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Abstract: This paper introduces a geometric method for proving ergodicity
of degenerate noise driven stochastic processes. The driving noise is assumed
to be an arbitrary Levy process with non-degenerate diffusion component (but
that may be applied to a single degree of freedom of the system). The geometric
conditions are the approximate controllability of the process the fact that there
exists a point in the phase space where the interior of the image of a point via
a secondarily randomized version of the driving noise is non void.

The paper applies the method to prove ergodicity of a sliding disk governed
by Langevin-type equations (a simple stochastic rigid body system). The paper
shows that a key feature of this Langevin process is that even though the
diffusion and drift matrices associated to the momentums are degenerate, the
system is still at uniform temperature.
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1. Introduction

This paper is concerned with proving ergodicity of mechanical systems gov-
erned by Langevin-type equations driven by Levy processes and with a singular
diffusion matrix applied on the momentums.
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Such systems arise, for instance, when one models stochastically forced
mechanical systems composed of rigid bodies. In such systems one would like to
introduce a certain structure to the noise and observe its effect on the dynamics
of the system. For instance, one would like to apply stochastic forcing to a single
degree of freedom and characterize the ergodicity of the system. The stochastic
process associated to the dynamics of these systems is in general only weak
Feller and not strong Feller.

The paper provides a concrete weak Feller (but not strong Feller) stochastic
process to illustrate this lack of regularity. The example is a simple mechani-
cal system that is randomly forced and torqued and that preserves the Gibbs
measure. In this case one would like to determine if this Gibbs measure is the
unique, invariant measure of the system.

A new strategy based on the introduction of the asymptotically strong Feller
property has been introduced in [6]. This paper proposes an alternative method
based on two conditions: weak irreducibility and closure under second random-
ization of the stochastic forcing (see Theorem 3.1). Our strategy is in substance
similar to the one proposed by Meyn and Tweedie for discrete Markov Chains
in Chapter 7 of [9].

Although the Hörmander condition (see [11], 38.16) can also be used to
obtain local regularity properties of the semi-group, hence a local strong Feller
condition and ergodic properties. The alternative approach proposed here does
not require smooth vector fields or manifolds, it can directly be applied to Levy
processes and (this is our main motivation) it allows for an explicit geometric
understanding of the mechanisms supporting ergodicity.

For related previous work we refer to [8], [7], [6], [3], [2], [5], and [4].

2. General Set Up

Let (Xt)t∈R+ be a Markov stochastic process on a (separable) manifold M with
model space R

n.

Let (ωt)0≤t be p-dimensional Levy process, i.e. a stochastic process on R
p

that has independent increments, is stationary, is stochastically continuous and
such that (almost surely) trajectories are continuous from the left and with
limits from the right.

We assume that there exists a family deterministic mappings (indexed by
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0 ≤ t) Ft : M × ([0, t] → R
p) →M such that

Xt = Ft−s

(

Xs, (ωs′ − ωs)s≤s′≤t

)

. (2.1)

Recall that the first three condition defining a Levy process mean that
(ωt − ωs)t≥s is independent of (ωs′)0≤s′≤s), the law of ωt − ωs depends only on
t− s and lims→0 P[|ωs+t − ωt| ≥ ǫ] = 0.

Recall also [11, 12] that since ω is a Levy process, there exists a γ ∈ R, a
constant p × p matrix σ, a standard p-dimensional Brownian motion (Bt)t≥0

and (∆t)t≥0 an independent Poisson process of jumps with intensity of measure
dt× ν(dx) on dt× R

p (such that
∫

Rp min(1, |zp|)ν(dz) <∞) such that

ωt = γt+ σBt + Ct +Mt , (2.2)

where Ct =
∑

s≤t ∆s1|∆s|>1 is a compound Poisson point process (of jumps of
norm larger than one) and

Mt = lim
ǫ↓0

(

∆s1ǫ<|∆s|≤1 − t

∫

z∈Rp : ǫ<|z|≤1
zν(dz)

)

(2.3)

is a martingale (of small jumps compensated by a linear drift). Recall also that
any process that can be represented as (2.2) is a p-dimensional Levy process, in
particular a p-dimensional Brownian motion is a Levy process. In this paper,
the only assumption on the stochastic forcing ω will be the following one:

Condition 2.1. σ is non degenerate (has a non null determinant).

We will then prove the ergodicity of Xt based on the following geometric
conditions on F .

Condition 2.2. Xt is approximately controllable, i.e., for all A,B ∈ M
and ǫ > 0 there exists t > 0 and φ ∈ C0([0, t],Rp) so that Ft

(

A, (φs−φ0)0≤s≤t

)

∈
B(B, ǫ).

This condition is illustrated in Figure 1.

Condition 2.3. For all 0 ≤ t, the mapping (x, φ) 7→ Ft

(

x, (φs −φ0)0≤s≤t

)

is continuous with respect to the norm ‖x − y‖ + ‖φ − ψ‖, where ‖φ − ψ‖ :=
sup0≤s≤t |φs − φ0 − (ψs − ψ0)|.

Let φ,ϕ1, . . . , ϕn be n+1 deterministic continuous mappings from [0, t] onto
R

n equal to 0 at time 0. For λ ∈ R
n, write

G(a, φ, λ) := Ft

(

a, (φs +
n

∑

i=1

λiϕ
i
s)0≤s≤t

)

. (2.4)

Condition 2.4. There exists x0 ∈M and t > 0, such that in a neighbor-
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Figure 1: Approximate Controllability Condition. The condition states
that given A,B ∈M and ǫ > 0, there exists t > 0 and φ ∈ C0([0, t],Rp)
so that Ft

(

A, (φs − φ0)0≤s≤t

)

∈ B(B, ǫ)

hood of (x0, 0, 0):

— (x, (φ)0≤s≤t, λ) → G(x, (φ)0≤s≤t, λ) is differentiable in λ.

— ∇λG is invertible and uniformly bounded.

— (∇λG)−1 is uniformly bounded.

3. Main Theorem

Theorem 3.1. Consider a stochastic process Xt on a manifold M that
satisfies Conditions 2.2, 2.3, 2.4, 2.1 and admits an invariant measure µ. Let
Pt be the semigroup associated to X. Then:

• µ is ergodic and weakly mixing with respect to Pt.

• µ is the unique invariant measure of X.

Proof. We will need the following two lemmas on the Levy process ω.

Lemma 3.1. Assume that ω satisfies Condition 2.1. Let 0 ≤ s < t and
φ ∈ C0([0, t],Rp) be arbitrary. The laws of

(

ωs −ω0

)

0≤s≤t
and

(

ωs −ω0 − (φs −
φ0)

)

0≤s≤t
are absolutely continuous with respect to each other.

Proof. Lemma 3.1 follows by applying Girsanov’s Theorem to the diffusive
component (B) of ω.
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Lemma 3.2. Assume that ω satisfies Condition 2.1. Let φ ∈ C0([0, t],Rp).
For all ǫ > 0, the inequality P

[

sup0≤s≤t |φs − φ0 − (ωs − ω0)| < ǫ
]

> 0 holds
almost surely.

Proof. Let ǫ > 0. Let (γ, σ, ν) be the Levy-Khintchine characteristics of ω.
Let η > 0 such that

∫

z∈Rp : 0<|z|≤η
z2ν(dz) <

ǫ4

16
. (3.1)

Observe that [12] can be written as

ωt = γηt+ σBt + Cη
t +Mη

t , (3.2)

where

γη = γ −
∫

z∈Rp : η<|z|≤1
zν(dz), (3.3)

and

Cη
t =

∑

s≤t

∆s1|∆s|>η (3.4)

is a compound Poisson point process (of jumps of norm larger than one) and

Mη
t = lim

ǫ↓0

(

∆s1ǫ<|∆s|≤η − t

∫

z∈Rp : ǫ<|z|≤η
zν(dz)

)

(3.5)

is a martingale (of small jumps compensated by a linear drift). Observe that
with strictly positive probability exp(−tν(|z| > η)), Cη

t is uniformly equal to 0
over [0, t]. Furthermore by the Martingale maximal inequality

E[sup{(Mη
s )2 : 0 ≤ s ≤ t}] ≤ 4E[(Mη

t )2] (3.6)

and using (see [12])

E[(Mη
t )2] =

∫

z∈Rp : 0<|z|≤η
z2ν(dz) , (3.7)

and Chebyshev’s inequality we obtain that

P[ sup
0≤s≤t

|Ms| ≥
ǫ

2
] ≤ ǫ

2
(3.8)

hence

P[ sup
0≤s≤t

|Ms| <
ǫ

2
] ≥ 1 − ǫ

2
. (3.9)

We conclude the proof of Lemma 3.2 by applying Schilder’s Theorem to Bt and
using the fact that σ is not degenerate.

Let us now prove that µ is ergodic. Let A ∈ B(M) be an invariant set of
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positive µ-measure, i.e.,

Pt1A = 1A, for every t ≥ 0, µ− a.s. (3.10)

and µ(A) > 0. We will prove that µ(A) = 1. Assume 0 < µ(A) < 1. Then
Ac, which is also an invariant set, has strictly positive measure, i.e. µ(Ac) > 0.
Now let us prove the following lemma.

Lemma 3.3. If 0 < µ(A) < 1 then:

— For all y ∈M and ǫ > 0, µ(A ∩ B(y, ǫ)) > 0.

— For all y ∈M and ǫ > 0, µ(Ac ∩ B(y, ǫ)) > 0.

Proof. We will restrict the proof to A. Since µ(A) > 0 there exists x0 > 0
such that for all ǫ > 0, µ(A ∩ B(x0, ǫ)) > 0 (otherwise one would get µ(A) = 0
by covering the separable manifold M with a countable number of balls such
that µ(A∩B(x, ǫx)) = 0). Assume that there exists y0 ∈M and ǫ > 0 such that
µ(A∩B(y0, ǫ)) = 0. Since Xt is weakly controllable (Condition 2.2) there exists
t > 0 and φ ∈ C0([0, t],Rp) so that Ft

(

x0, (φs − φ0)0≤s≤t

)

∈ B(y0,
ǫ
2). From

the continuity Condition 2.3 on F and the Schilder type Lemma 3.2 imply that
there exists ǫ′ > 0 such that

for all x ∈ B(x0, ǫ
′), P

[

Ft

(

x, (φs − φ0)0≤s≤t

)

∈ B(y0, ǫ)
]

> 0. (3.11)

Write Pt the semi-group associated with Xt. Equation (3.11) leads to a contra-
diction with the fact that

∫

A
Pt(x,A)µ(dx) = µ(A). (3.12)

Since µ
(

A ∩ B(x0, ǫ
′)
)

> 0 and for all x ∈ B(x0, ǫ
′), Pt(x,A) < 1.

From Condition 2.4 there exists x0 ∈ M and t, ǫ, α, δ,K > 0 and such that
for x ∈ B(x0, ǫ), ‖φ‖L∞(0,t) < α and λ ∈ (−δ, δ)n, G(x, (φ)0≤s≤t, λ) is differen-
tiable in λ, |∇λG| ≤ K and

∣

∣(∇G)−1
∣

∣ ≤ K. It follows from the Condition 2.4
and the continuity Condition 2.3 that ǫ′ ∈ (0, ǫ) can be chosen small enough so
that there exists z ∈ M , 0 < α′ < α, 0 < ǫz such that for ‖φ‖L∞(0,t) < α′ we
have for all a, b ∈ B(x0, ǫ

′),

B(z, ǫz) ⊂ G(a, (φ)0≤s≤t, (−δ, δ)n) ∩G(b, (φ)0≤s≤t, (−δ, δ)n). (3.13)

Equation (3.13) is illustrated in Figure 2.

Let T > t. From the previous lemma there exists a ∈ B(x0, ǫ
′) ∩ A and

b ∈ B(x0, ǫ
′) ∩ Ac such that PT (a,A) = 1 and PT (b,Ac) = 1. Set Xa

t (Xb
t ) to

be the process Xt started from the point a ∈ M (b ∈ M) and set Pa to be the
measure of probability associated to Xa

t . We obtain from the Markov property
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Figure 2: Closure under Second Randomization Condition Illustrated.
This condition states that under a second randomization of the noise
via λ, the interior of the intersection of the range of G(A,λ) (image of
(−δ, δ)n by λ→ G(A, .)) and G(B,λ) is not void

that

E
[

PT−t(X
a
t , A)

]

= 1 and E
[

PT−t(X
b
t , A)

]

= 0. (3.14)

Write

Xa,λ := Ft

(

a, (ωs − ω0 +
n

∑

i=1

λiϕ
i
s)0≤s≤t

)

. (3.15)

The Girsanov type Lemma 3.1 implies that the laws of Xa and Xa,λ are abso-
lutely continuous with respect to each other. Hence for all λ ∈ (−δ, δ)n,

E
[

PT−t(X
a,λ
t , A)

]

= 1 and E
[

PT−t(X
b,λ
t , A)

]

= 0. (3.16)

Which leads to

δ−2n

∫

[−δ,δ]n
E

[

PT−t(X
a,λ
t , A)

]

dλ = 1 and

δ−2n

∫

[−δ,δ]n
E

[

PT−t(X
b,λ
t , A)

]

dλ = 0.

(3.17)

Let ΩI be the event ‖ω‖L∞(0,t) < α′. Observe that from the Schilder type
Lemma 3.2 the measure of probability of ΩI is strictly positive. It follows from
(3.17) and (3.13) that

δ−2n

∫

[−δ,δ]n
E

[

1ΩI
1

Xa,λ
t ∈B(z,ǫz)

PT−t(X
a,λ
t , A)

]

dλ > 0 . (3.18)

Using the change of variable y = Xa,λ
t we obtain from (3.13) that

E
[

1ΩI

∫

B(z,ǫz)
PT−t(y,A)

dy

|∇λXa,λ| ◦ (Xa,λ)−1(y)

]

> 0 . (3.19)
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Hence

E
[

1ΩI

∫

B(z,ǫz)
PT−t(y,A)

|∇λX
b,λ| ◦ (Xb,λ)−1(y)

|∇λXa,λ| ◦ (Xa,λ)−1(y)

dy

|∇λXb,λ| ◦ (Xb,λ)−1(y)

]

> 0 . (3.20)

We deduce from equation (3.13) and the fact that |∇λXb,λ|◦(Xb,λ)−1(y)
|∇λXa,λ|◦(Xa,λ)−1(y)

is bounded

from below by K−2 that

E
[

1ΩI

∫

B(z,ǫz)
PT−t(y,A)

dy

|∇λXb,λ| ◦ (Xb,λ)−1(y)

]

> 0. (3.21)

However a similar computation leads from (3.17) and (3.13) to

E
[

1ΩI

∫

B(z,ǫz)
PT−t(y,A)

dy

|∇λXb,λ| ◦ (Xb,λ)−1(y)

]

= 0. (3.22)

Hence a contradiction. Thus µ must be ergodic. Let us now prove that µ is the
unique invariant measure. Assume that µ′ 6= µ is also invariant with respect
to the semigroup Pt. By the argument presented above µ′ is ergodic and it
follows from Proposition 3.2.5 of [10] that µ and µ′ are singular and it is easy
to check from the argument presented above that this cannot be the case (the
proof is similar to the one given in Theorem 4.2.1 of [10]). Hence µ is the unique
invariant distribution. The proof of the fact that µ is weakly mixing follows
from Theorem 3.4.1 of [10] and is similar to the one given at p. 44 of [10] (see
Theorem 4.2.1).

4. Sliding Disk at Uniform Temperature

Consider a disk on a surface as shown in Figure 3, see [1]. The disk is free to
slide and rotate. We assume that one rescales position its radius and time by
some characteristic frequency of rotation or other time-scale. The dimensionless
Lagrangian is given by

L(x, v, θ, ω) =
1

2
v2 +

σ

2
ω2 − U(x) , (4.1)

where v stands for the velocity of the center of mass, ω the angular velocity
of the disk and σ is a strictly positive dimensionless constant given by σ :=
J/(mr2) (where r is the radius of the disk, m is its mass and J its moment of
inertia). U : R → R is an arbitrary periodic potential which is assumed to be
smooth, and of period one.

The contact with the surface is modeled using a sliding friction law. For
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Figure 3: Sliding Disk. Consider a sliding disk of radius r that is
free to translate and rotate on a surface. We assume the disk is in
sliding frictional contact with the surface. The configuration space of
the system is SE(2), but with the surface constraint the configuration
space is just R × SO(2).

Figure 4: Ballistic Pendulum. If the dimensionless potential is U =
cos(x), then the sliding disk is simply a pendulum in which the bob in
the pendulum is replaced by a disk and the pendulum is placed within
a cylinder as shown.

this purpose we introduce a symmetric matrix C defined as,

C =

[

1 1/σ
1/σ 1/σ2

]

.

Observe that C is degenerate since the frictional force is actually applied to
only a single degree of freedom, and hence, one of its eigenvalues is zero. In
addition to friction a white noise is applied to the same degree of freedom to
which friction is applied. The governing stochastic differential equations are
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





















dx = vdt ,

dθ = ωdt ,
[

dv

dω

]

=

[

−∂xU

0

]

dt− cC

[

v

σω

]

dt + αC1/2

[

dBv

dBω

]

,

(4.2)

where C1/2 is the matrix square root of C. The matrix square root is eas-
ily computed by diagonalizing C and computing square roots of the diagonal
entries (eigenvalues of C) as shown:

C1/2 =
σ√

σ2 + 1
C.

Write X := (x, θ, v, ω). It easy to check that the Gibbs distribution

µ(dξ) :=
e−βE

Z
dX (4.3)

is invariant for (4.2), where β = 2c/α2, Z :=
∫

e−βEdX, and E is the energy of
the mechanical system and is given by

E :=
1

2
v2 +

1

2
σω2 + U(x).

Define

Y :=

(

−x+ σθ
x+ θ

)

. (4.4)

The system (4.2) can be written
{

Ẏ1(t) = Ẏ1(0) +
∫ t
0 ∂xU(σY2−Y1

σ+1 ) ds ,

Ẏ2(t) = Ẏ2(0) −
∫ t
0 ∂xU(σY2−Y1

σ+1 ) ds− cγ(Y2(t) − Y2(0)) + ᾱ
√

2Bt ,
(4.5)

where γ = (σ + 1)/σ, ᾱ = α(σ + 1)/
√
σ2 + 1 and B := (Bv + Bω)/

√
2 is a

one dimensional Brownian motion. Observe that condition 2.1 is satisfied with
ω = B, p = 1 and σ = (1).

Observe also that if U is a constant then the quantity −v+σω is conserved
and the system (4.2) cannot be ergodic. Let us assume that U is not constant,
our purpose is to prove that the Gibbs distribution µ is ergodic with respect to
the stochastic process X.

Remark 4.1. Observe that when U is not constant over a non void open
subset of R (say (−1

4 ,
1
4)), Y needs to travel a distance that is uniformly (in ǫ)

bounded from below by a strictly positive amount to get from (Y1, Y2, Ẏ1, Ẏ2) =
(0, 0, 0, 0) to the domain Ẏ1 > ǫ. It follows that in that situation that the process
Y and hence X is not strong Feller and theorems requiring this property cannot
be applied.
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Remark 4.2. Observe also that the condition ∂2
xU 6= 0 in a neighborhood

of x0 does not guarantee that Y is strongly Feller in that neighborhood. For
instance observe that ∂2

xU(x0) 6= 0 and ∂U(x0) > 0 imply that the drift on
Y1 is uniformly bounded by a strictly positive constant on a neighborhood of
(0, σ+1

σ x0) it follows that Pǫ(y1, y2)[Y1 < 0] is discontinuous in the neighborhood
of (0, σ+1

σ x0) (ǫ) close to the line y1 = 0.

We believe that the system Y is asymptotically strong Feller so one could
in principle obtain the ergodicity of µ by controlling the semi-group associated
to Y as it is suggested in [6]. We propose an alternative method based on the
controllability of the ODE associated to Y and theorem 3.1. We believe that it
is much simpler to control the geometric properties of the ODE associated to
X rather than the gradient of its semigroup.

One can also check that the generator of Y satisfies a local Hörmander
condition (see [11] 38.16) at a point x0 such that ∂2

xU(x0) 6= 0 so an alternative
method to prove ergodicity would be to use that condition to obtain a local
regularity of the semi group associated to U . Here we propose an alternative
method which does not require U to be smooth and which can be applied with
Levy processes.

Theorem 4.1. Assume that U is not constant. Then the Gibbs measure
µ is ergodic and strongly mixing with respect to the stochastic process X (4.2).
Furthermore, it is the unique invariant distribution of X.

First let us prove that Condition 2.2 is satisfied by X.

Lemma 4.1. Assume U is not constant. Then Y is approximately con-
trollable.

Proof. Since U is not constant, there exists t1 > 0 such that for ti ≥ t1
there exists a smooth path Y such that Y1(0) = −x1 + σθ1, Y2(0) = x1 + θ1,
Ẏ1(0) = −v1 + σω1, Ẏ2(0) = v1 + ω1, Y1(ti) = −x2 + σθ2, Ẏ1(ti) = −v2 + σω2

and
d2Y1

dt2
= ∂xU

(

σY2 − Y1

σ + 1

)

. (4.6)

Take t2 := ti + min(ǫ,1)

10(‖∂xU‖L∞+1+| d
dt

Y1(ti)|)
and interpolate smoothly Y2 between

Y2(ti) (obtained from the control problem (4.6)) and
(

Y2(t2)
dY2

dt (t2)

)

=

(

x2 + θ2
v2 + ω2

)

. (4.7)
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Observe that the extension of Y1 to (ti, t2] as a solution of (4.6) satisfies
∣

∣

∣

(

Y1(t2) − Y1(ti)
dY1

dt (t2) − dY1

dt (ti)

)

∣

∣

∣
≤ ǫ

5
. (4.8)

Taking φ be the smooth curve defined by φ(0) = 0 and

d2Z2

dt2
= −∂xU

(

σZ2 − Z1

σ + 1

)

− cγ
dZ2

dt
+ ᾱ

√
2
dφ

dt
(4.9)

completes the proof.

Proof. The proof that X satisfies Condition 2.3 is a standard application of
Gronwall’s Lemma. Observe that the semi-group associated toX is not strongly
irreducible and never equivalent to µ because |(−v+ σω)(t)− (−v+ σω)(0)| ≤
‖∂xU‖L∞t. Let us now show that Condition 2.4 is satisfied.

Write ξ the stochastic process defined by
{

ξ̇1(t) = ξ̇1(0) +
∫ t
0 ∂xU(σξ2−ξ1

σ+1 ) ds ,

ξ̇2(t) = ξ̇2(0) + ᾱ
√

2Bt .
(4.10)

To prove that Y satisfies Condition 2.4 it is sufficient to show that ξ satisfies
Condition 2.4.

Since U is smooth and not constant, there exists a point x0 ∈ [0, 1), ǫ, C > 0
such that for x ∈ B(x0, ǫ), ∂2

xU > C. Let ζ be a point of the phase space such
that σζ2−ζ1

σ+1 = x0 and ζ̇1 = ζ̇2 = 0. Let 0 < ǫ′ < ǫ/100 and a ∈ B(ζ, ǫ′).

Let ϕ1, . . . , ϕ4 be 4 continuous mappings from R
+ onto R, equal to zero at

time zero. For λ ∈ R
4 we write ξλ the solution of






















ξ̇λ
1 (t) = ȧ1 +

∫ t
0 ∂xU(

σξλ
2
−ξλ

1

σ+1 ) ds ,

ξ̇λ
2 (t) = ȧ2 + ᾱ

√
2

∑4
i=1 λiϕi(t) ,

ξλ
1 (t) = a1 +

∫ t
0 ξ̇

λ
1 (s) ds ,

ξλ
2 (t) = a2 +

∫ t
0 ξ̇

λ
2 (s) ds .

(4.11)

It follows that


































ξ̇λ
1 (t) − ξ̇01(t) =

∫ t
0 (

σξλ
2 −ξλ

1

σ+1 − σξ0
2−ξ0

1

σ+1 )

×
∫ 1
0 ∂

2
xU

(σξ0
2
−ξ0

1

σ+1 + α(
σξλ

2
−ξλ

1

σ+1 − σξ0
2
−ξ0

1

σ+1 )
)

(s) ds dα ,

ξ̇λ
2 (t) − ξ̇02(t) =

∑4
i=1 λi

(

ᾱ
√

2ϕi(t)
)

,

ξλ
1 (t) − ξ01(t) =

∫ t
0 (ξ̇λ

1 (s) − ξ̇01(s)) ds

ξλ
2 (t) − ξ02(t) =

∑4
i=1 λi

(

ᾱ
√

2
∫ t
0 ϕi(s) ds

)

.

(4.12)
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Writing η the solution of






η̇(t) +
∂2

xU
(

x0
)

σ+1

∫ t
0 η(s) ds = ∂2

xU
(

x0
)

σ
σ+1

∫ t
0 (ξλ

2 − ξ02)(s) ds ,

η =
∫ t
0 η̇(s) ds ,

(4.13)

we obtain that up to the first order in λ, and at the order 0 in ǫ′ and t,
(

ξ̇λ
1 (t)− ξ̇01(t), ξλ

1 (t)− ξ01(t)
)

can be approximated by (η̇(t), η(t)). It follows that
ξλ
t − ξ0t can be written as M(λ, t)λ, where M(λ, t) is continuous in t and λ in

the neighborhood of 0. Moreover, ϕ1, . . . , ϕ4 can be chosen so that M , and
M−1 are uniformly bounded in that neighborhood. Choosing 0 < δ ≪ 1 and
0 < ǫ′ ≪ δt ≪ 1 implies Condition 2.4. By invoking Theorem 3.1 one obtains
that the process is ergodic and weakly mixing.

It follows from Theorem 3.4.1 of [10] that for ϕ ∈ L2(µ) there exists a set
I ⊂ [0,+∞) of relative measure 1 such that

lim
|t|→∞, t∈I

E[ϕ(xt, θt, vt, ωt)] = µ[ϕ] in L2(µ). (4.14)

Furthermore since t → E[ϕ(xt, θt, vt, ωt)] is continuous when ϕ is continuous
and bounded we deduce that when ϕ is continuous and bounded then

lim
t→∞

E[ϕ(xt, θt, vt, ωt)] = µ[ϕ] in L2(µ). (4.15)

The fact that the process is strongly mixing then follows from Corollary 3.4.3
of [10].

In [1], using Theorem 4.1 we prove that if U is non-constant then the x-
displacement of the sliding disk is µ a.s. not ballistic (see Proposition 4.1).
However, the mean-squared displacement with respect to the invariant law is
ballistic (see Theorem 4.2). More precisely, we show that the squared standard
deviation of the x-displacement with respect to its noise-average grows like
t2. This implies that the process exhibits not only ballistic transport but also
ballistic diffusion. If U is constant then the squared standard deviation of the
x-displacement is diffusive (grows like t). See below for theoretical results and
numerical experiments using efficient stochastic variational integrators.

Proposition 4.1. Provided that U is non-constant, then µ a.s.

lim
t→∞

x(t) − x(0)

t
→ 0.

Proposition 4.2. The squared standard deviation of the xt + θt-degree
of freedom is diffusive, i.e.,

lim
t→∞

Eµ[(xt + θt − E[xt + θt])
2]

t
=

2α2σ2

c2(σ2 + 1)
. (4.16)
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Figure 5: Sliding Disk at Uniform temperature, h = 0.01, α = 5.0,
c = 0.1. A log-log plot of the mean squared displacement of the ball.
It clearly shows that the x-position exhibits anomalous diffusion when
U is symmetric or asymmetric. The disk is started from rest. In the
control and flat U cases the diffusion is normal.

Proposition 4.3. Assume that U is non constant, then

lim sup
t→∞

Eµ

[

(

− xt + σθt − E[−xt + σθt]
)2

]

t2
≤ 4

1 + σ

β
(4.17)

and

lim inf
t→∞

Eµ

[

(

− xt + σθt − E[−xt + σθt]
)2

]

t2
≥ 1

4

1 + σ

β
. (4.18)

Theorem 4.2. We have (see [1]):

— If U is constant then

lim
t→∞

Eµ

[

(xt − E[xt])
2
]

t
=

2α2σ2

c2(σ2 + 1)(σ + 1)2
. (4.19)

— If U is non constant then

lim sup
t→∞

Eµ

[

(xt − E[xt])
2
]

t2
≤ 4

β(1 + σ)
(4.20)
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Figure 6: Angular position of a magnetic motor (uniform temperature).
Four different realizations of the angular component of the center of
mass of a magnetic motor are plotted. The system is started from rest.

and

lim inf
t→∞

Eµ

[

(xt − E[xt])
2
]

t2
≥ 1

4β(1 + σ)
. (4.21)

Classical homogenization techniques cannot be applied to obtain Theorem
4.2 (since the stochastic forcing is degenerate on momentums). We refer to
[1] for a proof of that theorem. The ballistic diffusion is caused by long time
memory effects created by the degeneracy of the noise and the coupling between
the two degrees of freedom through U . Figure 5 gives an illustration of the
mean-squared displacement of the rolling disk versus time started from rest.
In [1] we have used that phenomenon to propose a fluctuation driven magnetic
motor characterized by ballistic diffusion at uniform. A plot of the angular
displacement of that magnetic motor versus time for a single realization started
from rest is given in Figure 6.

References

[1] N. Bou-Rabee, H. Owhadi, Ballistic transport at uniform temperature,
ArXiv: 0710.1565 (2007).

[2] J.-P. Eckmann, M. Hairer, Non-equilibrium statistical mechanics of
strongly anharmonic chains of oscillators, Comm. Math. Phys., 212, No.
1 (2000), 105-164.

[3] J.-P. Eckmann, M. Hairer, Uniqueness of the invariant measure for a
stochastic PDE driven by degenerate noise, Comm. Math. Phys., 219,
No. 3 (2001), 523-565.



490 N. Bou-Rabee, H. Owhadi

[4] J.-P. Eckmann, C.-A. Pillet, L. Rey-Bellet, Non-equilibrium statistical me-
chanics of anharmonic chains coupled to two heat baths at different tem-
peratures, Comm. Math. Phys., 201, No. 3 (1999), 657-697.

[5] Jean-Pierre Eckmann, Claude-Alain Pillet, Luc Rey-Bellet, Entropy pro-
duction in nonlinear, thermally driven Hamiltonian systems, J. Statist.
Phys., 95, No-s: 1-2 (1999), 305-331.

[6] Martin Hairer, Jonathan C. Mattingly, Ergodicity of the 2D Navier-Stokes
equations with degenerate stochastic forcing, Ann. of Math., 164, No. 3
(2006), 993-1032.

[7] J.C. Mattingly, A.M. Stuart, Geometric ergodicity of some hypo-elliptic
diffusions for particle motions, Markov Process. Related Fields, 8, No. 2
(2002), 199-214.

[8] J.C. Mattingly, A.M. Stuart, D.J. Higham, Ergodicity for SDEs and ap-
proximations: locally Lipschitz vector fields and degenerate noise, Stochas-
tic Process. Appl., 101, No. 2 (2002), 185-232.

[9] Sean Meyn, Richard Tweedie, Markov Chains and Stochastic Stability
(Communications and Control Engineering), Springer (1996).

[10] G. Da Prato, J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Lon-
don Mathematic Society, Lecture Note Series 229, Cambridge University
Press (1996).

[11] L.C.G. Roger, D. Williams. Diffusions, Markov Processes and Martingales,
Volumes 1 and 2, Cambridge University Press (2006).

[12] Matthias Winkel, Lecture Notes on Levy Processes,
http://www.stats.ox.ac.uk/ winkel/ms3b.html (2008).


