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This note reviews, compares and contrasts three notions of “distance” or “size” that arise often in concentration-of-
measure inequalities. We review Talagrand’s convex distance and McDiarmid’s diameter, and consider in particular
the normal distance on a topological vector space X, which corresponds to the method of Chernoff bounds, and is in
some sense “natural” with respect to the duality structure on X. We show that, notably, with respect to this distance,
concentration inequalities on the tails of linear, convex, quasiconvex and measurable functions on X are mutually
equivalent. We calculate the normal distances that correspond to families of Gaussian and of bounded random variables
in RN, and to functions of N empirical means. As an application, we consider the problem of estimating the confidence
that one can have in a quantity of interest that depends upon many empirical—as opposed to exact—means and show
how the normal distance leads to a formula for the optimal assignment of sampling resources.
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1. INTRODUCTION

It is by now almost classical that smooth enough convex fanstenjoy good concentration properties; see, e.g.,
[1-4] for surveys of the literature. It also is known that gexity can be neglected in the Gaussian case and that the
smoothness assumptions are not essential and can be gptadastance, with bounded martingale differences; see
e.g., [5, 6] and also [7]. Concentration inequalities hauenfl many applications beyond pure mathematics; e.g., in
fields such as uncertainty quantification [8], machine leayO] and distributed computing [10].

Concentration of measure is based on a simple but nonitabigervation originally due to Lévy [11]: in a high-
dimensional probability space; “nearly all” the probafyiinass lies close to any set with measure at leéA3t Put
another way, functions of many independent variables withlksensitivity to each individual input are very nearly
constant. A typical concentration (or deviation) ineqtyatin a spacet is of the form

P[If(X) —m| > r] < Crexp(—Car?), 1)

wheref: X — R is a suitably well-behaved functiorX; is anX-valued random variable, such that the push-forward
measure(f o X).P has some concentration property; amdis either the mean valug[f(X)] or median value
M[f(X)]. Some times the control is one sided and the absolute vakgg.ifL) is omitted.
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A common feature of many concentration results is that amaggrate notion of size or distance is needed; e.g.,
the McDiarmid diameter [5] or Talagrand’s convex distant2]] This paper reviews both the McDiarmid diameter
and Talagrand’s distance and discusses, in particuladjsteence associated with the method of Chernoff bounds [13]
which we term “normal distance.” Chernoff bounding is a t@ghe often used in large deviations theory [14-16], in
which the measure of a set is estimated using a containirfiggpate. Although simple, this method leads to a notion
of normal distance that is in some sense “natural” with resfmethe duality structure oA’. Notably, with respect to
this distance, concentration inequalities on the tailsnafdr, convex, quasi-convex, and non-linear functiong’aare
mutually equivalent (see Theorem 1).

In Section 5, we identify the normal distance in several camiyiencountered cases. In particular, Proposition 3
identifies the normal distance that corresponds to the edrateon of a vector, the entries of which are the empirical
(sampled) means of functions of independent random vasabi the example that follows it, we consider the problem
of estimating the confidence that one can have in a quantitytefest that depends upon such a vectoNoE N
empirical, as opposed to exact, means. In particular, we $loev the Chernoff method and normal distance lead to a
formula for the optimal assignment of sampling resourceke&dV to-be-estimated means.

The notation and setting of the paper are covered in Secti®e&ion 3 reviews the inequalities and distances
of Talagrand and McDiarmid. Normal distance is introduced #&s main properties (including Theorem 1) are ex-
amined in Section 4. In Section 5, the normal distance isroted explicitly in several cases, thereby connecting
Theorem 1 with classical concentration results. In Sediiahis shown that the equivalent inequalities of Theorem 1
are asymptotically sharp (in the sense used in large demgtheory) in the high-dimensional limit, provided that th
sets of interest are convex and “sufficiently round” at thpsiats that are closest to the center of MaEX .

2. NOTATION AND BACKGROUND

Throughout X’ will denote a real topological vector space with continudual spacet™; (¢, z) denotes the dual
pairing betweerd € X* andx € X; (v, ) also will denote the dual pairing betweere X** and?¢ € X*. Itis not
strictly necessary to assume thais locally convex, but the results of this paper may be thiyiaue if X* does not
contain enough linear functionals.

2.1 Half-Spaces

Givenp € X andv € X*, H,, , will denote the closed half-space &fthat hag in its frontier and outward-pointing
normalv; i.e.,
Hp~ i={z € X|{v,z) < (v,p)}. )

Note well the degenerate callg o = X. Every(p,v) € X x X* defines a unique closed half-spacetgfwhereas
a given closed half-space can have multiple distinct reregionsH, » = H,, - if, and only if, v is a positive
multiple ofv' and{v,p —p’) = (v',p —p’) = 0.

2.2 Convex Analysis

The closed convex hull oft € X' will be denoted byeo(A). Given a closed convex séf C X andp € K, Ny K
denotes the outward normal coneAoat p, andN* K denotes the outward normal bundlefof

NIK = {ve X" |K CH,.}, ®)

N*K :={(p,v) e X x X*|pe K,veN;K}. (4)

The outward normal con; K is a pointed convex cone: it contaifisis convex, and; vy + sovo € Ny K for all
51,52 > 0and allvy, v € Ny K. Also, Ns K = {0} if p is an interior point off{. Note thatN* K C & x &A™ is not
necessarily a convex set (see Fig. 1 for an illustration).

For A C X, x4 denotes the characteristic function4fwhich is convex whemn is a convex set:
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N K N:K

FIG. 1: A convex seti and its outward normal conesgalg, r € K. 9K is smooth ap € 0K, soN; K is a half-line;
0K has a vertex aj, soN; K has non-empty interior; at the interior pointN; K is empty.

S

Forf: X — RU {£o0}, f*: X* — R U {+oco} denotes the Legendre—Fenchel transform or convex comjugat
of f, defined by

f(€) := sup(t, x) — f(x). (6)

reX

If K C X is a convex set, then a functigh K — R U {£o0o} is said to be quasi-convex if, for eveby €
R U {#o00}, the sublevel set

F7H([=00.0)) = {z € K | —00 < f(x) < 0} ¥
is a convex set; equivalently,is quasi-convex if, for alk:, y € K andt € [0, 1],
(L =t)z +ty) < max{f(z), f(y)}- (8)

f is said to be quasi-concaveiff is quasi-convex, andlis said to be quasi-linear if it is both quasi-convex and guas
concave. Every convex (respectively, concave, lineargtion is quasi-convex (respectively, quasi-concave, iquas
linear), but not vice versa. In particular, a functibnRY — R is quasi-linear if, and only if, it is the composition of
a monotone function with a linear functional &% [17, p. 122].

2.3 Probabilistic Notions

Let (Q, .#,P) be a probability space and I&t: ) — X" be ant-valued random variabl&|[-] denotes the expectation
operator with respect to the probability measBré&[ X] is defined to be any: € X such that

E[(£, X — m)] = /Q<Z,X(w) ) dP(w) = 0 forall £ € X*: ©)

if X* separates the points &f (e.g., if ¥ is a Banach space), th&X] is unique. Fo®Y: Q — R, anym € R that
satisfies

sup {U eR

will be called a median of and denote®[Y]. Mx : X* — [0, +oo] denotes the moment-generating functiorXof
defined by

P[ng]gé}gmgmf{veR

1
PlY <v] > 5} (10)

Mx () :=Eexp{¢, X)] forall £ € X*, (11)

andA x (¢) := log Mx (¢) denotes the cumulant-generating function (or logarithmmicnent-generating function) of
X. By Holder's inequalityA x is a convex function.
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3. TALAGRAND’S AND MCDIARMID’S INEQUALITIES
3.1 Talagrand’s Inequalities

It has been known for some time that convex sets and funatiojay good concentration properties; moreover, to get
good concentration results, it is necessary to measu@ndiss in the right way.

For example, a theorem of Talagrand shows that if a conveXset R occupies a “significant” portion of
the Hamming cubé—1,+1} andt >> 1, then nearly all of the points of the Hamming cube lie withinckdean
distancet of K. More precisely, define the Euclidean Hausdorff distanemfr € RY to A C RY by

du(z, A) :=inf{||x —a|]2 | a € A}. (12)

Talagrand [18] showed that ¥ is uniformly distributed in{ —1, +1}* then, for anyA C RY, E[exp(du (X,c0(A))?
/8)] < P[X € A]~!; hence, Chebyshev’s inequality implies that, for any 0,
2

P[X € AJ[dn(X,0(4)) > 1] < exp <—%> | (13)

More interesting results can be obtained if one uses not thdidean distance but the Hamming distance—or,
more accurately, a supremum over weighted Hamming distaff@@w = (wy,...,wy) € [0,4+00)Y, define the

w-weighted Hamming distaneg, on a product of set& = Hﬁlvzl X, by

N
du(2,y) =Y wpllwn # ynl; (14)
n=1

that is,d,, (z,y) is thew-weighted sum of the number of components in whicly € X differ. Forz € X and
A C X, setd, (z, A) := inf,c 4 dyy (z, a). Define Talagrand’s convex distance frang X' to A C X' by

dr(x,A) := sup {dw(x, A)

N
w e 0,11V andZwizl}, (15)

n=1

and, forA, B C X, letdr (A, B) := inf,c 4 d7(a, B). Talagrand [12§4.1] showed that if = (X3,..., Xy) is any
X-valued random variable with independent components, then

dT(A,B)Q) .

1 (16)

P[X € A]P[X € B] < exp (—

These bounds on the probabilities of sets lead to deviatieguialities for convex Lipschitz functions. For example
(cf.[18, 19]), letX be any random variable in the unit cubelf with independent components, andfet[0, 1]V —
R be convex and Lipschitz withf ||, < 1; then, for anyt > 0,

2
B[f(X) > Mf(X)] +1] < 2exp (—%) . (17)

Note, however, that these results use not only the convekitye function of interest, but also require Lipschitz
continuity. What concentration inequalities can be shawinadld without smoothness assumptions?
3.2 McDiarmid’s Inequality

One smoothness-free concentration inequality is McDidisnnequality [5], also known as the bounded differences
inequality, which itself generalizes an earlier ineqyadif Hoeffding [20]. McDiarmid’s inequality is by no means
the strongest concentration-of-measure inequality inliteeature, but is useful because of its simple hypotheses
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and proof. McDiarmid’s inequality and its variants have bhesed for uncertainty quantification in the context of
certification [8, 21, 22].
Define the McDiarmid diameter of, denotedD|f], by

N 1/2
D[f] := (Z mm?) , (18)
n=1
where theath McDiarmid subdiameteP,, [ f] is defined by

Dy[f] :=sup{|f(z) = f(y)| | z; = y; for j # n}. (19)

WhenEl|f(X)|] is finite and X1, ..., Xy are independent, McDiarmid'’s inequality bounds the désest of f(X)
fromE[f(X)] in terms of the McDiarmid diameter ¢f. for anyr > 0,

PLACO) ~BFCO) < —r) < exp (~ 2 ) (202)
PU/CE) ~ ELACO] 2 7] S exp (=5 ) (20b)

McDiarmid’s inequality implies that, for an§ € R U {+o0},

Fl7(x) < 0] < exp - ZELELZ O ), @1
P[f(X) > 6] < exp (—2(9 ‘E{}]&X”ﬁ) : (21b)
where, fort € R, t; := max{0,t} and¢t_ = —(—t);. McDiarmid’s inequality (and similar inequalities such as

martingale inequalities) have the advantage that a bourtheotails of f (X)) is obtained solely in terms of the mean
outputE[f(X)] and the McDiarmid diameteP|[ f]. However, McDiarmid’s inequality cannot take advantagamf
other properties of such as convexity or monotonicity; furthermorefihas a infinite McDiarmid diameter on the
essential range o, then the trivial upper bountlis obtained.

3.3 Other Concentration Inequalities

There is a large body of literature on other sources of canagon-of-measure inequalities: these include logarith
mic Sobolev inequalities and the Herbst argument [23—218],entropy method [26—28], and information-theoretic
methods [29, 30]. Of particular interest are those conegiotr results that apply to infinite-dimensional setting] [

4. NORMAL DISTANCE

As noted above, efficient presentation of many concentraifemeasure inequalities relies on having an appropriate
notion of function variation (e.g., the Lipschitz norm or Biarmid diameter) or distance (e.g., Talagrand’s convex
distance). The inequalities that will be established inti8ad will be phrased in terms of a normal distance, which

will be introduced in this section, and is the distance tloatesponds to the method of Chernoff bounds.

4.1 Definitions

Fix a function¥: X* — [0, +o0] that is positively homogeneous of degree 1; i.e., such®tiat’) = ol (¢) for all
a« > 0 and all¢ € x*. By analogy with the situation in finite-dimensional Euelah space, in whicl = || - |2 on
(RM)*, define the distance from a pointe X to a half-spacél, , C X by

<’Va L — p>+

dL,\I/(xaHp,V) = \I/(‘V) B

(22)
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with the convention thai/0 = 0, since the distance from € X to the trivial half-spacél, , = X ought to be
zero. Note thatl | ¢ (x,H,~) = 0 whenever: € H), ,; note also that the homogeneity assumptionfoensures that
Eq. (22) is an unambiguous definition. We now generalize E2).to more general subsetsiAfthan half-spaces. The
heuristic is that the distance fromto A C X should be the greatest possible distance [in the sense ¢2&q from

x to any half-space that contaidfs the existence of the degenerate half-spgdgg ensures that the normal distance
is zero if there are no proper half-spaces that confain

4.1.1 Definitions 1

Letz € X andA C X. TheU-normal distance from to A, denoted!; w(x, A), is defined (with the same convention
that0/0 = 0) by

. (v,x—p)+ |pe Xandv e X*
dy w(z, A) :=sup {7\11(v) such thatd C H, , [ ° (23)
The ¥-normal distance froml C X to B C X is defined byl (A, B) := inf,ca d1 w(a, B). In the special case
X =RY and¥ = | - ||z on (RY)*, we shall simply writel, ford, y;i.e.,
o v (z—p)ls |p e RY andv € (RV)*
dy(z, A) = sup {W suchthatd CH,, |- (24)

Note well that the definition of the normal distanée v (z, A) does not requiréX’ to be normed; even whek
is equipped with a normj - || x and¥ is the corresponding operator norm, the normal distahce (x, A) is not the
same as the Hausdorff distance frerto A defined by

du(z, A) :=inf{||x — a||lx | a € A}; (25)

(see Fig. 2 for an illustration). Note, also, that it is nohgelly true thatl; w(A, B) = d, w(B, A): consider, e.g.,
B :={(0,1)} andA as in Fig. 2, in which case

dj_,\p(A,B) = ingdj_,\p(a,B) =1 75 0= dj_,\p(B,A).
ac

Foranyz € X andA C B C X, it holds thatd, w(x, B) < d, w(x, A). Furthermore, since a closed half-space
H, - containsA if, and only if, it contains the closed convex hadi(A) of A, the following equality holds:

diw(z,A) =d; v(z,co(A)) forallz € X andallA C X. (26)

[dl(O,A)

FIG. 2: An example of a subset of the Euclidean plan&? for which the normal distancé, (0, A) = 1 unit
(cf. the dashed line), as opposed to the Euclidean Hausdorémtistl; (0, A) = 2 units (cf. the dotted arc). Also,
dr(0, A) = 1, with the supremum in (15) being attaineddy= (0, 1).
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4.2 Comparison of Normal and Talagrand Distances

A full comparison of the normal distance and Talagrand’sveardistance is not possible, since each belongs to a
different setting: Talagrand’s distance is defined on a pcodf sets, whereas the normal distance is defined on a
topological vector space that might not be a product space.

OnRY with its usual (product) Euclidean structure, the two dists can be compared. It is immediately apparent
that the two distances measure different quantities: inessemsedr (z, A) measures how many of the coordinates
of  are covered byl, but does not measure the geometric distance between timetine @ther hand, ¢ (x, A) is
a much more geometric measure of how#as from A in terms of linear functionals oA’, and the “size” of those
linear functionals is measured Wy. In particular, Talagrand’s convex distance is positidedynogeneous of degree
0, whereas the normal distance is positively homogeneodsgrikee 1: for any: € RV, A C RV, andx > 0,

dT(OC,T, (XA) = dT(fL‘, A),
dJ_7\p(0(.”L', (XA) = OCdJ_7\p(,T, A)

Indeed, for a half-spadé,, , C RY and weightw = (wy, ..., wy),
0 if ¢ H
dw(0,Hy~y) =< _ P
(0, ) {min{wn | vy, #0}, ifxd¢H,.,

and, hencedr(z,H, ~) = 1[z ¢ H,]: the supremum in Eq. (15) is attained by any weigtthat hasw,, = 1 for
somen with v,, £ 0, andw,, = 1 otherwise.

4.3 Portmanteau Theorem

The geometrical nature of the normal distance, in particditamula (26), leads to the following equivalence or
“portmanteau” theorem for deviation inequalities withpest tod . In practice, as noted at the beginning of the
next section, these inequalities are unlikely to be shasir titility lies in the fact that they are geometrically p&s
work with.

4.3.1 Theorem 1

Fix ¥: X* — [0,+400], homogeneous of degree 1, anddety be the corresponding normal distance. Forian
valued random variabl& and measurable functioh: X — R U {£oco}, consider the inequalities

P[X € A] < exp <_w> , (27)
P(f(X) < 0] < exp (_dL,\I/(E[X]af;l([_oove]))Q)_ 28)

Then, the following formulations are equivalent:
1. Equation (27) holds for every half-spade= H,, .

Equation (27) holds for every convexC X.

Equation (27) holds for every measuraldleC X.

Equation (28) holds for every measuralilteX — R and6 € R U {+o0}.
Equation (28) holds for quasiconvgx X — R and® € RU {+oo}.

o g M w N

Equation (28) holds for every continuous lingar¥ — R andb € R U {+o0}.
Note that iff is quasilinear, then formulation 5 yields concentratiagualities for both the lower and upper tails

of f(X).
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4.3.2 Proof of Theorem 1
The equivalence will be established by showing that
l1—2—=—3=—4—5=—6= 1

Suppose that formulation 1 holds and th&tC X is convex. Then

P [X € K]
< i ici
< H;?gKP[X € H, ] by monotonicity ofP,
d E|X|, H 2 .
< inf exp <— 0 (B[A], Hpv) > by formulation 1,
Hy,~ 2K 2

1
= exp (—— sup dl,\P(E[X]aHPN)2>
Hyp ~2K

2
= exp <—w> by Eq. (23).

Hence, formulation 1 implies formulation 2.
Suppose that formulation 2 holds and thaE X" is measurable. Then

PX € A] <P[X €to(A4)] sinceA C co(A),
< exp (—dl’q’(EP(z]’ﬁ(A))Q) by formulation 2,
2
= exp <_%) by Eq. (26),

and so formulation 2 implies formulation 3. Formulation 4dws from formulation 3 upon setting := {z € X |
f(z) < 8}. Formulation 5 is clearly a special case of formulation 4edinear function has convex sublevel sets,
and so formulation 5 implies formulation 6. Formulation 1ldas from formulation 6 upon setting := v and

0 :=(v,p).

4.3.3 Remark 1

It is important to note that all the bounds in Theorem 1 mayrivét if the dual spacet™ is not rich enough. For
example, given a measure spd¢k %, u), for0 < p < 1, the space

1l = ( /. If(Z)Ipdu(Z)>l/p < +oo}

is a topological vector space with respect to the quasi-rtopology generated by - ||,. This space is not locally
convex and has a trivial dual space: the only continuougfifignctional on this space is the zero functional, and so
the only closed half-space is the whole space. See, e.qg.SE2ion 1.47] for further discussion of spaces such as
L£P([0,1];R) for0 < p < 1.

It is tempting to eliminate these pathologies by workingwitie algebraic, instead of the topological, duahof
This can be done, and most results go through mutatis mtangiarticular, it is necessary to replace all references
to the closed convex hutb(A) of A C X with the convex hulto(A); the analog of Eq. (26) (witl now defined on
the algebraic dual aot) is

dy w(x,A) =d) w(x,co(A)) forallz € X andallA C X.

The principal disadvantage of ignoring all topologicalsture onX’ is that there are no longer notions of interior,
closure, and frontier—although it still makes sense towdisdhe extremal points of convex sets.

LP(Z, 7, u,R) = {f Z—R
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5. NORMAL DISTANCE AS A CONCENTRATION RATE

The method of Chernoff bounding (reviewed in Lemma 1) givesrtas onlP[X < H, ] in terms of the moment-
generating function/x . If these bounds can be formulated in terms of a suitable abdistance, then Theorem 1
produces equivalent bounds for BhX € K] for convexk, onP[X € A] for measurablel, and so on. As noted in

[2, Section 2], the best Chernoff bound Bfy (X) > 6] is never better than the best bound using all the moments of
f(X):if f takes only non-negative values, then

: —k k <3 —s0 sf(X)
érelgﬁ E[f(X)*] _;gfoe Ele ] (29)
However, Chernoff bounds have the advantage that they aragfeically very easy to handle.

5.1 Chernoff Bounds

The method of Chernoff bounds [13, 17, Section 7.4.3] is gpEnone in which the probability of a subset &f

is bounded by that of a containing half-space, and the piitityatf that half-space is bounded using the moment-
generating function of the probability measure.

5.1.1 Lemma 1: Chernoff Bounds

For any half-spacgl, ,, C X,

PIX € Hy] < inf VP My (—sv). (30)
For any convex sek’ C X, B
PX € K] < inf e™P My(— 3la
[ ] < o x(=v) (31a)
= exp (— sup (Ax + XN;K)*(p)) . (31b)
peEK
In particular, for any: € X,
P[X = 2] < exp(—A% (@), (32)
5.1.2 Proof
By the definition of the half-spadé,, -,
PX eHyn] =P[{v,X) <(v,p)]

estvp=X)] foranys > 0,

Since this inequality holds for any> 0, taking the infimum over all suchyields Eq. (30). Recall that the outward
normal cone to a convex set at any point is closed under riioéitipn by non-negative scalars; hence, for any con-
vex setK C X, taking the infimum of the right-hand side of Eq. (30) overfisplacedH], -, that containk yields
Eq. (31a). Now observe that

inf(, vyen+x eVP) Mx (—v)
= inf(, v)en-x exp[(V,p) +Ax (—V)]
= exp (infpeK infveN;K [(v,p) + AX(—V)])
— exp (= supex SUPye s i [(V, ) — Ax(¥)])
= exp (— suppex (Ax + X_N;K)*(p)) ,
which establishes Eqg. (31b); Eg. (32) follows as a speci¢.ca
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5.2 Families of Gaussian Random Variables

The next result provides the normal distance fortawalued Gaussian random variable (in fact, for a family aftsu
variables). In the special case of a single Gaussian randetorX on X' = R with covariance operat@rx = oly,
Proposition 1 yields the classical Chernoff bound for a maittate normal random variable.

5.2.1 Proposition 1

LetT" be a family of Gaussian random vectors¥n For eachX €T, letCx: X* — X** be its covariance operator
defined by

(Cxl,v) :=E[{£, X){v,X)]. (33)
LetE:={E[X] | X € T}, let
U(v) = ;1161; (Cxv,V), (34)

and letd, ¢ be the corresponding normal distance. Then, fordny X,

2

sup P[X € A] < exp (—M> . (35)

Xer 2
5.2.2 Proof
For eachX e T, the moment-generating function far is given by

Mx(0) =R [e“v’ﬂ = exp (<e,]E[X]> + <CX2£’£>) : (36)
Therefore,
P [X € H, ]
< inf exp (S(V,p —E[X]) + 52@> by Eg. (36) and Lemma 1,

o (XL

2(Cxv,v)?
(v, E[X] - p)3
< exp <_W) by Eq. (34),
2
= exp (-dL’W(E[g]’HPvV) ) by Eq. (23).

Hence, by Theorem 1,

P[X € A] < exp (—M) |

2
and so
2 2 2
sup P[X € A] < sup exp (_ M) — exp (_ of M) — exp @M),
Xer XeT 2 Xer 2 2

5.3 Families of Bounded Random Variables

Lemma 1 also has the following consequences for random reestipported in a cuboid iRY; this encompasses two
standard situations in which concentration is often stlidi@mely concentration for functions on the Euclidean unit
cube and on the Hamming cube.
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5.3.1 Proposition 2

Let X be a random vector iRR™ with independent components such that each compakigraimost surely takes
values in a fixed interval of length,,. Let

N
U(v) = % > L2 (37)
n=1

and letd ;¢ be the corresponding normal distance. Then, for.any RY,

2
PIX € A] < exp (_W) _ (38)
A fortiori, if X takes values in (a translate of) the unit cite ™, then
PIX € A] < exp (—2dL(E[X], A)%), (39)
and if X takes values in (a translate of) the Hamming c{ibé, +1}%, then
2
P[X € A] <exp (—W) ) (40)

5.3.2 Proof

The proof is similar to the Gaussian case: it is an applicatioLemma 1 and Hoeffding’s lemma [20, Lemma 1 and
Eq. (4.16)], which bounds the moment-generating functioX g as follows:

212
Mx, (€n) = E[exp(£n Xp)] < exp (énE[Xn] +-3 ") :

Note that the claim also can be proved by applying McDiarmigéquality to the functiokv, -), which has mean
E[(v, X)] = (v,E[X]) and McDiarmid diametet/L? + - - - + L%,.

5.3.3 Remark 2

Note the similarity between the normal distances of Prdmos 1 and 2. In the Gaussian case, the normtGn
is the one induced by the “largest” covariance operator enfimily of random variableF. In the bounded-range
case, the norm o/’ is the one induced by the largest covariance operator fatorarnvariables satisfying the range
constraint: if X is a real-valued random variable taking values in an inteva)|, then® (v)? = (1/4)(b — a)*v?
andVar[X] < (1/4)(b — a)?; this upper bound on the variance is attained by a Bernaidom variable with law
(1/2)84 + (1/2)5s.

5.4 Functions of Empirical Means
The next result identifies the normal distance that cornedpdo the concentration of a vector, the entries of which
are the empirical (sampled) means of functions of indepet@@adom variables.

5.4.1 Proposition 3

Forn=1,...,N,letZ, := f,(Ya1,...,Ys k(n)) be areal-valued function of independent random variabilgs
and suppose thdt, has finite McDiarmid diamete®|f,,|. Let Z = (Z1, ..., Zxy). Suppose that the random inputs of
eachf,, are sampled independently (n) times according to the distributidhand that the empirical average
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N
M(n)
S 1 (m) (m) N
E[z] = (M(n) mz_:l fu (VY ) eR (41)
- n=1

is formed. Then, for anyt C RY,

dJ_,\IJ(E[Z]’A)Q) ’ (42)

P [IE[Z] € A} < exp (— 5

whereV: (RV)* — [0,+400) is given in terms of the McDiarmid diameters of the functigis. .., fx and the
sample sized/(1),..., M(N):

N 9 9 1/2
T(v) = % (Z %) . (43)

5.4.2 Proof
Let H, < RY be a half-space. Consider the real-valued random vari@al@[ZD as a function of the sampled

=

input random variablesfg’,z). Suppose that the McDiarmid subdiameterfgfwith respect toY;, . is D,, ,. Then
the McDiarmid subdiameter o{v,]ﬁ[z]> with respect to thenth sample ofY,, i is v, D, /M (n). Hence, the

McDiarmid diameter 0<v, IE[Z]> is
Z V%Di,ki v D.fn ZV 2D(f
Therefore, sinc&[Z] is an unbiased estimator f&fZ] (i.e.,E {IAE[Z]} = E[Z]), McDiarmid’s inequality (21a) implies

that
P [BZ) € o] = P (. B12]) < ()] < eXp( ;](V<%<Ii[zzz]>>[_]<v>/lz?4)( ))

. (v,E[Z] - p)} = oy G (BIZ) Hy )\
p< 2-(1/4)- 2,0 1(V%D[fn]2)/M(n)> p< 2 )

The claim now follows from Theorem 1.
An example of the application of Proposition 3 is the follogi

5.4.3 Example 1: Functions of Empirical Means

The Chernoff bounding method can be used to provide mucheineg confidence levels for quantities derived from
many empirical—as opposed to exact—means. For examplsjdmrthe problem of [33, Section 5]: an input pa-
rameter spacd’ is partitioned intaV sub-rectangles, and the probability that a function ofregab: X — R takes
values belowd € R is bounded from above using the following variant of McDi&timinequality:

2(E[dla,] — 0)%
Plp < 0] < P(A,) ex ( —_—T . 44
nZl P\ Dl (44)
Suppose, however, that the local (conditioned) m&ids 4, | are not known exactly; instead, through a finite number
of independent samples, the empirical meBf| 4, | are known. Giverxy, ..., an > 0, with what probability is it
true that
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3 2(E . —0)’
Plp <0] < ZP(An)exp _ ( [¢|z;x;[]d:|—Aoc] )+

n=1

(45)

Furthermore, consider the following problem of optimabadtion of sampling resources: suppose that all the
terms but the empirical meaf§¢|4, ] are known, and that a prescribed total number of samples-say—are
available for sampling thes& means; how should thos&/ samples be assigned to thade"bins” (i.e., to the
various subsetd,,) so as to maximize the probability that (45) holds true?

More generally, suppose thaf,: RY — R is some function of interest: in particular, the quantityirterest
is Hy (E[Z1],...,E[ZN]) for some absolutely integrable real-valued random vees#l, ..., Zy. Bear in mind
that differentZ,, may be physically incomparable: for exampl®, may have units of ared&> may have units of
temperature, and so on. Therefore, it is not immediatelyats/how to combine such apparently incommensurable
uncertainties.

If the exact mean&[Z,,] are unknown, then empirical meaﬁ{;Zn] may be used in their place if appropriate
confidence corrections are made. Suppose that “error” gporals to concluding, based on the empirical means, that
Hy(E[Z]) is smaller than it actually is. Giver € RY, set

Hu(z1,. .. 2n8) = Ho(z1 + o1, ..., 28 + an). (46)

Therefore, given any > 0, we seek an appropriate “margin hit = «(¢) € RY (typically, «,, > 0 for each
n € {1,..., N}) such that

P [H“ (IT«:[Zl], . ,IT«:[ZN]) > Hy (E[Z4),... ,E[ZN])} >1-e.
Dually, givena € R, we seek a sharp upper bound on the probability of errordre.
P Heo (B[21),....BlZN)) < Ho (B[Z1), ... E[Zx])]

If Hy (and, henceHy) is monotonic in each of itV arguments and/,, ..., Zx are independent, then the
probability of non-error can be bounded from below as foow

i [Ha (IE[Z]) < HO(E[Z])} —P [Ha (IE[Z]) < Ho(E[Z] — oc)} <II-, P [E[Zn] < E[Zn] — otn

SRS )

n=1

Unfortunately, wherV is large, the last line of this inequality, typically, is skto zero unless the sample sizes are very
large, and so this bound is of very limited utility. Geomesitly, this is analogous to the fact that a high-dimensional
orthant (product of half-lines) appears to be very narramrfthe perspective of an observer at its vertex. In contrast,
half-spaces always fill a half of the observer’s field of vidw.bound the probability of sublevel or superlevel sets

using half-spaces requirés, to have some convexity—not monotonicity—properties.

If H, is quasi-convex, then the bounds using normal distancebeapplied to good effect, and yield estimates
that actually perform better the largéf is. In particular, if H, is both quasi-convex and differentiable, then the
outward normal to itg-level set at some point is just any positive multiple of the derivative éf, atp, and this
yields the bound

2

P[Ha (IE[Z]) <e} < inf  exp|— + | (47)

p:Ho(p)<0

2 (Y01 0 Ha (0)(E[Z,] = pa)
SN [0nHa(p)]2D[fa]2/ M (n)
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In particular, taking = Ho(E[Z]) = H«(E[Z]—«) and evaluating the exponentialin Eq. (47pat E[Z]—« € RY
yields that

2 (Zﬁlzl anHoc(p)o‘n) i
SN {100 Ha(p)2DIfa]2}/ M (n)

P [ (B12]) < Ho(B[2))] < exp | - (48)

5.4.4 Remark 3

Formula (48) is particularly useful since it links the mardjits «,,, the sample sized/(n), and the maximum
probability of error. For example, given a desired level ofifidence, margin hits,,, and a total number of samples
M e N, one can choose sample siZg41), ..., M (N) that sum taM and minimize the right-hand side of Eq. (48);
this yields an optimal distribution of sampling resourcess to ensure thaf (IE[Z]) > Hy(E[Z]) with the desired
level of confidence. That is, from the point of view of mininmig error probabilities, an optimal assignment of
sampling resources is given by the minimizer of the rightehside of Eq. (48) among a4, ..., My) € N}’ such
thaty" | M, = M.

6. HIGH-DIMENSIONAL ASYMPTOTICS

The topic of this section is the asymptotic sharpness of tunbls introduced above as the dimension of the space
X becomes large. We begin with a comparison of the McDiarml lzadf-space bounds for a simple function: a
quadratic form oR" .

6.1 Example 2: Comparison with McDiarmid’s Inequality

The following example serves to illustrate how the halfegpmethod can produce upper bounds on the measure of
suitable sublevel sets that are superior to those offereddiarmid’s inequality; it also shows how this effect is
more pronounced in higher-dimensional spaces. Considdottowing quadratic forn©) y onR":

1 1\ |?
xr — — e, —
27779

For anyd > 0, the sublevel sef ' ([—o0, 8]) is simply a ball of radius/20 about the point1/2, ..., 1/2). Suppose

that a random vectak takes values ifi—(1/2),+(1/2)]" with independent components. McDiarmid’s inequality
[Eq. (21a)] implies that

(49)

QN(SC) = %

2

PIQn(X) < 6] < exp [—8 (“—GN - %)

If also E[X] = 0, then Proposition 2 implies that

PlQn(X) < 0] <exp <— 5

(VN — ¢s—e)1>
For smallN and larged, McDiarmid’s bound is the sharper of the two. However, foa#ire (and, notably, a&v — oo
for any fixed®), the half-space bound is the sharper bound (see Fig. 3 filuatration).
The previous example suggests that bounds constructed thgrhalf-space method may perform very well in
high dimension but also that the sharpness of the bound magndeon “how round” the set whose measure we

wish to bound is. To fix ideas, suppose that= (Xi,...,Xy): © — R is a random vector with independent
components, wher&,, is supported on an interval of lengih,. For A C RY, how sharp is the bound
2
P[X € A] <exp (—%)? (50)
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log(upper bound)

4 4

FIG. 3: For the quadratic forn x onRY given in Eq. (49), a comparison of the McDiarmid upper bowsaliéres)
and half-space upper bound (triangles)®RIfY x (X) < 0] in the case® = 1/4 (dotted line and hollow polygons)
and6 = 1/8 (solid line and filled polygons).

First, note that sincé, (E[X], A) = d, (E[X],c5(A)), the bound cannot be expected to be sharpdiiffers greatly
from its closed convex hull, and so it makes sense to regtriestigation to the case thdt= K, a closed and convex
subset ofRY. Second, it is not reasonable to expect the bound [Eq. (30)][&@ € K] to be sharp ifK is sharply
pointed; e.qg., if is the narrow wedgé . of anglee < 1 based at; := (1,0,...,0)in RY:

m Se}_ (51)

lz —e1l2

K, = {xERN

Therefore, we wish to consider the opposite situation incwlii has no sharp points, which will be made precise by
requiring thatK satisfy an interior ball condition.

Suppose thafp,v) € N*K is such thaid, (z,H, ~) = d,(z, K). Suppose also th@,(p — rw) C K, with
r > 0andw € RY a unit vector, is an interior ball fok” atp € 0K (cf. Fig. 4). If the law ofX onR¥ is highly
singular, then it cannot be expected that the bound [Eq] (&8harp, so suppose that the lawXthas a density with
respect to Lebesgue measure that is bounded above by sostarteh> 0. Then, the bound [Eq. (50)] is

2(v,E[X] - p)2
S V22 )

In the extreme caséy is precisely the closed bdll, (p — rw), theP measure of which is at moétr™ 7/2 /T'(1 +
N/2).

P[X € K] < exp <—

FIG. 4: An interior ball of radius- for the closed convex sét at the frontier poinp. Necessarilyp is a point at
which 0K is smooth;K admits no interior ball of positive radius at the vertgexror convenience, the unit vector
w € RY has been identified with € N* K C (RY)*.,
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In large deviations theory, the standard notion of asynpsbtarpness is logarithmic equivalence [15, Section I.1];
see, also, [14, 16] for surveys of the large deviationsdiiee. Two sequencés, ),en and(f,,)cn are said to be
logarithmically equivalent, denotexd, ~ f3,,, if

xn
B

Are the half-space bound [Eq. (50)] and the measurB,¢p — rw) logarithmically equivalent? That is, does the
conditional probability? [X € B, (p — rw) \ X € H,~], when raised to the powar/ N, converge td asN — oo?
To simplify the asymptotic expansions below, in all lineeathe first two, we shall takB[X] = 0andL; = --- =
Ly =1.Then,

1 1 1/n
—log &, — — log 3, = log ( ) — 0asn — oo. (52)
n n

% logP [X € B,(p — rw)] — % log (right-hand side of Eq. (50)
1 CrNaN/2 - 2(v,E[X] —p)2

< < |log
N\TO+N2) " YN v

~2(v,p)2 | log(CrNaN/2)  logD(1 4 N/2)
- N3 N N
which, by Stirling’s approximation for the Gamma functi@4[ p. 256, Eq. (6.1.37)], is approximately

L 22 log(CrVaN/?) 1 < o <1+N/2)”N/2>

— —log

N3 N N 14+ N/2 e
2(v,p)2  logC 1 47 1+ N/2_ N

~ 5 — —log— — log —
N|v|32 N 2N °N N 2¢
2(v,p)2

~ NI +logr —log VN
Note that(v,p)_/|v]2 < V/Ndi(0,p), whered; denotes the weighted Hamming distance with weight=
(1,...,1). Therefore, a necessary (but not sufficient) condition iier hhalf-space bound to be asymptotically sharp
in the sense of logarithmic equivalence is thas of the same order agN. That is, it is necessary théf is suffi-
ciently round that it has an interior ball of radius compéeab+/N at those frontier points where the normal distance
d, (E[X], K) is attained.

Now suppose that = f~1([—o0, 0]) is a convex sublevel set for twice-differentiable functjoetn, ... ,ny_1,Vv
be a basis oR" such that

Inillz == Inn-1llz = [[v]2 =1

and, foreacl € {1,...,N — 1}, n, is perpendicular tor. Suppose that, in this system of normal coordinates, near
p, the frontier of K can be approximated by a parabola:

N—-1
v = Anyi}

n=1

oK = {yml + .. YN—1MN-1 — YNV

withA; > Ay > --- > Ay_1 > 0. Then, the condition thak” admits an interior ball of radiusat p is the inequality

N-1 N-1 Nl
r— 2= > 12> > A2 whenever > y2 <%
n=1 n=1 n=1

This, in turn, leads to the following condition dn: it must hold that\; < (1/2r). Put another way, the half-space
method cannot be expected to provide asymptotically shanpds forP[f(X) < 8] if, when f is approximated in
normal coordinates near the closest poinfof ([—oo, 8]) to E[X] by a non-negative quadratic form, that quadratic
form has an eigenvalue greater tham)—1/2.

International Journal for Uncertainty Quantification



Distances and Diameters in Concentration Inequalities 37

7. CONCLUSIONS

In this paper we have reviewed some well-established netadndistance and diameter in the concentration-of-

measure literature, and paid particular attention to tlséadce associated with the method of Chernoff bounds. In
so doing, we observe that associated with a deviation irggtizat depends on a family of (exact) expected values,

there is a way to assign sampling resources to the estimattiiose expected values that is both natural with respect
to the distance (concentration rate) and optimal with reisjeeerror probabilities. We note, however, that this optiim

ity is with respect to the deviation inequality that is beeggimated: if the deviation inequality itself is not shahgn

the “optimal” sampling assignment will have a similarly rsimarp character. Hence, we expect that the full power of
this approach is contingent upon applying it to optimal @ritation-of-measure inequalities, as in [35, 36]
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