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This paper presents a continuous and discrete Lagrangian theory for stochastic Hamiltonian systems on
manifolds, akin to the Ornstein—Uhlenbeck theory of Brownian motion in a force field. The main result is

to derive governing SDEs for such systems from a critical point of a stochastic action. Using this result,
the paper derives Langevin-type equations for constrained mechanical systems and implements a stochas-
tic analogue of Lagrangian reduction. These are easy consequences of the fact that the stochastic action is
intrinsically defined. Stochastic variational integrators (SVIs) are developed using a discrete variational
principle. The paper shows that the discrete flow of an SVI is almost surely symplectic and in the pres-
ence of symmetry almost surely momentum-map preserving. A first-order mean-squared convergent SVI
for mechanical systems on Lie groups is introduced. As an application of the theory, SVIs are exhibited
for multiple, randomly forced and torqued rigid bodies interacting via a potential.

Keywords variational integrators; Ornstein-Uhlenbeck process; stochastic Hamiltonian systems.

1. Introduction

Since the foundational work dismut(1981), the field of stochastic geometric mechanics is emerging

in response to the demand for tools to analyse continuous and discrete mechanical systems
with uncertainty Bismut, 1981, Liao, 1997 Liao & Wang 2005 Milstein et al,, 2002 2003 Talay,

2002 Vanden-Eijnden & Ciccotfi2006 Lazaro-Cami & Ortega20073ab; Malham & Wiese 2007, Ci-

ccotti et al, 2008. Within this context, the goal of this paper is to develop variational integrators for
the simulation of stochastic Hamiltonian systems on manifolds. For this purpose, the paper develops
a Lagrangian description of stochastic Hamiltonian systems akin to the Ornstein—Uhlenbeck theory of
Brownian motion in a force field. Other approaches to random mechanics include Feynmann’s path
integral approach to quantum mechaniesynmann & Hibbs1981) and Nelson’s stochastic mechan-

ics (Nelson 1985. In the context of the former, there is also a generalization of Noether’s theorem
presented ifMhieullen & Zambrini(2008.

1.1 Variational integrators

Variational integration theory derives integrators for mechanical systems from discrete variational prin-
ciples (/feseloy 1988 MacKay, 1992 Wendlandt & Marsden1997 Marsden & West2001). The
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theory includes discrete analogues of the Lagrangian Noether theorem, the Euler—-Lagrange equations
and the Legendre transform. Variational integrators can readily incorporate holonomic constraints (via,
e.g., Lagrange multipliers) and nonconservative effects (via, e.g., their virtual wokdgdlandt &
Marsden 1997 Marsden & West2001). Altogether, this description of mechanics stands as a self-
contained theory of mechanics comparable to Hamiltonian, Lagrangian or Newtonian mechanics. One
of the distinguishing features of variational integrators is their ability to accurately compute statistics of
mechanical systems, such as in computing Poisactions, the instantaneous temperature of a system,
etc. For example, as a consequence of their variational construction, variational integrators are symplec-
tic (de Vogelaere1956 Ruth, 1983 Feng 1986. A single-step integrator applied to a mechanical
system is called ‘symplectic’ if the discrete- flow map that it defines exactly preserves the canonical
symplectic form; otherwise it is called ‘standard’. Using backward error analysis, one can show that
symplectic integrators applied to Hamiltonian systems nearly preserve the energy of the continuous me-
chanical system for exponentially long periods of time and that the modified equations are also Hamil-
tonian (for a detailed exposition, sétairer et al, 2006. Standard integrators often introduce spuri-

ous dynamics in long-time simulations, e.g. artificially corrupt chaotic invariant sets as illustrated in
Fig. 2.1 ofBou-Rabee & Marsde(R008. The figure compares computations of Poilgcsections of an
underwater vehicle obtained using a fourth-order accurate Runge-Kuta (RK4) method and a second-
order accurate variational Euler (VE) method. In particular, for a sufficiently long time-span of
integration, the RK4 method is shown to corrupt chaotic invariant sets while the lower-order accurate
VE method preserves such structures.

In addition to correctly computing chaotic invariant sets and long-time excellent energy behaviour,
here is mounting evidence that variational integrators accurately compute other statistics of mechanical
systems. For example, in a simulation of a coupled spring—mass laitiesst al. (2004, Fig.1) found
that variational integrators accurately compute the time-averaged instantaneous temperature (mean ki-
netic energy over all particles) over long-time intervals, whereas standard methods (even a higher-order
accurate one) exhibit an artificial drift in this statistical quantity. These structure-preserving properties
of variational integrators are the motivation for their extension to stochastic Hamiltonian systems.

1.2 Main results

In his foundational work, Bismut showed that the stochastic flow of certain randomly perturbed
Hamiltonian systems on flat spaces extremizes a stochastic action. He called such systems ‘stochastic
Hamiltonian systems’ and used this property to prove symplecticity and extend Noether’s theorem to
such systemsRismut, 1981). Mean-squared symplectic integrators for stochastic Hamiltonian systems
on flat spaces and driven by Wiener processes have been devéltiftei et al., 2002 2003.

Bismut's work was further enriched and generalized to manifolds by recent work (Lazaro-Cami &
Ortega, 2007a,b)Lazaro-Cami & Ortegg2007h showed that stochastic Hamiltonian systems on
manifolds extremize a stochastic action defined on the space of manifold-valued semimartingales. More-
over, they performed a reduction of stochastic Hamiltonian systems on the cotangent bundle of a Lie
group to obtain stochastic Lie—Poisson equatidrazéro-Cami & Ortega20073. However, as far as
we can tell, the converse to Bismut’s original theorem, namely that a critical point of a stochastic action
satisfies stochastic Hamilton’s equations, has not been proved. In fact, as pointed_azaby-Cami
& Ortega(20071), a counterexample can be constructed to prove that the converse to Bismut’s theorem
is not true ‘for a certain choice of stochastic action’.

In this paper, we restrict our attention to stochastic Hamiltonian systems driven by Wiener processes
and assume that the space of admissible curves in configuration space is 6f'cléssm the viewpoint
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of randomly perturbed mechanical systems, this latter restriction is reasonable since random effects
often appears, not in the kinematic equation, but rather in the balance of momentum equation as white
noise forces and torques. It should be mentioned that the ideas in this paper can be readily extended to
stochastic Hamiltonian systems driven by more general semimartingales, but for the sake of clarity we
restrict to Wiener processes. Within this context, the results of the paper are as follows.

e For a class of mechanical systems whose configuration space is a paracompact manifold and which
is subjected to multiplicative white noise forces and torques, the paper proves almost surely that a
curve satisfies stochastic Hamilton equations if and only if it extremizes a stochastic action. This
theorem is the main result of the paper.

e The paper derives governing SDEs for stochastic Hamiltonian systems with holonomic constraints
using a constrained variational principle, and for stochastic Hamiltonian systems with noncon-
servative force in the drift vector field using a Lagrange—d’Alembert principle (for deterministic
treatments, se®arsden & Ratiu1999. The paper performs Lagrangian reduction for stochastic
Hamiltonian systems whose configuration space is a Lie group, and provides stochastic Euler—
Poincaé/Lie—Poisson equations for such systems (for deterministic treatment4assaen & Ratiu
1999. These are easy consequences of the fact that the stochastic action is intrinsically defined.

e The paper shows how to discretize variational principles to obtain stochastic variational integra-
tors (SVIs), stochastic RATTLE-type integrators for constrained stochastic Hamiltonian systems and
stochastic Euler—Poinaaitie—Poisson integrators for stochastic Hamiltonian systems on Lie groups
(for deterministic treatments, sédoser & Veseloy 1991 Wendlandt & Marsdenl997 Marsden
et al, 1998 Hairer et al, 2006. In addition, the paper describes how to derive quasi-symplectic
methods for rigid-body-type systems at uniform temperature.

1.3 Organization of the paper

Sufficient conditions for existence, uniqueness and almost sure differentiability of stochastic flows on
manifolds are recalled in Secti@ In Section3, we extend the Hamilton—Pontryagin (HP) principle to

the stochastic setting to prove that a class of mechanical systems with multiplicative noise appearing as
forces and torques possess a variational structure. It should be emphasized (and it is explained in the
section) that the mechanical system could evolve on a nonlinear configuration space and involve holo-
nomic constraints or nonconservative effects in the drift. The HP viewpoint is adopted since it unifies the
Hamiltonian and Lagrangian descriptions of the system. By left trivializing this principle, we also show
how to perform Lagrangian reduction in this stochastic setting for stochastic rigid-body-type systems.

In Section4, SVIs are derived from an abstract discrete Lagrangian and the structure of the re-
sulting discrete-flow map is analysed. In Sectfrwe concretely show how to design a single-step,
stochastic VE integrator for mechanical systems whose configuration space is a Lie group using a sim-
ple stochastic discrete HP principle. If the configuration space is flat, the resulting SVIs are in one-to-one
correspondence with symplectic integrators for stochastic Hamiltonian sysésnsu 1981; Milstein
et al, 2002 2003 and, with the addition of dissipation in the drift term, in one-to-one correspondence
with quasi-symplectic methods for Langevin-type systems. These symplectic and quasi-symplectic in-
tegrators have been numerically tested and shown to possess excellent properties for computing energy
behaviour and statistics of mechanical systems governed by Langevin-type equatidvigstse &
Tretyakov(2003 2004).

Our own simulations confirm those findings. A sample of such results is provided inl.Fig.
compares an SVI to standard, presumably nonvariational methods on a ballistic pendulum at uniform
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FiG. 1. Ballistic pendulum at uniform temperatui@ou-Rabee & Owhadi2007). Plots of the mean instantaneous temperature
(kinetic energy) of a ballistic pendulum computed using an SVI, EEM and IEM for time btapsndicated. The correct temper-

ature is indicated by the solid line. Observe that the EEM and IEM schemes artificially heat and cool the system, respectively. A
key feature of the ballistic pendulum is that the diffusion and drift matrices associated to the momentums are degenerate, yet the
system is still at uniform temperature.

temperatureou-Rabee & Owhad2007). The figure shows that an SVI correctly computes the tem-
perature of the system (defined as the mean of the instantaneous temperature with respect to realiza-
tions), whereas explicit Euler—Maruyama (EEM) and implicit Euler—Maruyama (IEM) schemes do not.

All these methods are first-order mean-squared convergent. This computation suggests that an SVI has
favourable energy behaviour, whereas EEM and IEM artificially heat and cool the system, respectively.
On the other hand, this paper focuses on SVI theory and the structure-preserving properties of SVIs.

In Section6, as an application we explain how one can add multiplicative white noise forces and
torques to multiple rigid bodies in a fashion that preserves variational structure. With the addition of
dissipation, these become Langevin-type equations. An SVI is provided for such systems.

It is easy to check first-order accuracy in the mean-squaredqosense using standard stochastic
numerics (see, e.dalay, 1995 andMilstein & Tretyakoy, 2004 for an expository treatment of stochas-
tic numerics). We address this matterBou-Rabee & Owhadj2008. In the reference3alay (1995
2002 andMilstein & Tretyakov(2004), one mainly considers the approximation of statistics of the law
of the solution (moments at finite times, invariant measures, etc.) which is the aim of Monte Carlo or
ergodic simulations. Those works do not emphasizesstimates because in practicé-estimates are
not necessary for convergence in law since the exact solution and the discretization scheme may not live
on the same probability space. Furthermore, the estimates on the approximation of statistics that can
be deduced froni2-estimates are often crude and do not lead to the true convergence rates. Finally,
multiple stochastic integrals cannot be simulated in a pathwise sense.

2. Stochastic flows on manifolds

Some standard results on flows of SDEs on manifolds are reviewed here for the reader’s convenience.
The reader is referred to the following textbooks on the subject for more detailed expdsitianthy
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(1982, Emery(1989, Ikeda & Watanab€1989 andKunita (1990. This section parallels the treatment
of deterministic flows on manifolds found in Chapter 4Adfrahamet al. (2007).

We start by introducing notation for deterministic vector fields on manifolds which are an important
component of SDEs on manifolds. Lt be ann-manifold. Recall that a vector field dv is a section
of the tangent bundl& M of M. The set of allCX vector fields orM is denoted byxk(M).

The notion of a probability space is introduced in order to extend the definition of a dynamical
system to incorporate noise. A stochastic dynamical system consists of a base flow on the probability
space which propagates the noise and a stochastic flavw atich depends on the noise.

DEFINITION 2.1 (Stochastic dynamical system) A ‘stochastic dynamical system’ consists of a base
flow on a probability spacéQ, F, P) and a stochastic flow on a manifod. The ‘base flow’ is a
P-preserving mag: R x Q — Q, which satisfies

1. 6p=idg: 2 — Q is the identity onQ;

2. foralls, t € R, the group propertys o 6 = Os4+.

Given times O< r < s < t, the ‘stochastic flow’ orM is a mappt s: 2 x M — M such that

1. for almost alw € Q, the map(s, t, w, X) — ¢t s(w)x is continuous irs, t andx;
2. gpss(w) =idy: M — M is the identity map oM for all s € R;
3. ¢ satisfies the cocycle property

¢t,s(95(w)) o psr(w) = Pt.r (o).

This paper is concerned with stochastic dynamical systems that come from ‘stochastic laws of
motion’, i.e. ones whose stochastic flows define solutions of SDEs. The Stratonovich definition of
stochastic integrals is adopted to extend SDEs from flat spaces to manifolds, the main advantage of the
Stratonovich approach being that the chain rule holds for the Stratonovich differential. Consider a man-
ifold M modelled on a Banach spaéeand vector fieldsX; e 3€k(M) fori =0,...,m. Let F be
a nondecreasing family af-subalgebras ofF and let(W (t, w), %t), i = 1,..., m, be independent
Wiener processes for & t < T. In terms of these objects, the Stratonovich SDE that the paper
considers takes the form

dz = Xo(2)dt + > Xi(2) o dW, 2(0) = zo. (2.1)
i=1

Xo is referred to as the ‘drift vector field’ and;, i = 1,..., m, are the ‘diffusion vector fields’. A
‘Stratonovich integral curve’ ofZ.1) is aC%-mapc(-, ): [0, T] = M, which satisfies

t m t
ct,w) =120 +/0 Xo(c(s, w))ds + Z/o Xi (c(s, )) o dWi (s, w),
i=1

forallt € [0, T]. Uniqueness of solutions t@ (1) will be defined in the pathwise sense.

DEFINITION 2.2 (Pathwise uniqueness) Letbe a Stratonovich integral curve o2.(). ‘Pathwise
uniqueness’ ot means that it: | — M is also a solution toZ.1) on the same filtered probability
space with the same Brownian motion and initial random variable, then

P (c(t, ) = &(t, »), Vt € [0, T]) = L.
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In the following, we define the mean-squared norm on the model dpagith the understanding
that this notion can be extendedNbusing a local representative.

DEFINITION 2.3 (Mean-squared norm) The mean squared norfit & x Q — E is given by
1 O, @)l = B (x, 0)) Y2

As is standard, for the rest of the paper the explicit dependence of stochastic maps on the point
o € Q will usually be suppressed. With these definitions, one can state the following key, but standard,
theorem Elworthy, 1982 Emery, 1989 lkeda & Watanabgl 989 Kunita, 1990).

THEOREM 2.4 (Existence, uniqueness and smoothness) M.die a manifold with model spaceg.
Suppose thak; € xK(M),i = 0,...,mandk > 1, are uniformly Lipschitz and measurable with
respecttox € M. Let| = [0, T]. Then the following statements hold.

1. For eactu € M, there is almost surely @%-curvec: | — M such that(0) = u andc satisfies
(2.)forallt € I. This curvec: | —> M is called a ‘maximal solution’.

2. cis pathwise unique.

3. There is almost surely a mappifig | x M — M such that the curve,: | — M defined by
cuo(t) = F(u) is a curve satisfying.1) for all t € |. Moreover, almost surel§ is CK in u and
CYint.

3. Stochastic HP mechanics

In this section, a variational principle is introduced for a class of stochastic Hamiltonian systems on
manifolds. The stochastic action presented is a sum of the classical action and several stochastic inte-
grals. The key feature of this principle is that one can recover stochastic Hamilton equations for these
systems. Roughly speaking, this is accomplished by means of taking variations of this action within the
space of curves only (not the probability space) and imposing the condition that this “partial differential”

of the action must be zero.

3.1 Setting

The setting is a paracompact, configuration manif@ldn the context of this paper, a stochastic Hamil-
tonian system is specified by a Hamiltonien T*Q — R andm deterministic functiongj: Q —» R
fori = 1,...,m. Define the Lagrangiarf: TQ — R to be the Legendre transform ¢f. Let
(9, F, P) be a probability space. Fix an interval, ] c R. To describe the stochastic perturbation,
we introduce a probability spa¢e, 7, P) and(W; (t), Ft)te[a,b), fori = 1,..., m, where{W; }im:1 are
independent, real-valued Wiener processes dhqdis the filtration generated by these Wiener
processes.

3.2 Stochastic HP principle

The paper adopts an HP viewpoint to develop a Lagrangian description of stochastic Hamiltonian sys-
tems. The HP principle unifies the Hamiltonian and Lagrangian descriptions of a mechanical system
(Yoshimura & Marsden2006ab; Bou-Rabeg2007 Bou-Rabee & Marsder?009. The classical HP
action integral will be perturbed using deterministic functipnsQ — R fori = 1, ..., m. Roughly
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speaking, in the stochastic context the HP principle states the following critical point condition on
TQaT*Q:

b m
(s/ |:£(q,v)dt+2yi(q)odwi +<p,2—?—u>dt:| —0,
a

i=1

where(q(t), o(t), p(t)) € T Q&T*Q are varied arbitrarily and independently, with end point conditions

g(a) andq(b) fixed. This principle builds in a Legendre transform, stochastic Hamilton equations and
stochastic Euler—Lagrange equations. The action integral in the above principle consists of two Lebesgue
integrals with respect tbandm Stratonovich stochastic integrals with respectMofori = 1,..., m.

This action is random; i.e. for every sample painte Q one will obtain a different, time-dependent
Lagrangian system. However, each system possesses a variational structure which we will make precise
in this section. For a deterministic treatment of time-dependent continuous and discrete Lagrangian
systems, the reader is referredMlarsden & Wes(2007).

DEeFINITION 3.1 (Pontryagin bundle) The ‘Pontryagin bundle’ of a manifddis defined aPM =
TM@ T*M.

The Pontryagin bundle is a vector bundle o@whose fibre at] € Q is the vector space;Q =
TqQ @ Ty Q. In terms of the Pontryagin bundle, we can define the path spaces of the stochastic
Hamiltonian systems in question.

DEFINITION 3.2 (Path spaces) Fixing the interval p] andqa, gy € Q, define the ‘path space’ as

C(PQ) = {(a,v, p) € C°(a, b], PQ)lg € C([a, b], Q), 4(@) = Ga, 4(b) = ).

Let®: Q x C(P Q) — R denote the ‘stochastic HP action integral”:

b m dg
&(q,v, p) = / [ﬁ(q, o)dt + D 7i(q) o dWE (1) + <p, i v>dt} .
a i=1

The HP path space is a smooth infinite-dimensional manifold. One can show that its tangent space at
¢ = (q,v, p) € C([a, b], g1, g2) consists of maps = (q, v, p, 9, dv, Ip) € C°([a, b], T(P Q)) such
thatéq(a) = oq(b) = 0 andq, dq are of clasCt. Let(q, v, p)(-, €) € C(P Q) denote a one-parameter
family of curves inC that is differentiable with respect to Define the differential o& as

0
d® : (éq, 51)7 5p) = a 6(607 q(ta 6)’ D(ta E): p(t: 6))'6:0 5

where

0 0 0
aq(t) = e qt, e)le=0, d9(@) =dq(b) =0, dv(t) = —v(t,€)le=0, pt) = —p(t,€)le=0.
€ o€ oe

In terms of this differential, one can state the following critical point condition.

THEOREM 3.3 (Stochastic variational principle of HP) L&t T Q — R be a Lagrangian ofl Q of
classC? with respect tay ando and with globally Lipschitz first derivatives with respectt@ando. Let
7i: Q = R be of classC? and with globally Lipschitz first derivatives for= 1, ..., m. Then, almost
surely,
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a curvec = (q, v, p) € C(P Q) satisfies the stochastic HP equations

dg =odt,
dp = @ﬁdt+z, 13% o dW (3.1)
p=5

if and only if it is a critical point of the functio®: Q x C(PQ) — R, i.e. d&(c) =

Proof. Let us first prove almost surely that a critical point of the function satis8#d3. (The differential
of & is given by

d@(c)-(éq,éu,ép):/ [— 5qu+2— g o dWi

a
oL dg dq
+%5vds+<§p,a—v>ds+<p,5a—5v>dsj|

One can use a dominated convergence argument to show that differentiation and stochastic integration
commute in the above stochastic integralsyjaare of clas<C? fori = 1,..., m, and the curves are
continuous. Consider the term involvidg. Sincedp is arbitrary and the integrand is continuous, the
kinematic constraint holds:ggdt = . (This follows from the basic lemma that ff g € C([a, b], R)

andg is arbitrary, thenfa:J fHgt)dt = 0 < f(t) =0Vt € [a, b].) Similarly, the Legendre
transform is obtained from th& termoL/ov = p.
Collecting the variations with respectdq in the differential gives

bl oL dg =, 9yi
= + —)ds+ > - W |
/a [aq oqds <p,5dt>ds 2. 2q oq o dW,

The first two terms are standard Lebesgue integrals and thenl&etms are Stratonovich stochastic
integrals. The following definition is introduced for notational convenience.

DEFINITION 3.4 LetE = R". Given f; € CO([0, T], E*) and f, € C1([0, T], E), define

t t d 2
/wnna:ubh%—/<n, %stemﬁl
0 0

Using this definition and the boundary conditiofg(a) = dq(b) = 0, the following function
I: C(q1, 92, [a, b]) x C1([a, b], T Q) — Ris introduced:

b
I(q,v,p,f):/ [<—ds Z—odW—dp, >}

i=1

so that

b
(g, v, p,éq):/ {% 5qu+<p, >ds+2% 5qodvv.]
a
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In the following, it is shown that ifl (q, v, p, f) = O for arbitrary f of classC?, then(q, v, p)

satisfy @.1).
Let {U,, g,} be a partition of unity orP Q. Expandl in terms of this partition of unity:

| = /b g, 0, p) 0 dt+mayi daw; —d f
_2 oL 2 2 odw — A
-/, 9.(q,v, p a9 25 [ p

Since the curveg, v, p) are compactly supported, only a finite number ofghere nonzero. For each
0, honzero, the terms in the integral can be expressed in local coordinates.

We will selectf to single out theg th component of the covector field in Introduce the following
functionh: R — R for this purpose:

t
ht) =2- - —.
® € €2

Observe thah(0) = 0, h(e) = 1 andh’(¢) = 0. Let{e; }?:l be a basis for the model space@f Now,
fix j and definef, € C1([a, b], T Q) in local coordinates as follows:

h(s—a)ej, if a<s<a+e,

g, if ate<s<t—e,
fé(S)z .

ht —s)ej, if t—e<s<H,

0, if t<s<h.

Introduce the following label to simplify subsequent calculations:
oL AL
A(s) = (E(‘“S)’ v(s)ds+ D 6—q'(q<s)> o dWi (s) — dp(s)) g
i=1
In terms of A(S), one can write
t—e t

@0, P, ff)zz[/ -0 OAG + [ 6OAG) + h(t—s)%(s)A(s)]

a ate t—e

ate

We will show in the mean-squared norm (cf. Definiti2:3)
t
lim | fo) = L AS) = | *. 3.2
lim 1@ v, p. fo) ;/a 9o A(S) (3.2)

Using this result and the Borel-Cantelli lemma, one can deduce that there{exjdtsat converges to
0 such that (g, v, p, f¢,) almost surely converges td. It follows thatl * = 0 almost surely.
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We proceed to prove3(2). Since(a + b)? < 2a? + 2b?,

t
Z/ 9 A®) — 1@, 0, P, fe)

2

2

a+e t
> [ a-hc-a)A9+ [ a-ht-9sA0

t—e

2

2
<2 +2

a+te
> [ a-he-aysAe

t
> [ a-na-sne.A®

We will only show how to bound the first term since bounding the second term is very similar. By
continuity of(q, v, p), one can pick small enough so that the support(gf v, p) lies in a single chart.
On this chart, sincq is differentiable, the Stratonovich—Ito conversion formula implies that

a+ea_ a+Ea.
/ ﬂ.gqodwi:/ D s dWi,
a oq a oq
fori =1,..., m. Therefore,

2

a+te
> [ a-he-apeas)

ate oL 2 9y;
1-h(s— =d “Zaw —dp ) - e
| a-ne a))(aq S+2 5q M —ap) e

2

2 2

<3

ke oL
/a 1- h(S— a))wds

m
+3>°

2

a+e ayl
/a (1—h(s—a) 2w

+3

ate
[ a-ne-andp-e

Since% is continuous ors € [a, a + €], the first term can be bounded:

2 M2¢2

9

AN

a+e oL
/a a- h(s—a))a—qjds

Similarly, by the Ito isometry and sinc«%— is continuous ors € [a, a + €], the secondn terms can
similarly be bounded; e.g. théh Stratonovich integral can be bounded as follows:

a+e . 2 a+e 2
/ (1= h(s—a) L aw, H —E / M
a oq! a

oyi |2
(1—h(s—a))a—qj ds )< —.

5
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Using Definition3.4and the integral mean-value theorem, the final term can be bounded as well:

wherec; € [0, 1] is a real constant. Singgj is of classC?, ase — 0 this term vanishes. Sindeis
arbitrary, we have prove®(2). Therefore, almost surely, @is a critical point of®, then d5(c) - w =0
for all w € TcC(P Q), and hence satisfies the stochastic HP equations.

On the other hand, almost surelycikatisfies 8.1), then it is a critical point of5. This direction is
easy to confirm, since as a solution to the stochastic HP equatisres measurable diffusion process.
In fact, this direction is similar to the one that Bismut originally established, namely, that a solution
of stochastic Hamilton equations extremizes an action function, although the stochastic action used by
Bismut has a different domain from the stochastic action used in this pBerh(it 1987). O

As a consequence of the stochastic HP equations that the critical poititalafost surely satisfy,
it is easy to confirm that these critical points are adapted to the filtrefioaf the driving Wiener
processes.

2 2

a+e s—ate a+e
/ (A—-h(s—a))dp- g H (1 —=h(s—a))pj (s)|s;a +/ pj(s)h’(s — a)ds

= - pj@) + pj@+cie)%

COROLLARY 3.5 If z € C(P Q) extremizesb, then it is adapted to the filtratioift )t > of the driving
Wiener processes.

Equations 8.1) are a stochastic differential algebraic system of equations. Assuming that one can
eliminatev using the Legendre transform, these equations can be viewed as a Cauchy problem. This pa-
per is primarily concerned with forces or torques that appear as white noise in the balance of momentum
equations, which explains the choicejef= y;(q). Observe that by the Ito—Stratonovich conversion
formula, the Ito modification to the drift is equal to 0, and hen8el)(can be written in Ito form as

dg = o dt,

oL 2 9yi
dp= —dt + > ——dW,
P= 24 ;aq .

o

T o’

In what follows, structure-preserving properties of the flow map defined by the maximal solution of
these equations ovea,[b] will be investigated. First, observe that because of the smoothness conditions
assumed in Theore® 3, a solution almost surely exists and is pathwise uniqueaph][by the results

in Section2. Wheny; is constant foi = 1,..., m, the reader is referred to the following texts for
deterministic treatments of symplecticity, momentum map preservation and holonomically constrained
mechanical systems: sdtarsden & Ratiu1999 andMarsden & Wes{2001).

3.3 Symplecticity

Assuming that one can eliminateusing the Legendre transform, the stochastic HP equations define
a ‘stochastic flow’ on the symplectic manifold@ *Q, x), wherex is the canonical symplectic form
(Marsden & Ratiy 1999. We denote this flow byr: T*Q — T*Q. With this assumption and in a
more general context, Bismut extended the variational proof of symplecticity and Noether’s theorem to
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stochastic Hamiltonian systemBigmut 1981). In fact, one does not need to prove both directions of
(3.3 to perform this extension. These proofs are repeated here in the context of stochastic Hamiltonian
systems driven by Wiener processes for the reader’s convenience and for completeness.

The variational proof of symplecticity will be used to show that this flow preserv@darsden &
Ratiy, 1999. By Theorem2.4, assuming the Lagrangian is sufficiently smodr, T*Q — T*Q is
almost surely differentiable.

The idea of the proof is to restrig to the space of pathwise unique solutions, i.e. to define
6 = B|solutions ON the same filtered probability space with the same Brownian motion, this solu-
tion space can be identified with the set of initial conditions; i.e. this restricted action can be expressed
as®: T*Q — R. For each initial condition, by Theore@4 there exists a pathwise unique solution
almost surely. One then computes:d

d&(q(a), p(a)) - (9q(a), sp(a)) =

Vi d oL
/[( d+z ! dVVi—dp)-5q+5p~(d—?—v)ds+(——p)~5vdt}+(p,5q>|g.
i=

The integral in the above vanishes sinsés restricted to solution space. The boundary terms define in
local coordinates the canonical 1-foghon T*Q. Computing d& gives almost surely conservation of
the canonical symplectic form.

THEOREM 3.6 (Conservation of stochastic symplectic form) Provided that one can eliminatimg
the Legendre transform, the flow &.Q) preserves the canonical symplectic form almost surely.

3.4 Noether's theorem

In what follows, we review for completeness Bismut’s extension of Noether's thedemyt 1987).
Let G be a Lie group with Lie algebrg. The ‘left action’ of G on Q is denoted by?: G x Q — Q.
The ‘cotangent lift’ of this action is likewise denoted B/ " Q: G x T*Q — T*Q:

@' Q(h,q, p) = (@(h,q), (Dg@(h, g) ™" - p).

The corresponding ‘infinitesimal generators’ & Q — T*Q and¢T'?: T*Q — T(T*Q) and by
definition we have

* d *
¢, p) = [¢(eXD(S§) Dls=0. <T@, p) = [T Uexp(sd), 0, p)ls-o.
This action gives rise to the following momentum m&pr *Q — g*:

J@, p) - ¢ = (p,<°(a, p)).

The following conservation law follows i is infinitesimally invariant with respect to th@-action.
We remark in passing that infinitesimal invariancedofollows from left invariance of the stochastic
HP action with respect to th@-action.

THEOREM 3.7 (Stochastic Noether theorem) L@tbe a Lie group. If® is infinitesimally symmetric
with respect to the left (or right) action @, then the corresponding momentum map is conserved
almost surely; i.eJ = (p, £o(q)) is a conserved quantity under the flow 8f1).
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Proof. This proof is terse. Consider the differential®fin the direction of™"<:
dé(a(@), p@) - <" ?(a(a), p@) = (p, £, P)IY.
Moreover, infinitesimal symmetry implies that
d& - ¢T(a@), p@) =0 = JI(@(b), pb) -¢ - I@(@), p@) - & =0,
and hencel is conserved under the flow sinéés arbitrary. O

3.5 Holonomic constraints

The following results will require the proof of the converse of Theof&f® The setting in this part

is ann-manifold Q and a stochastic Hamiltonian system with holonomic constraint. To be specific,
suppose that the motion of the mechanical system is given by a constraint subm&rifol@l defined

asS = g~1(0), whereg: Q — RK, k < n, g is smooth and 0 is a regular value @f A stochastic
Hamiltonian system is specified by an unconstrained Hamiltohiait *Q — R andm deterministic

functionsyj: Q — Rfor j = 1,...,m. These functionsf,yj}T:l specify the structure of the noisy
forces or torques. Lef: T Q — R be the Legendre transform éf. Set£S = £|TsandyjS =yjlsfor
j=1...,m.

As opposed to using generalized coordinatesPd® we wish to describe the mechanical system
using constrained coordinates #Q and introduce Lagrange multipliers to enforce the constraint.
However, because of the stochastic component of the action, one cannot introduce Lagrange multipli-
ers in the standard way. Instead, we will introduce the Lagrange multiplier as a semimartingale using
Definition 3.4. In particular, consider the following constrained variational principle:

b
5(@5+/ (di,g)) -0,
a

where using Definitior3.4 and the boundary conditiongq(a)) = g(q(b)) = 0,

b t
/<dz,g>=—/ <z,d—g>dt, te[abl.
a a dt

In this case/ (t) is a Lagrange multiplier dual t§g(q(t)) fort € [a, b], and we assume thatitis of class

CY. The corresponding equations of motion in constrained coordinates are obtained in a similar fashion
to (3.1). To be precise, fixja, gy € Sand seC(Q) = {q € C1([a,b], Q) | q(@) = ga, q(b) = gp).

Define a modified constraint function on the space of path®a€(Q) — C9([a, b], R¥) defined
pointwise asb(q)(t) = d—dt(g(q(t))). In terms of these, one can prove the following equivalence.

THEOREM 3.8 (Constrained, stochastic HP principle) Given the constrained and unconstrained action
integrals®c: C(PS x Q —» R and&: C(PQ) x Q — R and the modified constraint functich :

C(Q) — CO(0, T], R¥), let ((-, -)) denote theL o-inner product orC°([0, T], R¥). Then the following

are equivalent:

(i) ze C(P9 extremizesb., and hence, satisfies stochastic HP equations (cf. The®/@m
dg = o dt,

oy S
dp = 2£2(q. v)dt + 3Ty 2o (@) 0 AW, (3.3)

S
p=%(q,0).
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(i) z=(q,v, p) € C(PQ) andA e CO([0, T], R¥) extremize the augmented actién(z, 1) =
&(2) + (4, 2(@))).
(i) z= (g, v, p) € C(PQ)andi e C°(0, T], RK) satisfy the constrained, stochastic HP equations

dg =odt,
dp = 2@, 0)dt + XLy ZH@) o W) + (@) - d,
) (3.4)
p=2£(@,v),
L@ =0.

From this equivalence, it follows that the flow d3.4) is mean-squared symplectic. For a proof
of this theorem and more exposition, the reader is referrd@btoRabee & Owhad{2008. With the
modified constraint functiond, it is a standard application of the Lagrange multiplier theorem.

3.6 Nonconservative effects

Nonconservative effects are incorporated by considering the ‘Lagrange—d’Alembert—Pontryagin prin-
ciple’. In this principle, the effect of a nonconservative force appears as virtual work. Consider a force
field F: TQ — T*Q. Then, the Lagrange—d’'Alembert—Pontryagin principle is given by

b m d b
5/ |:E(q,v)dt+2yi(q)odV\/i +<p,d—?—v>dt:|+/ F(g,v)-dqdt =0.
a ) a

This principle provides a simple way to add dissipative effects into the drift which, e.g., appear in the
standard Langevin equations for particles.

3.7 Lagrangian reduction

For background and exposition on Lagrangian reduction in the deterministic setting, the reader is re-
ferred toMarsden & Scheurl¢1993 andMarsden & Ratiu(1999. Suppose tha@ is a Lie groupG

with Lie algebrag. In this context, one can define a ‘left-trivialized Lagrangian’ by using the left action

of G to left trivialize £. One does this by transforming a po{git), »(t)) € TGto (g(t), £(t)) e Gx g

via the relation between the velocity gft) € G and the ‘body angular velocity’ & € G given by

E(t) = gt)"to(t) € g. Denote byt: G x g — R the deterministic left-trivialized Lagrangian defined as
[(g(t), (1)) = L(g(t), g(t)E(t)). The variational principle associated witlis the ‘left-trivialized HP
principle’, which can be written as

b m d
5/ [I(g,f)dt + 719 o dW +<u, g1 —§>dt} =0.
a i=1

In this principle, the Lagrange multipliex € g* is the body angular momentum. For more details
on the geometry of this principle in the deterministic setting, the reader is referf@dudrabee &
Marsden(2008 andBou-Rabed2007. The resulting equations are obtained by taking arbitrary vari-
ations with fixed end points og. For a functionU: G — R, define its ‘left-trivialized differential’,



STOCHASTIC VARIATIONAL INTEGRATORS 435

Ug e g, as
ou
Ug -7y := <%,TL97]>, neEg. (3.5)
Using this definition, one can write the ‘stochastic left-trivialized HP equations’
dg
= 3.6
= 9% (3.6)
m
du =lgdt + D> (7i)g o dWi (@, 1), (3.7)
i=1
ol
=, 3.8
H=27 (3.8)

By eliminating¢ using @.8), one obtains an SDE d& x g*. The kinematic constraint in this context is
referred to as the ‘reconstruction equation’. We summarize this section with the following theorem.

THEOREM3.9 (Stochastic left-trivialized HP principle) Consider a mechanical system on a Lie Group
with left-trivialized Lagrangianh: G x g — R and deterministic functiong: G — Rfori =1,..., m.
Let s denote the left-trivialized action given by

b m d
S=/ [I(g,f)dtJrZyi(g)odV\/i +<u,g‘1d—?—é>dt].
a

i=1
Almost surely, the stochastic HP principle on a Lie group (cf. The@dyis equivalent to the stochastic
left-trivialized HP principle:
0s=0,

where the curves
gt)eG, <((eg, w)eg’, telab],

can be varied arbitrarily witldg(a) = og(b) = 0. Almost surely, a curve is a critical point of the
left-trivialized action and only if it satisfies the left-trivialized HP equations given3§3.9).

4. Stochastic variational integrators

The standard approach of deriving variational integrators is extended to the stochastic context in this sec-
tion; see, e.gMarsden & Wes{(2001). The cornerstone of variational integration theory is the discrete
Lagrangian. In this section, we develop and analyse integrators from an abstract discrete Lagrangian
that takes values on the configuration space squared. In the subsequent sections, discrete Lagrangians
will be specified and the associated time integrators analysed from the HP viewpoira, bafid N

be given and define the fixed step size- (b — a)/N andty = hk+a,k=0,..., N.

DEFINITION 4.1 Consider a mechanical system with given discrete Lagrangja® x Q — R. Let
6. Q - Q,t € [a, b], denote the base flow on the probability space (cf. Definifid). Givenw € Q2
let the approximant to the Stratonovich integrals will be denoted by

m et
Bt Ok Grs @~ D [ 1(@(0) 0 WAL 12 (0).
=17/
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The associated ‘stochastic discrete Lagrangian® x Q x Q x Q — R is defined as

La(tk, @, Ok, Ok+1) = £(0k, Ok+1) + Ba(tk, Ok, Gk+1, @).

Fixing the interval §, b] andqga, gp € Q, define the ‘discrete path space’ as

Ca(Q) = {da: {tk}p_o = Ql0u(a) = a, da(b) = Gp}.
Let®q4: Q x Cq(Q) — R denote the ‘stochastic action sum’:

N-1

Ga(@, dd) = Y Laltk, o, Gk, Gy)h.
k=0

The ‘discrete stochastic Hamilton’s principle’ states that the path that the mechanical system takes
in Cq is one that extremize®q(w, -) subject to fixed end point conditionp = q(a) andgn = q(b).
By discrete integration by parts (reindexing),

N-1

dGa(, dd) - {00k} = D (DaLaltk, @, Gk, Gkt1) + Dald(t-1, @, Gk—1, Gk)) - 90k
k=1

+DsLd(to, @, o, 01) - 900 + D4l a(tn-1, @, ON-1, ON) - ION-
Using the end point conditionk&)g = dqn = 0, one obtains

N-1

d64(w, da) - {50k} = D (D3Ld(tk, @, Gk, Gk+1) + DaLd(tk—1, @, Gk-1. Gk)) - 60k
k=1

Stationarity of this action sum implies the following ‘stochastic discrete Euler—Lagrange’ equations:

D3Lq(tk, @, Ok, Ok+1) + Dald(tk—1, @, Ok—1, 0k) = O,

fork = 1,..., N — 1. The resulting update scheme is not self-starting. To initialize the method, one
needs to providégo, q1) € Q x Q as opposed to a poilitp, vg) € T Q.

4.1 Symplecticity

As in the continuous theory, symplecticity follows from restrictiig(w, -) to pathwise unique solu-
tions of the stochastic discrete Euler-Lagrange equatibasSince pathwise unique solutions can be
parameterized by initial conditions, we regard the restricted actigija® x Q x Q — R. Taking its
first variation gives

N-1

dGa(e, 0o, G) - (900, 601) = > (D3La(t, @, Gk, Ghk1) + Dala(tk—1, @, Gk—1, Gk)) - 90k
k=1

+ DsLd(to, @, do, d1) - 6o + DaLd(tn-1, @, ON-1, ON) - SON-
Because of the restriction to solution space, the sum vanishes and the boundary terms remain:

d& (e, 9o, q1) - (990, 6G1) = D3Ld(to, @, o, G1) - 9qo + DaLa(tn—1, @, Gn-1, AN) - ION.-
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These boundary terms define left and right one forms as follows:
O™ (t, @, Gk, Gk+1) - (60k, d0k+1) = DaLa(tk, @, Gk, Gk+1) - Ok+1,

0~ (tk, @, Ok, Gk+1) - (60K, 50k+1) = D3Ld(tk, @, Ok, Ok+1) - 50k,
which from L4 = 0 satisfy
dot =-do~ = Q.
Applying the second exterior derivative ¢y implies that
Q(tN-1, @, AN-1, ON)(FUN 1, 0N (6 _1. 903) = 2 (to, @, G, G1) (90, ) (30, G,

since #®4 = 0. Hence, the discrete flow almost surely preserves the symplecticorm

4.2 Discrete momentum map

Consider the left action of a Lie Group on Q. If the stochastic discrete Lagrangian is infinitesimally
symmetric, then the associated momentum map is preserved. A sufficient condition for this is that the
discrete Lagrangian is invariant with respect to the left actioB of he proof is sketched out here.

Let the action on the discrete configuration manifold be denotefigyo: G x Q x Q - Q x Q
and defined by

DQxQ(9, 1, d2) = (P(9, q1), (9, G2))-
The associated infinitesimal generator is denotedidyo: Q x Q — T(Q x Q), and by definition

d
¢oxq(L, O2) = d—SGDQx Q(exp(s<), A1, 2)|s=0.

Assume that_q is infinitesimally symmetric; i.e.
dLg-Coxo =0T -Coxq+ 0~ - Egxq = 0.
By this condition, the left and right discrete momentum malps,J~: Q x Q — g*, namely
JF.¢=0% oxq.
J7-{=-0"-<oxq;

are equal; i.eJ* = J~ = J. Consider the restricted action sum and compute its differential in the
direction of the infinitesimal generator to obtain

d& (e, 0o, G1) - £Qx (0o, G) = @ (to, . 0o, Q1) - £Qx (T, )
+O0T (tN-1, ®, AN-1, ON) - SQxQ(AN-1, AN),
which can be rewritten in terms of the momentum maps as
d&d(®, do, ) - £ox (G0, t1) = —I ™ (to, @, do, Q) - & + I* (tn-1, @, An-1, N - & = 0.

Since the left and right momentum maps evaluated at the same point are equal, the momentlm map
is preserved under the discrete flow.
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5. Stochastic VE integrator

In the deterministic setting, the HP context provides a practical way to design discrete Lagrangians
and obtain one-step methods @ or T*Q as pointed out irBou-Rabeg2007). In this section, we
examine VE methods extended to the stochastic context following the continuous stochastic HP theory
laid out in Sectior?.

5.1 Stochastic VE oR"

To discretize the stochastic HP action integral, one needs to replace the continuous Lagrangian, stochas-
tic integral and kinematic constraint by discrete approximants. We begin by introducing a first-order
discretization of the kinematic constraint iB.9). Let [a, b] and N be given and define the fixed step
sizeh = (b—a)/N andtx =hk, k=0, ..., N.

A discretization of the kinematic constraint can be obtained by introducing a discrete sequence
{Qk}L\Lo taking values inQ and a finite-difference map: Q x Q — T Q. For example, ifQ is a vector
space the following backward difference map can be introduced:

Ok+1 — qk)

¢ (O, Qk+1) = (Qk+1, -

Let Bi" ~ N (0, h) be normally distributed random variablesfoe 1,... ., mandk =0,...,N—1.1In
terms of the discretization of the kinematic constraint, the corresponding discrete HP action sum takes
the following simple form:

N—1 m
§= kZ(:J |:£(Qk, vk)h + ; 7i (k) Bik + <pk+1, (quhqk) _ Uk+1> h:| )

The stochastic discrete HP equations are given by

Ok+1 = Ok + hokq1,

oL D 9yi
= h— 2 a) BK
Pk+1= Pk + 2 (O, vk) + El 2q (k) By,

oL
Pk = — (O, vK)-
ov

5.2 Stochastic VE on Lie groups

In the context of Lie groups, the reconstruction equation is discretized using canonical coordinates of
the first kind,z: g — G, as explained ifBBou-Rabeg2007 andBou-Rabee & Marsde(2008. As in

the vector space case, we define a finite-differencem#&p x G — G x g that provides a first-order
approximant to the reconstruction equation:

r (g P41
9 (9, Ok+1) = (9k+1, ++ e G xg.
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A first-order approximant to the stochastic left-trivialized action integral is given by

N-1 m -1q—1
=) [' (0. GOh + > 7i (g0 Bf + <ﬂk+1, T Gad) §k+1> h} - (5.1)

k=0 i=1 h

Letd:~1: g x g — g denote the right-trivialized tangent of ! as defined irBou-Rabee & Marsden
(2008. The stochastic left-trivialized discrete HP equations are (cf. Defin&ign

Ok+1 = Ok (hk41),

m
(denck,) sesa = (de 5, ) s+ g G0 + D" (g (@O B,
i=1

ol
,Uk:%(gk,fk)-

5.3 Holonomic constraints and nonconservative effects

Holonomic constraints can be added via discrete Lagrange multipliers and nonconservative effects via
discrete impulses as described below in the Lie group context. Suppos$&ihahn-manifold and that

the mechanical system evolves on a submani®ld G defined as the zero-level set@f G — RK,

wherek < nandS = ¢~1(0). Further, suppose that there exists a force flelds — T*G. These

effects are appended by using the following action principle:

N-1 m —1~—1
5> [| (G- GOh + D yi (G B + <,uk+1, M - ;’k+1> h+ (k. (ﬂ(gk))h]
k=0 i=1

N-1

+ > F(g) - dgkh = 0.
k=0

The algorithm that one obtains from this principle is the stochastic analogue of constrained symplectic
Euler, and the numerical analysis of this method is discussBdinRabee & Owhadi2009.

6. Langevin-type equations for multiple rigid bodies
6.1 Continuous description

Consider a mechanical system consisting{aigid bodies interacting via a potential dependent on their
positions and orientations. Léx; (), vj (t), R (1), wj (t)) € TSKE3) denote the translational position,
translational velocity, rotational position and spatial angular velocity of hoayherei = 1, ..., K.
Letm; andl; denote the mass and diagonal inertia tensor of bodye left-trivialized Lagrangian for
the system is given by

K .
[(Xi,vi, Ri, wi) ZZ%UiTUi + %CUiTRiHi Rlwi —U(x, R).
i—1
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Note thatl (x;, vi, R/, wj) is shorthand notation fdKx1, v1, R, w1, ..., Xk, vk, Rk, ok ). We will use
this shorthand notation elsewhere to simplify the expressions. The path that the stochastic mechanical
system takes on the time interval p] is one that extremizes the HP action:

a=1

; S o ~dR oy
a

for arbitrary variations with fixed end poings; (a), R; (a)) and(x; (b), R (b)). The corresponding SDEs
of motion are given by

dx; = vj dt (reconstruction equation),
m
dpi = —Uy dt + Z(Vq)xi o dWq(t, w) (stochastic EL equations),
q=1
pi = miv; (Legendre transform),
dR =@ R dt (reconstruction equation),
m
dzi = —Ug dt + > (yq)r o dWy (stochastic LP equations),
q=1
i = R RiTa)i (reduced Legendre transform),
fori =1,..., K. The termdJy, andUg are defined in terms of the inner product[@ﬁas

ou
U)-(Ii-y=<6_Xi,y>=aXiU(Xia Rl)ya

ouU R -
u;y=<ﬁal y> =orU(Xi, R) VR,
wheredg U: SO(3) — T SO(3) andéy U: R® — T R3. Adding dissipation so that the Gibbs distri-
bution is invariant under the stochastic process defined by the above SDE with dissipative drift yields

Langevin-type equations for rigid-body systems (see,Bog-Rabee & Owhad2007).

6.2 Stochastic VE integrator

For the discrete description, the VE integrator provided earlier is implementedBéLet N (0, h) be
normally distributed random variablesfgr= 1, ..., mandk =0, ..., N — 1. The action sum is given
by

h

o K+1,pkyT — m
n |:<7rik+1’ T—lw - a)ik+1> h:| + g0, R Bg.

iy (X-k+l _ X-k)
=2 [f(xik, ok, R, ofyh + <pik+1’ A TA) Uik+1> h]
k=0

h =
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Stationarity of this action sum implies the following discrete scheme:

k
i

k+1

X = xK 4 hoft,

m
P = P — hUy O, R + D (7g)x O, RO BE,
g=1

k k
pl = mDI 5

Rik+l -7 (a)|k+lh) Rika

* * m
(drh‘wlm) it = (dr;a}_k) ¥ — hUR (4, R + D" ()R 06, RO By,

q=1
n,ik — Rik]li (Rik)Twik’

fori =1,..., K. Assuming that the Legendre transforms are invertible, this integrator has the attractive
property that the translational and rotational configuration updates, and the translational momentum
update, are explicit. One has only to perform an implicit solution for the discrete Lie—Poisson part.
Even that computation is straightforward since the torque due to the potential is only a function of the
orientation and position at the previous time step.
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