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Abstract

How does one evaluate the performance of a stochastic system in the absence of a perfect
model (i.e. probability distribution)? We address this question under the framework of opti-
mal uncertainty quantification (OUQ), which is an information-based approach for worst-case
analysis of stochastic systems. We are able to generalize previous results and show that the
OUQ problem can be solved using convex optimization when the function under evaluation
can be expressed in a polytopic canonical form (PCF). We also propose iterative methods for
scaling the convex formulation to larger systems. As an application, we study the problem of
storage placement in power grids with renewable generation. Numerical simulation results for
simple artificial examples as well as an example using the IEEE 14-bus test case with real wind
generation data are presented to demonstrate the usage of OUQ analysis.

1 Introduction

Suppose we are given an optimal control problem of minimizing the operating cost of a system that
depends on some random parameter § € R™. One prerequisite for this is evaluating the operating
cost under a certain control strategy. Conventional stochastic optimal control normally assumes that
the probability distribution of 8 is given as d, in which case this evaluation amounts to computing the
expectation of the cost function f : R™ — R, i.e., Egq[f(0)] over d. For large-scale systems (i.e., 6
is high-dimensional), however, computing this expectation becomes impractical for two reasons.
Firstly, there may not be sufficient data for modeling d, unless d belongs to some special class of
distributions that can be described by a few parameters (e.g., uniform, Gaussian). For example, for
a generic discrete distribution d, the amount of data required for building a tabular representation
of d grows exponentially with n and will quickly become intractable. Secondly, even if d could be
obtained and represented, exact computation of the expectation would require high-dimensional
numerical integration and still remain expensive.

In light of these difficulties, current available solutions have been largely based on two prevalent
approaches. These approaches either ignore the stochasticity of § and fall back to deterministic
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analysis, or approximate d using tractable models and compute the expectation using sampling-
based methods. Although both have been able to show some useful insight on system design, they
are based on strong prior knowledge about the distribution and may not stay consistent with data.

The proposed approach in this paper seeks a scalable and information-based method that eval-
uates the expected cost under imperfect knowledge about distribution, either due to insufficient
data or computational constraints. Unlike the two previous approaches, this approach considers a
set of distributions rather than commits to a specific distribution. This is similar to uncertainty
set used in robust control, with the difference that the set lies in the infinite-dimensional space of
distributions. On the other hand, it uses information from available data to build a restricted set of
distributions to avoid over-conservatism. For instance, suppose we are able to estimate from data
the mean of d as 1 € R”, then we can impose a constraint on the mean, i.e.,

Egal0] = f1 (1)

to obtain a smaller set of distributions that still contains the true distribution. In fact, we can use
any test function g defined on R” to impose constraints in the form!

Eg~alg(0)] = g (2)

for some constant §. The purpose of g is to include information about the distribution d known
from data. Its form normally depends on the type of computation available on the data and/or the
mechanism of data collection. A common choice is to specify the moments of d. The constraint (1),
for example, corresponds to the case g(f) = 6, which specifies the first moment. This kind of
constraints does not rely on explicit modeling of d and is often not difficult to generate from
historical data consisting of instantiations of § in the past.

What distribution should one choose within this class of distributions defined by the con-
straint (2)7 One viable choice is the worst-case distribution, which maximizes the operating cost
under evaluation. Formally, this can be cast as an optimization problem over d,

maxliimize Egq[f(0)] subject to  Eg.q[g(0)] = g.

This choice has the merit of healthy conservatism: prepare for the worst case, but only among the
cases consistent with the data. The problem is called optimal uncertainty quantification (OUQ).
Unfortunately, it is an infinite-dimensional optimization problem and cannot be solved directly
by any optimization packages up-to-date. Due to recent advances, this problem is now known to
adopt a finite reduction, i.e., there exists a finite-dimensional problem that gives the same optimal
value [1]. To some extent, considering the worst-case distribution can be computationally more
amenable because it only requires solving an optimization problem (convex in some cases, as will
be shown later) as opposed to (high-dimensional) numerical integration.

The first contribution of this paper is to scale OUQ to large systems of which the cost func-
tion under evaluation satisfies a particular form. For a generic OUQ problem, the reduced finite-
dimensional problem is non-convex and may still be highly computationally demanding to obtain
the global optimum. However, it has been shown that there is a special class of OUQ problems
solvable using convex optimization [2,3]. This paper extends this result and studies a more general

'"More generally, the constraints can be inequalities (cf. [1]).



form called the polytopic canonical form. The exact method for solving problem in this form, how-
ever, has complexity that grows exponentially with the dimension of the uncertain parameter. In
light of this, we propose an approximate iterative method that can be applied to large systems.

The second contribution of this paper is to study the problem of storage placement in power
grids with renewable generation under the OUQ framework. Placing storage devices in the grids is
considered a promising solution to mitigating the effect of random fluctuations in the renewables [4]
and related problems were recently studied in the control community [5,6]. In this context, it is
important to evaluate the ramifications of a given storage placement plan [7|. This paper shows
that the evaluation problem can be transformed into an OUQ problem with cost function in the
polytopic canonical form. We also present numerical results using a standard power system test
case and renewable generation data.

2 Convex optimal uncertain quantification

In this section, we start from an important class of OUQ problems, for which the solution can be
obtain using convex optimization. Then we generalize its cost function to what we call the polytopic
canonical form. Exact method for solving problems in this form can be prohibitively expensive for
a large number of random variables. In order to partially alleviate this difficulty, we propose an
iterative approximate method that only requires solving smaller problems at each iteration. The
method is guaranteed to converge, and it often converges close to the true optimum for problems
we have tested.

2.1 The polytopic canonical form (PCF)

In general, an OUQ problem is non-convex and therefore difficult to obtain its global optimum.
However, there is a special case for which the solution can be obtained using convex optimization,
provided that two conditions hold: (1) The function f is piecewise linear and convex; (2) the
constraints only consist of first and second moments. Under these conditions, it has been shown
that the OUQ problem can be solved by convex optimization, according to Theorem 1 due to [2].

Theorem 1 (Delage and Ye). Let K be a finite index set. If the function f : R™ — R can be written
as

F(0) = max{aj, 0+ be} (3)
for some {ai}rex C R™ and {b;}rex C R, then the optimization problem over d,

maxilmize Ega[f(0)] (4)

~

subject to  Egq[f] = @1, coveq[l] =2,

achieves the same optimal value as the semidefinite program (SDP) over @Q € ST, ¢ € R"™, and
r € R,

migimize tr((i + 0T Q) + pLq +r (5)
7q7’r
subject to Q T (6)

(g—ar)™/2  r—1



Given the set I, and C = {(ak,br)}rex, we denote the optimization problem (4) and (5)
as COUQp(K,C) and COUQ(K,C), respectively. We also denote their (same) optimal value
as COUQ*(K,C). The dependence on i and ¥ is omitted. This notation also applies to any
subset A C K, i.e., COUQ(A,C) denotes the optimization problem

migimize tr((i + i)+ g+
7q77"
Q (¢ —ak)/2
=0, keA
(g—ax)/2  r=bp |7

In this paper, we will consider a more general form of f, which we call the polytopic canonical
form (PCF).

subject to

Definition 2 (Polytopic canonical form). A function f : R™ — R is said to be in the polytopic
canonical form (PCF) if it can be written as

f(0) = max {aT6+b}), acR"becR (7)
(a,b)eP

for some polytope P of dimension (n + 1).

Alternatively, f can be regarded as the optimal value of a family of linear programs (LP)
parameterized by 6:
maxiinize a4+ b subject to (a,b) € P. (8)
a,
The PCF (7) subsumes (3). For any f in the form (3) with C = {(ax, bx) }xex, we can choose P to
be the convex hull of C. This implies C C P, and hence
f(0) = max {a}6+ by} < max {a 0+ b}. 9)
(ak,bix)EC (a,b)eP
The last inequality is always tight, which can be shown by using a basic property of LP. Denote the
vertices (extreme points) of P as V. We have V C C, hence
max {akﬁ—l—bk} < max {ald+b}. (10)
(ak,br)EV (ay,by)eC
From the optimality of the extreme points, we know that any optimum for the LP (8) can always
be attained at some (ag,br) € V, no matter what 6 is chosen, i.e.,

0+0b}= To 4 b 11
(ﬁ?gp{a b= (ﬁii‘év{ak + b} (11)

Therefore, from (9)—(11), the equality

(ggxgp{a 0+b} = (agla? {aT 0 + by}
must hold and f(0) = max(mb)ep{aT@ + b}, ie., any f in the form (3) can be rewritten in PCF. On
the other hand, given any function f in PCF, we can also rewrite it in the form (3) by setting C
as the vertices of P. The benefit of using PCF is its flexibility. In PCF, P can be defined either
by its vertices, in which case it reduces to the form (3), or by the intersection of half-spaces. The
latter representation can sometimes be more compact, e.g. for the storage placement problem in
Section 3.



2.2 Exact iterative method method for PCF

For any f in PCF, there is at least one practical issue in directly applying Theorem 1 by rewriting
f in the form (3). Obtaining the vertices V), usually through vertex enumeration algorithms, can
be computationally demanding when the dimension of P is high or the number of its composing
constraints is large. In general, the cardinality of V', denoted as |V|, grows exponentially with the
dimension n. This becomes prohibitively expensive even for a moderate n and a moderate number
of constraints. Even if V could be obtained, solving the SDP (5) would also be expensive when |V
(hence |K]) is large.

To this end, we seek iterative methods that solve a smaller problem at each iteration. In general,
if we choose an arbitrary subset .4 C K and solve the problem COUQ(.A, V), we are only guaranteed
to obtain a lower bound COUQ*(A,V) < COUQ*(K,V) since the constraints for k& € K\.A have
been ignored. The inequality is tight if and only if the optimal solution (Q*, ¢*, r*) for COUQ(A, V)
also satisfies the constraints for k € K\ A, i.e.,

Q" (¢" — ay)/2

)Tz by |20 VRER\A (12)

Based on this fact, one can use the following procedure to obtain COUQ*(K, V), without including
all the constraints in I in the optimization problem at first:

1. Start with an initial index set A C K.
2. Obtain (Q*, ¢*,r*) for the problem COUQ(A,V).

3. If (Q*, ¢*,r*) satisfies (12), report (Q*, ¢*,r*) as the solution to COUQ(K, V) and terminate.
Otherwise, there must exist a set B C K\ A such that the condition (12) is violated for k € 5.
Set A := AU B and repeat steps 2-3.

2.3 Approximate iterative method for PCF

There are two issues with this procedure. One issue is that checking the condition (12) can be
difficult, because the number of constraints to be checked is || — |.A|, which is usually large (on the
same order as || assuming |A] is small). The other issue is that, in the worst case, the index set A
may continue to grow until A = K, in which the final problem to solve has the same complexity as
the original problem.

Fortunately, when f can be expressed in PCF, we have a theorem that finds a violating constraint
in step 3 without exhaustively checking all the constraints in \.A. Moreover, Corollary 7 will show
that, once such a constraint is found, it can replace an existing constraint in A without affecting
convergence of the method. This prevents A from growing and avoids the possibility of solving
a problem as large as A = K. This method of finding a violating constraint uses an important
property of the solution to the problem COUQ(A,V). Theorem 3 (cf. [2]) shows that, when we
obtain the optimal solution (Q*, ¢*,7*) to COUQ(A, V), we automatically obtain the corresponding
optimal probability distribution d* for the problem COUQp(.A,V) from the Lagrange multipliers.
This optimal distribution d* can always be realized by a discrete distribution consisting of Dirac
masses located at {0 }rea C R™ with probability weights {p}rea C Ry.



Theorem 3. Suppose the Lagrange multiplier for the constraint (6) in the problem COUQ(K, V) is

{ I }

T Dk

for each k € K. Then for every py # 0, the optimal distribution d* for the problem COUQp(K, V)
contains a Dirac mass located at 0 = ~yi /pr with probability py.

Remark 4. Theorem 3 implies that the maximum number of Dirac masses in d* is ||. On the
other hand, the finite reduction theorem (cf. [1]) shows that the number of Dirac masses required
for realizing d* is at most N + 1, where N is the number of independent scalar equalities in the
constraint (2). In the case of problem (4), for example, the number N = n + n(n + 1)/2 (the
factor 1/2 is due to the symmetry of f)) Combining the two results, we know the maximum
number of required Dirac masses is min(|fC|, N 4+ 1). In practice, depending on the problem, the
actual number of nonzero Dirac masses can be even smaller than min(|K|, N + 1).

This gives us another way to compute COUQ*(A, V), i.e.,

COUQ™(A, V) = > _ pilaf b + bi).
ke A

By using this alternative expression, Theorem 5 shows that {0 }rca corresponding to a suboptimal
solution (Q*, ¢*,r*) can be used for finding a violating constraint in IC\.A.

Theorem 5. For a given set A, suppose (Q*,q*,r*) is the optimal solution for COUQ(A,V) and
the set of Dirac masses of the optimal distribution is {0k }rea. If for any u € A, there exists some
v € K such that

al, + b, > al, + by, (13)
then the constraint ( y
Q* q* —ay)/2

=0 14

|: (q*—av)T/2 T*—bv - ( )

1s violated.

Proof. We prove the theorem by contradiction. Consider the optimization problem COUQ(A U
{v},V). Suppose the condition (14) is not violated, then (Q*,q*,r*) would also be the optimal
solution for COUQ(A U {v}, V), which implies that COUQ*(A U {v},V) is

Z pk(aipk + bk), (15)
ke A

when f(6) = maxye s} {a} 0 + br}. On the other hand, COUQ*(A U {v}, V) should be at least
pu(ayfu+b0) + > prlaf 0 + bi), (16)
ke A\{u}

which is attained under the same discrete distribution consisting of {(6x, px) }xea. The quantity (16)
will always be greater than (15), hence a contradiction. O

Remark 6. Condition (13) is only sufficient. Hence, it is not guaranteed to find all the violating
constraints.



If f is in PCF, finding such (a,, b,) for 6, only requires solving the LP

maximize a’6, + b subject to  (a,b) € P.

a,b
If the optimal solution (a*,b*) for this LP satisfies
(@) 10, +b* > alb, + by,

then we have successfully found (a,, b,) = (a*, b*). Otherwise, no such (a,, b,) exists. Another useful
by-product of this new way of finding a violating constraint is that the constraint corresponding to u
can be removed from A4 in the next iteration while still ensuring that COUQ* (A, V) is increasing.

Corollary 7. For A, V, u and v defined in Theorem 5, let A'(u,v) = (A\{u}) U {v}. Then
COUQ*(A'(u,v),V) > COUQ*(A, V).
Proof. For {0} }reca in the proof of Theorem 5,

ke A\{u}

The proof of Theorem 5 has shown that the right hand side is strictly greater than

> pr(af b + b)) = COUQ*(A, V),
ke A

which completes the proof. O

Due to Corollary 7, we can use a modified iterative method than the one proposed at the
beginning of this section. In particular, Step 3 can be changed to:

3’) Obtain {0}rea and check if for any u € A, there exists v € K such that (ay,b,) satis-
fies (13). If not, then report (Q*,¢*,7*) as the optimal solution to the problem COUQ(K, V)
and terminate. Otherwise, for every (u, v) satisfying (13), set A := A’(u,v) and repeat steps 2
and 3’.

This approximate method is guaranteed to converge. At each iteration, the new index set A will
give a non-decreasing optimal value for the corresponding optimization problem. Therefore, this
sequence of optimal values is monotone and, at the same time, must be bounded by COUQ*(KC, V).
By the monotone convergence theorem, this sequence, consisting of real numbers, must have a
limit, i.e., the method converges. This method is not, in general, guaranteed to converge to the true
optimum since there may still be violating constraints when the algorithm exits (see Remark 6).
However, the result will always be a lower bound of the true optimal value, since some constraints
in K have been removed from the minimization problem COUQ(/X,V). Therefore, we can run the
same optimization problem multiple times with different initial assignments of A and choose the
highest among all the results to get an improved approximation.

Choosing the size of A can be potentially important for this method to work properly, since |.A]
remains constant over iterations. If its size is too small, A may not be capable of including all the
Dirac masses necessary for realizing the optimal distribution. One possible choice of |A| is N + 1,



which is an upper bound of necessary Dirac masses, although this can be conservative for a particular
problem (see Remark 4). It remains an open question whether knowing such conservatism a priori
can help speed up the optimization procedure.

We now use a simple example to test this approximate method on small problems. In these
examples, we arbitrarily generate i € R", = S%, and choose P as the (n + 1)-dimensional
hypercube

{(a,b): 0 <a=<1,0<b<1},

where 1 and 0 denote vectors in R" containing all ones and all zeros, respectively. For each n,
we compare the relative error between the exact solution from (5) and the approximate solution.
When computing the approximate solution, we choose |A| = N + 1 based on previous discussions.
in Fig. 1 shows the results for n from 1 to 16. The choice of n is limited by the computational time
of the exact method (for n = 16, it takes about 18.6 hours on an Intel Xeon 3.00 GHz workstation).
To obtain statistics about the approximate method, we perform 100 trials for each n, and compute
the 10% and 90% quantile of the errors. It can been seen that most of the errors are within 5%.
Establishing a bound on the rate of growth of the error as n increases is subject to our current work.
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Figure 1: Relative errors of the approximate method. Blue crosses: relative errors. Red bars: 10%

and 90% quantiles of the relative errors.

3 Storage placement problem

In this section, we introduce the storage placement problem in power grids as one application of
OUQ. We show that this evaluation problem can be converted into PCF using Lagrange duality
from optimization theory and solved within the framework of convex OUQ.

3.1 A simple power grid model with energy storage

We model a power grid as a discrete-time dynamical system on a finite graph (N, &) with time
indices 7 = {1,2,--- ,T}. The vertices N are also called buses. For simplicity, we use the shorthand
notation x to denote the vectorization of {z;(¢) }iente7. At any time ¢, we refer to g;(t), d;(t), and
ri(t) as power generation from renewables, user consumption, and charge rate of storage devices



at bus i. As a convention, if the storage devices are being charged, then r;(t) > 0. Under this
convention, the total local net power consumption becomes

dl(t) — gi(t) + Ti(t).

Due to physical constraints, the storage level at bus ¢ must stay between 0 and the maximum
capacity I, i.e.,

O<Zrl <E, VieN,teTu{o}.
=0

In an abuse of notation, we use 7;(0) to denote the initial level of storage at bus i. Aside from local
generation and consumptions, power can also flow between adjacent buses. For any neighboring
buses i and j (i.e., (i,7) € &), the power flow from i to j is given by

Bij(ai(t) — a;(1)),

where B;; is the susceptance of the transmission line between i and j, and o;(t) is the voltage
angle of bus i. Here we use a DC power flow model for simplicity (cf. [8] for its applicability). A
transmission line can only support a limited amount power flow @;; > 0, which imposes

Bylaa(t) — a; ()| < Qyy, W(ij) € €, teT.

In summary, the total net power consumption at bus 7 is

Pz(t) (5 ( + 7“@ Z Bz] Oéz - (t)]a

(i,5)€€

where §;(t) £ d;(t) — gi(t). If P;(t) < 0, the consumption is covered by all the sources, including
local sources and and power flow from adjacent buses. However, if P;(t) > 0, the unmet portion
must be matched by additional power sources, usually from the so-called spinning reserves in the
form of conventional generation.

For simplicity, we assume that the operating cost only depends on the amount of power drawn
from spinning reserves. All the other factors, including renewable usage, charging/discharging, and
power transmission are assumed to incur no cost. This simplification can potentially be crude. For
example, storage devices such as chemical batteries often have a finite number of charging cycles,
so charging/discharging cannot be treated as entirely free. These potential refinements will be left
for future work. Under this assumption, at time ¢, the cost for bus ¢ can be modeled as a hinge cost

Ji(t) = [P(t)]" = max{Pi(t),0},
and the operating cost for the entire grid over time is
T
J=> > "Jit)
ieN t=1

Suppose 0;(t) is known, for a given placement of storage { E; };car, one can choose how to operate
the storage devices and transmit power over the network to minimize the operating cost by solving



the problem

minimize  J(J,r, o) (17)

r,Q

subject to  |Bjjlai(t) — a;(t)]] < Qij, V(i,j) €&, teT,
t
0<> ri(r) <E;, ieN, teTu{o},
7=0

T
ZT‘Z'(T) >0, ieN.

T=1

The last constraint is added in order to prevent one from minimizing the operating cost by setting a
large initial level of charge (which in practice will incur cost). This optimization problem is always
feasible, since r = 0 and a = 0 will satisfy all the constraints.

3.2 Worst-case analysis

We would like to compute the worst-case operating cost under a given placement of storage {E;}.
We treat 6;(t) as the uncertainties for capturing the stochasticity in both renewable generation and
user demand. There are two candidate formulations due to the extra freedom in optimizing the
power flow by choosing r and «.

e max;.q Es[min, o J(J,7, «)]: This is the “clairvoyant” worst-case analysis. It assumes that
power flow optimization will have full knowledge about the actual instantiation of 4.

e min, o[maxs~q Es[J(J,r, )]]: This is the “conservative” worst-case analysis. It assumes a fixed
plan for power flow, independent of the actual instantiation of 6.

In this paper, we choose the first formulation because the time horizon under consideration will be
24 hours, and one normally has good knowledge about § within this horizon (into the future) from
forecast, which has been a common practice for many system operators. The second formulation
seems too conservative by abandoning any real-time control on the power flow. Formally, the OUQ
problem becomes

max}imize Esd [G(9)]
subject to  Esq[d] = [, covsq[d] = 5,
where G(9) is the optimal value of the optimization problem (17) for a given d.

3.3 Conversion into PCF

Unfortunately, the function G is not in PCF. However, it is possible to convert G into PCF using
Lagrange duality. By introducing slack variables, the optimization problem (17) can be rewritten

10



as an LP, i.e.,

T
minimize Ji(t
roa,J; () zez_/\/tzl ( )
subject to  Bjjlai(t) — a;(t)] < Qij, V(i,j) €&, teT,
Bijlai(t) — aj(t)] > Qi V(i,j) €E, t €T,

t
0<> ri(r) < By, €N, teTu{o},
7=0

whose Lagrange dual problem

T T T
R e D S SRULITED 3D DPYICIEE. ) S WEE

ieN t=1 ieN t=0 (i,5)e€ t=1
1 4 4 4
—5 2 QPO AT )
()€€ t=1
subject to 0 < )\Z(-l)(t) <1, )\Z(-Q)(t) >0, ieN,teT
AN =0, ()€€ teT,
Ay =2 Va1 -V ien, te\(T},
ATy > A1) v, e,
AP0y =2 V1) 4, ienN,
B 1) = 20 = AP ) + 2 @)
(4,9)€E
A O+ W] =0, ien teT.

is also an LP. It can be seen that the dual LP (18) has the form (8) for a = A(1),

T T
) B RILIE ) i EVIORSVRI)

ieN t=0 (i,j)€€ t=1

T
I RIS

(i,j)e€ t=1

11



and the polytope P defined by constraints (19)-(24). Since the primal problem is an LP and always
feasible, strong duality holds, which implies that the dual LP gives the same optimal value as the
primal LP. In other words, G can be redefined by the dual LP and hence can be rewritten in PCF.

4 Numerical results and discussions

In this section, we present numerical simulation results for the storage placement problem under
three scenarios. For the first two scenarios, we use simple network configurations, in particular,
1-bus and 2-bus networks with synthetic renewable generation data. The purpose of these examples
is to show some insight into the differences between deterministic analysis and the OUQ analysis.
For the third scenario, we use the IEEE 14-bus test case as a more practical configuration and data
from real renewable generation. Through this example, we aim to demonstrate that the approximate
method is capable of analyzing a practical system.

4.1 1-bus network

First we consider a network consisting of one isolated bus, i.e., [N'] = 1. This setting has the benefit
of isolating any influence by power transmission. We will fix £ and focus on the effect of . The
number of time slices is chosen as 5 so that the exact method can be used. Fig. 2a compares the
results from (1) deterministic analysis, which assumes that ¢ follows /i deterministically, (2) OUQ
analysis with © = (0.1)21 (I is the identity matrix), and (3) OUQ analysis with & = (0.4)2I. All the
curves follow the law of diminishing returns, i.e., adding storage will become less helpful in reducing
the operating cost if some storage has already been in place. The differences are in the slope of the
curves. For the deterministic analysis, there is a hard threshold after which adding storage will have
zero reduction on the cost, whereas the same hard threshold does not appear for the OUQ analysis.
This trend is not difficult to understand for the deterministic case: the operating cost cannot be
made lower than the cumulative net demand over the entire time horizon, since adding storage does
not contribute to power generation. For the results from the OUQ analysis, lower variance will
cause a steeper slope. This can be understood by treating the case with lower variance as closer to
the deterministic case, which has the steepest slope among all the curves.

The cost-storage curve is not only affected by the variance (diagonal entries of i\]), but also by
the (time) correlation (off-diagonal entries of £). Fig. 2b compares the results of no correlation
and positive correlation, where Y is generated from a Laplace covariance function (also known as
covariance kernel): f]ij = exp(]i — j|/7) for some constant 7. It can be seen that the presence
of positive correlation leads to a slower decrease in the cost. This is expected, since the cost is
dominated by the “bad event” during which the net demand at all time instances becomes higher
than normal simultaneously, and this is more likely to happen with positive time correlation.

4.2 2-bus network

The purpose of the 2-bus example is to examine the effect of power flow, which can potentially
make the operating cost less sensitive to the locations of storage. In the extreme case, if an infinite
amount of power is allowed to flow across a fully connected network, then any storage placement
will give the same operating cost. For a 2-bus network, there can be only one transmission path,
and we study how the maximum power flow Qmax of this path affects the operating cost. The two
buses are set to be identical, except for their covariance matrix: %1 = (0.1)2I and £y = (0.4)21.
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Figure 2: Results for 1-bus network. (a) Effect of variance. (b) Effect of (positive) time correlation.
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Figure 3: Results for 2-bus network. (a) Effect of transmission capacity Qmax. (b) Effect of total
storage Fiot.

Fig. 3a compares the results for three power flow limits: Qmax = 0 (the two buses are isolated), 0.1,
and 0.2. In the simulation, the total storage Fiot is fixed, and the operating cost is plotted against
E4, the storage assigned to bus 1. As expected, as Qmax becomes larger, the distribution of storage
between the two buses becomes less important.

We also study the effect of total storage Eiot on the distribution between the two buses. Fig. 2b
shows the operating cost as a function of Ej/Ei.t, the relative portion of storage for bus 1. As ot
increases, assigning more portion to bus 2 becomes more beneficial. This can be understood from
the diminishing return curves in Fig. 2a. Recall that bus 1, whose local demand has a lower variance,
enters the diminishing return regime more quickly than bus 2. Therefore, when there has already
been enough storage for bus 1, i.e., Fio is large enough, it starts to become more helpful to assign
more storage to bus 2, which has not yet entered the diminishing return regime.
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4.3 1EEE 14-bus network with renewable generation

In this more practical example, we choose the IEEE 14-bus test case as the network model. The
IEEE 14-bus system can be viewed as an abstraction of a portion of the Midwestern US transmission
grid. It consists of 5 generator buses and 9 load-only buses. Daily load and generation profiles are
created using the data set from [6]. For simplicity, we treat user demand as deterministic and assume
that uncertainty only comes from generation, since uncertainty in generation often dominates that
in user demand. The time horizon is set to be 24 hours and divided into 8 time slices, which gives
40 random variables in total. This choice of time resolution is limited by the size of the SDP that
our machine (Intel Core2 Duo 2.33 GHz, 4 GB RAM, 32-bit) is capable of handling using a general-
purpose solver (SeDuMi). We are currently working to overcome this limitation by exploiting the
structure of the problem. Statistics, including i and the diagonal entries of X, are computed from
historical records. Since we do not have enough data to compute the full covariance matrix, part
of & is computed from historical data from the Alberta Electric System Operator (AESO), another
source of wind generation data. Specifically, we compute the matrix of correlation coefficients
from AESO and scale it accordingly to obtain S for our example. Fig. 4a visualizes the matrix
of correlation coefficients. It can be seen that nearby time slots are positively correlated, and the
correlation decays as the time difference grows.

Given fi, we can solve for the optimal storage placement strategy in the deterministic case. This
particular placement is then evaluated using the OUQ analysis. Due to the size of the problem, the
approximate method in Section 2.2 is used. Similar to the 1-bus and 2-bus examples, correlation
affects the result in the 14-bus example as well. Fig. 4b shows the results for (1) deterministic
analysis, (2) OUQ without correlation (diagonal entries of ¥), and (3) OUQ with correlation. It can
be seen that deterministic analysis gives the most optimistic prediction. For the OUQ results, in-
corporating positive correlation tends to give a more conservative prediction. This can be explained
using similar reasoning as that used for Fig. 2b. We also compare the results with the worst-case
interval analysis, which considers the worst single deterministic event by ignoring all the moment
constraints. For this example, the worst case corresponds to constant zero renewable generation,
since generation must stay nonnegative. Both OUQ results are considerably less conservative than
the worst-case interval analysis, which gives a constant cost of 48.13 (not shown in Fig. 4b).

5 Related work

The earliest origin of OUQ), or similar problems under different names, can be traced back to the
work on generalization of Chebyshev-type inequalities by Isii [9], Marshall and Olkin [10] in the
1950s and 1960s. Interested readers can refer to Owhadi et al [1] for a more recent development
on OUQ and finite reduction of the optimization problem. Convex formulation of OUQ has been
recently studied by a group of researchers. An incomplete list of these includes Bertsimas and
Popescu [3], Vandenberghe et al. [11], Delage and Ye [2]|, and Topcu et al. [12]. This formulation
has recently attracted attention due to the latest advancements in numerical methods for convex
optimization problems, in particular, SDPs. The closest work to this paper is the one by Delage
and Ye [2], except that they have assumed the problem is always tractable using the exact method.

An extension of OUQ is robust optimization against a partially known probability distribu-
tion, sometimes referred to as distributionally robust stochastic optimization. This type of robust
optimization problem was first proposed in the 1950s by Scarf [13] in the context of inventory opti-
mization. The OUQ problem can be viewed as the inner-loop optimization for this, and is closely
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Figure 4: Results for the IEEE 14-bus case with real wind generation. (a) Time correlation in wind
power generation. (Source: AESO). (b) Cost evaluation using different models of uncertainty.

related to recent work (e.g., |2,14]) in this area. Other formulations include uncertainties in the
transition probability in Markov decision processes [15,16]. We consider the robust optimization
problem an interesting direction for our future work.

For literature on the distribution of storage in smart grids, many have been based on determin-
istic analysis [17,18]. Probabilistic analysis has also been adopted, in particular, the risk-limiting
approach [6,19]. The risk-limiting approach examines the probability that the power grids fall into
a certain unsafe operating regime. This criterion has a similar flavor to the worst-case analysis used
in this paper. However, current work often assumes a perfect probabilistic model (e.g., multivariate
Gaussian) instead of considering a class of distributions consistent with historical data.

6 Conclusions

We have presented the framework of OUQ as a method for evaluating the worst-case performance
of stochastic systems without accurate knowledge about the underlying probabilistic model (distri-
bution). OUQ has the advantage of simultaneously considering a class of probability distributions
that are consistent with observed data. We generalize previous results and propose the polytopic
canonical form for the cost function under which that the OUQ problem can be solved using convex
optimization. To scale the formulation to larger systems, we also present iterative methods to alle-
viate the issue of exponential growth of the constraints. As an application, we study the problem of
storage placement in power grids with renewable generation. Numerical simulation results for sim-
ple artificial examples as well as an example using the IEEE 14-bus test case with wind generation
data are presented. In particular, the OUQ approach is able to incorporate time correlation into
the analysis, which has significant influence on the result but can be difficult to include using other
approaches.
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