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Implicit schemes are popular methods for the integration of time dependent PDEs such 
as hyperbolic and parabolic PDEs. However the necessity to solve corresponding linear 
systems at each time step constitutes a complexity bottleneck in their application to 
PDEs with rough coefficients. We present a generalization of gamblets introduced in [62]
enabling the resolution of these implicit systems in near-linear complexity and provide 
rigorous a-priori error bounds on the resulting numerical approximations of hyperbolic 
and parabolic PDEs. These generalized gamblets induce a multiresolution decomposition of 
the solution space that is adapted to both the underlying (hyperbolic and parabolic) PDE 
(and the system of ODEs resulting from space discretization) and to the time-steps of the 
numerical scheme.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Implicit schemes are popular and powerful methods for the integration of time dependent PDEs such as hyperbolic and 
parabolic PDEs [95,44,43,11]. However the necessity to solve corresponding linear systems at each time step constitutes a 
complexity bottleneck in their application to PDEs with rough coefficients.

Although multigrid methods [34,12,36] have been successfully generalized to time dependent equations [50,96,95,109,
33,105,44], their convergence rate can be severely affected by the lack of regularity of the coefficients [101]. While some 
degree of robustness can be achieved with algebraic multigrid [80], multilevel finite element splitting [111], hierarchical 
basis multigrid [6], multilevel preconditioning [97], stabilized hierarchical basis methods [98] and energy minimization [52,
101,108], the design of multigrid/multiresolution methods that are provably robust with respect to rough (L∞) coefficients 
was an open problem of practical importance [13] addressed in [62] with the introduction of gamblets (in O(N ln3d N)

complexity for the first solve and O(N lnd+1 N) for subsequent solves to achieve grid-size accuracy in H1-norm for elliptic 
problems). Numerical evidence suggests the robustness of low rank matrix decomposition based methods such as the Fast 
Multipole Method [35,110], Hierarchical matrices [37,7] and Hierarchical Interpolative Factorization [42] and while this 
robustness can be proven rigorously for Hierarchical matrices [7] (the complexity of Hierarchical matrices is O(N ln2d+8 N)

to achieve grid-size accuracy in L2-norm for elliptic problems [7]) one may wonder if it is possible to rigorously lower this 
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known complexity bound and achieve (at the same time) a meaningful multi-resolution decomposition of the solution space 
for time dependent problems. Although classical wavelet based methods [14,10,28] enable a multi-resolution decomposition 
of the solution space their performance is also affected by the regularity of coefficients because they are not adapted to the 
underlying PDEs.

In section 2 we present a generalization of gamblets introduced in [62] and apply them in sections 3 and 4 to the 
implicit schemes for hyperbolic and parabolic PDEs with rough coefficients. As in [62] these generalized gamblets (1) are 
elementary solutions of hierarchical information games associated with the process of computing with partial information 
and limited resources, (2) have a natural Bayesian interpretation under the mixed strategy emerging from the game theoretic 
formulation, (3) induce a multi-resolution decomposition of the solution space that is adapted to the space-time numerical 
discretization of the underlying PDE and propagate the solution independently (at each time-step) in each sub-band of the 
decomposition. The complexity of pre-computing generalized gamblets is N ln3d N and that of propagating the solution is 
N lnd+1 N (at each time step, to achieve grid-size accuracy in energy norm). Although real valued gamblets are sufficient 
for first and second order implicit schemes, higher order implicit schemes may require complex valued gamblets. These 
complex valued gamblets are introduced and their application to higher order schemes is illustrated in Section 5. Observing 
that the multiresolution decomposition induced by gamblets has properties that are similar to an eigenspace decomposition, 
we introduce, in Section 6, a multi-time-step scheme for solving parabolic PDEs (with rough coefficients) in O(N ln3d+1 N)

complexity.
Gamblets are derived from a Game Theoretic approach to Numerical Analysis [62,66] which could be seen as decision 

theory approach to numerical analysis [100,65]. We refer to the information based complexity literature for an understand-
ing of the natural connection between the notions of computing with partial/priced information and numerical analysis (we 
refer in particular to [106,74,94,55,107,79,56]). Although statistical approaches to numerical analysis [26,77,88,48,81,47,84,
57,58] have, in the past, received little attention, perhaps due to the counterintuitive nature of the process of randomiz-
ing a known function, the possibilities offered by combining numerical uncertainties/errors with model uncertainties/errors 
appear to be stimulating their reemergence [19,83,61,41,40,15,23,78,75,66,82]. We refer in particular to [85,83,19] for ODEs 
and to [61,62,66,20,82] for PDEs. Here the game theoretic approach of [62] is applied to both PDEs and the system of ODEs 
resulting from their discretization. The multiscale nature of the underlying PDEs results in the stiffness of the correspond-
ing ODEs (these ODEs are not only stiff [91,93,92] they are also characterized by a large range/continuum of time scales 
[59,60,8]). Although it is natural to integrate such ODEs by an eigenspace decomposition when the dimension of the system 
of ODEs is small, the cost of such an approach is in general prohibitive. It is to some degree surprising that gamblets have 
properties that are similar to eigenfunctions, or more precisely Wannier basis functions [103,53] (i.e. linear combinations of 
eigenfunctions concentrated around a given eigenvalue that are also concentrated in space), while preserving the near-linear 
complexity of the integration.

Since (see [62]) Gamblets are also natural basis functions for numerical homogenization [104,3,46,30,70,31,9,2,25,90,102,
72,51,73,45,76] they can also be employed to achieve sub-linear complexity under sufficient regularity of source terms and 
initial conditions (see [71,69,72] and Remark 4.3).

We also refer to [66] for a generalization of gamblets to arbitrary continuous linear bijections on Banach spaces (see 
also [82] for their application to the inversion, compression and approximate PCA of dense kernel matrices at near-linear 
complexity). As discussed in [66] gamblets also provide a solution to the problem of identifying operator adapted wavelets 
[21,4,32,17,18,24,1,89,99,87] satisfying three essential properties (see [86,87] for an overview): (a) scale-orthogonality (with 
respect to the operator scalar product to ensure block-diagonal stiffness matrices), (b) local support (or rapid decay) of the 
wavelets (to ensures that the individual blocks are sparse) and (c) Riesz stability in the energy norm (to ensure that the 
blocks are well-conditioned).

2. Gamblets

We will, in this section, present a generalization of the gamblets introduced in [62]. Since the proofs of the results 
presented in this section are similar to those given in [62] we will refer the reader to [62] and to [66] for these proofs.

2.1. The PDE

Let ζ > 0. Consider the PDE{
4
ζ 2 μ(x)u(x) − div

(
a(x)∇u(x)

) = g(x) x ∈ �;
u = 0 on ∂�,

(2.1)

where � is a bounded domain in Rd (of arbitrary dimension d ∈ N
∗) with piecewise Lipschitz boundary, a is a symmetric, 

uniformly elliptic d × d matrix with entries in L∞(�) and such that for all x ∈ � and l ∈ R
d ,

λmin(a)|l|2 ≤ lT a(x)l ≤ λmax(a)|l|2, (2.2)

and μ ∈ L∞(�) with for all x ∈ �,
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Fig. 1. � = (0, 1)2. �k corresponds to a uniform partition of � into 2−k × 2−k squares. The bottom row shows the support of φ(1)
i , φ(2)

j and φ(3)
s . Note that 

j(1) = s(1) = i and s(2) = j. The top row shows the entries of π(1,2)
i,· and π(2,3)

j,· .

μmin ≤ μ(x) ≤ μmax . (2.3)

One purpose of gamblets is to compute the solution of (2.1) (or its finite-element solution) as fast as possible to a given 
accuracy.

2.2. The hierarchy of measurement functions

We will now introduce a hierarchy of measurement functions that will be used to characterize the process of computing 
of hierarchies of levels of complexity. We will need the following hierarchy of labels.

Definition 2.1. We say that I(r) is an index tree of depth r if it is the finite set of r-tuples of the form i = (i1, . . . , ir). For 
1 ≤ k ≤ r and i = (i1, . . . , ir) ∈ I(r) , write i(k) := (i1, . . . , ik) and I(k) := {i(k) : i ∈ I(r)}. For 1 < s < k and a k-tuple of the 
form i = (i1, . . . , ik) we write i(s) := (i1, . . . , is).

Write I(k) for the I(k) × I(k) identity matrix.

Construction 2.2. For k ∈ {1, . . . , q − 1} let π(k,k+1) be a I(k) ×I(k+1) matrix such that π(k,k+1)(π(k,k+1))T = I(k) and π(k,k+1)
i, j = 0

for j(k) �= i (we say that π(k,k+1) is cellular).

Let (φ(r)
i )i∈I(r) be orthonormal elements of L2(�) and, for k ∈ {1, . . . , r − 1} and i ∈ I(k) define φ(k)

i via induction by

φ
(k)
i =

∑
j∈I(k+1)

π
(k,k+1)
j φ

(k+1)
j (2.4)

We will refer to the elements φ(k)
i as measurement functions. Through this paper we use Haar wavelets or approxima-

tions thereof (Construction 2.3) as prototypical measurement functions. We refer the reader to [66] for a comprehensive 
description of the framework.

Construction 2.3. Let H, δ ∈ (0, 1). For k ∈ N ∗ , let �k be a nested partition of � into subsets (τ (k)
i )i∈I(k) such that (1) each τ (k)

i is 

contained in a ball of radius H and contains a ball of radius δH and (2) |τ (k)
i | = |τ (k)

j | (|τ (k)
i | is the volume of τ (k)

i ). Let φ(k)
i =

1
τ
(k)
i√

|τ (k)
i |

where 1
τ

(k)
i

is the indicator function of τ (k)
i . Observe that the nesting matrices π(k,k+1) are cellular and orthonormal (in the sense that 

π(k,k+1)(π(k,k+1))T = I(k) where I(k) is the I(k) × I(k) identity matrix).

Example 2.1. For our running example we will consider � = (0, 1)2 illustrated in Fig. 1 (taken from [66]). Using the Con-

struction 2.3 we select �k to be a regular grid partition of � into 2−k × 2−k squares τ (k)
i and φ(k)

i =
1
τ
(k)
i√

|τ (k)
i |

.



102 H. Owhadi, L. Zhang / Journal of Computational Physics 347 (2017) 99–128
2.3. The hierarchy of games

Gamblets are then identified by turning the process of computing with limited resources and partial information as that 
of playing hierarchies of games defined as follows. We have two players I and II. Player I chooses the right hand side g
of (2.1) in H−1(�) and does not show it to Player II. Starting with k = 1, Player II sees (

∫
�

uφ
(k)
i )i∈I(k) and must predict u

and (
∫
�

uφ
(k+1)
i )i∈I(k+1) . Once Player II has made his choice, he gets a loss, sees (

∫
�

uφ
(k+1)
i )i∈I(k+1) and must predict u and 

(
∫
�

uφ
(k+2)
i )i∈I(k+2) . In this adversarial game Player I tries to maximize the loss of Player II and Player II tries to minimize it. 

Optimal strategies are identified by lifting this deterministic minimax problem to a minimax over measures [66, Sec. 5]. In 
other words, Player I must play at random and Player II must look for an optimal strategy in the Bayesian class of strategies 
by considering the SPDE{

4
ζ 2 μv − div

(
a∇v

) = ξ x ∈ �;
u = 0 on ∂�,

(2.5)

where the right hand side of (2.1) has been replaced by a random field ξ and the bet of Player II at step k is the expectation 
of the solution of the SPDE (2.5) conditioned on measurements of the solution of the deterministic PDE (2.1), i.e.

u(k),ζ (x) := E
[
v(x)

∣∣ ∫
�

v(y)φ
(k)
i (y)dy =

∫
�

u(y)φ
(k)
i (y)dy, i ∈ I(k)

]
. (2.6)

Note that the sequence of approximations (2.6) is a martingale under the filtration formed by the measurements 
(
∫
�

uφ
(k)
i )i∈I(k) .

2.4. ζ -Gamblets

If the loss of Player II is measured using relative error in the energy norm ‖w‖2
ζ := 4

ζ 2

∫
�

w2μ +∫
�
(∇w)T a∇w associated 

with the operator scalar product

〈
w1, w2

〉
ζ

:= 4

ζ 2

∫
�

w1 w2μ +
∫
�

(∇w1)
T a∇w2 , (2.7)

then [66, Sec. 5] the optimal strategy of Player II is to select the distribution of ξ as that of a centered Gaussian field with 
covariance operator L = 4

ζ 2 μ · − div
(
a∇ · ). This simply means that if f ∈ H1

0(�) then 
∫
�

f ξ is a centered Gaussian random 
variable of variance ‖ f ‖2

ζ . Under that choice u(k),ζ can be written as a linear combination of the measurements, i.e.

u(k),ζ (x) =
∑

i∈I(k)

ψ
(k),ζ

i (x)

∫
�

u(y)φ
(k)
i (y)dy (2.8)

and the coefficients ψ(k),ζ

i are deterministic functions and elementary gambles (namely, ζ -gamblets or gamblets) forming a 
basis for Player II’s strategy (ψ(k),ζ

i (x) is the best bet of Player II on the value of u(x) given the information that 
∫
�

uφ
(k)
j =

δi, j for j ∈ I(k)). As shown in [62] (see also [61,66]), gamblets are optimal recovery splines [54] characterized by optimal 
variational and recovery properties.

Theorem 2.4. It holds true that (1) for i ∈ I(k) ,

ψ
(k),ζ

i =
∑

j∈I(k)

�
(k),−1
i, j L−1φ

(k)
j (2.9)

where �(k),−1 is the inverse of the Gramian matrix �(k)
i, j := ∫

�
φ

(k)
i L−1φ

(k)
j , (2) for w ∈ R

I(k)
, 
∑

i∈I(k) wiψ
(k),ζ

i is the minimizer of 

‖ψ‖ζ over all functions ψ ∈ H1
0(�) such that 

∫
�

ψφ
(k)
i = wi for i ∈ I(k) and (3) u(k),ζ is the minimizer of ‖u −ψ‖ζ over all functions 

ψ in span{L−1φ
(k)
i | i ∈ I(k)}.

Furthermore ψ(k),ζ

i decays exponentially fast away from the support of φ(k)
i and this exponential decay can be used to 

localize the nested computation of gamblets. To simplify the presentation, we will write C any constant that depends only 
on d, �, λmin(a), λmax(a), μmin, μmax, δ but not on ζ nor H (e.g., 2Cζ H2λmax(a) will be written Cζ H2).
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Fig. 2. a(x) in log scale.

Theorem 2.5. Let φ(k)
i be as in Construction 2.3. Let �(k)

i,n be the union of subsets τ (k)
j that are at distance at most nH from τ (k)

i . 

Let ψ(k),ζ,n
i be the minimizer of ‖ψ‖ζ over all functions ψ ∈ H1

0(�
(k)
i,n ) such that 

∫
�

ψφ
(k)
j = δi, j for j ∈ I(k) . We have ‖ψ(k),ζ

i −
ψ

(k),ζ,n
i ‖ζ ≤ C‖ψ(k),ζ,0

i ‖ζ e−C−1n.

Remark 2.6. The optimal prior is Gaussian because [66, Sec. 5] of the linearity of the PDE and the quadratic nature of the 
loss function. For non-linear PDEs or non-quadratic loss functions, although optimal priors (which may not be Gaussian) 
could in principle be numerically approximated, such approximations could be severely impacted by stability issues as 
discussed in [67,63,68,64].

Example 2.2. For our numerical examples/illustrations, d = 2, � = (0, 1)2 and Th is a square grid of mesh size h = (1 +2q)−1

with r = 6 and 64 × 64 interior nodes, a is piecewise constant on each square of Th and given by

a(x) = 
r
k=1

(
1 + 0.5 cos(2kπ(

i

2r + 1
+ j

2r + 1
))

)(
1 + 0.5 sin(2kπ(

j

2r + 1
− 3

i

2r + 1
))

)
(2.10)

for x ∈ [ i

2r + 1
, 

i + 1

2r + 1
) × [ j

2r + 1
, 

j + 1

2r + 1
) as illustrated in Fig. 2. We use continuous bilinear nodal basis elements ϕi

spanned by {1, x1, x2, x1x2} in each square of Th . Fig. 3 then provides an illustration of gamblets for various values of ζ . 
Note that the generalized gamblet ψ(k),ζ

i can be seen as a non-linear interpolation between a re-scaling of the measurement 
function φ(k)

i (ζ = 0) and the gamblets introduced in [62] (ζ = ∞).

2.5. Multiresolution decomposition

The nesting of the measurements function implies that of the gamblets, i.e. writing (for k ∈ {1, . . . , r}) V(k),ζ :=
span{ψ(k),ζ

i | i ∈ I(k)} we have (for k ∈ {1, . . . , r −1}) V(k),ζ ⊂V(k+1),ζ and ψ(k),ζ

i (x) = ∑
j∈Ik+1

R(k),ζ

i, j ψ
(k+1),ζ

j (x) where R(k),ζ

is the so called restriction/prolongation operator whose entry R(k),ζ

i, j can be identified as, R(k),ζ

i, j = E
[ ∫

�
v(y)φ

(k+1)
j (y) dy

∣∣ ∫
�

v(y)φ
(k)

l (y) dy = δi,l, l ∈ I(k)
]
, i.e. the best bet of Player II on the value of 

∫
�

uφ
(k+1),ζ

j given the information that ∫
�

uφ
(k),ζ

l = δi,l . With the identification of the restriction/prolongation operator one can use gamblets to couple scales in 
a multigrid algorithm but here we will instead use gamblets to induce a multiresolution decomposition of the solution 
space via orthogonalization process akin to the one used with wavelets.

Definition 2.7. For k ∈ {2, . . . , r} let J (k) be a finite set of k-tuples of the form j = ( j1, . . . , jk) such that { j(k−1) | j ∈J (k)} =
I(k−1) and for i ∈ I(k−1) , Card{ j ∈J (k) | j(k−1) = i} = Card{s ∈ I(k) | s(k−1) = i} − 1.

Definition 2.8. Let W (k) be a J (k) × I(k) matrix such that: (1) Im(W (k),T ) = Ker(π(k−1,k)), (2) W (k)W (k),T = J (k) where J (k)

is the J (k) ×J (k) identity matrix, (3) W (k)
j,i = 0 for ( j, i) ∈J (k) × I(k) with j(k−1) �= i(k−1) .

When measurement functions are in Construction 2.3 then an example of W (k) is provided in Construction 2.10 based 
on the following lemma.
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Fig. 3. ψ
(k),ζ

i for (a) ζ = 10−6, (b) ζ = 1, (c) ζ = 106.

Lemma 2.9. Let U (n) be the sequence of n × n matrices defined (1) for n = 2 by U (2)
1,· = (1, −1) and U (2)

2,· = (1, 1) and (2) iteratively 
for n ≥ 2 by U (n+1)

i, j = U (n)
i, j for 1 ≤ i, j ≤ n, U (n+1)

n+1, j = 1 for 1 ≤ j ≤ n + 1, U (n+1)
i,n+1 = 0 for 1 ≤ i ≤ n − 1 and U (n+1)

n,n+1 = −n. Then for 
n ≥ 2, the rows of U (n) are orthogonal, U (n)

n, j = 1 for 1 ≤ j ≤ n and we write Ū (n) the corresponding orthonormal matrix obtained by 
renormalizing the rows of U (n).
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Fig. 4. Solution u(x) of equation (2.1) with g(x) = sin(πx1) cos(πx2).

Note that another possible choice for U (n) (than the one described in Lemma 2.9) is the discrete cosine transformation 
matrix.

Construction 2.10. For k ∈ {2, . . . , r}, let W (k) be a J (k) × I(k) matrix such that: (1) W (k)
j,i = 0 for ( j, i) ∈J (k) × I(k) with j(k−1) �=

i(k−1) , (2) for s ∈ I(k−1) and t ∈ {1, . . . , n − 1} and t′ ∈ {1, . . . , n}, W (k)

(s,t),(s,t′) = Ū (n)

t,t′ (where Ū (n) is defined in Lemma 2.9 and 
n = Card{i ∈ I(k) | i(k−1) = s}).

For k ∈ {2, . . . , r} and i ∈J (k) let

χ
(k),ζ

i =
∑

j∈I(k)

W (k)
i, j ψ

(k),ζ

j (2.11)

and

W(k),ζ := span{χ(k),ζ

i | i ∈ I(k)} (2.12)

For k ∈ {2, . . . , r}, write W(k),ζ := span{χ(k),ζ

i | i ∈ J (k)}. Write ⊕ζ the orthogonal direct sum with respect to the scalar 
product 

〈·, ·〉
ζ

. The following theorem shows that W(k),ζ is the orthogonal complement of V(k),ζ in V(k−1),ζ and this induces 
a multiresolution decomposition of the solution space. (See Fig. 5.)

Theorem 2.11. It holds true that for k ∈ {2, . . . , r}, V(k),ζ =V(k−1),ζ ⊕ζ W
(k),ζ and, in particular

V(r),ζ = W(1),ζ ⊕ζ W
(2),ζ ⊕ζ · · · ⊕ζ W

(r),ζ , (2.13)

where W(1),ζ =V(1),ζ . Furthermore, u(1) is the finite-element solution of (2.5) in V(1),ζ and for k ∈ {2, . . . , r}, u(k),ζ − u(k−1),ζ is the 
finite element solution of (2.5) in W(k),ζ .

Note that since the spaces W(k),ζ for k ∈ {1, . . . , r} are orthogonal with each other, the corresponding finite-element 
subband solutions u(1),ζ and u(k),ζ −u(k−1),ζ for k ∈ {2, . . . , r} can be computed independently. Fig. 4 provides an illustration 
of the solution u(x) of equation (2.1) with g(x) = sin(πx1) cos(πx2). Fig. 5 provides an illustration of the corresponding 
subband solutions.

Remark 2.12. An analogy could be made between gamblets and Lax Pairs [49] where the solution space is also decom-
posed in a way that involves the dynamics of the PDE itself. Here the pairs φ(k)

i and φ(k),ζ

i form a biorthogonal system 
[27] in the sense that 

∫
�

φ
(k)
i ψ

(k),ζ

j = δi, j for i, j ∈ I(k) and the 
〈·, ·〉

ζ
-orthogonal projection of u ∈ H1

0(�) onto V(k),ζ is ∑
i∈I(k) ψ

(k)
i

∫
�

φ
(k)
i u. As discussed in [66] gamblets are also optimal recovery splines in the sense of Micchelli and Rivlin 

[54] and as a consequence have optimal recovery properties [66].

2.6. Uniformly bounded condition numbers

Let A(k),ζ and B(k),ζ be the stiffness matrices of finite element approximation of the (2.5) in V(k),ζ and W(k),ζ , i.e. 
A(k),ζ

i, j := 〈
ψ

(k)
i , ψ(k)

j

〉
ζ

for k ∈ {1, . . . , r} and i, j ∈ I(k) and B(k),ζ

i, j := 〈
χ

(k),ζ

i , χ(k),ζ

j

〉
ζ

for k ∈ {2, . . . , r} and i, j ∈ J (k) . The fol-
lowing theorem shows that the multiresolution decomposition of Theorem 2.11 looks like an eigenspace decomposition in 
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Fig. 5. Multiresolution decomposition of u for ζ = 10−6, ζ = 1 and ζ = 106.
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Fig. 6. Condition numbers of B(k) (ζ = ∞) for k = 1, . . . ,6 and a(x) defined as in (2.10).

Fig. 7. Condition numbers of B(k) (ζ = ∞) for k = 1, . . . ,6 and a(x) = Id (the Laplacian).

the sense that those subspaces are orthogonal with respect to the scalar product 
〈·, ·〉 and the condition numbers of the 

matrices B(k),ζ are uniformly bounded (the subspaces are not orthogonal in L2(�) so (2.13) is not an exact eigenspace de-
composition). For a given matrix M , write Cond(M) := √

λmax(MT M)/
√

λmin(MT M) its condition number. If M is symmetric 
write λmin(M) and λmax(M) its minimal and maximal eigenvalues.

Theorem 2.13. Let the φ(k)
i be as in Construction 2.3. For ζ ∈ (0, ∞], Cond(A(1),ζ ) ≤ C H−2 , and Cond(B(k),ζ ) ≤ C H−2 for k ∈

{2, . . . , r}. Furthermore, for ζ = ∞ and k ∈ {1, . . . , r}, 
1

C
≤ λmin(A(k),∞) and λmax(A(k),∞) ≤ C H−2k. For ζ = ∞ and k ∈ {2, . . . , r}, 

1

C
H−2(k−1) ≤ λmin(B(k),∞) and λmax(B(k),∞) ≤ C H−2k.

Example 2.3. To simplify notations we will write A(1),ζ as B(1),ζ and omit the superscript ζ when ζ = ∞. Figs. 6 and 7
provide the condition numbers of A(k) and B(k) for k = 1, . . . , 6 for a(x) defined as in (2.10) and a(x) = Id (the Laplacian). 
Note that these condition numbers do depend on the contrast of a. Figs. 8 and 9 illustrate the ranges of the eigenvalues 
of the PDE in V and in each subband W(k) , for a(x) defined as in (2.10) and a(x) = Id (the Laplacian), i.e. the figures are 
illustrations of the intervals 

[
infψ∈V ‖ψ‖a

‖ψ‖L2(�)
, supψ∈V ‖ψ‖a

‖ψ‖L2(�)

]
and 

[
infψ∈W(k)

‖ψ‖a
‖ψ‖L2(�)

, supψ∈W(k)
‖ψ‖a

‖ψ‖L2(�)

]
where we write 

‖ψ‖a := ‖ψ‖ζ for ζ = ∞. Note that the eigenvalues of B(k) cover only subintervals of spectrum of the discretized operator, 
which corresponds to a multi-resolution decomposition.
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Fig. 8. Ranges of eigenvalues in V and W(k) (ζ = ∞) for k = 1, . . . ,6 and a(x) defined as in (2.10).

Fig. 9. Ranges of eigenvalues in V and W(k) (ζ = ∞) for k = 1, . . . ,6 and a(x) = Id (the Laplacian).

2.7. Algorithms

2.7.1. The gamblet transform
We will now describe the gamblet transform for the discrete operator obtained from the numerical approximation of 

(2.1). Consider the finite-element solution of (2.1) over a basis (ϕi)i∈N of fine-scale elements. To facilitate the presentation, 
assume that (ϕi)i∈N is obtained from Th , a regular fine mesh discretization of � of resolution h with 0 < h 
 1. Let N
be the set of interior nodes zi and N = |N | be the number of interior nodes (N = O(h−d)) of Th . Write (ϕi)i∈N a set of 
conforming nodal basis elements (of H1

0(�)) constructed from Th such that for each i ∈ N , support(ϕi) ⊂ B(zi, C0h), for 
y ∈R

N ,

¯
γ hd|y|2 ≤ ‖

∑
i∈N

yiϕi‖2
L2(�)

≤ γ̄ hd|y|2 (2.14)

and

‖∇v‖L2(�) ≤ C1h−1‖v‖L2(�) (2.15)

for v ∈ span{ϕi | i ∈N }, for some constants 
¯
γ , γ̄ , C0, C1 ≈O(1).

In addition to properties (2.14) and (2.15) we assume that Th is such that: (1) h = Hr and (2) each set τ (r)
i (i ∈ I(r)) 

contains one and only one interior node of Th . Using this one to one correspondence we use the elements of Ir to relabel 
the interior nodes zi of Th and their respective nodal elements ϕi .

Write V := span{ϕi | i ∈ I}. Given the matrices π(k,k+1) defined as in Constructions 2.2 and (2.4), and the matrices 
W (k) obtained as in Definition 2.8, Algorithm 1 computes elements of V corresponding discrete gamblets (ψ(k),ζ

i )i∈I(k)

and {χ(k),ζ }i∈J (k) . As in Theorem 2.11, these discrete gamblets induce the following 
〈·, ·〉 orthogonal decomposition of the 
i ζ
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solution space, corresponding to a diagonalization of the stiffness matrix Ai, j = 〈
ϕi, ϕ j

〉
z into blocks of uniformly bounded 

condition numbers (which can be approximated by truncated blocks thanks to the exponential decay of gamblets).

V =V(1),ζ ⊕ζ W
(2),ζ ⊕ζ · · · ⊕ζ W

(r),ζ . (2.16)

Observe that the measurement functions φ(k)
i do not appear explicitly in Algorithm 1 (which depends only on the interpola-

tion matrices π(k,k+1) defined in Constructions 2.2 and (2.4)). Note that at the finest scale, level r gamblets ψ(r),ζ
i are simply 

the basis elements ϕi used to discretize the PDE (2.1) (as discussed in [66], writing M̄ the mass matrix M̄ϕ
i, j = ∫

�
ϕiϕ j , se-

lecting ψ(r),ζ
i = ϕi is equivalent to using φ(r)

i = ∑
j∈I(r) M̄−1

i, j ϕ j as level r measurement functions and defining φ(k)
i via 

aggregation as in (2.4)).

Algorithm 1 Gamblet transform.

1: For i, j ∈ I(r) , Aϕ,ζ

i, j = 〈
ϕi , ϕ j

〉
ζ

// Stiffness matrix

2: For i ∈ I(r) , ψ(r),ζ
i = ϕi // Level r gamblets

3: For i, j ∈ I(r) , A(r),ζ
i, j = 〈

ψ
(r),ζ
i , ψ(r),ζ

j

〉
ζ

// A(r),ζ = Aϕ,ζ

4: for k = r to 2 do
5: For i ∈J (k) , χ(k),ζ

i = ∑
j∈I(k) W (k)

i, j ψ
(k),ζ

j // Level k, χ gamblets

6: B(k),ζ = W (k) A(k),ζ W (k),T // B(k),ζ

i, j = 〈
χ

(k),ζ

i , χ(k),ζ

j

〉
ζ

7: D(k,k−1),ζ = −B(k),ζ,−1 W (k) A(k),ζ π̄ (k,k−1) // B(k),ζ,−1 =matrix inverse of B(k),ζ

8: R(k−1,k),ζ = π̄ (k−1,k) + D(k−1,k),ζ W (k) // Interpolation/restriction operator
9: For i ∈ I(k−1) , ψ(k−1),ζ

i = ∑
j∈I(k) R(k−1,k),ζ

i, j ψ
(k),ζ

j // Level k − 1, ψ gamblets

10: A(k−1),ζ = R(k−1,k),ζ A(k),ζ R(k,k−1),ζ // A(k−1),ζ

i, j = 〈
ψ

(k−1),ζ

i , ψ(k−1),ζ

j

〉
ζ

11: end for

2.7.2. Linear solve with gamblets
Given g = ∑

i∈N giϕi , Algorithm 2 computes u ∈ span{ϕi | i ∈N } such that,

〈
ϕ j, u

〉
ζ

=
∫
�

ϕ j g, for all j ∈ N (2.17)

Algorithm 2 is exact and u = u(1),ζ + (u(2),ζ − u(1),ζ ) + · · · + (u(r),ζ − u(r−1),ζ ) obtained in Line 9 is the orthogonal decom-
position of the solution u of (2.17) over V =V(1),ζ ⊕ζ W

(2),ζ ⊕ζ · · · ⊕ζ W
(r),ζ .

Algorithm 2 Linear solve with exact gamblets.

1: For i ∈ I(r) , g(r),ζ
i = gi // g(r),ζ

i = ∫
�

ψ
(r),ζ
i g with g = ∑

i∈I(r) giϕi

2: for k = r to 2 do
3: w(k),ζ = B(k),ζ,−1 W (k) g(k),ζ

4: u(k),ζ − u(k−1),ζ = ∑
i∈J (k) w(k),ζ

i χ
(k),ζ

i

5: g(k−1),ζ = R(k−1,k),ζ g(k),ζ

6: end for
7: U (1),ζ = A(1),ζ,−1 g(1),ζ

8: u(1),ζ = ∑
i∈I(1) U (1),ζ

i ψ
(1),ζ

i

9: u = u(1),ζ + (u(2),ζ − u(1),ζ ) + · · · + (u(r),ζ − u(r−1),ζ )

2.8. Fast gamblet transform

Algorithms 1 and 2 can be modified to operate in linear complexity. This near linear complexity is possible thanks to 
three main properties, (1) Nesting: level k gamblets and stiffness matrices can be computed from level k + 1 gamblets 
and stiffness matrices; (2) Bounded condition numbers: It follows from Theorem 2.13 that the linear systems involved in 
Algorithms 1 and 2 have uniformly bounded condition numbers; (3) Localization: gamblets can be localized as a function of 
the desired accuracy. The resulting modified algorithms are 3 and 4.

Algorithm 3 achieves O
(
N ln3d N

)
complexity in computing approximate gamblets (sufficient to achieve a given level of 

accuracy). This fast algorithm is obtained by localizing/truncating the linear systems corresponding to Line 6 in Algorithm 1. 
The approximation error induced by these localization/truncation steps is controlled by the exponential decay of gamblets 
ψ

(k),ζ

i and χ(k),ζ

i and the uniform bound on the condition numbers of the matrices B(k),ζ and A(1),ζ . We define these 
localization/truncation steps as follows. For k ∈ {1, . . . , q} and i ∈ I(k) define iρ as the subset of indices j ∈ I(k) whose 
corresponding subdomains τ (k) are at distance at most Hkρ from τ (k) .
j i
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Algorithm 3 Localized gamblets.

1: For i ∈ I(r) , ψ(r),ζ,loc
i = ϕi

2: For i, j ∈ I(r) , A(r),ζ,loc
i, j = 〈

ψ
(r),ζ,loc
i , ψ(r),ζ,loc

j

〉
ζ

3: for k = r to 2 do
4: B(k),ζ,loc = W (k) A(k),ζ,loc W (k),T

5: For i ∈J (k) , χ(k),ζ,loc
i = ∑

j∈I(k) W (k)
i, j ψ

(k),ζ,loc
j

6: Inv(B(k),ζ,loc D(k,k−1),ζ,loc = −W (k) A(k),ζ,locπ̄ (k,k−1), ρk−1) // Def. 2.14, Theorem 2.18
7: R(k−1,k),ζ,loc = π̄ (k−1,k) + D(k−1,k),ζ,loc W (k) // Def. 2.14
8: A(k−1),ζ,loc = R(k−1,k),ζ,loc A(k),ζ,loc R(k,k−1),ζ,loc

9: For i ∈ I(k−1) , ψ(k−1),ζ,loc
i = ∑

j∈I(k) R(k−1,k),ζ,loc
i, j ψ

(k),ζ,loc
j

10: end for

Note that level r gamblets ψ(r),ζ,loc
i are simply the finite-elements ϕi used to discretize the operator (Line 1 of Algo-

rithm 3). Line 6 of Algorithm 3 is defined as follows.

Definition 2.14. Let k ∈ {2, . . . , r} and B be the positive definite J (k) × J (k) matrix B(k),ζ,loc computed in Line 4 of Al-
gorithm 3. For i ∈ I(k−1) , let ρ = ρk−1 and let iχ be the subset of indices j ∈ J (k) such that j(k−1) ∈ iρ (recall that 
if j = ( j1, . . . , jk) ∈ J (k) then j(k−1) := ( j1, . . . , jk−1) ∈ I(k−1)). B(i,ρ) be the iχ × iχ matrix defined by B(i,ρ)

l, j = Bl, j for 

l, j ∈ iχ . Let b(i,ρ) be the |iχ |-dimensional vector defined by b(i,ρ)

j = −(W (k) A(k),ζ,locπ̄ (k,k−1)) j,i for j ∈ iχ . Let y(i,ρ) be 
the |iχ |-dimensional vector solution of B(i,ρ) y(i,ρ) = b(i,ρ) . We define the solution D(k,k−1),ζ,loc of the localized linear sys-
tem Inv(B(k),ζ,loc D(k,k−1),ζ,loc = −W (k) A(k),ζ,locπ̄ (k,k−1), ρk−1) as the J (k) × I(k−1) sparse matrix given by D(k,k−1),ζ,loc

j,i = 0

for j �∈ iχ and D(k,k−1),ζ,loc
j,i = y(i,ρ)

j for j ∈ iχ . D(k−1,k),ζ,loc (Line 7 of Algorithm 3) is then defined as the transpose of 
D(k,k−1),ζ,loc.

Remark 2.15. Definition 2.14 (Line 4 of Algorithm 3) is equivalent to localizing the computation of each gamblet ψ(k−1),ζ

i

to a subdomain of size Hk−1ρk−1, i.e., the gamblet ψ(k−1),ζ,loc
i computed in Line 9 of Algorithm 3 is the solution of (1) the 

problem of finding ψ in the affine space 
∑

j∈I(k) π̄
(k−1,k)
i, j ψ

(k),ζ,loc
j + span{χ(k),ζ,loc

j | j(k−1) ∈ iρk−1} such that ψ is 
〈·, ·〉

ζ
or-

thogonal to span{χ(k),ζ,loc
j | j(k−1) ∈ iρk−1 }, and (2) the problem of minimizing ‖ψ‖ζ in span{ψ(k),ζ,loc

l | l(k−1) ∈ iρk−1} subject 

to constraints 
∫
�

φ
(k−1)
j ψ = δi, j for j ∈ iρk−1 .

We will (occasionally) write Hk for Hk to emphasize that, as in [62], the essentially property of the sequence Hk is that 
Hk/Hk+1 remains uniformly bounded away from 1 and ∞.

To simplify the presentation, we will write C any constant that depends only on d, �, λmin(a), λmax(a), δ, 
¯
γ , γ̄ , 

C0, C1, μmin, μmax, δ but not on h, ζ nor H (e.g., 2Cζ H2λmax(a) will be written Cζ H2).
The following theorem shows that the condition numbers of the localized stiffness matrices B(k),ζ,loc remain uniformly 

bounded provided that the computation of level k gamblets is localized to subdomains of size Hk ln
1

Hk
.

Theorem 2.16. Let ε ∈ (0, 1). Assume that

1. ρk ≥ C
(
(1 + 1

ln(1/H)
) ln 1

Hk
+ ln 1

ε

)
for k ∈ {1, . . . , r}.

2. For k ∈ {2, . . . , r} and each i ∈ I(k−1) , the localized linear system B(i,ρ) y = b of Definition 2.14 and Line 6 of Algorithm 3 is solved 
up to accuracy |y − yap|B(i,ρ) ≤ C−1 H3−k+kd/2ε/k2 (using the notation |e|2A := eT Ae, and writing yap the approximation of y).

Then it holds true that Cond(A(1),ζ,loc) ≤ C H−2 and for k ∈ {2, . . . , r}, Cond(B(k),ζ,loc) ≤ C H−2 . Furthermore for k ∈ {1, . . . , r} and 

ζ = ∞, 
1

C
≤ λmin(A(k),ζ,loc) and λmax(A(k),ζ,loc) ≤ C H−2k, and for k ∈ {2, . . . , r} and ζ = ∞, 

1

C
H−2(k−1) ≤ λmin(B(k),ζ,loc) and 

λmax(B(k),ζ,loc) ≤ C H−2k. Additionally the functions (ψ(1),ζ,loc
i )i∈I(1) and (χ(k),ζ,loc

i )k∈{2,...,r},i∈J (k) are linearly independent and form 
a basis of V.

We now present Algorithm 4, which computes an approximation of the solution of (2.17) using localized gamblets (up 
to ε accuracy in H1

0(�)-norm).

Theorem 2.17. Let u be the solution of the discrete system (2.17). Let u(1),ζ,loc , u(k),ζ,loc − u(k−1),ζ,loc , uloc , A(k),ζ,loc and B(k),ζ,loc be 
the outputs of Algorithms 3 and 4. Let u(1),ζ and u(k),ζ − u(k−1),ζ be the outputs of Algorithm 2. For k ∈ {2, . . . , r}, write u(k),ζ,loc :=
u(1),ζ,loc +∑k

j=2(u( j),ζ,loc − u( j−1),ζ,loc). Let ε ∈ (0, 1), it holds true that if ρk ≥ C
(
(1 + 1 ) ln 1 + ln 1 )

for k ∈ {1, . . . , r} then
ln(1/H) Hk ε
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Algorithm 4 Linear solve with localized gamblets.

1: For i ∈ I(r) , g(r),ζ,loc
i = gi // g = ∑

i∈I(r) giϕi

2: for k = r to 2 do
3: w(k),ζ,loc = B(k),ζ,loc,−1 W (k) g(k),ζ,loc

4: u(k),ζ,loc − u(k−1),ζ,loc = ∑
i∈J (k) w(k),ζ,loc

i χ
(k),ζ,loc
i

5: g(k−1),ζ,loc = R(k−1,k),ζ,loc g(k),ζ,loc

6: end for
7: U (1),ζ,loc = A(1),ζ,loc,−1 g(1),ζ,loc

8: u(1),ζ,loc = ∑
i∈I(1) U (1),ζ,loc

i ψ
(1),ζ,loc
i

9: uloc = u(1),ζ,loc + (u(2),ζ,loc − u(1),ζ,loc) + · · · + (u(r),ζ,loc − u(r−1),ζ,loc)

Fig. 10. Elapsed time (sec) vs. DoF (N) for localized gamblet transform and localized gamblet linear solve, ρk = 3 for all k.

1. for k ∈ {1, . . . , r − 1} we have ‖u(k),ζ − u(k),ζ,loc‖ζ ≤ ε‖g‖H−1(�) and ‖u(k),ζ − u(k),ζ,loc‖ζ ≤ C(Hk + ε)‖g‖L2(�) .

2. ‖u(k),ζ − u(k−1),ζ − (u(k),ζ,loc − u(k−1),ζ,loc)‖ζ ≤ ε
2k2 ‖g‖H−1(�) .

3. Furthermore, ‖u − uloc‖ζ ≤ ε‖g‖H−1(�) .

Theorem 2.18. The results of Theorem 2.17 remain true if

1. ρk ≥ C
(
(1 + 1

ln(1/H)
) ln 1

Hk
+ ln 1

ε

)
for k ∈ {1, . . . , r}.

2. For k ∈ {2, . . . , r} and each i ∈ I(k−1) , the localized linear system B(i,ρ) y = b of Definition 2.14 and Line 6 of Algorithm 3 is solved 
up to accuracy |y − yap|B(i,ρ) ≤ C−1 H3−k+kd/2ε/k2 (using the notation |e|2A := eT Ae, and writing yap the approximation of y).

3. For k ∈ {2, . . . , r} the linear system B(k),ζ,loc y = W (k) g(k),ζ,loc of Line 3 of Algorithm 4 is solved up to accuracy |y − yap|B(k),ζ,loc ≤
ε‖g‖H−1(�)/(2r).

Observe that Theorems 2.17 and 2.18 imply that (1) the complexity of Algorithm 3 is O
(
N

(
ln max( 1

ε , N
1
d )

)3d)
, (2) the 

complexity of Algorithm 4 is O
(
N

(
ln max( 1

ε , N
1
d )

)d
ln 1

ε

)
. Therefore if ε corresponds to a grid size accuracy N−1/d (in 

H1-norm) then the complexity of Algorithm 3 is O(N ln3d N) and that of Algorithm 4 is O(N lnd+1 N). In Fig. 10, we 
show the elapsed time of localized Gamblet transform and localized gamblet linear solve for fixed ρk = 3 with respect to 
the degrees of freedom N . Although our implementation is in Matlab and it is not optimal in terms of efficiency, we can 
still observe close to linear complexity.

3. The wave PDE with rough coefficients

Consider the following prototypical wave PDE with rough coefficients,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ(x)∂2
t u(x, t) − div

(
a(x)∇u(x, t)

) = g(x, t) x ∈ �;
u(x,0) = u0(x) on �,

∂t u(x,0) = v0(x) on �,

u(x, t) = 0 on ∂� × [0, T ]
(3.1)

where the domain � and the coefficients μ(x) and a(x) are as in (2.1) (i.e. in L∞(�) and satisfy (2.2) and (2.3)).
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Let (ϕi)i∈N be a finite-dimensional (finite-element) basis of H1
0(�) and write V = span{ϕi | i ∈ N }. Let ũ(x, t) =∑

i∈N qi(t)ϕi(x) be the finite-element solution of (3.1) in V and assume that the elements (ϕi)i∈N are chosen to satisfy 
(2.14) and (2.15) and so that (ũ(x, t))0≤t≤T is a good enough approximation of the solution (u(x, t))0≤t≤T of (3.1). Let N = |N |
be the cardinal of N (and the dimension of V). Let M and K be the N ×N mass and stiffness matrices Mi, j = ∫

�
ϕiϕ jμ

and Ki, j = ∫
�
(∇ϕi)

T a∇ϕ j .
Recall that the vector q ∈R

d is the solution of the forced Hamiltonian system{
q̇ = M−1 p

ṗ = −Kq + f
(3.2)

where for i ∈ N , f i(t) :=
∫
�

ϕi g(x, t), q0 = q(0) corresponds to the coefficients of u0 in the ϕi basis and p0 = p(0) is the 
N -vector defined by p0,i := ∫

�
ϕi v0(x)μ.

3.1. Implicit midpoint rule

A popular time-discretization of (3.2) is the implicit midpoint rule [38], which is unconditionally stable (A-stable, 
i.e. its region of absolute stability includes the entire complex half-plane with negative real part), symplectic, sym-
metric (time-reversible) and preserves quadratic invariants exactly [38]. For example, when f = 0, (exactly preserved) 
quadratic invariants of (3.2) include the total energy (E = 1

2 pT M−1 p + 1
2 qT Kq) and the energy of each vibration mode 

(Ei = |Q T
i M−1 p|2 1

2 Q T
i M Q i + |Q T

i q|2 1
2 Q T

i K Q i with λi M Q i = K Q i ).
Writing qn the numerical approximation of q(n�t), pn the numerical approximation of p(n�t), and fn := f (n�t), recall 

that the implicit midpoint time discretization of (3.2) is⎧⎨
⎩

qn+1 = qn + �tM−1 pn+pn+1
2

pn+1 = pn − �t K qn+qn+1
2 + �t fn+ 1

2

(3.3)

Note that (3.3) can be written⎧⎨
⎩(M + (�t)2

4 K )qn+1 = (M − (�t)2

4 K )qn + �tpn + �t2
f
n+ 1

2
2

pn+1 = pn − �t K qn+qn+1
2 + �t fn+ 1

2

(3.4)

Let un(x) := ∑
i∈N qn,iϕi(x) and vn(x) := ∑

i∈N (M−1 pn)iϕi be the corresponding approximations of u(x, n�t) and 
∂t u(x, n�t). Observe that pn,i = ∫

�
ϕi vnμ and solving (3.4) is equivalent to obtaining the finite element solution (in V) 

of ⎧⎨
⎩

4
�t2 μun+1 − div

(
a∇un+1

) = 4
(�t)2 μun + div

(
a∇un

) + 4
�t μvn + 2gn+ 1

2

μvn+1 = μvζ,loc
n + �t div

(
a∇ un+un+1

2

) + �tgn+ 1
2

(3.5)

with gn(x) := g(x, n�t).

3.2. Acceleration of the midpoint rule with ζ -gamblets

To achieve near linear complexity in the implementation of the midpoint rule we will perform the inversion of the 
implicit system in (3.4) or (3.5) in a localized ζ -gamblet basis with ζ = �t . Write (qap

n , pap
n ) the output of the corresponding 

Algorithm 5.

Algorithm 5 Implicit midpoint rule with localized gamblets.
1: Set ζ = �t and ε as in Theorem 3.1.
2: Compute χ(k),ζ,loc

i , ψ(k),ζ,loc
i , B(k),ζ,loc, R(k,k−1),ζ,loc with Algorithm 3.

3: qap
0 := q0 and pap

0 := p0.
4: for n = 0 to T /�t − 1 do

5: Solve (M + (�t)2

4 K )qap
n+1 = (M − (�t)2

4 K )qap
n + �tpap

n + �t2

2 fn+ 1
2

with Algorithm 4 // fn+ 1
2 ,i := ∫

�
ϕi g(x, (n + 1

2 )�t)

6: pap
n+1 = pap

n − �t K
qap

n +qap
n+1

2 + �t f ap
n+ 1

2
.

7: end for

Write uap
n := ∑

i∈N qap
n,iϕi and vap

n := ∑
i∈N (M−1 pap

n )iϕi . Observe that Line 5 of Algorithm 5 is equivalent to solving

4
2
μuap

n+1 − div
(
a∇uap

n+1

) = 4
2
μuap

n + div
(
a∇uap

n
) + 4

μvap
n + 2gn+ 1 (3.6)
�t (�t) �t 2
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Fig. 11. Solutions at T = 1. Left: Reference solution with the {ϕi | i ∈ N } basis, dt = 1/1280. Middle: numerical solution using localized gamblets with 
3 layers for 2 stages Gauss–Legendre scheme, �t = 0.1. Right: The error of numerical solution.

Fig. 12. Evolution of the relative error of the energy w.r.t. localization: Left, implicit midpoint scheme; Right, 2 stages Gauss–Legendre scheme.

in V with Algorithm 4. Note that uap
n+1 ∈ V and the equality (3.6) is defined in the finite-element sense after integra-

tion against ϕ ∈ V. Note also that (1) pap
n,i = ∫

�
ϕi vap

n μ, (2) vap
n is an approximation of ∂t u(x, n�t), (3) (qap

n )T Kqap
n =∫

�
(∇uap

n )T a∇uap
n , (4) (pap

n )T M−1 pap
n = ∫

�
(vap

n )2μ.
The following theorem, whose proof is given in Subsection 7.1 of the appendix, provides a priori error estimates on the 

accuracy of Algorithm 5 using the exact midpoint rule solution as a reference. We assume for the clarity of those error 
estimates, without loss of generality, that �t ≤ 1 and write ‖g‖L∞(0,T ,L2(�))) the essential supremum of ‖g(·, t)‖L2(�) over 
t ∈ (0, T ).

Theorem 3.1. Let uap
n and vap

n be the output of Algorithm 5 and un, vn be the solution of the implicit midpoint time discretization of 

(3.5) (or equivalently (3.4)) with time-step �t. If ε in Algorithm 5 satisfies ε ≤ C−1 1

T
�t3h(�t + h), then for n�t ≤ T we have

‖un − uap
n ‖H1

0(�) + ‖vn − vap
n ‖L2(�) ≤ C(�t)2

(‖u0‖H1
0(�) + ‖v0‖L2(�) + T ‖g‖L∞(0,T ,L2(�)))

) (3.7)

3.3. Numerical experiments

Let a(x) be defined as in Example 2.2, g(x, t) = sin(2π(t + x1)) cos(2π(t + x2)), u(x, 0) = 0, and ut(x, 0) = sin(2πx1) ·
cos(2πx2). The reference solution is computed using bilinear finite-elements {ϕi | i ∈ N }, and Matlab built-in integrator 
ode15s with time step dt = 1/1280. We test the performance/accuracy of exact gamblets and localized gamblets adapted 
to the implicit midpoint rule. We compute numerical solutions up to time T = 1. Fig. 11 shows the reference solution, the 
numerical solution and the error of the numerical solution. The numerical solution is computed using localized gamblet for 
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Fig. 13. Evolution of χ(k)
1 component in subband W(k) , k = 1, · · · , 6, with localization parameter nl = 3, using implicit midpoint scheme. The blue curve is 

for the reference solution, and the red curve is for the localized gamblet solution. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 14. Evolution of χ(k)
1 component in subband W(k) , k = 1, · · · , 6, with localization parameter nl = 3, using 2 stages Gauss Legendre scheme. The blue 

curve is for the reference solution, and the red curve is for the localized gamblet solution. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

2 stages Gauss–Legendre scheme (which will be introduced in Section 5.1) with 2 layers, namely, we take nl := ρk = 2 in 
Algorithm 3 for k = 1, . . . , r and we will keep using the notation nl (number of layers) for the values of ρk , and �t = 0.1.

Fig. 12 shows the relative error of the energy (E = 1
2 pT M−1 p + 1

2 qT Kq) of gamblet solutions with respect to time and 
localization. The error for the gamblet solutions appears to be stable with respect to time for both the implicit midpoint 
scheme and the 2 stages Gauss–Legendre scheme if nl > 1. When nl ≥ 3 for implicit midpoint and nl ≥ 4 for 2 stages 
Gauss–Legendre, the localized gamblet solutions are almost as accurate as the exact gamblet solutions.

Fig. 13 and Fig. 14 compare the components of the reference solution and the localized gamblet solution in each subband 
W(k) , with implicit midpoint scheme and 2 stages Gauss–Legendre scheme respectively. A phase shift error can be observed 
at high frequencies, and 2 stages Gauss–Legendre scheme has smaller phase error, even after localization.

Remark 3.2. Figs. 13 and 14 show that the multiresolution decomposition of the solution space performed by gamblets is 
analogous to a eigensubspace decomposition: the coefficients of the solution in W(k),ζ evolve slowly for k small and fast for 
k large. Furthermore, these coefficients are robust to perturbations in initial conditions and dispersion errors for k small and 



H. Owhadi, L. Zhang / Journal of Computational Physics 347 (2017) 99–128 115
Fig. 15. Error for localized gamblet solutions at T = 1: Left, H1 error w.r.t. localization; Right, L2 error w.r.t. localization.

Fig. 16. Left: H1 error at time T = 1. Right: L2 error at time T = 1.

sensitive for k large. Therefore gamblets decompose the solution into components characterized by a hierarchy of levels of 
robustness. Furthermore, as done with wavelets [22], gamblet refinement could be used as an alternative to adaptive mesh 
refinement near singularities.

Fig. 15 shows the H1 and L2 errors at T = 1 with respect to localization for localized gamblet solutions, with time step 
�t = 0.025. This shows that for fixed spatial resolution, the errors get saturated after reaching a critical nl. For example, we 
can choose nl = 3 as this critical value for the results shown in Fig. 15.

Fig. 16 shows the H1 and L2 errors for the solution with exact gamblets and localized gamblets (nl = 2 or 3) using 
implicit midpoint scheme and 2 stages Gauss Legendre scheme at time T = 1, and time steps �t = 1/10, 1/20, 1/40, 1/80,

1/160,1/320.
The 2 stages Gauss Legendre scheme shows better performance for larger time steps and the localized gamblet solution 

is close to the exact gamblet solution for nl = 3.

4. The parabolic PDE with rough coefficients

Consider the following prototypical example of the parabolic PDE with rough coefficients
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⎧⎪⎨
⎪⎩

μ(x)∂t u(x, t) − div
(
a(x)∇u(x, t)

) = g(x, t) x ∈ �;
u(x,0) = u0(x) on �,

u(x, t) = 0 on ∂� × [0, T ],
(4.1)

where the domain � and the coefficients μ(x) and a(x) are as in (2.1) (i.e. in L∞(�) and satisfy (2.2) and (2.3)).
As in Section 3, we consider (ϕi)i∈N a finite-dimensional (finite-element) basis of H1

0(�), write ũ(x, t) = ∑
i∈N qi(t)ϕi(x)

the finite-element solution of (4.1) in V (using the notations of Section 3) and assume that the elements (ϕi)i∈N are chosen 
to satisfy (2.14) and (2.15) and so that (ũ(x, t))0≤t≤T is a good enough approximation of the solution of (4.1).

Recall that q is the solution of the ODE

Mq̇ + Kq = f (4.2)

where f is defined as in Section 3 and q0 = q(0) corresponds to the coefficients of u0 in the ϕi basis.

4.1. Implicit-Euler time discretization

The implicit Euler time-discretization of (4.2) is

(M + �t K )qn+1 = Mqn + �t fn+1 (4.3)

Recall that implicit Euler is first-order accurate and, in addition to being A-stable, is also L-stable and B-stable (see Defini-
tion 7.3 of Section 7) which are desirable for dissipative systems.

Let un(x) := ∑
i∈N qn,iϕi(x), be the corresponding approximation of u(x, n�t). Observe that solving (4.3) is equivalent to 

obtaining the finite element solution (in V) of

1

�t
μun+1 − div

(
a∇un+1

) = 1

�t
μun + gn+1 (4.4)

with gn(x) := g(x, n�t).

Algorithm 6 Implicit Euler with localized gamblets.
1: Set ζ = �t and ε = �t3.
2: Compute χ(k),ζ,loc

i , ψ(k),ζ,loc
i , B(k),ζ,loc, R(k,k−1),ζ,loc with Algorithm 3.

3: qap
0 := q0 // uap

0 = u0 = ∑
i∈N q0,iϕi .

4: for n = 0 to T /�t − 1 do
5: Solve (M + �t K )qap

n+1 = Mqap
n + fn+1 with Algorithm 4 // fn,i := ∫

�
ϕi g(x, n�t)

6: end for

As in Subsection 3.2, to achieve near linear complexity in the implementation of the implicit Euler method we will 
perform the inversion of implicit system in (4.3) or (4.4) in a localized ζ -gamblet basis with ζ = 2

√
�t . Write qap

n the 
output of the corresponding Algorithm 6. Write uap

n := ∑
i∈N qap

n,iϕi . Observe that Line 5 of Algorithm 6 is equivalent to 
solving 1

�t μuap
n+1 − div

(
a∇uap

n+1

) = 1
�t μuap

n + gn+1 in V with Algorithm 4.

Theorem 4.1. Let uap
n be the output of Algorithm 6, and un be the solution of implicit Euler time discretization of (4.2) with time-step 

�t. It holds true that for n ≤ T /�t,

‖uap
n − un‖H1

0(�) ≤ C(
T

�t
)2ε‖g‖L∞(0,T ,H−1(�)) (4.5)

where ε is the localization parameter in Algorithm 6.

We refer to Subsection 7.3 for the proof of Theorem 7.3.

Remark 4.2. The proof of Theorem 4.1 is based on Inequality (7.16) which is the B-stability condition of Definition 7.3. It 
is easy to show that this inequality is sufficient for validity of Theorem 4.1. Similar results to Theorem 4.1 holds true for 
B-stable methods and they can also be accelerated by the localized gamblets (e.g., the DIRK methods and SDIRK methods 
presented in Subsection 4.3).

Remark 4.3. By truncating the propagation of the solution at higher frequencies (large k) in the generalized gamblet de-
composition one obtains a numerical homogenization of the wave or parabolic equations (as in [71,69,72]) with sub-linear 
complexity under sufficient regularity of initial conditions and source terms.
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Table 1
Butcher tableau for DIRK3.

0.0585104413419415 0.0585104413426586 0.0 0.0
0.8064574322792799 0.0389225469556698 0.7675348853239251 0.0
0.2834542075672883 0.1613387070350185 −0.5944302919004032 0.7165457925008468

0.1008717264855379 0.4574278841698629 0.4417003893445992

Table 2
Butcher tableau for SDIRK3 where λ � 0.4358665215 (identified as 
a root of 1

6 − 3
2 λ + 3λ2 − λ3 = 0) ensures L-stability.

λ λ 0 0
1
2 (1 + λ) 1

2 (1 − λ) λ 0

1 1
4 (−6λ2 + 16λ − 1) 1

4 (6λ2 − 20λ + 5) λ
1
4 (−6λ2 + 16λ − 1) 1

4 (6λ2 − 20λ + 5) λ

4.2. TR-BDF2 time discretization

The TR-BDF2 [5] time-discretization of (4.2) is⎧⎨
⎩

(M + γ �t
2 K )qn+γ = (M − γ �t

2 K )qn + �t
fn+ fn+γ

2

(M + 1−γ
2−γ �t K )qn+1 = Mqn+γ

γ (2−γ )
− (1−γ )2

γ (2−γ )
Mqn + 1−γ

2−γ �t fn+1

(4.6)

Recall that TR-BDF2 is A-stable, L-stable but neither algebraically stable nor B-stable [29]. It is second order accurate and 
belongs to the category of diagonally implicit Runge–Kutta (DIRK) methods. We select γ = 2 − √

2 to minimize the local 

error [5] and ensure 
γ

2
= 1 − γ

2 − γ
(under that choice, (4.6) requires solving two systems of the same form (M + γ �t

2 K )Q = b

at each time step). Let un(x) := ∑
i∈N qn,iϕi(x) be the corresponding approximation of u(x, n�t). Observe that solving (4.6)

is equivalent to obtaining the finite element solution (in V) of⎧⎨
⎩

2
γ �t μun+γ − div

(
a∇un+γ

) = 2μun
γ �t + div

(
a∇un

) + gn+gn+γ

γ

2
γ �t μun+1 − div

(
a∇un+1

) = 1
γ (1−γ )�t μun+γ − 1−γ

γ �t μun + gn+1

(4.7)

As in Subsection 3.2, to achieve near linear complexity we will perform the inversion of implicit systems in (4.7) in a 
localized ζ -gamblet basis with ζ = √

2γ�t .

4.3. DIRK3 and SDIRK3

Other popular time-discretion methods for (4.2) are DIRK3 [11] and SDIRK3 [16, p. 262]. DIRK3 (3-stages Diagonally 
Implicit Runge–Kutta) is L-stable and B-stable [11], and its Butcher tableau is given in Table 1. The implementation of DIRK3 
requires solving 3 equations 1

�t Ai,i
μwi − div

(
a∇wi

) = bi using finite-elements in V, where A1,1, . . . , A3,3 are the diagonal 
entries of the Runge–Kutta matrix A of DIRK3.

SDIRK3 (3-stage Singly Diagonally Implicit Runge–Kutta) is L-stable [16, p. 262] and its Butcher tableau is given in Table 2
which has identical diagonal entries. The implementation of SDIRK3 requires solving 3 equations 1

�tλμwi − div
(
a∇wi

) = bi
using finite-elements in V, where λ is defined in Table 2. As in Subsection 3.2, to achieve near linear complexity we will 
perform the inversion of linear systems of DIRK3 using 3 localized ζ -gamblets with ζ = √

Ai,i�t/2, and the inversion of 
linear systems of SDIRK3 using only 1 localized ζ -gamblets with ζ = √

λ�t/2.

4.4. Numerical experiments

Let a(x) be defined as in Example 2.2 and r = 6, g(x, t) = sin(2π(t + x1)) cos(2π(t + x2)), u(x, 0) = sin(2πx1) cos(2πx2). 
The reference solution is the finite element solution with piecewise bilinear elements {ϕi | i ∈ N }, and Matlab built-in 
integrator ode15s with time step dt = 1/1280. We test the performance of exact and localized gamblets adapted to implicit 
Euler, TR-BDF2, DIRK3, SDIRK3, and fully implicit Runge–Kutta methods Radau IIA and Lobatto IIIC (which will be introduced 
in § 5.2). We compute numerical solutions up to time T = 1. Fig. 17 shows the reference solution, the DIRK3 solution with 
localized gamblet (nl = 3) and its numerical error with respect to the reference solution.

Fig. 18 shows the relative error of the energy of gamblet solutions with respect to time and localization. The errors 
decays when the number of layers increases, and Radau IIA scheme has better accuracy compared to TR-BDF2 method, note 
that Radau IIA is a 5th order method and TR-BDF2 is a 2nd order method.

Fig. 19 shows the H1 and L2 errors at T = 1 for all the 6 numerical schemes with respect to different localization 
parameters nl = 1, · · · , 6 for exact and localized gamblet solutions. High order methods such as Radau IIA and Lobatto IIIC 
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Fig. 17. Solutions at T = 1. Left: Reference solution; Middle: numerical solution with localized gamblet, DIRK3, nl = 3 and �t = 0.05; Right: error of the 
localized solution.

Fig. 18. Evolution of the relative error of energy w.r.t. localization (�t = 0.05): Left, TR-BDF2; Right, Radau IIA scheme.

Fig. 19. Left: H1 error w.r.t. localization parameter nl; Right: L2 error w.r.t. localization parameter nl. �t = 0.025.

have best accuracy if more localization layers are used. When nl = 2 or 3, it appears that simpler methods such as TR-BDF2, 
DIRK3 or SDIRK3 achieve a better balance between accuracy and computational cost.

Fig. 20 compares the components of the reference solution and localized gamblet solutions in each subband W(k),ζ , 
computed with the DIRK3 scheme (we observe similar results for other schemes). Most of the error occurs in the first 
subband and at early time, and gets damped quickly.
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Fig. 20. Evolution of χ(k)
1 component in subband W(k),ζ , k = 1, · · · , 6, with localized gamblet (nl = 3) for DIRK3 scheme. The blue curve is obtained from 

the reference solution, and the red curve is obtained from the localized gamblet solution. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

Fig. 21. Left: H1 error at time T = 1; Right: L2 error at time T = 1.

Fig. 21 shows H1 and L2 errors with exact gamblets and localized gamblets (nl = 3) at time T = 1 with time steps 
�t = 1/10, 1/20, 1/40, 1/80, 1/160, 1/320. All 6 methods are tested: implicit Euler, TR-BDF2, DIRK3, Lobatto IIIC, Radau IIA 
and SDIRK3. In general, the higher order methods such as Radau IIA and Lobatto IIIC are more accurate for coarser time 
steps, refinement of time steps does not reduce the error further due to the fixed spatial resolution. Localized gamblet 
solutions converge as time steps decrease. Localized TR-BDF2 and Implicit Euler have a slower convergence rate compared 
to higher order methods.

5. Complex gamblets for higher order implicit schemes

5.1. Solving wave equation with 2 stages Gauss–Legendre scheme

The implicit midpoint scheme introduced in section 3.1 is a 1 stage Gauss–Legendre method. To obtain higher order 
method for the wave equation, we can use higher order Gauss–Legendre methods. Here we describe the implementation of 2 
stages Gauss–Legendre scheme, which is 4th order accurate, unconditionally stable, symplectic, symmetric (time-reversible) 
and preserves quadratic invariants exactly [38]. In particular, we will show how to use gamblets to achieve near linear 
complexity.
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Table 3
Butcher tableau for GL2.

1
2 −

√
3

6
1
4

1
4 −

√
3

6

1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

The Butcher tableau for the 2 stages Gauss–Legendre scheme is as follows (see Table 3). Namely, the Runge–Kutta matrix, 

weights and nodes are A =
(

1
4

1
4 −

√
3

6
1
4 +

√
3

6
1
4

)
, b = (1

2
, 

1

2

)
, and c = (1

2
−

√
3

6
, 

1

2
+

√
3

6

)T
.

Using notations in § 3, let yn = (qn; pn) be a column vector of length 2N , f 1
n = (0; f (tn + c1h)), and f 2

n = (0; f (tn + c2h)), 
where 0 is the zero valued column vector of length N . Apply the 2 stages Gauss–Legendre scheme to equation (3.2), we 
have

k1
n = f 1

n +
(

0 M−1

−K 0

)
(yn + �t A11k1

n + �t A12k2
n)

k2
n = f 2

n +
(

0 M−1

−K 0

)
(yn + �t A21k1

n + �t A22k2
n)

yn+1 = yn + �t(b1k1
n + b2k2

n)

Define H in the following tensor product format,

H :=
(

1 0
0 1

)
⊗

(
M 0
0 I

)
+ a ⊗

(
0 −hI

hK 0

)
(5.1)

where I is the identity matrix of size N .
Write Fn := (pn; −Kqn + f (tn + c1�t); pn; −Kqn + f (tn + c1�t))T , we need to solve the coupled linear system Hkn = Fn

for kn = (k1
n; k2

n), and then yn+1.

Since A is diagonalizable, we can write A = S�S−1 with � = diag(λ1, λ2). Use T := S ⊗
(

I 0
0 I

)
to block diagonalize H . 

That is,

H̃ := T H T −1 =

⎛
⎜⎜⎝

M −�tλ1I 0 0
�tλ1 K I 0 0

0 0 M −�tλ2I
0 0 �tλ2 K I

⎞
⎟⎟⎠ (5.2)

where T −1 = S−1 ⊗
(

I 0
0 I

)
.

Write F̃n := T −1 Fn and k̃n := T −1kn , we have H̃k̃n = F̃n . Therefore, instead of solving the coupled linear system 

with respect to H , we solve the decoupled linear systems with respect to H̃ . Let H̄1 :=
(

M −�tλ1I
�tλ1 K I

)
and H̄2 :=(

M −�tλ2I
�tλ2 K I

)
. Similar to the gamblet solution for implicit midpoint scheme (3.4), we only need to introduce gam-

blets associated with the matrices �t2λ2
i K + M to solve the linear systems associated with H̄i , i = 1, 2.

5.2. Solving parabolic equation with fully implicit Runge–Kutta methods

Let q be the solution of the semidiscrete ODE system derived from the parabolic PDE (4.1),

Mq̇ + Kq = f (5.3)

where f is defined as in Section 3 and q0 = q(0) corresponds to the coefficients of u0 in the ϕi basis. Higher order implicit 
Runge–Kutta methods can be used to solve (5.3) to achieve better stability and accuracy. Write A, b and c the Runge–Kutta 
matrix, weights, and nodes. Let s be the number of stages of the Runge–Kutta method. The Runge–Kutta method can be 
written as,

qn+1 = qn + �t
s∑

i=1

bik
i
n,

with
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Table 4
Butcher tableau for Lobatto IIIC scheme.

0 1/6 −1/3 1/6

0.5 1/6 5/12 −1/12

1 1/6 2/3 1/6

1/6 2/3 1/6

Table 5
Butcher tableau for Radau IIA scheme.

2
5 −

√
6

10
11
45 − 7

√
6

360
37

225 − 169
√

6
1800 − 2

225 +
√

6
75

2
5 +

√
6

10
37

225 + 169
√

6
1800

11
45 + 7

√
6

360 − 2
225 −

√
6

75

1 4
9 −

√
6

36
4
9 +

√
6

36
1
9

4
9 −

√
6

36
4
9 +

√
6

36
1
9

Mki
n = −K (qn + �t

s∑
i=1

Aijk
j
n) + f (tn + ci�t), k = 1, . . . , s

Write

H := Is ⊗ M + �t A ⊗ K

where Is is the identity matrix of size s.
To obtain qn+1, we need to solve the coupled linear system Hkn = Fn for kn := (k1

n; · · · ; ks
n), Fn := (−Kqn + M f (tn +

c1�t); . . . ; −Kqn + M f (tn + cs�t)).
Assume A is diagonalizable, such that A = S�S−1 with � = diag(λ1, . . . , λs). Write T := S ⊗ I (and T −1 = S−1 ⊗ I), we 

have,

H̃ := T H T −1 = Is ⊗ M + �t� ⊗ K

Write k̃n := T kn and F̃n := T Fn , we can use gamblets associated with the matrices M + �tλi K (i = 1, . . . , s) to solve the 
decoupled linear system H̃k̃n = F̃n for k̃n , then obtain kn and qn+1.

In our numerical illustrations in § 4 we have considered the following fully implicit Runge–Kutta methods: Lobatto IIIC 
and Radau IIA. Recall that Lobatto IIIC [39,16] is 4th order accurate, L-stable, B-stable, stiffly accurate, and its Butcher tableau 
is in Table 4.

Recall also that Radau IIA [39,16] is 5th order accurate, A-stable and its Butcher tableau is in Table 5.

5.3. Gamblet transformation for complex valued matrix

As shown in § 5.1 and § 5.2, we need to introduce generalized gamblets for matrices of the form M + �t2λ2 K for 
hyperbolic equations and M + �tλK for parabolic equations to open the complexity bottleneck of higher order implicit 
schemes, where λ is the eigenvalue of the corresponding Runge–Kutta matrix. For implicit Runge–Kutta methods, such as 
Gauss–Legendre type, Lobatto type, and Radau type, λ is in general a complex number.

Definition 5.1. The definition of complex valued ζ -gamblets is algebraically identical to that of real-value ζ -gamblets. We 
keep using the scalar product defined in (2.7), and the notion of orthogonality remains the same as in (2.7). Algorithms 1
and 3 remain unchanged, in particular we do not replace matrix transpose operations with complex conjugate transpose 
operations.

Remark 5.2. It is a simple observation that the gamblet transform remains algebraically exact for complex valued matrices 
(this can be observed rigorously and numerically). Although, we loose the positivity of the scalar product (2.7) when ζ is 
complex (the matrices M + �t2λ2 K and M + �tλK remain symmetric when λ is a complex number but they are neither 
positive definite nor Hermitian), Figs. 24 and 25 show that, for Radau IIA (complex ζ ) and SDIRK3 (real ζ ), condition num-
bers and ranges of eigenvalues remain similar. Although this is not proven in this paper, we suspect that the preservation 
of uniformly bounded condition numbers and exponential decay with complex valued ζ is generic.

Figs. 22 and 23 illustrate the real part and imaginary parts of the gamblet basis associated with the first complex 
eigenvalue (0.1626 + 0.1849i) of Radau IIA and �t = .1.

Figs. 24 and 25 compare the condition numbers and the ranges of eigenvalues in W(k) of the complex gamblets associ-
ated with the first complex eigenvalue (0.1626 + 0.1849i) of the RK matrix of Radau IIA and the real gamblets associated 
with the first eigenvalue (0.4359) of the RK matrix of SDIRK3. Note the similarity between the condition numbers and 
ranges of eigenvalues of the complex gamblets of Radau IIA and the real gamblets of SDIRK3.
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Fig. 22. Real part of χk
i associated with the first complex eigenvalue of Radau IIA and �t = .1 for parabolic equation.

Fig. 23. Imaginary part of χk
i associated with the first complex eigenvalue of Radau IIA and �t = .1 for parabolic equation.

6. Solving the parabolic equation in near-linear complexity with multi-time-stepping

As illustrated in Fig. 20, errors in finer subbands (corresponding to larger eigenvalues) decay quickly. Therefore by refining 
time-steps close to the final stop time it is possible to lower the computational complexity and still preserve the accuracy. 
Motivated by this observation we propose the following O(N ln3d+1 N) complexity multi-time-stepping algorithm for solving 
(5.3) (up to grid-size accuracy in energy norm). Let T = M�t , prescribe an error threshold ε < �t , then there exist s ∈ N, 

such that 
�t ≤ ε <

�t
. For n = 1, 2, ..., M − 1, we use gamblets associated with time step �t to obtain qn up to T − �t . 
2s 2s−1
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Fig. 24. Left: Range of (the modulus of complex) eigenvalues in Wk associated with the first eigenvalue of Radau IIA and �t = 1. Right: Range of (real) 
eigenvalues in Wk associated with SDIRK3 and �t = 1.

Fig. 25. Left: Range of (the modulus of complex) eigenvalues in Wk associated with the first eigenvalue of Radau IIA and �t = 1. Right: Range of (real) 
eigenvalues in Wk associated with SDIRK3 and �t = 1.

Fig. 26. Solving parabolic equation with multi-time-stepping, ε = 1/1280, Left: H1 error at time T = 1; Right: L2 error at time T = 1.
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For the last (coarse) time step from T −�t to T , we subsequently choose time steps �t/2, �t/4, ..., �t/2s , �t/2s , and solve 
the implicit scheme with gamblets associated to those time steps.

Comparing Figs. 26 and 21, localized gamblets (with 3 layers) achieve H1 error of 10−3 with multi-time-stepping and 
�t � 0.02, we need �t � 0.004 to achieve the same accuracy with uniform time stepping.

7. Appendix

7.1. Proof of Theorem 3.1

We will need the following lemma,

Lemma 7.1. Let (qn, pn) be the solution of (3.3). Write En := 1
2 pT

n M−1 pn + 1
2 qT

n Kqn. Using the notation | f |M−1 := √
f T M−1 f we 

have

|√En − √
E0| ≤ �t2−1/2

n−1∑
k=0

| fk+ 1
2
|M−1 (7.1)

Proof. Multiplying the first line of (3.3) by (qn+1 + qn)T K , the second line by (pn+1 + pn)T M−1 and summing together, we 
obtain that

En+1 − En = �t(pn+1 + pn)
T M−1

fn+ 1
2

2
.

Observe that

|(pn+1 + pn)
T M−1 fn+ 1

2
| ≤ |pn+1 + pn|M−1 | fn+ 1

2
|M−1 ≤ √

2(
√

En+1 + √
En)| fn+ 1

2
|M−1 .

We have |√En+1 − √
En| ≤ �t2−1/2| fn+ 1

2
|M−1 , and we conclude the proof by induction. �

Let us now prove Theorem 3.1. Line 5 of Algorithm 5 and Theorems 2.17 and 2.18 imply that ( 4
(�t)2 M + K )qap

n+1 =
bn + ( 4

(�t)2 M + K )en with bn = ( 4
(�t)2 M − K )qap

n + 4
�t pap

n + 2 fn+ 1
2

and

eT
n (

4

(�t)2
M + K )en ≤ Cε2bT

n K −1bn (7.2)

Therefore, lines 5 and 6 of Algorithm 5 can be written as,⎧⎪⎨
⎪⎩

qap
n+1 − qap

n = �tM−1 pap
n +pap

n+1
2 + sn

pap
n+1 − pap

n = −�t K
qap

n +qap
n+1

2 + �t fn+ 1
2

(7.3)

with

sn = (�t)2

4
M−1(

4

(�t)2
M + K )en (7.4)

Write qerr
n := qap

n − qn and perr
n := pap

n − pn , together with (7.3) with (7.4), it leads to⎧⎨
⎩qerr

n+1 − qerr
n = �tM−1 perr

n +perr
n+1

2 + sn

perr
n+1 − perr

n = −�t K
qerr

n +qerr
n+1

2

(7.5)

Write Eerr
n := 1

2 perr,T
n M−1 perr

n + 1
2 qerr,T

n Kqerr
n . Left multiplying the first equation of (7.5) by 1

2 (qerr
n+1 + qerr

n )T K and the second 
equation by 1

2 (perr
n+1 + perr

n )M−1, then adding the resulting equations we obtain that

Eerr
n+1 − Eerr

n = 1

2
(qerr

n+1 + qerr
n )T K sn (7.6)

Observing that |(qerr
n+1 + qerr

n )T K sn| ≤ √
2(

√
Eerr

n+1 + √
Eerr

n )|sn|K , we have

|
√

Eerr
n+1 −

√
Eerr

n | ≤ 2− 1
2 |sn|K (7.7)
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Write B := 4
(�t)2 M + K , (7.4) and (7.2) imply that

(
4

(�t)2
)2sT

n M B−1Msn ≤ Cε2bT
n K −1bn . (7.8)

We also have

sT
n K sn ≤ λmax(K )λmax(B)

(λmin(M))2
sT

n M B−1Msn, (7.9)

and

|bn|K −1 ≤ ( 4

(�t)2

λmax(M)

λmin(K )
+ 1)|qap

n |K + 4

�t

√
λmax(M)

λmin(K )
|pap

n |M−1 + 2

√
λmax(M)

λmin(K )
‖gn+ 1

2
‖L2(�). (7.10)

Poincaré’s inequality, (2.14) and (2.15) lead to

λmax(M) ≤ C N−1, C−1N−1 ≤ λmin(M), (7.11)

λmax(K ) ≤ C N−1h−2, C−1N−1 ≤ λmin(K ) . (7.12)

Summarizing we have obtained that |sn|2K ≤ C Nh−2( 4
(�t)2 N−1 + h−2N−1) �t4ε2bT

n K −1bn , which implies

|sn|K ≤ Ch−1(1 + �t

h
)ε

(
�t−1

√
Eap

n + �t‖gn+ 1
2
‖L2(�)

)
, (7.13)

where Eap
n := 1

2 pap,T
n M−1 pap

n + 1
2 qap,T

n Kqap
n . Recall that En := 1

2 pT
n M−1 pn + 1

2 qT
n Kqn , using 

√
Eap

n ≤ √
En + √

Eerr
n , we deduce 

from (7.7) that√
Eerr

n+1 −
√

Eerr
n ≤ (cn + z

√
Eerr

n ) (7.14)

with cn = C( 1
h + �t

h2 )ε
(
�t−1√En + �t‖gn+ 1

2
‖L2(�)

)
and z = C 1

h ( 1
�t + 1

h )ε. Therefore (using Eerr
0 = 0) we obtain that 

√
Eerr

n ≤∑n−1
k=0 ck(1 + z)n−k−1. For ε ≤ 1

4 C−1 �t
T h(�t + h), we have z ≤ �t/T , therefore (1 + z)n ≤ e1 and 

√
Eerr

n ≤ C
∑n−1

k=0 ck . Using 
n�t ≤ T and ‖gk+ 1

2
‖L2(�) ≤ ‖g‖L∞(0,T ,L2(�)) , Lemma 7.1 implies that

√
En ≤ √

E0 + �t2−1/2
n−1∑
k=0

‖gk+ 1
2
‖L2(�) ≤ √

E0 + T 2−1/2‖g‖L∞(0,T ,L2(�)).

Using 
∑n−1

k=0 ck ≤ C( 1
h + �t

h2 )ε
(
�t−1 ∑n−1

k=0

√
Ek + �t

∑n−1
k=0 ‖gk+ 1

2
‖L2(�)

)
we obtain that 

∑n−1
k=0 ck ≤ C�t−2( 1

h + �t
h2 )εT

(√
E0 +

T ‖g‖L∞(0,T ,L2(�))

)
and√

Eerr
n ≤ �t2(√E0 + T ‖g‖L∞(0,T ,L2(�))

)
(7.15)

for ε ≤ C−1 1
T �t4 h

�t (�t + h). We conclude the proof by observing that 2Eerr
n = ∫

�
(∇un − ∇uap

n )T a(∇un − ∇uap
n ) + ∫

�
(vn −

vap
n )2μ.

7.2. Stability

Definition 7.2. A function f (t, x) is dissipative if ( f (t, y) − f (t, z)), (y − z)) ≤ 0 for all y and z. An ODE is contractive if 
‖y(t) − z(t)‖ ≤ ‖y(s) − z(s)‖ for every pair of solutions y and z when t ≥ s. Every ODE with a dissipative right-hand side f
is contractive.

It is easy to see that equation (4.2) is contractive.

Definition 7.3. A numerical method is B-stable (or contractive) if every pair of numerical solutions u and v satisfy ‖un+1 −
vn+1‖ ≤ ‖un − vn‖ for all n ≥ 0, when solving an IVP with a dissipative f .

Definition 7.4. A Runge–Kutta method is algebraically stable if the matrices

B = diag(b1, . . . ,bs), M = B A + AT BT − bbT

are nonnegative semidefinite. An algebraically stable Runge–Kutta method is B-stable.
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7.3. Proof of Theorem 4.1

The implicit Euler scheme (4.3) can be written as

(
M

�t
+ K )qn+1 = M

�t
qn + fn+1.

Using localized gamblets, (4.3) is solved up to error en , i.e.

(
M

�t
+ K )qap

n+1 = M

�t
qap

n + fn+1 + (
M

�t
+ K )en

and en satisfies, eT
n ( M

�t + K )en ≤ Cε2bT
n K −1bn . Write ‖q‖2

ζ := qT ( M
�t + K )q.

Lemma 7.5. It holds true that ‖qn+1‖ζ ≤ ‖qn‖ζ + ‖ fn+1‖H−1(�) .

Proof. Multiplying (4.3) by qn+1 and using Young’s inequality we obtain that qT
n+1( M

�t + K )qn+1 = qT
n+1

M
�t qn + qT

n+1 fn+1 and 
‖qn+1‖2

ζ ≤ 1
2 qT

n+1
M
�t qn+1 + 1

2 qT
n

M
�t qn + 1

2 qT
n+1 Kqn+1 + 1

2 f T
n+1 K −1 fn+1. Therefore,

qT
n+1(

M

�t
+ K )qn+1 ≤ qT

n (
M

�t
+ K )qn + f T

n+1 K −1 fn+1

which concludes the proof of Lemma 7.5. �
Let εn := qn − qap

n , then we have ( M
�t + K )εn+1 = M

�t εn + ( M
�t + K )en and ( M

�t + K )(εn+1 − en) = M
�t εn . Multiplying by 

εn+1 − en and using Young’s inequality, we obtain that (εn+1 − en)T ( M
�t + K )(εn+1 − en) = (εn+1 − en)T ( M

�t )εn and ‖εn+1 −
en‖2

ζ ≤ 1
2 (εn+1 − en)T ( M

�t + K )(εn+1 − en) + 1
2 εT

n ( M
�t + K )εn . Therefore, ‖εn+1 − en‖ζ ≤ ‖εn‖ζ and

‖εn+1‖ζ ≤ ‖εn‖ζ + ‖en‖ζ . (7.16)

Since ‖en‖2
ζ ≤ Cε2bT

n K −1bn , and bn = M
�t qap

n + fn+1, we have bT
n K −1bn = qap

n
M
�t K −1 M

�t qap
n + fn+1 K −1 fn+1 and bT

n K −1bn ≤
qap

n Kqap
n (

λmax(M)
λmin(K )

)2 + fn+1 K −1 fn+1. Therefore, ‖bn‖K −1 ≤ ‖qap
n ‖ζ + ‖ fn+1‖K −1(�) . Using (7.16) we deduce that ‖en‖ζ ≤

Cε(‖qn‖ζ + ‖εn‖ζ + ‖ fn+1‖K −1(�)) ≤ Cε T
�t ‖g‖L∞(0,T ,H−1(�)) + Cε‖εn‖ζ . Hence, ‖εn+1‖ζ ≤ C T

�t ε‖g‖L∞(0,T ,H−1(�)) + (1 +
Cε)‖εn‖ζ ≤ C( T

�t )
2ε‖g‖L∞(0,T ,H−1(�)) , which finishes the proof of Theorem 4.1.
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[35] L. Greengard, V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys. 73 (2) (1987) 325–348.
[36] W. Hackbusch, A fast iterative method for solving Poisson’s equation in a general region, in: Numerical Treatment of Differential Equations, Proc. 

Conf., Math. Forschungsinst., Oberwolfach, 1976, in: Lect. Notes Math., vol. 631, Springer, Berlin, 1978, pp. 51–62.
[37] W. Hackbusch, L. Grasedyck, S. Börm, An introduction to hierarchical matrices, in: Proceedings of EQUADIFF, 10, Prague, 2001, vol. 127, 2002, 

pp. 229–241.
[38] E. Hairer, C. Lubich, G. Wanner, Structure-preserving algorithms for ordinary differential equations, in: Geometric Numerical Integration, second 

edition, in: Springer Ser. Comput. Math., vol. 31, Springer-Verlag, Berlin, 2006.
[39] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems, second revised edition, Springer Ser. Comput. 

Math., Springer-Verlag, Berlin, 1996.
[40] P. Hennig, Probabilistic interpretation of linear solvers, SIAM J. Optim. 25 (1) (2015) 234–260.
[41] P. Hennig, M.A. Osborne, M. Girolami, Probabilistic numerics and uncertainty in computations, Proc. R. Soc. A 471 (2179:20150142) (2015) 17.
[42] K. Ho, L. Ying, Hierarchical interpolative factorization for elliptic operators: differential equations, Commun. Pure Appl. Math. 69 (8) (2016) 1415–1451.
[43] M. Hochbruck, T. Pazur, Implicit Runge--Kutta methods and discontinuous Galerkin discretizations for linear Maxwell’s equations, SIAM J. Numer. 

Anal. 53 (1) (2015) 485–507.
[44] M. Hochbruck, T. Pazur, A. Schulz, E. Thawinan, C. Wieners, Efficient time integration for discontinuous Galerkin approximations of linear wave 

equations, Z. Angew. Math. Mech. 95 (3) (2015) 237–259.
[45] T.H. Hou, P. Liu, Optimal local multi-scale basis functions for linear elliptic equations with rough coefficient, Discrete Contin. Dyn. Syst. 36 (8) (2016) 

4451–4476.
[46] T.Y. Hou, X.H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys. 134 (1) (1997) 

169–189.
[47] G.S. Kimeldorf, G. Wahba, A correspondence between Bayesian estimation on stochastic processes and smoothing by splines, Ann. Math. Stat. 41 

(1970) 495–502.
[48] F.M. Larkin, Gaussian measure in Hilbert space and applications in numerical analysis, Rocky Mt. J. Math. 2 (3) (1972) 379–421.
[49] Peter D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math. 21 (5) (1968) 467–490.
[50] C. Lubich, A. Ostermann, Multigrid dynamic iteration for parabolic equations, BIT 27 (2) (1987) 216–234.
[51] A. Målqvist, D. Peterseim, Localization of elliptic multiscale problems, Math. Comput. 83 (290) (2014) 2583–2603.
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