303133s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib4F77686164695A68616E674265726C79616E643A32303134s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib4F77686164695A68616E674265726C79616E643A32303134s1
https://www.youtube.com/watch?v=h9wB8FVH7YM&list=PLdWd7x7FVuLphAODzEvj2KRNws7z7Sv87
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib6F7768616469323031377175616C69746174697665s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib706F6767696F323030336D617468656D6174696373s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib536368616566657253756C6C6976616E4F77686164693137s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib536368616566657253756C6C6976616E4F77686164693137s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib73636877616967686F666572323030356C6561726E696E67s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib73636877616967686F666572323030356C6561726E696E67s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib737269766173746176613230313464726F706F7574s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib737269766173746176613230313464726F706F7574s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib737465696E77617274323031366C6561726E696E67s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib737A656765647932303133696E7472696775696E67s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib737A656765647932303133696E7472696775696E67s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib74616F323031306E6F6E696E74727573697665s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib74616F323031306E6F6E696E74727573697665s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib77696C6C69616D7331393936676175737369616Es1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib77696C6C69616D7331393936676175737369616Es1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib77696C736F6E3230313664656570s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib7869616F3230313766617368696F6Es1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib7869616F3230313766617368696F6Es1
http://yhann.lecun.com/exdb/mnist
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib7A68616E6732303136756E6465727374616E64696E67s1
http://refhub.elsevier.com/S0021-9991(19)30223-2/bib7A68616E6732303136756E6465727374616E64696E67s1
https://cloud.google.com/blog/big-data/2017/01/learn-tensorflow-and-deep-learning-without-a-phd
https://doi.org/10.1080/01621459.2018.1469995

	Kernel Flows: From learning kernels from data into the abyss
	1 Introduction
	2 Learning as an interpolation problem
	3 What is a good kernel?
	4 The algorithm with a parametric family of kernels
	5 A simple PDE model
	6 Kernel Flows (KF)
	6.1 Non parametric family of kernels and bottomless networks without guesswork
	6.2 The algorithm
	6.3 Rationale of the algorithm

	7 The ﬂow of the KF algorithm on the Swiss Roll Cheesecake
	7.1 Implementation of the KF algorithm
	7.2 Addition of nuggets
	7.3 Instantaneous and average vector ﬁelds
	7.4 The continuous ﬂow

	8 Numerical experiments with the MNIST dataset
	8.1 Learning with small random batches of the full training dataset
	8.2 Bootstrapping, brittleness and data archetypes
	8.3 Mode collapse, brittleness of deep learning
	8.4 Classiﬁcation archetypes
	8.5 On generalization

	9 Numerical experiments with the fashion-MNIST dataset
	9.1 Network trained to depth n=50000
	9.2 Sign of unsupervised learning?

	10 Kernel Flows and convolutional neural network
	10.1 MNIST
	10.1.1 Interpolation with small subsets of the training set

	10.2 Fashion MNIST
	10.2.1 Interpolation with small subsets of the training set

	Acknowledgements
	References

