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We propose a method for the approximation of solutions of PDEs with stochastic coeffi-
cients based on the direct, i.e., non-adapted, sampling of solutions. This sampling can be
done by using any legacy code for the deterministic problem as a black box. The method
converges in probability (with probabilistic error bounds) as a consequence of sparsity
and a concentration of measure phenomenon on the empirical correlation between sam-
ples. We show that the method is well suited for truly high-dimensional problems.
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1. Introduction

Realistic analysis and design of complex engineering systems require not only a fine understanding and modeling of the
underlying physics and their interactions, but also a significant recognition of intrinsic uncertainties and their influences on
the quantities of interest. Uncertainty Quantification (UQ) is an emerging discipline that aims at addressing the latter issue;
it aims at meaningful characterization of uncertainties in the physical models from the available measurements and efficient
propagation of these uncertainties for a quantitative validation of model predictions.

Despite recent growing interests in UQ of complex systems, it remains a grand challenge to efficiently propagate uncer-
tainties through systems characterized by a large number of uncertain sources where the so-called curse-of-dimensionality
is yet an unsolved problem. Additionally, development of non-intrusive uncertainty propagation techniques is of essence as
the analysis of complex multi-disciplinary systems often requires the use of sophisticated coupled deterministic solvers in
which one cannot readily intrude to set up the necessary propagation infrastructure.

Sampling methods such as the Monte Carlo simulation and its several variants had been utilized for a long time as the
primary scheme for uncertainty propagation. However, it is well understood that these methods are generally inefficient
for large-scale systems due to their slow rate of convergence. There has been an increasing recent interest in developing
alternative numerical methods that are more efficient than the Monte Carlo techniques. Most notably, the stochastic Galer-
kin schemes using Polynomial Chaos (PC) bases [38,28,67,2,63] have been successfully applied to a variety of engineering
problems and are extremely useful when the number of uncertain parameters is not large. In their original form, the stochas-
tic Galerkin schemes are intrusive, as one has to modify the deterministic solvers for their implementation. Stochastic collo-
cation schemes [58,45,66,1,51] belong to a different class of methods that rely upon (isotropic) sparse grid integration/
interpolation in the stochastic space of the problem to reduce the curse-of-dimensionality associated with the conventional
. All rights reserved.
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tensor-product integration/interpolation rules. As their construction is primarily based on the input parameter space, the
computational cost of both stochastic Galerkin and collocation techniques increases rapidly for large number of independent
input uncertainties.

More recently, efforts have been made to construct solution-adaptive uncertainty propagation techniques that exploit any
structures in the solution to decrease the computational cost. Among them are the multi-scale model reduction of [33] and
the sparse decomposition of [60,8,6,7] for the stochastic Galerkin technique, adaptive sparse regression approaches of
[10,11] for PC expansions, anisotropic and adaptive sparse grids of [50,44] for the stochastic collocation scheme, and the
low-rank solution approximations of [52,53,34].

In the present study, we are interested in cases where the quantity of interest is sparse at the stochastic level, i.e., it can be
accurately represented with only few terms when linearly expanded into a stochastic, e.g., polynomial chaos, basis. Interest-
ingly, sparsity is salient in the analysis of high-dimensional problems where the number of energetic basis functions (those
with large coefficients) is small relative to the cardinality of the full basis. For instance, it has been shown in [60,8] that, un-
der some mild conditions, solutions to linear elliptic stochastic PDEs with high-dimensional random coefficients admit
sparse representations with respect to the PC basis. Consequently, an approach based on a zero-dimensional algebraic sto-
chastic problem has been proposed in [8] to detect the sparsity pattern, which then guides the stochastic Galerkin analysis of
the original problem. Moreover, a ‘‘quasi’’-best N-term approximation for a class of elliptic stochastic PDEs has been pro-
posed in [7].

In this work, using concentration of measure inequalities and compressive sampling techniques, we derive a method for PC
expansion of sparse solutions to stochastic PDEs. The proposed method is

� Non-intrusive: it is based on the direct random sampling of the PDE solutions. This sampling can be done by using any
legacy code for the deterministic problem as a black box.
� Non-adapted: it does not tailor the sampling process to identify the important dimensions at the stochastic level.
� Provably convergent: we obtain probabilistic bounds on the approximation error proving the stability and convergence of

the method.
� Well-suited to problems with high-dimensional random inputs.

Compressive sampling is an emerging direction in signal processing that aims at recovering sparse signals accurately (or
even exactly) from a small number of their random projections [20,21,17,30,15,18,16,22,14]. A sparse signal is simply a sig-
nal that has only few significant coefficients when linearly expanded into a basis, e.g., {wa}.

For sufficiently sparse signals, the number of samples needed for a successful recovery is typically less than what is re-
quired by the Shannon–Nyquist sampling principle. Generally speaking, a successful signal reconstruction by compressive
sampling is conditioned upon:

� Sufficient sparsity of the signal; and
� Incoherent random projections of the signal.

A square-measurable stochastic function u(x), defined on a suitable probability space ðX;F ;PÞ can be expanded into a
mean-squared convergent series of the chaos polynomial bases, i.e., uðxÞ �

P
acawaðxÞ, with some cardinality P. The sto-

chastic function u(x) is then sparse in PC basis {wa}, if only a small fraction of coefficients ca are significant. In this case,
under certain conditions, the sparse PC coefficients c may be computed accurately and robustly using only N� P random
realizations of u(x) via compressive sampling. Given N random samples of u(x), compressive sampling aims at finding
the sparsest (or nearly sparsest) coefficients c from an optimization problem of the form
ðPs;dÞ : min
c
kWcks subject to kWc � uk2 6 d; ð1Þ
where kWcks, with s = {0,1} and some positive diagonal weight matrix W, is a measure of the sparsity of c and kWc � uk2 is a
measure of the accuracy of the truncated PC expansion in estimating the u(x) samples. The N-vector u contains the inde-
pendent random samples of u(x) and the rows of the N � P matrix W consist of the corresponding samples of the PC basis
{wa}.

Throughout the rest of this manuscript, we will elaborate on the formulation of the compressive sampling problem (1)
and the required conditions under which it leads to an accurate and stable approximation of an arbitrary sparse stochastic
function as well as sparse solutions to linear elliptic stochastic PDEs. Although we choose to study this particular class of
stochastic PDEs, we stress that the proposed algorithms and theoretical developments are far more general and may be read-
ily applied to recover sparse solution of other stochastic systems.

In Section 2, we describe the setup of the problem of interest for which numerical experiments are performed. We then, in
Section 3, lay out the main contributions of the present work. In particular, the approximation of sparse stochastic functions
as well as the elliptic stochastic PDEs using the compressive sampling technique are introduced in Sections 3.2–3.4. Sections
3.5 and 3.6 discuss some of the implementation details of the present technique. To demonstrate the accuracy and efficiency
of the proposed procedures, in Section 4, we perform two numerical experiments on 1-D (in space) linear elliptic stochastic
differential equations with high-dimensional random diffusion coefficients.
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2. Problem setup

Let ðX;F ;PÞ be a complete probability space where P is a probability measure on the r – field F . We consider the fol-
lowing elliptic stochastic PDE defined on a bounded Lipschitz continuous domain D � RD;D ¼ 1;2;3, with boundary @D,
�r � ðaðx;xÞruðx;xÞÞ ¼ f ðxÞ x 2 D; ð2Þ
uðx;xÞ ¼ 0 x 2 @D;
P – a.s. x 2 X. The diffusion coefficient a(x,x) is a stochastic function defined on ðX;F ;PÞ and is the source of uncertainty in
(2). We assume that a(x,x) is specified by a truncated Karhunen–Loève-‘‘like’’ expansion
aðx;xÞ ¼ �aðxÞ þ
Xd

i¼1

ffiffiffiffi
ki

p
/iðxÞyiðxÞ; ð3Þ
where (ki,/i), i = 1, . . . ,d, are the eigenpairs of the covariance function Caaðx1; x2Þ 2 L2ðD � DÞ of a(x,x) and �aðxÞ is the mean of
a(x,x). We further assume that a(x,x) satisfies the following conditions:

A-I. For all x 2 D, there exists constants amin and amax such that
0 < amin 6 aðx;xÞ 6 amax <1 P � a:s: x 2 X: ð4Þ

A-II. The covariance function Caa(x1,x2) is piecewise analytic on D�D [57,8], implying that there exist real constants c1 and
c2 such that for i = 1, . . . ,d,

0 6 ki 6 c1e�c2 ij ð5Þ

and
8a 2 Nd :
ffiffiffiffi
ki

p
k@a/ikL1ðDÞ 6 c1e�c2 ij ; ð6Þ
where j :¼ 1/D and a 2 Nd is a fixed multi-index. Notice that the decay rates in Eqs. (5) and (6) will be algebraic if Caa(x1,x2)
has CsðD � DÞ regularity for some s > 0 [57].

A-III. The random variables fykðxÞg
d
k¼1 are independent and uniformly distributed on Ck :¼ [�1,1], k = 1, . . . ,d, with prob-

ability density function qk(yk) = 1/2 defined over Ck. The joint probability density function of the random vector
y :¼ (y1, . . .,yd) is then given by qðyÞ :¼

Qd
k¼1qkðykÞ.

Remark. The algorithm proposed in the paper requires the existence of a sparse solution. The only role of assumption A-II is
to guarantee the existence of such a sparse solution for problem (2). It is not necessary for the application and the validity of
the proposed algorithm. In particular, if the coefficient a (x, x) is only essentially bounded, the proposed algorithm will be
accurate as long as a sparse approximation exists (because the recovery does not depend on the regularity of a).

Given the finite-dimensional uncertainty representation in (3), the solution u(x,x) of (2) also admits a finite-dimensional
representation, i.e.,
uðx; yÞ :¼ uðx; y1ðxÞ; . . . ; ydðxÞÞ : D� C! R; ð7Þ

where C :¼

Qd
k¼1Ck.

In what follows, we first briefly outline the Legendre spectral stochastic discretization of u(x,y) and subsequently
introduce our approach based on compressive sampling to obtain such a discretization.
3. Numerical approach

3.1. Spectral stochastic discretization

In the context of the spectral stochastic methods [38,28,67,2,64], the solution u(x,y) of (2) is represented by an infinite
series of the form
uðx; yÞ ¼
X
a2Nd

0

caðxÞwaðyÞ; ð8Þ
where Nd
0 :¼ fða1; . . . ;adÞ : aj 2 N [ f0gg is the set of multi-indices of size d defined on non-negative integers. The basis func-

tions {wa(y)} are multi-dimensional Legendre polynomials, referred to as the Legendre polynomial chaos, and are orthogonal
with respect to the joint probability measure q(y) of the random vector y. Each basis function wa(y) is a tensor product of
univariate Legendre polynomials wai

ðyiÞ of degree ai 2 N1
0, i.e.,
waðyÞ ¼ wa1
ðy1Þwa2

ðy2Þ � � �wad
ðydÞ; a 2 Nd

0: ð9Þ
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We here assume that the univariate Legendre polynomials wai
ðyiÞ are also normalized such that
Z

Ci

w2
ai
ðyiÞqiðyiÞdyi ¼ 1; i ¼ 1; . . . ;d: ð10Þ
The exact generalized Fourier coefficients ca(x) in (8), referred to as the PC coefficients, are computed by the projection of
u(x,y) onto each basis function wa(y),
caðxÞ ¼ E½uðx; yÞwaðyÞ	 ¼
Z

C
uðx; yÞwaðyÞqðyÞdy: ð11Þ
Here, E denotes the expectation operator. In practice, the expansion (8) is finite; that is, only a finite number of spectral
modes is needed to approximate u(x,y) within a given target accuracy. Traditionally, a finite-order truncation of the basis
{wa(y)} is adopted for the approximation, i.e.,
upðx; yÞ :¼
X

a2Kp;d

caðxÞwaðyÞ; ð12Þ
where the set of multi-indices Kp,d is
Kp;d :¼ a 2 Nd
0 : kak1 6 p; kak0 6 d

� �
ð13Þ
and has the cardinality
P :¼ jKp;dj ¼
ðpþ dÞ!

p!d!
: ð14Þ
Here, kak1 ¼
Pd

i¼1ai and kak0 = #{i: ai > 0} are the total order (degree) and dimensionality of the basis function wa (y),
respectively. The approximation is then refined by increasing p to achieve a given target accuracy. Under assumptions A-I,
A-II, and A-III stated in Section 2, the solution u(x,y) is analytic with respect to the random variables fyig

d
i¼1 (see [1]), and

as p increases, the approximation (12) converges exponentially fast in the mean-squares sense [2,1,8].

Definition (Sparsity). The solution u(x,y) is said to be (nearly) sparse if only a small fraction of coefficients ca(x) in (12) are
dominant and contribute to the solution statistics.

As will be described next, a sparse solution u(x,y) may be accurately recovered using N� P random realizations
fuðx; yiÞg

N
i¼1 using compressive sampling techniques. This has to be compared, for instance, with the least-squares

regression-type techniques, [40], that normally require N
 P samples for an accurate recovery.
3.2. Sparse recovery using compressive sampling

Compressive sampling is an emerging theory in the field of signal and image processing [20,21,17,30,15,18,16,22,14]. It
hinges around the idea that a set of incomplete random observations of a sparse signal can be used to accurately, or even
exactly, recover the signal (provided that the basis in which the signal is sparse is known). In particular, the number of such
observations may be much smaller than the cardinality of the signal. In the context of the Legendre PC expansion of a ran-
dom function u(y), compressive sampling may be interpreted as follows. If u(y) is sparse with respect to the Legendre PC
basis, that is, many of the PC coefficients ca are negligible, then u(y) can be accurately recovered using N� P random real-
izations fuðyiÞg

N
i¼1, where P is the cardinality of the Legendre PC basis {wa}. We next elaborate on the above statement and

address how and under what conditions such a sparse reconstruction is successfully achieved for a general stochastic func-
tion u(y) as well as the solution to the problem (2).

Let fyig
N
i¼1 be i.i.d. samples of y and fuðyiÞg

N
i¼1 the corresponding realizations of the stochastic function u(y). For problem

(2), fuðyiÞg
N
i¼1 are realizations of the solution u(x,y) at a fixed point x inD. For the time being, let us assume that the pth-order

PC basis {wa} is a complete basis to expand u(y); we will relax this assumption as we proceed. Given pairs of fyig
N
i¼1 and

fuðyiÞg
N
i¼1, we write
uðyiÞ ¼
X

a2Kp;d

cawaðyiÞ; i ¼ 1; . . . ;N; ð15Þ
or equivalently,
Wc ¼ u: ð16Þ
Here c 2 RP is the vector of PC coefficients ca to be determined, u 2 RN is the vector of samples of u(y), and each column of
the measurement matrix W 2 RN�P contains samples of the jth element of the PC basis, i.e.,
W½i; j	 ¼ waj
ðyiÞ; i ¼ 1; . . . ;N; j ¼ 1; . . . ; P: ð17Þ
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We are interested in the case that the number N of solution samples is much smaller than the unknown PC coefficients P,
i.e., N� P. Without any additional constraints on c, the underdetermined linear system (16) is ill-posed and, in general, has
infinitely many solutions. When c is sparse; that is, only a small fraction of the coefficients ca are significant, the problem
(16) may be regularized to ensure a well-posed solution. Such a regularization may be achieved by seeking a solution c with
the minimum number of non-zeros. This can be formulated in the optimization problem
ðP0Þ : min
c
kck0 subject to Wc ¼ u; ð18Þ
where the semi-norm kck0 :¼ #{a: ca – 0} is the number of non-zero components of c. In general, the global minimum solu-
tion of (P0) is not unique and is NP-hard to compute: the cost of a global search is exponential in P. Further developments in
compressive sampling resulted in a convex relaxation of problem (P0) by minimization of the ‘1-norm of the solution c in-
stead, i.e.,
ðP1Þ : min
c
kWck1 subject to Wc ¼ u; ð19Þ
where W is a diagonal matrix whose [j, j] entry is the ‘2-norm of the jth column of W and k � k1 denotes the ‘1-norm. Notice
that the ‘1-norm is the closest convex function to the ‘0-norm that compels the small coefficients ca to be zero, thus promot-
ing the sparsity in the solution. The purpose of weighting the ‘1 cost function with W is to prevent the optimization from
biasing toward the non-zero entries in c whose corresponding columns in W have large norms. The problem (P1) is entitled
Basis Pursuit (BP) [20] and its solution can be obtained by linear programming. Since the ‘1-norm functional kck1 is convex,
the optimization problem (P1) admits a unique solution that coincides with the unique solution to problem (P0) for suffi-
ciently sparse c and with some constraints on the measurement matrix W; e.g., see [14].

In general, the pth-order PC basis is not complete for the exact representation of u(y); therefore, we have to account for
the truncation error. This can be accommodated in (P0) and (P1) by allowing a non-zero residual in the constraint Wc = u.
Therefore, as in Sections 3.2.1 and 3.2.3 of [14], the proposed algorithms in this paper are error-tolerant versions of (P0)
and (P1), with error tolerance d, i.e.,
ðP0;dÞ : min
c
kck0 subject to kWc � uk2 6 d ð20Þ
and
ðP1;dÞ : min
c
kWck1 subject to kWc � uk2 6 d; ð21Þ
respectively. The latter problem is named Basis Pursuit Denoising (BPDN) in [20] and may be solved using techniques from
quadratic programming. We leave the discussion on the available algorithms for solving problems (P1,d) and (P0,d) to Sec-
tion 3.6. Instead, we henceforth delineate on sufficient conditions under which the BPDN problem (P1,d) leads to a successful
Legendre PC expansion of a general sparse stochastic function u(y) and, subsequently, the sparse solution u(x,y) to the prob-
lem (2). Our results are extensions of those in [32,14], adapted to the case where the measurement matrix W consists of ran-
dom evaluations of the Legendre PC basis {wa}. With slight differences that will be remarked accordingly, similar results hold
for the case of the (P0,d) problem.

Notation. We write u1;d
p ðyÞ :¼

P
a2Kp;d

c1;d
a waðyÞ the Legendre PC approximation of u(y) with coefficients c1,d computed from

the ‘1-minimization problem (P1,d) in (21). Additionally, we write u0
pðyÞ the Legendre PC expansion u0

pðyÞ :¼
P

a2K�p;d
c0
awaðyÞ,

for some index set K�p;d # Kp;d (or Kp�;m� # Kp;d) to be defined accordingly. Similar notations are used for PC expansion of
the solution u(x,y) to problem (2).

Theorem 3.1 (General stability of (P1,d)). Let u(y) be an essentially bounded function of i.i.d. random variables y :¼ (y1, . . ., yd)
uniformly distributed on C :¼ [�1,1]d. Define
Smax :¼ N

64P4cp;d ðln PÞ
ð22Þ
with
cp;d :¼ ln 3
2

p

ln ðpþdÞ!
p!d!

� � : ð23Þ
If there exists a Legendre PC expansion u0
pðyÞ for some index set K�p;d # Kp;d such that ku� u0

pkL1ðCÞ 6 � and
S < Smax; ð24Þ
with S :¼ jK�p;dj, then with probability
Prob1 P 1� 4P2�2Smax � P�8Smax � P�8SmaxP
4cp;d

; ð25Þ
(on the N samples fuðyiÞg
N
i¼1) and for some constants c1 and c2, the solution u1;d

p ðyÞ must obey
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u� u1;d
p

��� ���
L2ðCÞ
6 c1�þ c2

dffiffiffiffi
N
p : ð26Þ
In simple words, Theorem 3.1 states that if an essentially bounded stochastic function u(y) admits a sparse Legendre PC
expansion, then the ‘1-minimization problem (P1,d) can accurately recover it from a sufficiently large number of random
solution realizations. The recovery is stable under the truncation error kWc � uk2 and is within a distance of the exact solu-
tion that is proportional to the error tolerance d. It is worth highlighting that no prior knowledge of the sparsity pattern of
the PC coefficients c is needed for an accurate recovery.
Remark. Based on the conditions (22) and (24), the number N of random samples has to grow like P4cp;d ln P and also be
proportional to the number of dominant coefficients S ¼ jK�p;dj. Given any order p of the PC expansion, for sufficiently high-
dimensional problems, the constant cp,d < 1/4 (see Lemma 3.3 and Fig. 1), thus justifying N� P. In fact, the conditions (22)
and (24) are too pessimistic; in practice, the number of random samples required for an accurate recovery is much smaller
than the theoretical value in (22). We will elaborate on this statement in Section 3.3.
Remark. Although the BPDN reconstruction is achieved by minimizing the ‘1-norm of the solution, based on (26), the
approximation also converges to the exact solution in the mean-squares sense.
Remark. A similar theorem holds for the case of the sparse approximation using the ‘0-minimization problem (P0,d) in (20).
In this case, the condition (22) has to be replaced with Smax :¼ N

16P
4cp;d ðln PÞ

which is, in theory, milder than that of the (P1,d) prob-

lem. The error estimate (26) also holds with a larger probability, but with different constants c1 and c2.
Remark. In this paper (see also [35]) we have chosen the samples fyig
N
i¼1 from the uniform density qðyÞ ¼ Pd

k¼1qkðykÞwhere
qk(yk) = 1/2 is defined over [�1,1]. It is important to observe that this choice is arbitrary and not necessary for sparse recov-
ery. In particular, in d = 1, selecting the samples fyig

N
i¼1 from the Chebyshev probability measure q(y) = p�1(1 � y2)�1/2

defined over [�1,1] allows for fewer samples for sparse recovery [56]. In higher dimensions (for the multivariate case of ten-
sor product Legendre systems), the generalization of the estimates of [56] leads to constants depending on the number of
tensorized polynomials. This could explain why mixed performance were observed between the two approaches in the
high-dimensional cases (e.g., d = 40). The optimal selection of the samples fyig

N
i¼1 requires further study.
3.3. General stability of (P1,d) and (P0,d): proofs and more

The ability of problems (P1,d) and (P0,d) in accurately approximating the sparse PC coefficients c in (12), hence u(y), de-
pends on two main factors: (i) the sparsity of the PC coefficients c and (ii) the mutual coherence of the measurement matrix
W. In fact, the number N of random solution realizations required for a successful sparse approximation is dictated by these
two factors. While sparsity is a characteristic of the function of interest u(y) and the selected basis, the mutual coherence of
the measurement matrix W is universal as it only depends on the choice of the expansion basis, e.g., the Legendre PC basis
{wa}, and the sampling process from which W is assembled. While, in the present study, we are interested in approximating
stochastic functions u(y) that are sparse with respect the Legendre PC basis, we note that such an assumption may not be
valid for an arbitrary function u(y). In this case, our sparse approximation still converges to the actual solution but, perhaps,
not using as few as N� P random solution realizations. The problem (2) is a special instance of stochastic PDEs for which the
sparsity of solution with respect to the Legendre PC basis is derived analytically [8]. We will briefly review the sparsity
Fig. 1. Decay of cp,d as a function of d. p ¼ 1ð�Þ; p ¼ 2ð�Þ; p ¼ 3ðOÞ; p ¼ 4ð}Þ.



A. Doostan, H. Owhadi / Journal of Computational Physics 230 (2011) 3015–3034 3021
analysis of [8] in Section 3.4. Subsequently, we give the definition of the mutual coherence of W and discuss its role in our
sparse approximation using (P1,d) and (P0,d).

3.3.1. Mutual coherence of W

Definition (Mutual coherence [32]). The mutual coherence l(W) of a matrix W 2 RN�P is the maximum of absolute
normalized inner-products of its columns. Let wj and wk be two distinct columns of W. Then,
lðWÞ :¼ max
16j;k6P;j–k

jwT
j wkj

kwjk2kwkk2
: ð27Þ
In plain words, the mutual coherence is a measure of how close to orthogonal a matrix is. Clearly, for any general matrix W,
0 6 lðWÞ 6 1; ð28Þ
where the lower bound is achieved, for instance, by unitary matrices. However, for the case of N < P, the mutual coherence
l(W) is strictly positive. It is well understood that measurement matrices with smaller mutual coherence have a better abil-
ity to recover a sparse solution using compressive sampling techniques, e.g., see Lemma 3.4. Therefore, we shall proceed to
examine the mutual coherence of the random measurement matrix W in (16). We first observe that, by the orthogonality of
the Legendre PC basis, i.e., E½waj

wak
	 ¼ djk, and the strong law of large numbers, the mutual coherence l(W) converges to zero

almost surely for asymptotically large random sample sizes N. However, it is essential for our purpose to (i) investigate if a
desirably small l(W) can be achieved by a sample size N� P and (ii) quantify how large l(W) can get for a finite N. These are
addressed in the following theorem.
Theorem 3.2 (Bound on the mutual coherence l(W)). Let W 2 RN�P, as defined in (16), be the measurement matrix correspond-
ing to N independent random realizations of the Legendre polynomial chaos basis of order p in d i.i.d. uniform random variables y.
There exists a positive constant cp;d :¼ ln 3

2
p

ln ðpþdÞ!
p!d!

� � depending on p and d, such that ifffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

0 6 r ¼ 2 fP4cp;d ðln PÞ=N 6 1=2 ð29Þ
for some f > 1, then
Prob lðWÞP r
1� r

h i
6 4P2�2f: ð30Þ
Fig. 1 illustrates the decay of cp,d, for several values of p, as a function of d. Based on Theorem 3.2, for cases where the number
d of random variables y is large enough such that cp,d < 1/4, it is sufficient to have N � Oð16P4cp;d ln PÞ � P to keep l(W)
bounded from above with a large probability. Notice that such a requirement on cp,d is particularly suited to high-dimen-
sional problems.
Remark. We observe that, given the choice of r in (29), the upper bound on l(W) in (30) decays like 1=
ffiffiffiffi
N
p

for asymptotically
large N, which is consistent with the Central Limit Theorem.

In order to prove Theorem 3.2, we first need to compute the maximum of the Legendre PC basis functions wa(y). This is
given in the following lemma.
Lemma 3.3 (Maximum of wa(y)). Let {wa(y)} be the Legendre polynomial chaos basis of total order p in d i.i.d uniform random
variables y (as defined in (13)) and with cardinality P. Then,
kwakL1ðCÞ 6 Pcp;d ð31Þ
with a constant
cp;d :¼ ln 3
2

p

ln ðpþdÞ!
p!d!

� � : ð32Þ
Proof. Given the equality
kwai
kL1ðCiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ai þ 1

p
;

we have
kwakL1ðCÞ ¼
Yd

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ai þ 1

p
:
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Using the constraint ai 2 N1
0 and

Pd
i¼1ai 6 p, the right-hand-side is maximized when p of ais are equal to one and d � p

equal to zero (we assume d P p). We deduce that
kwakL1ðCÞ 6 3
p
2 ¼ P

ln 3
2

p
ln P ¼ Pcp;d :
We are now ready to prove Theorem 3.2. h
Proof of Theorem 3.2. The mutual coherence l(W) is
lðWÞ ¼ max
16j;k6P;j–k

1
N

PN
i¼1waj

ðyiÞwak
ðyiÞ

��� ���
1
N

PN
i¼1w

2
aj
ðyiÞ

� �1=2
1
N

PN
i¼1w

2
ak
ðyiÞ

� �1=2 : ð33Þ
Given the independence of samples fyig
N
i¼1 and using the McDiarmid’s inequality (Lemma 1.2 in [46]), we obtain
Prob
1
N

XN

i¼1

waj
ðyiÞwak

ðyiÞ
�����

�����P r

" #
6 2 exp

�2Nr2

ð2kwaj
ðyiÞwak

ðyiÞkL1ðCiÞÞ
2

 !
: ð34Þ
Using Lemma 3.3, we may probabilistically bound the numerator in (33) as
Prob
1
N

XN

i¼1

waj
ðyiÞwak

ðyiÞ
�����

�����P r

" #
6 2 exp

�Nr2

2P4cp;d

 !
;

in which we exploit the orthonormality of waj
ðyÞ and wak

ðyÞ, i.e., E½waj
wak
	 ¼ djk. Similarly, for j = 1, . . .,P, we have
Prob
1
N

XN

i¼1

w2
aj
ðyiÞ 6 1� r

" #
6 exp

�Nr2

P4cp;d

 !
6 exp

�Nr2

2P4cp;d

 !
:

Therefore,
Prob
1
N

PN
i¼1waj

ðyiÞwak
ðyiÞ

��� ���
1
N

PN
i¼1w

2
aj
ðyiÞ

� �1=2
1
N

PN
i¼1w

2
ak
ðyiÞ

� �1=2 P
r

1� r

264
375 6 4 exp

�Nr2

2P4cp;d

 !
ð35Þ
and
Prob lðWÞP r
1� r

h i
6 4P2 exp

�Nr2

2P4cp;d

 !
: ð36Þ
Taking
r ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fP4cp;d ðln PÞ=N

q
; ð37Þ
for some f > 1, we arrive at the statement of the Theorem 3.2. h

To summarize, we observe that with large probability, the mutual coherence l(W) of the measurement matrix W in (16)
can be arbitrarily bounded from above by increasing the number N of independent random solution realizations.

Following [32,14], we next state a sufficient condition on the sparsity of u(y) (or, equivalently, the mutual coherence of W)
such that the problem (P1,d) leads to a stable and accurate sparse approximation. By stability, we simply mean that the PC
coefficients c1,d recovered from the ‘1-minimization problem (P1,d) do not blow up in the presence of the truncation error d.

Lemma 3.4 (A condition on sparsity for stability of (P1,d)). Let u0
pðyÞ be a sparse Legendre PC approximation of an essentially

bounded function u(y) associated with an index set K�p;d # Kp;d. Assume that the vector of PC coefficients c0 satisfies the sparsity
condition
kc0k0 ¼ jK
�
p;dj < ð1þ 1=lðWÞÞ=4: ð38Þ
Then, with probability at least 1� expð� N
8P

4cp;d
Þ (on the N samples fuðyiÞg

N
i¼1) and for all d P 0, the solution u1;d

p must obey
E u0
p � u1;d

p

� �2
	 


6
4

3N
dþ kWc0 � uk2

� �2

1� lðWÞ 4kc0k0 � 1ð Þ : ð39Þ
Proof. Using Theorem 3.1 of [32], we obtain that if c0 satisfies the sparsity condition kc0k0 < (1 + 1/l(W))/4, then



A. Doostan, H. Owhadi / Journal of Computational Physics 230 (2011) 3015–3034 3023
X
a

c1;d
a � c0

a

� �2
wak k2

2 6
dþ kWc0 � uk2

� �2

1� lðWÞ 4kc0k0 � 1ð Þ ;
where kwak2 is the ‘2-norm of the column of W corresponding to the index a. The presence of kwak2 is due to the fact that the
columns of W are not normalized. Next, using McDiarmid’s inequality and the independence of the entries W[i, j] for distinct
rows i, we obtain that
Prob
X

a

c1;d
a � c0

a

� �2
wak k2

2 6
3N
4

X
a

c1;d
a � c0

a

� �2

" #
6 exp � N

8kwak
4
L1ðCÞ

 !
: ð40Þ
We conclude using Lemma 3.3 and the fact that, due to the orthonormality of {wa(y)}, we have E u0
p � u1;d

p

� �2
	 


¼
kc0 � c1;dk2

2. h
Remark. The error bound in (39) is not tight; in fact, the actual error is significantly smaller than the upper bound given in
(39). More importantly, according to [32], the sparsity condition (38) is unnecessarily too restrictive. In practice, both far
milder sparsity conditions are needed and much smaller errors are achieved.
Remark. We will later use the sparsity condition (38) to derive the sufficient condition (22) (together with (24)) on the
number N of random samples needed for a successful recovery. As the condition (38) is too restrictive, the theoretical lower
bound on N given in (22) and (24) is too pessimistic.
Remark. According to Lemma 3.4, we do not need to know a priori the sparse index set K�p;d; only the sparsity condition (38)
is required.
Remark. With slight modifications, a similar argument as in Lemma 3.4 may be asserted for the solution of ‘0-minimization
problem (P0,d). Specifically, in that case, we only require a sparsity limit kc0k0 ¼ jK

�
p;dj < ð1þ 1=lðWÞÞ=2 to achieve the error

estimate E u0
p � u0;d

p

� �2
	 


6
4

3N

dþkWc0�uk2ð Þ2
1�lðWÞð2kc0k0�1Þ.

Notice that the normalized truncation error
�2
N :¼ kWc0 � uk2

2

N
ð41Þ	 

is the sample average estimate of the mean-squares sparse approximation error E u� u0
p

� �2
and is a function of samples

fyig
N
i¼1 in addition to the order p and the dimensionality d of the sparse PC expansion. For a given set of N independent ran-

dom samples fyig
N
i¼1 and realizations fuðyiÞg

N
i¼1, we may probabilistically bound �2

N using McDiarmid’s inequality, i.e.,
Prob �2
N P E u� u0

p

� �2
	 


þ r
	 


6 exp �2N
r2

ku� u0
pk

4
L1ðCÞ

 !
: ð42Þ
Proof of Theorem 3.1. Given the statement of the Lemma 3.4, we have
u� u1;d
p

��� ���
L2ðCÞ
6 u� u0

p

��� ���
L2ðCÞ
þ u0

p � u1;d
p

��� ���
L2ðCÞ
6 �þ 2ffiffiffiffiffiffiffi

3N
p

dþ Wc0 � u
�� ��

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� lðWÞð4S� 1Þ

p

for all d > 0. Furthermore, selecting r ¼ 1

4 ku� u0
pk

2
L1ðCÞ in (42) leads to
�2
N ¼:

Wc0 � u
�� ��

2

N
6 u� u0

p

��� ���2

L2ðCÞ
þ 1

4
u� u0

p

��� ���2

L1ðCÞ
6

5
4
�2
with probability at least 1� P�8SmaxP
4cp;d

. Finally, by taking
c1 :¼ 1þ
ffiffiffi
5
pffiffiffi

3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� lðWÞð4S� 1Þ
p and c2 :¼ 2ffiffiffi

3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� lðWÞð4S� 1Þ
p ;
we arrive at the statement of the Theorem 3.1. h

The stability analyses presented above were tied to the case of a generic stochastic function u(y) which was assumed to be
sparse with respect to the Legendre PC basis. We will next extend our analysis to the specific case of problem (2) whose solu-
tion u(x,y) is provably sparse.
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3.4. Stability of (P1,d) for stochastic PDE (2)

We here briefly summarize the results of [60,8] on the sparsity of the Legendre PC expansion of the solution u(x,y) to the
problem (2). Alternative to the pth-order truncated PC expansion of (12), one may ideally seek a proper index set K�p;d # Kp;d,
with sufficiently large p, such that for a given accuracy �
K�p;d :¼ arg min jeKp;dj : eKp;d # Kp;d; ku� ~upkH1
0ðD;L

1ðCÞÞ 6 �
n o

ð43Þ
in which ~upðx; yÞ :¼
P

a2eKp;d
caðxÞwaðyÞ. This will lead to the so-called sparse approximation of u(x,y) if
jK�p;dj � jKp;dj ¼ P; ð44Þ
where Kp,d is defined in (13). Such a reduction in the number of basis functions in (44) is possible as, given the accuracy �, the
effective dimensionality m of u(x,y) in C is potentially smaller than the apparent dimensionality d. More precisely, under
assumptions A-I, A-II, and A-III stated in Section 2, the analyses of [60,8] imply that the discretization of u(x,y) using a sparse
index set Kp,m,
Kp;m :¼ a 2 Nd
0 : kak1 6 p; kak0 6 m 6 d

� �
; ð45Þ
preserves the exponential decay of the approximation error in the H1
0ðD; L

1ðCÞÞ sense. For the sake of completeness, we cite
this from [8] in the following lemma.

Lemma 3.5 (Proposition 3.10 of [8]). Given assumptions A-I, A-II, and A-III in Section 2, there exist constants c1, c2, c3, c4 > 0,
depending only on a(x,x) and f(x) but independent of d, p, m, such that
ku� up;mkH1
0ðD;L

1ðCÞÞ 6 c1 e�c2m1þj þ ec3mðln dþln pÞ�c4p
� �

; ð46Þ
for any d; p; m 2 N with m 6 d and j = 1/D.

In particular, for d P cdjln�j1/j, choosing
p� ¼ dcpdje 6 p and m� ¼ dcmdj=ðjþ1Þe 6 d; ð47Þ
leads to
ku� up�;m�kH1
0ðD;L

1ðCÞÞ 6 �; ð48Þ
where up�;m� is now defined on a sparse index set
Kp�;m� :¼ a 2 Nd
0 : kak1 6 p�; kak0 6 m�

� �
ð49Þ
with cardinality
jKp�;m� jK ��1=c; ð50Þ
for some arbitrary large c > 0 and constants cd, cp, and cm independent of d, p�, and m� [8].
In practice, the sparse set K�p;d in (43) (or equivalently Kp� ;m� in (49)) is not known a priori. In [8], an approach based on an

algebraic purely-stochastic problem is proposed to adaptively identify Kp�;m� . Having done this, the coefficients of the spectral
modes are computed via the (intrusive) stochastic Galerkin scheme [38,67]. Alternatively, in this work, we apply our sparse
approximation using (P1,d) and (P0,d) to compute u(x,y). The implementation of (P1,d) and (P0,d) is non-intrusive; only random
realizations of the solution are needed. Moreover, we do not adapt the sampling process to identify the important dimen-
sions at the stochastic level; therefore, our constructions are non-adapted.

We next state our main result on the convergence and stability of problem (P1,d) (or (P0,d)) for the approximation of the
sparse solution to the stochastic PDE (2). Our result is based upon the combination of Lemma 3.5 with Theorem 3.1.

Theorem 3.6 (Stability of (P1,d) for stochastic PDE (2)). Let u1;d
p ðx; yÞ be the pth-order Legendre PC approximation of u(x,y) in (2)

where the coefficients c1;d
a ðxÞ are obtained from the ‘1-minimization problem (P1,d) with N independent realizations of u(x,y) and

arbitrary d P 0. Write j = 1/D. Let cp,d be defined by (23) and let Smax be defined by (22). Let c > 0 be arbitrary.
There exists constants c1, c2, c3, c4, c5 independent from p, d, j, N such that if dc2dje 6 p and dc3dj/(j+1)e 6 d, then with

probability at least
Prob1 P 1� 4P2�2Smax � P�8Smax � P�8P
4cp;d Smax ; ð51Þ
the solution u1;d
p must obey
u� u1;d
p

��� ���
L2ðD;L2ðCÞÞ

6 c4�þ c5
dffiffiffiffi
N
p ð52Þ
with
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� :¼max
1

Sc
max

; exp � d
c1

 �j � �
: ð53Þ
Proof. We first note that, given the conditions of Lemma 3.5, the solution to problem (2) admits a sparse Legendre PC expan-

sion up with sparsity S ¼ jKp�;m� jK ��1=c when �P exp � d
c1

� �j� �
for some constants c1 and (arbitrary) c > 0. Notice that the

sparse approximation up has an accuracy better than � in the H1
0ðD; L

1ðCÞÞ sense. As a consequence of Lemma 3.4,
u0
p � u1;d

p

��� ���2

L2 D;L2ðCÞð Þ
6

4
3N

dþ Wc0 � u
�� ��

L2ðD;‘2ðRN ÞÞ

� �2

1� lðWÞ 4kc0k0 � 1ð Þ ð54Þ
with probability at least 1� expð� N
8P

4cp;d
Þ (on the N realizations fuðx; yiÞg

N
i¼1). Additionally, the normalized error

�2
N ¼:

kWc0�uk2
L2 ðD;‘2 ðRN ÞÞ
N is bounded from above in probability through
Prob �2
N P u� u0

p

��� ���2

L2ðD;L2ðCÞÞ
þ r

	 

6 exp �2N

r2

ku� u0
pk

4
L2 D;L1ðCÞð Þ

 !
: ð55Þ
Following Theorem 3.2, it is sufficient to have random solution realizations of size N P 64P4cp;d ðln PÞS, to meet the sparsity
requirement S ¼ jKp�;m� j < ð1þ 1=lðWÞÞ=4 with probability at least 1� 4P2�2Smax where Smax :¼ N

64P
4cp;d ðln PÞ

. On the other hand,

given N random realizations of solution, we require �P 1
Sc

max
to satisfy the sparsity condition. Using the triangular and Poin-

caré inequalities, with probability at least 1� P�8Smax , we have
u� u1;d
p

��� ���
L2ðD;L2ðCÞÞ

6 cD u� u0
p

��� ���
H1

0ðD;L
2ðCÞÞ
þ u0

p � u1;d
p

��� ���
L2ðD;L2ðCÞÞ

6 cD�þ
2ffiffiffiffiffiffiffi
3N
p

dþ Wc0 � u
�� ��

L2ðD;‘2ðRNÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� lðWÞ 4S� 1ð Þ

p

for all d > 0. Moreover, by choosing r ¼ 1

4 ku� u0
pk

2
L2ðD;L1ðCÞÞ in (55),
�2
N ¼:

Wc0 � u
�� ��2

L2ðD;‘2ðRN ÞÞ

N
6 u� u0

p

��� ���2

L2 D;L2ðCÞð Þ
þ 1

4
u� u0

p

��� ���2

L2 D;L1ðCÞð Þ
6

5
4

c2
D�

2

with probability at least 1� P�8SmaxP
4cp;d

. Finally, by taking
c4 :¼ cD 1þ
ffiffiffi
5
pffiffiffi

3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� lðWÞ 4S� 1ð Þ
p !

and c5 :¼ 2ffiffiffi
3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� lðWÞ 4S� 1ð Þ
p ;
we arrive at the statement of Theorem 3.6. h
Remark. We note that the sparsity of the solution u(x,y) to problem (2) is due to the fact that the effective dimensionality m�
is potentially smaller than d. However, as given in Theorem 3.1, as far as the sparsity condition (38) is satisfied, similar sta-
bility results are valid for situations where dominant basis are defined over all the dimensions.
3.5. Choosing truncation error tolerance d

An important component of the sparse approximation using (P1,d) and (P0,d) is the selection of the truncation error toler-
ance d. Although the stability bounds given in Lemma 3.4 are valid for any d P 0, the actual error and the sparsity level of the
solution to (P1,d) and (P0,d) depend on the choice of d. Ideally, we desire to choose d � kWc0 � uk2; while larger values of d
deteriorate the accuracy of the approximation, as in Lemma 3.4, smaller choices of d may result in over-fitting the solution
samples and, thus, less sparse solutions. In practice, as the exact values of the PC coefficients c0 are not known, the exact
values of the truncation error kWc0 � uk and, consequently, d are not known a priori. Therefore, d has to be estimated, for
instance, using statistical techniques such as the cross-validation [12,65].

In this work, we propose a heuristic cross-validation algorithm to estimate d. We first divide the N available solution sam-
ples to Nr reconstruction and Nv validation samples such that N = Nr + Nv. The idea is to repeat the solution of (P1,d) (or (P0,d))
on the reconstruction samples and with multiple values of truncation error tolerance dr. We then set d ¼

ffiffiffiffi
N
Nr

q
d̂r in which d̂r is

such that the corresponding truncation error on the Nv validation samples is minimum. This is simply motivated by the fact
that the truncation error on the validation samples is large for values of dr considerably larger and smaller than kWc0 � uk2

evaluated using the reconstruction samples. While the former is expected from the upper bound on the approximation error
in Lemma 3.4, the latter is due to the overfitting the reconstruction samples. The following exhibit outlines the estimation of
d using the above cross-validation approach:
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Algorithm for cross-validation estimation of d:

� Divide the N solution samples to Nr reconstruction and Nv validation samples.

� Choose multiple values for dr such that the exact truncation error kWc0 � uk2 of the reconstruction samples is

within the range of dr values.

� For each value of dr, solve (P1,d) (or (P0,d)) using the Nr reconstruction samples.

� For each value of dr, compute the truncation error dv :¼ kWc1;dr � uk2 (or dv :¼ kWc0;dr � uk2) of the Nv
validation samples.

� Find the minimum value of dv and its corresponding d̂r :¼ dr.

� Set d ¼
ffiffiffiffi
N
Nr

q
d̂r.
In the numerical experiments of Section 4, we repeat the above cross-validation algorithm for multiple replications of the
reconstruction and validation samples. The estimate of d ¼

ffiffiffiffi
N
Nr

q
d̂r is then based on the value of d̂r for which the average of the

corresponding truncation errors dv, over all replications of the validation samples, is minimum. This resulted in more accu-
rate solutions in our numerical experiments.

3.6. Algorithms

There are several numerical algorithms for solving problems (P0,d) and (P1,d) each with different optimization kernel, com-
putational complexity, and degree of accuracy. An in-depth discussion on the performance of these algorithms is outside the
scope of the present work; however, below we name some of the available options for each problem and briefly describe the
algorithms that have been utilized in our numerical experiments. For comprehensive discussions on this subject, the inter-
ested reader is referred to [14,62,37,4,69,61].

Problem (P0,d): A brute force search through all possible support sets in order to identify the correct sparsity for the solu-
tion c0,d of (P0,d) is NP-hard and not practical. Greedy pursuit algorithms form a major class of schemes to tackle the solution
of (P0,d) with a tractable computational cost. Instead of performing an exhaustive search for the support of the sparse solu-
tion, these solvers successively find one or more components of the solution that result in the largest improvement in the
approximation. Some of the standard greedy pursuit algorithms are Orthogonal Marching Pursuit (OMP) [55,27], Regularized
OMP (ROMP)[49], Stagewise OMP (StOMP) [31], Compressive Sampling MP (CoSaMP) [48], Subspace Pursuit [24], and Iter-
ative Hard Thresholding (IHT) [26]. Under well-defined conditions, all of the above schemes provide stable and accurate
solutions to (P0,d) in a reasonable time.

In the present study, we employ the OMP algorithm to approximate the solution of (P0,d). Starting from c0,d, (0) = 0 and an
empty active column set of W, at any iteration k, OMP identifies only one column to be added to the active column set. The
column is chosen such that the ‘2-norm of the residual, kWc0,d,(k) � uk2, is maximally reduced. Having specified the active
column set, a least-squares problem is solved to compute the solution c0,d,(k). The iterations are continued until the error
truncation tolerance d is achieved. In general, the complexity of the OMP algorithm is OðS � N � PÞwhere S :¼ kc0,dk0 is number
of non-zero (dominant) entries of c0,d. The following exhibit depicts an step-by-step implementation of the OMP algorithm.
Orthogonal Matching Pursuit (OMP) Algorithm:

� Set k = 0.

– Set the initial solution c0,d,(0) = 0 and residual r(0) = u �Wc0,d,(0) = u.

– Set the solution support index set Ið0Þ ¼ ;.
� While ku �Wc0,d,(k)k2 > d perform:

– For all j R IðkÞ evaluate �(j) = k wjaj � r(k)k2 with aj ¼ wT
j rðkÞ=kwjk

2
2.

– Set k = k + 1.

– Update the support index set IðkÞ ¼ Iðk�1ÞSfarg minj�ðjÞg.
– Solve for c0;d;ðkÞ ¼ arg minc0;dku�Wc0;dk2 subject to Supportfc0;dg ¼ IðkÞ.
– Update the residual r(k) = u �W c0,d,(k)

� Output the solution c0,d = c0,d,(k).
Although we chose OMP in our analysis, we note that further studies are needed to identify the most appropriate greedy
algorithm for the purpose of this study.
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Problem (P1,d): The majority of available solvers for ‘1-minimization are based on alternative formulations of (P1,d), such as
the ‘1-norm regularized least-squares problem
ðQPkÞ : min
c

1
2
kWc � uk2

2 þ kkWck1; ð56Þ
or the LASSO problem [59],
ðLSsÞ : min
c

1
2
kWc � uk2

2 subject to kWck1 6 s: ð57Þ
It can be shown that for an appropriate choice of scalars d, k, and s, the problems (P1,d), (QPk), and (LSs) share the same
solution [62,14,61]. Among others, the problem (QPk) is of particular interest as it is an unconstraint optimization problem.
Numerous solvers based on the active set [54,36], interior-point continuation [21,42] and projected gradient
[25,23,39,13,9,62,3,4] methods have been developed for solving the above formulations of the ‘1-minimization problem.

In our numerical experiments, we adopt the Spectral Projected Gradient algorithm (SPGL1) proposed in [62] and imple-
mented in the MATLAB package SPGL1 [5] to solve the ‘1-minimization problem (P1,d) in (21). SPGL1 is based on exploring
the so-called Pareto curve, describing the tradeoff between the ‘2-norm of the truncation error kWc � uk2 and the (weighted)
‘1-norm of the solution kWck1, for successive solution iterations. At each iteration, the LASSO problem (57) is solved using
the spectral projected gradient technique with a worst-case complexity of OðP ln PÞ where P is the number of columns in W.
Given the error tolerance d, a scalar equation is solved to identify a value for s such that the (LSs) solution of (57) is identical
to that of (P1,d) in (21). Besides being efficient for large-scale systems where W may not be available explicitly, the SPGL1
algorithm is specifically effective for our application of interest as the truncation error kWc � uk2 is known only
approximately.

In the next section, we explore some aspects of the proposed scheme through its application to a 1-D (in space) linear
elliptic stochastic differential equations with high-dimensional random diffusion coefficients.
4. Numerical examples

We consider the solution of a one-dimensional, i.e., D = 1, version of problem (2),
� d
dx

aðx;xÞduðx;xÞ
dx

 �
¼ 1; x 2 D ¼ ð0;1Þ; ð58Þ

uð0;xÞ ¼ uð1;xÞ ¼ 0;
where the stochastic diffusion coefficient a(x,x) is given by the expansion
aðx;xÞ ¼ �aþ ra

Xd

i¼1

ffiffiffiffi
ki

p
/iðxÞyiðxÞ: ð59Þ
Here, fkigd
i¼1 and f/iðxÞg

d
i¼1 are, respectively, d largest eigenvalues and the corresponding eigenfunctions of the Gaussian

covariance kernel
Caaðx1; x2Þ ¼ exp �ðx1 � x2Þ2

l2c

" #
; ð60Þ
in which lc is the correlation length of a(x,x) that prescribes the decay of the spectrum of Caa in (60). Random variables
fyiðxÞg

d
i¼1 are assumed to be independent and uniformly distributed on [�1,1]. The coefficient ra controls the variability

of a(x,x).
We verify the accuracy and efficiency of the present sparse approximation schemes for both moderate and high-dimen-

sional diffusion coefficient a(x,x). These two cases are obtained, respectively, by assuming (lc,d) = (1/5,14) and (lc,d) = (1/
14,40) in (60) and (59). We further assume that �a = 0.1, ra = 0.03 when d = 14, and ra = 0.021 when d = 40. These choices
ensure that all realizations of a(x,x) are strictly positive on D ¼ ð0;1Þ. Table 1 summarizes the assumed parameters for
the two test cases.

For both cases, the spatial discretization is done by the Finite Element Method using quadratic elements. A mesh conver-
gence analysis is performed to ensure that spatial discretization errors are inconsequential.

The solution statistics are computed using the conventional Monte Carlo simulation, the isotropic sparse grid stochastic
collocation with the Clenshaw–Curtis abscissas [66,1], and the proposed sparse approximation techniques. We use the Basis
Pursuit Denoising (BPDN) solver implemented in SPGL1 [5,62] to solve the ‘1-minimization problem (P1,d) and the Orthog-
onal Matching Pursuit (OMP) solver in SparseLab [29] to approximate the ‘0-minimization problem (P0,d). We compare the
errors in the mean, standard deviation, and root mean-squares of the solution error at x = 0.5 using the above methods. The
details of the analysis are reported below.



Table 1
Choices of parameters defining the stochastic description of diffusion coefficient a(x,x) in Eq. (59).

Case �a ra lc d

I 0.1 0.030 1/5 14
lI 0.1 0.021 1/14 40
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4.1. Case I: d = 14

We consider an increasing number N = {29,120,200,280,360,421,600} of random solution samples to evaluate the solution
u at x = 0.5 and, subsequently, to compute the PC coefficients of the solution using ‘1- and ‘0-minimization. These samples
are nested in the sense that we recycle the previous samples when we perform calculations with larger sample sizes. The
nested sampling property of our scheme is of paramount importance in large scale calculations where the computational
cost of each solution evaluation is enormous. We note that sample sizes N = 29 and N = 421, respectively, correspond to
the number of nested abscissas in the level l = 1 and level l = 2 of the isotropic stochastic collocation with the Clenshaw–Cur-
tis rule.

As elucidated in Section 3.3, the accuracy of our sparse reconstruction depends on the mutual coherence l(W), the sample
size N, and the truncation error kWc � uk2 (hence d). In order to reduce the approximation error, we need to reduce
kWc � uk2, which may be done by increasing p and, therefore, P. However, with a fixed number N of samples, an increase
in P may result in a larger mutual coherence and, thus, the degradation of the reconstruction accuracy. Therefore, in practice,
we start by approximating the lower order PC expansions when N is small and increase p when larger number of samples
become available. Notice that such an adaptivity with respect to the order p is a natural way of refining the accuracy of PC
expansions, for instance, when the intrusive stochastic Galerkin scheme is adopted [38]. In particular, in this example, for
sample sizes N = {29,120}, we attempt to estimate the coefficients of the 3rd-order Legendre PC expansion, i.e. p = 3 and
P = 680. For larger sample sizes N, we also include the first 320 basis function from the 4th-order chaos, thus resulting in
P = 1000. Since all of the 4th-order basis functions are not employed, we need to describe the ordering of our basis construc-
tion. We sort the elements of {wa(y)} such that, for any given order p, the random variables yi with smaller indices i contrib-
ute first in the basis.

For each analysis, we estimate the truncation error tolerance d based on the cross-validation algorithm described in Sec-
tion 3.5. For each N, we use Nr � 3N/4 of the samples (reconstruction set) to compute the PC coefficients c1;dr and the rest of
the samples (validation set) are used to evaluate the truncation error dv. The cross-validation is performed for four replica-
tions of reconstruction and validation sample sets. We then find the value d̂r that minimizes the average of dv over the four
replications of the cross-validation samples. Given an estimate of the truncation error tolerance d �

ffiffiffiffiffiffiffiffi
4=3

p
d̂r , we then use all

N samples to compute the coefficients c1,d.
Fig. 2 compares the ‘exact’ PC coefficients with those obtained using BPDN and OMP solvers. We only demonstrate the

results corresponding to sample sizes N = {120,600}. An ‘exact’ solution is computed using the level l = 8 stochastic colloca-
tion for which the approximation errors are negligible in our comparisons. We observe that BPDN tends to give less sparse
solutions compared to OMP. This is due to the facts that (i) the solution is not exactly sparse, i.e., there are many non-zero
(although negligible) coefficients ca, (ii) the ‘1 cost function does not impose a sufficiently large penalty on the small coef-
ficients as does the ‘0 cost function, and (iii) the truncation error tolerance d may be under-estimated. To reduce this issue, a
number of modifications, including the reweighted ‘1-minimization [19,68,47,41], have been introduced in the literature
that are the subjects of our future work. In contrary, OMP results in more sparse solutions as it adds basis function
one-at-a-time until the residual falls below the truncation error. However, as is seen in Fig. 2(b) and (d), a number of small
coefficients are still over-estimated. This is primarily due to under-estimation of the truncation error tolerance d in the cross-
validation algorithm.

The convergence of the mean, standard deviation, and root mean-squares of the approximation error for u(0.5,y) is illus-
trated in Fig. 3(a)–(c), respectively. For the case of stochastic collocation, we apply sparse grid quadrature (cubature) inte-
gration rule to directly compute the mean and the standard deviation. The root mean-squares error of the Monte Carlo and
the stochastic collocation solution are evaluated by estimating the corresponding PC coefficients using sampling and sparse
grid quadrature integration, respectively, and then comparing them with the exact coefficients.

To make a meaningful comparison, for each N, the samples used to compute the solution statistics by the conventional
Monte Carlo, BPDN, and OMP are identical. In this sense, the sparse approximation using ‘1- and ‘0-minimizations may
be viewed as only post-processing steps in the Monte Carlo simulation. As the sample sizes are finite, the estimates of
the PC coefficients c are sample dependent and are in fact random. To demonstrate the convergence of the algorithm with
respect to different sets of samples, we repeat the analysis for two independent sets of N samples and report the correspond-
ing statistics errors with solid and dashed lines. Although for different solution samples of size N the estimates of c and the
solution statistics are not identical, the approximation converges, with large probability, for any set of samples with suffi-
ciently large size N (see Theorem 3.6).

Fig. 3(d) illustrates the statistical estimation of d using the cross-validation approach described in Section 3.5. The
estimation of d is slightly different in BPDN and OPM, this is a consequence of different reconstruction accuracy of these



Fig. 2. Approximation of polynomial chaos (PC) coefficients c of u(0.5,y) using BPDN and OMP for d = 14. (a) BPDN with N = 120 samples, (b) OMP with
N = 120 samples, (c) BPDN with N = 600 samples, and (d) OMP with N = 600 samples. ‘Exact’ coefficients computed from level 8 stochastic collocation with
the Clenshaw–Curtis abscissas (h); BPDN and OMP (�).
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techniques. Moreover, the solution of the BPDN algorithm is less sensitive to small perturbations in the truncation error d
compared to that of the OMP algorithm. This is justified by the fact that the ‘0-norm is highly discontinuous.



Fig. 3. Comparison of relative error in solution statistics at x = 0.5 for the Monte Carlo simulation, isotropic sparse grid stochastic collocation with the
Clenshaw–Curtis abscissas, and the proposed sparse approximations (BPDN and OMP) for d = 14. Two sets of independent random realizations of u(0.5,y)
are generated first and are used for the Monte Carlo simulation, BPDN, and OMP. The solid and dashed lines correspond to the first and second sets of
samples, respectively. (a) Relative error in the mean; (b) relative error in the standard deviation; (c) relative root-mean-squares (rms) error; and (d)
estimation of d using cross-validation: d is computed from dr for which dv is minimum. (Monte Carlo simulation (h); stochastic collocation ð}Þ; BPDN (�);
OMP (O)).
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Remark. Despite the conventional implementation of the stochastic collocation approach where the approximation
refinement requires a certain number of extra samples, the ‘1- and ‘0-minimizations may be implemented using arbitrary
numbers of additional samples, which is an advantage, particularly, when only a limited number of samples can be afforded.
4.2. Case II: d = 40

The objective of this example is to highlight that a sparse reconstruction may lead to significant computational savings for
problems with high-dimensional random inputs. Similar to the analysis of Case I described in Section 4.1, we compute the
solution statistics using multiple numbers of independent samples. More specifically, we evaluate the solution at x = 0.5 for
independent samples of size N = {81,200,400,600,800,1000}. The number of grid points in the level l = 1 and l = 2 of the
Clenshaw–Curtis rule in dimension d = 40 is N = 81 and N = 3281, respectively. To obtain a reference solution, the 3rd order
PC coefficients c of the solution at x = 0.5 are computed using level l = 5 stochastic collocation with the Clenshaw–Curtis rule.

For N = {81,200} we only estimate the coefficients associated with the 2nd-order PC expansion, i.e., p = 2 and P = 861. For
larger sample sizes, we also include the first 639 basis functions from the 3rd-order chaos, thus leading to P = 1500. For each
combination of N and p, we estimate the truncation error d using an identical cross-validation procedure described in Sec-
tion 4.1. Fig. 4 illustrates the estimation of PC coefficients of u(0.5,y) with BPDN and OMP algorithms with N = 200 and
N = 1000. We again note that the recovered solution from the BPDN algorithm is less sparse as compared to that of the
OMP approach, although the over-estimated coefficients (mostly from the second order terms) are indeed small. As the sam-
ple size N is increased, we are naturally able to recover more dominant coefficients on the expansion. Fig. 5 depicts the



Fig. 4. Approximation of polynomial chaos (PC) coefficients c of u(0.5,y) using BPDN and OMP for d = 40. (a) BPDN with N = 200 samples, (b) OMP with
N = 200 samples, (c) BPDN with N = 1000 samples, and (d) OMP with N = 1000 samples. ‘Exact’ coefficients computed from level 5 stochastic collocation
with the Clenshaw–Curtis abscissas (h); BPDN and OMP (�).
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convergence of the statistics of the solution as functions of the sample size N as well as one instance of the estimation of the
truncation error tolerance d. The implementation details are similar to those described in Section 4.1 for the case of d = 14.



Fig. 5. Comparison of relative error in solution statistics at x = 0.5 for the Monte Carlo simulation, isotropic sparse grid stochastic collocation with the
Clenshaw-Curtis abscissas, and the proposed sparse approximations (BPDN and OMP) for d = 40. Two sets of independent random realizations of u(0.5,y)
are generated first and are used for the Monte Carlo simulation, BPDN, and OMP. The solid and dashed lines correspond to the first and second sets of
samples, respectively. (a) Relative error in mean; (b) relative error in standard deviation; (c) relative root-mean-squares (rms) error; and (d) estimation of d
using cross-validation: d is computed from dr for which dv is minimum. (Monte Carlo simulation (h); stochastic collocation ð}Þ; BPDN (�); OMP (O)).
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It is worth highlighting that the computational saving of the present sparse approximations (in terms of the number of
samples needed to achieve a certain accuracy) compared to the isotropic sparse grid collocation is even larger for the higher-
dimensional (d = 40) problem. This is due to the fact that the number of samples needed to recover the solution using ‘1- and
‘0-minimization is dictated more by the number of dominant terms in the PC expansion compared to the total number of
terms P, as in Theorem 3.1.
5. Conclusion

The present study proposes a non-intrusive and non-adapted approach based on the compressive sampling formalism for
the approximation of sparse solution of stochastic PDEs. When sufficiently sparse in the polynomial chaos (PC) basis, the
compressive sampling enables an accurate recovery of the solution using a number of random solution samples that is sig-
nificantly smaller than the cardinality of the PC basis. Sparse PC approximations based on ‘0- and ‘1-minimization ap-
proaches have been introduced and implemented using the Basis Pursuit Denoising (BPDN) and the Orthogonal Matching
Pursuit (OMP) algorithms, respectively. Probabilistic bounds based on the concentration of measure phenomenon have been
derived to verify the convergence and the stability of the present sparse constructions. The performance and efficiency of the
proposed techniques are explored through their application to a linear elliptic PDE with high-dimensional random diffusion
coefficients where the sparsity of the solution with respect to the PC basis is guaranteed. The proposed formalism to recover
the sparse PC expansion of stochastic functions is not restricted to the case of the elliptic PDEs, as its underlying applicability
assumptions are universal. Although the discussions of this work have been focused on the particular case of the Legendre PC
expansions, the proposed framework can be readily extended to other bases such as the Hermite PC expansion [38] (when
the random variables y are standard Gaussian) or multi-wavelet expansions [43].
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