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Abstract. We consider the problem of providing optimal uncertainty quantification (UQ) – and hence
rigorous certification – for partially-observed functions. We present a UQ framework within which the
observations may be small or large in number, and need not carry information about the probability
distribution of the system in operation. The UQ objectives are posed as optimization problems, the
solutions of which are optimal bounds on the quantities of interest; we consider two typical settings,
namely parameter sensitivities (McDiarmid diameters) and output deviation (or failure) probabilities.
The solutions of these optimization problems depend non-trivially (even non-monotonically and dis-
continuously) upon the specified legacy data. Furthermore, the extreme values are often determined
by only a few members of the data set; in our principal physically-motivated example, the bounds
are determined by just 2 out of 32 data points, and the remainder carry no information and could be
neglected without changing the final answer. We propose an analogue of the simplex algorithm from
linear programming that uses these observations to offer efficient and rigorous UQ for high-dimensional
systems with high-cardinality legacy data. These findings suggest natural methods for selecting optimal
(maximally informative) next experiments.
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1. Introduction and outline

1.1. Introduction

In many settings – including the physical sciences, engineering, and finance – it is necessary to have a rigorous
and also sharp/optimal quantitative understanding of the effects of uncertainties, which are often probabilistic
in nature. Often, the available information about the system of interest comes in the form of legacy data, i.e.
a data set that is provided “as is” and cannot be extended; the reasons for such restrictions may range from
financial or practical difficulties to legal and ethical concerns. Uncertainty quantification (UQ) methods for
addressing such problems must cope with this non-extensibility, the fact that the distribution of the legacy
data may be unrelated to the probability distribution of the system in operation, and that the data set may
be either very sparse or very large compared to the system’s domain of operation. This paper approaches the
UQ-with-legacy-data problem using the Optimal UQ framework proposed in [28], and thereby develops and
illustrates that general framework in a specific setting.

In the Optimal UQ framework [28], UQ in the presence of both epistemic and aleatoric uncertainties [16,26,30]
is posed as an optimization problem over all feasible scenarios that are consistent with the available information
about the input uncertainties – those uncertainties may be infinite-dimensional in nature, and concern unknown
or partially-known probability distributions and functions. In many cases, the corresponding infinite-dimensional
optimization problem can be reduced to an equivalent finite-dimensional problem that allows for closed-form or
numerical evaluation [28], Section 3.

Many UQ methods are not directly applicable if the available data are of legacy type. For example, in [17],
it was proposed that rigorous certification of physical systems be performed using a concentration-of-measure
inequality known as McDiarmid’s inequality [18–20], also known as the bounded differences inequality. However,
this method and its variants [1,13,36] require extensive data “on demand” in order to compute the McDiarmid
diameter, which measures the system output variability and provides the concentration rate in McDiarmid’s
inequality. Section 3 of the present paper shows how the McDiarmid diameter of a Lipschitz function can
be optimally bounded using legacy data observations of that function and (upper bounds on) the Lipschitz
constants.

Relationships between the smoothness properties of a function f and bounds on deviation probabilities for f
have been studied extensively. For Lipschitz functions, Talagrand’s inequality [37] is a famous result in this area;
a discussion of non-Lipschitz functions can be found in [40]. However, while such results do use the smoothness
information, they do not use arbitrarily-located known values, i.e. point observations, of f . On the other hand,
there are methods that use smoothness information and point observations to calculate the extreme values
of f (notably, the algorithm of [12] does so without a priori knowledge of the Lipschitz constant), but these
methods (a) direct further function evaluations, which are not permitted in the context of legacy data, and (b)
do not appear to have been coupled to concentration-of-measure methods to produce probability-of-deviation
inequalities. This last point is not surprising, since it is difficult to prove a general theorem that will make
optimal or near-optimal use of data in advance of knowing those data.

Motivated by this, Section 4 shows how to calculate optimal upper bounds on the probability of deviations
from the mean (or any linear function of the system’s a priori unknown probability distribution) given the legacy
data and (upper bounds on) the Lipschitz constants; this second approach forms part of a large and growing
body of work concerning the calculation of optimal inequalities in probability theory – see e.g. [3,5,28] for some
surveys and historical remarks on this topic. We find that the extremizers for our optimization problems tend
to have a very simple, low-dimensional, singular structure. Furthermore, once this singular structure has been
observed, even approximately, it can be exploited to greatly reduce the computational burden; see Remark 7.2
and Figure 11.

It is also shown that, in certain cases, additional information (in the form of new observations) may not
propagate to the resulting bounds, or, dually, that the bounds may be determined by a relatively small “ac-
tive” subset of a large data set. In Algorithm 5.5 we propose an analogue of the simplex algorithm in linear
programming that uses these observations to offer efficient and rigorous UQ for high-dimensional systems with
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high-cardinality legacy data. The motivating idea for this algorithm is to solve easier (less constrained) opti-
mization problems when possible, and that the algorithm should terminate in a number of iterations of the
same order as the number of relevant data points. In addition, in the case that the data set can be extended,
the optimization formulation of the UQ objectives provides a natural notion of best next experiment (and hence
maximally informative data set): it is the experiment that would induce the greatest change in the extreme
value of the UQ optimization problem.

The methods and results of this paper are predicated upon having suitable information (or making assump-
tions) about the system of interest. As noted by Hoeffding [9], assumptions about the system of interest play
a central and sensitive role in any statistical decision problem, even though the assumptions are often only ap-
proximations of reality. To illustrate the effect of information/assumptions, consider the following toy problem,
which will be considered in further detail in Example 4.3 and treated numerically in subsection 7.2:

Example 1.1. Suppose that a measurable function G : [0, 1] → R is applied to a random variable X with
unknown distribution on [0, 1], and the event [G(X) ≤ 0] is considered to constitute “failure”. Given the values
of G on some proper (usually finite) subset O � [0, 1], what is the optimal (i.e. least) upper bound P̂ on the
failure probability P[G(X) ≤ 0]? (Note well that the points of O may be unrelated to the distribution of X ,
and so classical methods of statistical reasoning using the sample set {G(z) | z ∈ O} are inapplicable.)

With this information alone, the only rigorous upper bound that can be given is the trivial one: P[G(X) ≤
0] ≤ P̂ = 1. Consider now the impact of two further pieces of information:

(I) G is Lipschitz continuous with Lipschitz constant 1, or short, i.e.

|G(x)−G(x′)| ≤ |x− x′| for all x, x′ ∈ [0, 1],

and hence G is continuous on [0, 1], and by Rademacher’s theorem is differentiable with |G′(x)| ≤ 1 for
Lebesgue-almost-every x ∈ [0, 1];

(II) some information about the distribution of X on [0, 1] or the distribution of G(X) on R, e.g. that E[G(X)] ≥
m for some known m.

The first item of information does not generally provide any improvement on the trivial upper bound, since
although it constrains the set of points x ∈ [0, 1] for which it is possible that G(x) ≤ 0, it says nothing about the
P-measure of that set, unless it is found to be empty. However, taken together, G|O and the two additional items
of information do provide non-trivial bounds on P[G(X) ≤ 0]. Evaluating these bounds is an infinite-dimensional
but well-posed optimization problem, which can be reduced to an equivalent finite-dimensional problem by the
reduction theorems of [28]. Indeed, as will be shown later, if O consists of one point – i.e. we know one point
(z, G(z)) that lies on the graph of G – then the least upper bound on P[G(X) ≤ 0] can be given in closed form.
This bound is given in (4.14), and surface and contour plots are given in Figure 1. Notably, the bound is both
non-monotone and discontinuous with respect to the data point (z, G(z)).

1.2. Outline

Section 2 establishes the notation and set-up of the problems of interest, and recalls a theorem of McShane [24]
that will be useful later on.

Section 3 treats the determination of optimal upper bounds on McDiarmid diameters (i.e. L∞ semi-norms
on component-wise oscillations of a function of several independent inputs) using legacy data and Lipschitz
constants. Such upper bounds can be used, together with McDiarmid’s inequality and the mean performance
of the system, to provide rigorous upper bounds on the system’s probability of failure.

Section 4 treats the problem of directly and optimally bounding the probability of failure, i.e. finding the
least upper bound that is consistent with the legacy data, the Lipschitz constants, and the specified mean
performance. This problem is harder to solve than the problem of Section 3, but is still tractable, and has the
advantage that it provides the optimal bound on the probability of failure given all the available information,
whereas McDiarmid’s inequality is non-optimal.
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Figure 1. Plots of P̂ , the least upper bound on P[G(X) ≤ 0] given that G : [0, 1] → R has
Lipschitz constant 1, mean 1

2 , and has (z, G(z)) on its graph, as a function of (z, G(z)) ∈
[0, 1

2 ]× R. Note the discontinuity and non-monotonicity of P̂ as a function of (z, G(z)).

Section 5 discusses necessary and sufficient conditions for a data point to be relevant to the solution of the
problems in Sections 3 and 4; put another way, this section concerns the identification of redundant information.

Section 6 contains some general remarks applicable to both Sections 3 and 4.
Section 7 gives the results of some example numerical implementations of the problems of Section 4. In this

section, we see that many data points may be redundant in the sense of Section 5, and hence that optimal UQ
for systems with large legacy data sets may be given by considering well-chosen small subsets of the larger data
set.

Section 8 outlines some directions for generalization and future work.

2. Review and notation

2.1. Notation

Let (Xk, dk) be a metric space for each k ∈ {1, . . . , K}; prototypically, Xk = R or [ak, bk] ⊆ R with the
Euclidean distance dk(x, y) := |x− y|. Let X := X1 × · · · × XK . Let G : X → R be some function and suppose
that, for each k ∈ {1, . . . , K}, Lk is a global Lipschitz constant for G with respect to its kth argument: i.e.,

(x, x′ ∈ X , xj = x′j for j �= k) =⇒ |G(x)−G(x′)| ≤ Lkdk(xk, x′k). (2.1)

Define a quasi-metric dL : X × X → R by

dL(x, x′) :=
K∑

k=1

Lkdk(xk, x′k). (2.2)

If all Lk are strictly positive, then dL is a metric. In the prototypical case, dL is a rescaling of the �1 “Manhattan”
metric on RK .
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Lemma 2.1. A function f : X → R is Lipschitz with Lipschitz constant Lk in its kth argument if, and only if,
it is short with respect to the metric dL, i.e.

|f(x)− f(x′)| ≤ dL(x, x′) for all x, x′ ∈ X . (2.3)

Proof. Suppose that f is short with respect to dL, and let k ∈ {1, . . . , K}. Let x, x′ ∈ X differ only in their kth
component. Then

|f(x)− f(x′)| ≤
K∑

j=1

Ljdj(xj , x′j) = Lkdk(xk, x′k),

and so f is Lipschitz with Lipschitz constant Lk in its kth argument. Conversely, suppose that f is Lipschitz
with Lipschitz constant Lk in its kth argument, and let x, x′ ∈ X . Then

|f(x)− f(x′)| ≤ |f(x)− f(x′1, x2, . . . , xK)|
+ |f(x′1, x2, . . . , xK)− f(x′1, x′2, x3, . . . , xK)|
+ · · ·+ |f(x′1, . . . , x′K−1, xK)− f(x′)|

≤ L1|x1 − x′1|+ · · ·+ LK |xK − x′K |
= dL(x, x′),

and so f is short with respect to dL. �

P(X ) denotes the set of all Borel probability measures on X . The product of probability measures μk ∈ P(Xk)
for k ∈ {1, . . . , K} will be denoted μ1 ⊗ · · · ⊗ μK or

⊗K
k=1 μk; the set of all such measures will be denoted⊗K

k=1 P(Xk). Recall that if X = (X1, . . . , XK) is an X -valued random variable with law μ, then saying that
the K components of X are independent is the same as saying that μ is a product measure

⊗K
k=1 μk, where μk

is the law of Xk on Xk.
For f : X → R, let Dk[f ] be the kth McDiarmid subdiameter of f on X :

Dk[f ] := sup
{
|f(x)− f(x′)|

∣∣∣∣x, x′ ∈ X , xj = x′j for j �= k

}
. (2.4)

Dk[f ] is a global sensitivity index that measures the sensitivity of f to changes in its kth argument. The
McDiarmid diameter D[f ] of f on X is defined by

D[f ] :=

(
K∑

k=1

Dk[f ]2
)1/2

. (2.5)

Each Dk[·] (and, indeed, D[·]) is a semi-norm on the space of bounded real-valued functions on X ; any f that
is constant in its kth argument has Dk[f ] = 0.

Clearly, if f : X → R is known to be dL-short, then this information provides a (not necessarily sharp) upper
bound on the McDiarmid diameter of f :

Dk[f ] ≤ Lk diam(Xk, dk) := Lk sup
xk,x′k∈Xk

dk(xk, x′k). (2.6)
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The McDiarmid diameter is useful because it places an upper bound on deviations of f(X) from its mean
value whenever X is an X -valued random variable with independent components, as the following result shows:

Theorem 2.2 (McDiarmid’s inequality [18–20]). Let (Ω,F , P) be a probability space and, for k ∈ {1, . . . , K},
let Xk : Ω → Xk be independent random variables. Suppose that E[|f(X)|] is finite. Then, for any r > 0,

P[f(X)− E[f(X)] ≥ r] ≤ exp
(
− 2r2

D[f ]2

)
, (2.7)

P[f(X)− E[f(X)] ≤ −r] ≤ exp
(
− 2r2

D[f ]2

)
. (2.8)

The independence assumption in McDiarmid’s inequality can be relaxed and replaced with some control on
the martingale differences E[f(X)|Fi+1] − E[f(X)|Fi] of f(X) with respect to a suitable filtration F• of the
probability space (Ω,F , P). Also, the mean and McDiarmid subdiameters can be used as inputs for sharper
inequalities such as the optimal McDiarmid inequality of [28].

Given a measurable system of interest G : X → R, let θ ∈ R denote a possible value of G that is considered
to be a failure threshold : the event [G(X) ≤ θ] represents the failure of the system G, and the complementary
event [G(X) > θ] represents the success of the system G. Under the assumption that the random inputs of G
(i.e. the coordinate processes X1, . . . , XK) are independent, McDiarmid’s inequality implies that the probability
of failure is bounded as follows:

P[G(X) ≤ θ] ≤ exp
(
−2(E[G(X)]− θ)2+

D[G]2

)
, (2.9)

where, for t ∈ R, t+ := max{0, t}. The inequality (2.9) can be rearranged in order to provide rigorous certification
criteria for computational and physical systems of interest, subject to the determination of the mean system
performance E[G(X)] and the McDiarmid diameter D[G]; see e.g. [1,13,17]. Namely, if p∗ ∈ [0, 1] is the greatest
probability of failure that can be accepted if the system is to be called safe, and it is known that E[G(X)] ≥ m

and D[G] ≤ D̂, then a sufficient condition for the safety of the system is the truth of the inequality

(m− θ)+
D̂

≥
√

log
√

1/p∗. (2.10)

2.2. UQ problem formulation

Suppose that the values of G are known only on some observation set O ⊆ X ; that is, the restriction
G|O of G to O is known exactly. In applications, it is usually the case that O is a finite collection of points
O = {z1, . . . , zN} ⊆ X . Suppose also that constants L1, . . . , LK ≥ 0 are given such that G is known to be
dL-short. The main questions that this paper addresses are the following:

1. Section 3 shows how to use the observations G|O and the Lipschitz constants L = (L1, . . . , LK) to provide
an optimal (i.e. least) upper bound D̂ on the McDiarmid diameter D[G].

2. Section 4 shows how to use the data G|O, the constants L and the mean performance E[G(X)] to provide
an optimal (i.e. least) upper bound P̂ on the probability of failure P[G(X) ≤ θ].

3. Section 5 considers the problem of determining which observations z ∈ O are relevant to the solutions of the
problems in the previous two sections. Furthermore, one can consider the dual problem: if the data set G|O
could be extended, at what points of the input parameter space X should G be evaluated to gain maximally
relevant information that will improve the bounds D̂ and P̂?

Remark 2.3 (Other UQ problems). Although the exposition of this paper treats the certification problem of
bounding P[G(X) ≤ θ], there are many other uncertainty quantification problems – e.g. verification, validation,
and prediction [27] – to which this paper’s methods are applicable. For example, G above may actually stand



OPTIMAL UQ FOR LEGACY DATA OBSERVATIONS OF LIPSCHITZ FUNCTIONS 1663

for the difference between some physical system, H , and a model for that system, F ; if the aim is to predict
values of H using the simulation F with quantified error bounds, then this is tantamount to showing that
P[‖H(X)− F (X)‖ ≥ θ] is suitably small, where ‖ · ‖ is some “error norm” on (a subset of) parameter space X .
This certification-centric point of view is similar to that of [4], in which many reliability problems are placed in
a unified framework, and that of [28].

In a different direction to the one taken in this paper, there are important questions of how to make optimal
use of legacy data in the calibration and testing of models; for this problem, a particular difficulty is making
best use of the data without over-fitting to the data [25]. The Bayesian perspective is a popular one in this
area, and is receiving renewed attention in the context of Bayesian analysis for inverse problems on function
spaces [35].

Remark 2.4 (Other regularity conditions). In many practical applications, of course, the response function
G is not known to be globally Lipschitz. In this paper attention is confined to the globally Lipschitz case as
a representative example of a broad class of possible constraints. For example, it may be more appropriate to
consider a Hölder-type constraint, which would correspond to an inequality of the form

|G(x) −G(x′)| ≤ dL(x, x′)α; (2.11)

or a local Lipschitz constraint, which would correspond to an inequality of the form

|G(x) −G(x′)| ≤
{

dL(x, x′), if dL(x, x′) < R,
+∞, otherwise.

(2.12)

The example of Subsection 7.3 will use just such a modified Lipschitz constraint, one suited to possibly discon-
tinuous or multivalued functions. The minimum requirement on any proposed system of inequalities to constrain
G is that the desired inequalities should hold whenever x and x′ are elements of the observation set O, and
that the inequalities must constrain the values of G pointwise. So, for example, a constraint on the Sobolev
W k,p(Rd) norm of a function G : Rd → R would not be a suitable constraint if kp < d. It must be emphasized,
though, that if no regularity assumptions are made, then no significant conclusions can be drawn from the data:
regularity is essential if function values at finitely many isolated points are to be used to infer anything about
function values elsewhere.

Remark 2.5 (Other types of observation). In this paper the observations of G are pointwise evaluations of
G at finitely many points of its domain. One could also consider more general observation operators, e.g. a
continuous linear functional Λ : W k,p(Rd)→ R, or a collection of such operators.

2.3. Extension of partially-defined functions

In what follows, in order to show that the upper bounds that are obtained are in fact the optimal upper
bounds given the available information, it will be necessary to invoke the following extension theorem from
metric space theory, which states that a real-valued Lipschitz function defined on any subset of a metric space
can always be extended to the whole space without increasing the Lipschitz constant:

Theorem 2.6 (McShane’s extension theorem [24]). Let (M, ρ) be a metric space, let E ⊆ M, and let C ≥ 0.
If f : E → R satisfies

|f(x)− f(x′)| ≤ Cρ(x, x′) for all x, x′ ∈ E,

then there exists f̄ : M→ R such that f̄ |E = f and∣∣f̄(x) − f̄(x′)
∣∣ ≤ Cρ(x, x′) for all x, x′ ∈ M.
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McShane’s theorem also applies to the extension of Hölder continuous real-valued functions defined on a subset
of a metric space; any continuous real-valued function with concave modulus of continuity can be extended to
the whole space while preserving the modulus of continuity.

In the language of metric space theory, McShane’s extension theorem says that the Euclidean line (R, | · |)
is an injective metric space [11]. The extension of vector -valued Lipschitz functions is a subtle topic: see e.g.
the Kirszbraun–Valentine theorem [14, 39], which states that Lipschitz functions between Hilbert spaces can
always be extended without increasing the Lipschitz constant, which is not generally true even for Lipschitz
functions between finite-dimensional Banach spaces [8], p. 202. It is for this reason that this paper considers
only scalar-valued performance measures G.

3. Optimal bounds on mcDiarmid diameters

For each k ∈ {1, . . . , K}, an upper bound on the McDiarmid subdiameter Dk[G] can be obtained by an
optimization problem. First observe that Dk[G] is the maximum value of the function

diffk G : X1 × · · · × Xk ×Xk × · · · × XK → R

defined by

(diffk G)(x1, . . . , xk−1, xk, x′k, xk+1, . . . , xK)

:= G(x1, . . . , xk−1, xk, xk+1, . . . , xK)−G(x1, . . . , xk−1, x′k, xk+1, . . . , xK).

(Indeed, Dk[G] is also the negative of the minimum value of diffk G.) Therefore, an upper bound on Dk[G]
consistent with the observations G|O and the Lipschitz constant L = (L1, . . . , LK) is given by the solution of
the following optimization problem in the K + 3 variables x1, . . . , xK , x′k, y, y′:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maximize: |y − y′|;
among: (x, y) ∈ X × R,

(x′, y′) ∈ X × R;
subject to: xi = x′i for all i ∈ {1, . . . , K} \ {k}:

|y − y′| ≤ Lkdk(xk, x′k);
for all z ∈ O:
|y −G(z)| ≤ dL(x, z),
|y′ −G(z)| ≤ dL(x′, z).

(3.1)

Note that (3.1) is not a linear programming problem: the feasible set for (x, y) and (x′, y′) is an intersection of
double cones in X ×R, as illustrated in Figure 2. Note also that (3.1) is not a cone program in the sense of [7],
Section 4.6.1; that term refers instead to the minimization of a linear objective function over a closed convex
cone that contains no lines and has non-empty interior.

A point (x, y) ∈ X × R such that |y −G(z)| ≤ dL(x, z) is said to be feasible with respect to the data point
(z, G(z)); if this holds for all z ∈ O, then (x, y) is said to be G|O-feasible.

Let D̂k[X , G|O, dL] (or simply D̂k) denote the upper bound on Dk[G] that arises as the solution (extreme
value) of the optimization problem (3.1). It is natural to ask whether or not D̂k is the least upper bound on
Dk[G] given G|O and L. In fact, this is the case, and the proof relies on McShane’s extension theorem.

Theorem 3.1 (Optimality of D̂k). Let

E(X , G|O, dL) := {g : X → R | g is dL-short and g = G on O} (3.2)

denote the set of all functions on X that have Lipschitz constant L and interpolate the given values of G on O.
Then the maximum value D̂k of (3.1) is the optimal upper bound on D given G|O and L in the sense that

D̂k = sup{Dk[g] | g ∈ E(X , G|O , dL)}. (3.3)
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(zn, G(zn))

(x, y)

(x , y )

�

X

Figure 2. Shaded, the feasible set for (x, y) and (x′, y′) in X × R for the optimization prob-
lem (3.1) given the four observations represented by the four black dots. The white dots show
the optimal values for (x, y) and (x′, y′). Note that, as well as being constrained to lie in the
shaded feasible set, (x, y) and (x′, y′) must also satisfy |y − y′| ≤ dL(x, x′) ≡ Lkdk(xk, x′k).

Proof. Let S denote the supremum on the right-hand side of (3.3). Suppose that D̂k > S. Then there exist
points (x, y) and (x′, y′) ∈ X × R that satisfy the constraints in (3.1) and the inequality

S < |y − y′| ≤ D̂k.

Define g : O ∪ {x, x′} → R by

g(z) := G(z) for each z ∈ O,

g(x) := y,

g(x′) := y′.

This g is dL-short, and so McShane’s extension theorem implies that g can be extended to some dL-short
ḡ : X → R. Necessarily, ḡ|O = g|O = G|O. However, by construction, Dk[ḡ] ≥ |y − y′| > S, which contradicts
the definition of S. Hence, by contradiction, D̂k ≤ S.

Now suppose that D̂k < S. Then there exists some dL-short g : X → R such that g = G on O and Dk[g] > D̂k;
hence, there exist points x, x′ ∈ X that differ only in their kth component and such that

D̂k < |g(x)− g(x′)| ≤ Dk[g].

However, x and x′ with y := g(x) and y′ := g(x′) satisfy the constraints in (3.1), and so D̂k ≥ |g(x) − g(x′)|,
which is a contradiction. Hence, D̂k ≥ S, which completes the proof. �
Remark 3.2. It is important to note that although D̂k is the optimal upper bound on Dk[G] given G|O and
L, and hence D̂ :=

(
D̂2

1 + · · ·+ D̂2
K

)1/2 ≥ D[G], it is not generally true that D̂ is the optimal upper bound on
D[G] given the same information (G|O and L). The reason for this is that the (approximate) maximizers for,
say, D̂1 and D̂K may not be mutually consistent, i.e. dL-short.

Note also that the upper bound

P[G(X) ≤ θ] ≤ exp

(
−2(E[G(X)]− θ)2+

D̂2
1 + · · ·+ D̂2

K

)
is not the least upper bound on P[G(X) ≤ θ] given E[G(X)] and that Dk[G] ≤ D̂k. The optimal such bound is
given by the optimal McDiarmid inequality of [28], Section 4.
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3.1. Error bounds

In addition to the question of optimality, it is natural to ask whether or not solutions D̂k of (3.1) converge
to the McDiarmid subdiameter Dk[G] as the number of observations increases to infinity. Unsurprisingly, the
important quantity is not the number of observations, but rather the largest gap between them, as measured
by the metric dL. Define the gap size of the observation set O on X to be the (asymmetric) Hausdorff distance
from X to O with respect to dL, i.e.

Γ (X ,O, dL) := sup
x∈X

dL(x,O) := sup
x∈X

inf
z∈O

dL(x, z). (3.4)

Theorem 3.3 (Error bound for D̂k). For any G : X → R with finite McDiarmid subdiameter Dk[G] and any
O ⊆ X ,

0 ≤ D̂k −Dk[G] ≤ 4Γ (X ,O, dL). (3.5)

Proof. Theorem 3.1 shows that D̂k ≥ Dk[G], so it remains to show the effective “4Γ” part of the error estimate.
Let ε > 0 be arbitrary. Let (x, y) and (x′, y′) ∈ X × R satisfy the constraints in (3.1) and be ε-approximate

maximizers for that problem, i.e.
D̂k − ε ≤ |y − y′| ≤ D̂k.

Then, even though the values G(x) and G(x′) may be unknown since x and x′ are not necessarily members of
O, the following estimate holds:

D̂k ≤ |y − y′|+ ε

≤ |y −G(x)| + |G(x) −G(x′)|+ |G(x′)− y′|+ ε

≤ |y −G(x)| +Dk[G] + |G(x′)− y′|+ ε.

By the definition of the gap size, there exists some z ∈ O such that dL(x, z) ≤ Γ (X ,O, dL), and so

|y −G(x)| ≤ |y −G(z)|+ |G(z)−G(x)|
≤ dL(x, z) + dL(z, x)
≤ 2Γ (X ,O, dL).

Similarly, there exists z′ ∈ O such that dL(x′, z′) ≤ Γ (X ,O, dL), and so |G(x′) − y′| ≤ 2g. Therefore, D̂k ≤
ε + 4Γ (X ,O, dL) +Dk[G] and, since ε > 0 was arbitrary, the claim follows. �

3.2. Structure of the feasible set

The constrained optimization problem (3.1) entails exploration of the feasible set E(X , G|O , dL) of dL-short
extensions of the data G|O to all of X :

E(X , G|O, dL) := {g : X → R | g is dL-short and g = G on O}.

Note that E(X , G|O, dL) not a linear space, but is a convex subset of the linear space of all real-valued functions
on X . Furthermore, by the Arzelà–Ascoli theorem, E(X , G|O , dL) is complete with respect to the uniform
(supremum) norm, and is compact whenever X is compact. McShane’s extension theorem (Thm. 2.6) is the
assertion that, whenever G|O has Lipschitz constant L on O, E(X , G|O, dL) is non-empty. Theorem 3.1 states
that the maximum value of g �→ Dk[g] over g ∈ E(X , G|O , dL) can be found by restricting attention to a
finite-dimensional subset as described by the constraints in (3.1). Indeed, this search can be made even simpler
than (3.1) suggests by considering structure of the problem for y and y′ with fixed x and x′.
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For fixed x ∈ X , define the least and greatest feasible values of g(x) among g ∈ E(X , G|O , dL) by

Y −(x, G|O, L) := sup
g∈E(X ,G|O,dL)

g(x) = sup
z∈O

G(z)− dL(x, z),

Y +(x, G|O, L) := inf
g∈E(X ,G|O,dL)

g(x) = inf
z∈O

G(z) + dL(x, z),

Note that these quantities are easily calculated when O is a finite set. The pair (y, y′) ∈ R2 is feasible (i.e.
y = g(x) and y′ = g(x′) for some x, x′ ∈ X that differ only in their kth component) if, and only if,

y ∈ [Y −(x, G|O , L), Y +(x, G|O , L)
]
,

y′ ∈ [Y −(x′, G|O, L), Y +(x′, G|O, L)
]
, and

|y − y′| ≤ dL(x, x′) = Lkdk(xk, x′k).

So, for each (x, x′), the set of feasible (y, y′) is a closed and convex polygon in R2. The maximum value of |y−y′|
over this polygon is A(x, x′), defined by

A(x, x′) := min

⎧⎨⎩ dL(x, x′),
Y +(x, G|O , L)− Y −(x′, G|O, L),
Y +(x′, G|O, L)− Y −(x, G|O , L)

⎫⎬⎭ .

The constrained optimization problem (3.1) is, therefore, equivalent to the following unconstrained (and, there-
fore, more easily solved) problem in K + 1 variables x1, . . . , xk, x′k, . . . xK :⎧⎪⎪⎪⎨⎪⎪⎪⎩

maximize: A(x, x′);
among: x ∈ X

x′k ∈ Xk

x′ := (x1, . . . , xk−1, x′k, xk+1, . . . , xK).

(3.6)

3.3. Examples

As a simple example that can be solved explicitly, consider an affine function G : X := [0, 1]K → R:

G(x) = a0 +
K∑

k=1

akxk (3.7)

for some constants a0, a1, . . . , aK ∈ R. Suppose that the observation set O consists of a N1×· · ·×NK rectangular
grid of equally-spaced points of [0, 1]K , with observations at the corners of the cube. Given Lk ≥ |ak|, the gap
size for this observation set is

Γ (X ,O, dL) =
K∑

k=1

Lk

2(Nk − 1)
· (3.8)

The exact McDiarmid subdiameters of G satisfy Dk[G] = |ak|. On the other hand, D̂k, the least upper bound
on Dk[G] given the observations G|O and the Lipschitz constants L1, . . . , LK but not the information that G is
affine,7 is given by

D̂k = |ak|+
K∑

i=1

Li − |ai|
Ni − 1

· (3.9)

In this case, the error D̂k − Dk[G] is approximately half the upper bound given by Theorem 3.3 if Lk � |ak|,
and vanishes if Lk = |ak|.

7If G is known to be affine and its values are given at K+1 points in general position in [0, 1]K , then G is determined everywhere.
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4. Optimal bounds on probabilities

In this section, in the spirit of [5, 28], the emphasis is on providing optimal bounds on the probability
of failure P[G(X) ≤ θ] rather than bounds on the McDiarmid diameter D[G]. Theorem 3.1 shows that the
optimization problem (3.1) determines the optimal upper bound on each McDiarmid subdiameter Dk[G], and
hence – given that E[G(X)] ≥ m and via McDiarmid’s inequality (2.9) – an upper bound on the probability of
failure P[G(X) ≤ θ]. However, this bound is not necessarily the sharpest one given the available information,
namely that G is dL-short, its inputs are independent, and that G|O and E[G(X)] are as given. The optimal
upper bound on the probability of failure given this information is denoted by P̂ [X , G|O, L, m] (or simply P̂ )
and is given by

P̂ := sup
(g,μ)∈A

μ[g ≤ θ], (4.1)

where

A :=

⎧⎨⎩(g, μ)

∣∣∣∣∣∣
g : X → R is dL-short,

μ = μ1 ⊗ · · · ⊗ μK ∈⊗K
k=1 P(Xk),

g = G on O, and Eμ[g] ≥ m

⎫⎬⎭ , (4.2)

i.e.

A :=
{

(g, μ)
∣∣∣∣μ = μ1 ⊗ · · · ⊗ μK ∈⊗K

k=1 P(Xk),
g ∈ E(X , G|O , dL), and Eμ[g] ≥ m

}
.

This infinite-dimensional optimization problem over coupled g ∈ E(X , G|O , dL) and μ ∈ P(X ) is more
numerically tractable that it may seem. The next subsection shows that, for each g, the extreme values can be
found by searching only among measures μ that have a particularly simple structure; furthermore, this simple
structure simplifies the search over g as well.

Remark 4.1. Note that while the examples below have only two constraints on the measure μ, namely the
product structure and that Eμ[g] ≥ m, any combination of information on independence, non-independence,
correlations and generalized moments can be used in the same way. For further discussion, see the general theory
expounded in [28] and the remarks in Subsection 8.1.

4.1. Finite-dimensional reduction theorem

Given two points x0, x1 ∈ X , let C(x0, x1) denote the discrete cube in X that has x0 and x1 as its “opposite
corners”:

C(x0, x1) :=
{

xε :=
(
xk

εk

)K
k=1

∈ X
∣∣∣∣ ε ∈ {0, 1}K

}
. (4.3)

The elements of C(x0, x1) are indexed by the elements of the Hamming cube {0, 1}K: for ε ∈ {0, 1}K, xε ∈
C(x0, x1) is the point whose kth component is the same as the kth component of x0 if εk = 0, and the same as
the kth component of x1 if εk = 1.

Recall that a topological space Z is said to be a Radon space if it is separable and every Borel probability
measure on Z is inner regular [31, 41]; that is, Z is a Radon space if it has a countable dense subset and, for
every μ ∈ P(Z) and every Borel-measurable set B ⊆ Z,

μ(B) = sup{μ(K) | K ⊆ B and K is compact}. (4.4)

In particular, any continuous Hausdorff image of a separable and completely metrizable space (a Suslin space)
is a Radon space. Compact subsets of Euclidean space Rn are Radon spaces, whereas a simple example of a
non-inner-regular probability measure (and hence a non-Radon space) is [0, 1] with the topology of convergence
from the right (see [33], Example 51) and uniform (Lebegsue) measure.

Under the mild technical assumption that each (Xk, dk) is a Radon space, the reduction theorems of [28]
imply that, for each dL-short g : X → R, the extreme value in (4.1) is obtained among product probability
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measures μ such that each marginal distribution μk has support on at most two points of Xk – i.e. μk is
a convex combination of at most two Dirac measures (point masses). That is, it is sufficient to search over
probability measures of the form

μ =
K⊗

k=1

μk =
K⊗

k=1

(
pkδxk

0
+ (1− pk)δxk

1

)
(4.5)

that are supported on C(x0, x1) for some x0, x1 ∈ X ; x0, x1 and p are parameters with respect to which we
must optimize.

It is a simple matter of combinatorics to convert the product representation (4.5) into the sum representation

μ =
∑

ε∈{0,1}K

(
K∏

k=1

(pk)1−εk(1− pk)εk

)
δxε (4.6)

using the indexing scheme (4.3). If μ is any such measure and r is any real-valued measurable function defined
on any superset of C(x0, x1), then Eμ[r] exists and depends only upon the points xε, the values yε := g(xε) and
the weights pk. The sum representation (4.6) makes the calculation of Eμ[r] very easy:

Eμ[r] =
∑

ε∈{0,1}K

(
K∏

k=1

(pk)1−εk(1− pk)εk

)
r(xε). (4.7)

In particular, given g : X → R, the mean and probability of failure for g are easily calculated using (4.7) with
r = g and r = 1[g ≤ θ] respectively.

As the following theorem shows, a search over the finite-dimensional collection of feasible x0, x1, {yε | ε ∈
{0, 1}K} and p ∈ [0, 1]K has the same extreme values as the infinite-dimensional problem (4.1)–(4.2), where
“feasible” means being dL-short, extending G|O, and having the right mean value:

Theorem 4.2 (Optimality/finite-dimensional reduction). Suppose that (Xk, dk) is a Radon space for each k ∈
{1, . . . , K}. Let A be given by (4.2) and let

AΔ :=

⎧⎪⎪⎨⎪⎪⎩(g, μ)

∣∣∣∣∣∣∣∣
for some x0, x1 ∈ X ,

g : C(x0, x1) ∪ O → R is dL-short,
μ =

⊗K
k=1 μk ∈ P(C(x0, x1)) ∩

⊗K
k=1 P(Xk),

g = G on O, and Eμ[g] ≥ m

⎫⎪⎪⎬⎪⎪⎭ . (4.8)

Then

dim(AΔ) = 2
K∑

k=1

dim(Xk) + 2K + K, (4.9)

sup
(g,μ)∈A

μ[g ≤ θ] = sup
(g,μ)∈AΔ

μ[g ≤ θ], (4.10)

inf
(g,μ)∈A

μ[g ≤ θ] = inf
(g,μ)∈AΔ

μ[g ≤ θ]. (4.11)

Proof. Assertion (4.9) follows from the fact that an element of AΔ is determined by a choice of x0 ∈ X , x1 ∈ X ,
p ∈ [0, 1]K as in (4.5) or (4.6), and a choice of g(x) for each of the 2K points of C(x0, x1).
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To prove (4.10), let S := sup(g,μ)∈A μ[g ≤ θ]. Then

S = sup

⎧⎪⎪⎨⎪⎪⎩μ[g ≤ θ]

∣∣∣∣∣∣∣∣
for some x0, x1 ∈ X ,

g : X → R is dL-short,
μ =

⊗K
k=1 μk ∈ P(C(x0, x1)) ∩

⊗K
k=1 P(Xk),

g = G on O, and Eμ[g] ≥ m

⎫⎪⎪⎬⎪⎪⎭
≤ sup

⎧⎪⎪⎨⎪⎪⎩μ[g ≤ θ]

∣∣∣∣∣∣∣∣
for some x0, x1 ∈ X ,

g : C(x0, x1) ∪O → R is dL-short,
μ =

⊗K
k=1 μk ∈ P(C(x0, x1)) ∩

⊗K
k=1 P(Xk),

g = G on O and Eμ[g] ≥ m

⎫⎪⎪⎬⎪⎪⎭
= sup

(g,μ)∈AΔ

μ[g ≤ θ].

The first equality follows from the reduction theorem [28], Theorem 3.1 and Corollary 3.4 and the inequality
follows from the fact that only the values of g on the discrete cube C(x0, x1) are germane to the probability of
failure and the mean constraint; the final equality holds true by definition of the right-hand side.

To see that this inequality must, in fact, be an equality, suppose for a contradiction that S < sup(g,μ)∈AΔ
μ[g ≤

θ]. Then there exist some x0, x1 ∈ X , p ∈ [0, 1]K and a dL-short g : C(x0, x1) ∪ O → R such that g = G on O,
Eμ[g] ≥ m and μ[g ≤ θ] > S. By McShane’s extension theorem, there exists an extension of g to a dL-short
function ḡ : X → R; necessarily, this extension has ḡ = G on O, Eμ[ḡ] = Eμ[g] ≥ m and μ[ḡ ≤ θ] = μ[g ≤ θ] > S,
i.e. (μ, ḡ) ∈ A. Hence, S < μ[ḡ ≤ θ] ≤ S, which is a contradiction.

This establishes (4.10); the proof of (4.11) is similar, and is omitted. �

Theorem 4.2 shows that the infinite-dimensional optimization problem (4.1) is equivalent to (i.e. has the
same extreme value as) the following finite-dimensional optimization problem, where now yε is written in place
of g(xε): ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maximize:
∑

ε∈{0,1}K

(
K∏

k=1

(pk)1−εk(1 − pk)εk

)
1[yε ≤ θ];

among: x0, x1 ∈ X ,
y : {0, 1}K → R,
p ∈ [0, 1]K ;

subject to: for all ε, ε′ ∈ {0, 1}K, ε �= ε′:
|yε − yε′ | ≤ dL(xε, xε′);

for all ε ∈ {0, 1}K, z ∈ O:
|yε −G(z)| ≤ dL(xε, z);∑

ε∈{0,1}K

(
K∏

k=1

(pk)1−εk(1 − pk)εk

)
yε ≥ m.

(4.12)

See Figure 3 for a schematic illustration of the problem (4.12). The problem (4.12) has high dimension: assuming
that dim(Xk) = 1 for each k, (4.12) is a problem in 3K + 2K unknowns with 2K−1(2K − 1)+ |O|2K + 1 distinct
constraints. However, as will be seen in Section 5, many of these constraints are redundant or non-binding.
Furthermore, we have numerical evidence that in some cases not all of the 2K support points of the measure μ
need to be considered: see the remarks in Section 7 about “dimensional collapse” and Figure 10.

4.2. Error bounds

As with the McDiarmid diameters, it is natural to ask how much of an over-estimate P̂ is of the true
probability of failure P[G(X) ≤ θ]. Such an error estimate for the maximization problem (4.12) is naturally
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data point/
observation
(z, G(z))

x000 x100

x001

x011

x110

x111

μ
�

X

(x010, y010), with probability mass p1 · (1− p2) · p3

Figure 3. A schematic illustration of the variables in the optimization problem (4.12). The
black dots show the fixed locations of the legacy observations G|O. The grey dots show the
movable locations of the 2K support points xε, ε ∈ {0, 1}K, of the discrete product measure μ
on X . The white dots show some feasible values (xε, yε). The marginal distribution μk on Xk

assigns mass pk to xk
0 and mass 1− pk to xk

1 ; the mass of xε is determined by (4.6).

provided by solving the corresponding minimization problem. That is, the double inequality

inf
(g,μ)∈A

μ[g ≤ θ] ≤ P[G(X) ≤ θ] ≤ sup
(g,μ)∈A

μ[g ≤ θ]

is ipso facto the sharpest such inequality on the probability of failure given the available information encoded in
A (i.e. G|O, L and E[G(X)] ≥ m). It is not possible, on the basis of this information, to rule out the possibility
that

inf
(g,μ)∈A

μ[g ≤ θ] = P[G(X) ≤ θ].

Hence, the upper bound on P̂ −−P[G(X) ≤ θ] is simply

P̂ − P[G(X) ≤ θ] ≤ sup
(g,μ)∈A

μ[g ≤ θ]− inf
(g,μ)∈A

μ[g ≤ θ], (4.13)

and this inequality is sharp, given the information encoded in A.

4.3. Prototypical example

The next example, Example 4.3, in which (4.12) is solved explicitly for one observation of a function on
the unit interval, illustrates two very important points: the least upper bound on the probability of failure,
P̂ [X , G|O , L, m], can depend discontinuously and non-monotonically on the observed data G|O. It may be
useful to first observe that

sup
{

μ((−∞, 0])
∣∣∣∣ μ ∈ P(R), EY ∼μ[Y ] ≥ m,
μ supported on an interval of length ≤ R

}

= sup

⎧⎪⎨⎪⎩μ((−∞, 0])

∣∣∣∣∣∣∣
μ = pδy0 + (1− p)δy1 ∈ P(R),

y0, y1 ∈ R, p ∈ [0, 1],
py0 + (1− p)y1 ≥ m,

|y0 − y1| ≤ R

⎫⎪⎬⎪⎭
=
(
1− m+

R

)
+

,
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and that the maximizer satisfies y0 = 0, y1 = R. The heuristic to bear in mind is that the event [y0 = 0] can be
assigned high probability if the value y1 can be chosen to be sufficiently greater than the prescribed mean m.

Example 4.3. Suppose that a function G : [0, 1] → R with Lipschitz constant L > 0 is observed at a single
point, i.e. O = {z} for some z ∈ [0, 1]. By symmetry, it is enough to consider the case that z ∈ [0, 1

2 ]; for
simplicity, suppose that G(z) > 0; also, it is no loss of generality to set the failure threshold to be θ := 0.

Suppose it is known that E[G(X)] ≥ m ∈ R; necessarily, it must hold that |G(z)−m| ≤ L|1− z|, otherwise
the data and the mean and Lipschitz constraints are mutually contradictory. The least upper bound P̂ on
P[G(X) ≤ 0] given the observation (z, G(z)), that E[G(X)] ≥ m, and the Lipschitz constant L, is given in five
cases:

P̂ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1− m+

L−(Lz−G(z))

)
+

, if G(z) ≤ Lz,(
1− m+

L−(Lz+G(z))

)
+

, if Lz < G(z) ≤ L| 12 − z|,(
1− 2m+

L+(G(z)−Lz)

)
+

, if L| 12 − z| < G(z) ≤ L|1− 3z|,(
1− m+

Lz+G(z)

)
+

, if G(z) > L max{z, 1− 3z},
0, if G(z) > L|1− z|.

(4.14)

The five cases are shown in Figure 4; surface and contour plots of P̂ as a function of the observed data (z, G(z))
were given in the introduction in Figure 1. Note well that P̂ is neither continuous nor monotone with respect
to (z, G(z)): the boundaries among the five cases define “critical lines” in data space, across which there are
stark changes in the conclusions that may be inferred from the observed data. Note also that the maximizers
for (4.12) may be non-unique: e.g. in Figure 4a, which corresponds to the first case in (4.14), the maximum is
attained by any (x0, y0), (x1, y1) and p satisfying

x0 ∈ [0, z −G(z)/L], y0 = 0,

x1 = 1, y1 = L− Lz + G(z),

p =
(
1− m+

|y1−y0|
)

+
.

There is a similar lack of uniqueness in Figure 4(d). On the other hand, the maximizers in Figures 4(b) and (c)
are unique.

Note that, for any single observation (z, G(z)), the least upper bound on the McDiarmid diameter, D̂[G], is
simply L, and that the bound (4.14) is in each case an improvement on both McDiarmid’s inequality

P[G(X) ≤ 0] ≤ exp
(
−2m2

+

/
D̂[G]2

)
= exp

(−2m2
+

/
L2
)

and on the K = 1 optimal McDiarmid inequality [28], Section 4

P[G(X) ≤ 0] ≤
(

1− m+

D̂[G]

)
+

=
(
1− m+

L

)
+

.

5. Redundant and non-binding observations

In many applications, the aim is not to understand the behaviour of G on the whole of the input parameter
space X , but only on some subset V ⊆ X , or on the elements of a partition X =

⊎J
j=1 Vj of X [36]. The

observation set O may lie entirely within V , or only partially lie within V , or lie entirely outside V . Heuristically,
it seems reasonable that the points of O that are “nearest” to V should be the most important ones, but it is
not immediately obvious what “nearest” means.



OPTIMAL UQ FOR LEGACY DATA OBSERVATIONS OF LIPSCHITZ FUNCTIONS 1673

0 0.5 1.0

0

0.5

1.0

�

��

��

(a) (z, G(z)) = ( 3
8
, 1

4
),

and P̂ = 3
7

0 0.5 1.0

0

0.5

1.0

�

��

��

(b) (z, G(z)) = ( 1
8
, 1
4
),

and P̂ = 1
5

0 0.5 1.0

0

0.5

1.0

�

��

��

(c) (z, G(z)) = ( 1
8
, 1
2
),

and P̂ = 3
11

0 0.5 1.0

0

0.5

1.0

�

��

��

(d) (z, G(z)) = ( 1
4
, 1

2
),

and P̂ = 1
3

0 0.5 1.0

0

0.5

1.0

�

(e) (z, G(z)) = ( 3
8
, 7

8
),

and P̂ = 0

Figure 4. Illustration of the maximizers in Example 4.3 with L = 1. The dotted lines show the
boundaries of the various cases in (z, G(z)) data space. The black dot shows the data point, and
the white dots the positions of (x0, y0) and (x1, y1) that maximize the probability of failure; in
each case, P̂ =

(
1− m+

|y1−y0|
)
+
. Note that failure is impossible in case (e).

However, the formulation of the UQ objectives as optimization problems provides a natural notion of informa-
tion content. Instead of calculating, for example, information-theoretic entropies, we simply make use of notions
of relevancy that are natural to the optimization-theoretic context: the relevant data points are the precisely
the ones that correspond to non-trivial constraints, or rather, determine the extreme value of the optimization
problem.

Even if the aim is to understand the behaviour of G on all of X rather than a subset V ⊆ X , the problems (3.1)
and (4.1)–(4.2) are highly constrained, and their solution is much simplified by elimination of redundant con-
straints/observations. To that end, this section discusses two notions of redundancy/relevancy for data points
and other constraints [10]:

• redundant constraints do not change the feasible set in the problems (3.1) and (4.1)–(4.2);
• non-binding constraints may change the feasible set in the problems (3.1) and (4.1)–(4.2), and may even

change the extremizer, but do not change the extreme value.

Clearly, every redundant constraint is non-binding, but not vice versa. With this point of view, the problem of
finding “nearest data points” becomes one of finding minimal data sets O that are redundancy-free.

5.1. Redundant Lipschitz constraints

In problem (4.12), many of the 22K Lipschitz constraints of the form

|yε − yε′ | ≤ dL(xε, xε′) (5.1)
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Figure 5. The observation at z0 ∈ X \V is redundant on V with respect to O := {z1, z2}, since
its feasible cone contains the set of all G|O-feasible points in V ×R. Contrarily, the observation
at z′0 is relevant on V with respect to O.

are redundant constraints. First, (5.1) is obviously satisfied when ε = ε′, so there are at most 22K − 2K =
2K(2K − 1) non-redundant constraints of the form (5.1). Secondly, (5.1) is symmetric under interchange of ε
and ε′, and so there are at most 2K(2K − 1)/2 = 2K−1(2K − 1) non-redundant constraints of the form (5.1); it
suffices to endow {0, 1}K with some total order � (e.g. lexicographic ordering) and only verify (5.1) for ε ≺ ε′.

A third source of redundancy is neatly encapsulated in Lemma 2.1: in order to verify that (5.1) holds for all
ε, ε′ ∈ {0, 1}K (i.e. to show that g|C(x0,x1) is dL-short, where yε = g(xε)), it is necessary and sufficient to check
that (5.1) holds when ε and ε′ differ in precisely one entry. Geometrically, this corresponds to checking (5.1)
not between arbitrary vertices of the cube C(x0, x1) but only along edges joining adjacent vertices. There are
K2K such edges, and so symmetry considerations yield the following result:

Theorem 5.1 (Relevant Lipschitz constraints). A constraint of the form (5.1) in problem (4.12) is relevant
only if ε ≺ ε′ and εk �= ε′k for precisely one k ∈ {1, . . . , K}; otherwise, it is redundant. Hence, there are at most
K2K−1 non-redundant constraints of the form (5.1).

5.2. Redundant data points

Given V ⊆ X and O ⊆ X such that G|O is known, an observation (z0, G(z0)) ∈ X ×R is said to be redundant
on V with respect to O if, for all (x, y) ∈ V × R,

for all z ∈ O,
|y −G(z)| ≤ dL(x, z)

}
=⇒ |y −G(z0)| ≤ dL(x, z0), (5.2)

and say that it is relevant otherwise. That is, a redundant observation is one for which the induced constraint
in (3.1) (or (4.1)–(4.2) or (4.12)) is automatically satisfied whenever the constraints induced by O are satisfied;
put another way, the set of G|O-feasible points in V × R is contained in the cone of G|{z0}-feasible points in
V × R. See Figure 5 for an illustration.

Proposition 5.2 shows that every (non-isolated) data point z ∈ O ∩ V is relevant; only data points z ∈ O \ V
may be redundant. Furthermore, Theorem 5.3 shows that every point z ∈ O \ V that is sufficiently far away
from V is redundant.

Proposition 5.2 (Relevant data points). Let V ⊆ X , O ⊆ X , and G|O be given, and suppose that dL is a
metric. If z0 ∈ O ∩ V and z0 is an isolated point of O, then z0 is relevant on V with respect to O \ {z0}.
Proof. Let z′ be the closest point of O \ {z0} to z0 (if there is more than one such point, then choose any such
point). Then any value

y ∈ [G(z′)− dL(z0, z
′), G(z′) + dL(z0, z

′)]
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is feasible with respect to O \ {z0}. Since z0 is an isolated point of O and dL is a metric, this interval has
non-zero length. However, the such y that is feasible with respect to O is G(z0). Hence, z0 supplies a non-trivial
constraint and is relevant on V with respect to O\{z0}. (Note that if V is, say, a subset of RK with non-empty
interior, then this argument can be applied on a neighbourhood of z0, thereby demonstrating relevancy of z0 to
a non-trivial set.) �

The next result gives a sufficient condition for observations z0 ∈ O \ V to be redundant. Say that y ∈ X is
between x ∈ X and z ∈ X if

dL(x, z) = dL(x, y) + dL(y, z), (5.3)

and that y is between V ⊆ X and W ⊆ X if (5.3) holds for every x ∈ V and z ∈ W . Note well that in the
prototypical case that dL is the �1 Manhattan metric on RK , the set of points between x and z is not the
Euclidean line segment joining them, but the closed convex hull co(C(x, z)), i.e. the compact cuboid with faces
perpendicular to the coordinate axes and x and z as its opposite corners.

Theorem 5.3 (Redundant data points). Let V ⊆ X , O ⊆ X , L and G|O be given. Fix z0 ∈ O \ V . Suppose
that p ∈ X is between V and z0, and that there exist z′, z′′ ∈ O ∩ V satisfying

G(z′) + dL(z′, p) ≤ G(z0) + dL(z0, p), (5.4)
G(z′′)− dL(z′′, p) ≥ G(z0)− dL(z0, p). (5.5)

Then z0 is redundant on V with respect to O ∩ V .

Proof. Let (x, y) ∈ V × R be a feasible point with respect to G|O∩V , i.e.

|y −G(z)| ≤ dL(x, z) for each z ∈ O ∩ V,

and suppose for a contradiction that |y−G(z0)| > dL(x, z0) > 0. If y > G(z0), then the assumption ad absurdum
implies that y > G(z0) + dL(x, z0). Hence,

|y −G(z′)| ≥ y −G(z′)
> G(z0) + dL(x, z0)−G(z′)
≥ dL(z′, p)− dL(z0, p) + dL(x, z0) by (5.4)
= dL(z′, p) + dL(x, p) since p is between V and z0

≥ dL(x, z′) by the triangle inequality,

which contradicts the feasibility of (x, y) with respect to G|O∩V . Similarly, if y < G(z0), then (5.5) implies that

|y −G(z′′)| > dL(x, z′′),

which is again a contradiction. This completes the proof. �

If the closure V of V is a compact rectangular box
∏K

k=1[α
k, βk] ⊆ RK , then, for each z0 ∈ O \ V , there is a

natural choice for the point p with respect to which conditions (5.4) and (5.5) can be checked: the unique point
Pz0,V ∈ V that is closest to z0, where

P k
x,V :=

⎧⎪⎨⎪⎩
αk, if xk < αk,
xk, if αk ≤ xk ≤ βk,
βk, if xk > βk.

(5.6)

It is easy to see that Pz0,V is between V and z0. This choice of p validates the heuristic that observations far
away from V ought to be redundant, since (5.4) and (5.5) are certain to hold when V is bounded and dL(z0, V )
is large enough.
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5.3. Non-binding data points

A more interesting notion of the information content of the data points (z, G(z)) is not relevancy but bind-
ingness. Whereas redundancy concerns the set of feasible points for an optimization problem, a non-binding
constraint (or data point) is one that perhaps changes the feasible set but does not change the extreme value
of the problem.

Given O ⊆ X such that G|O is known, an observation (z0, G(z0)) ∈ X × R is said to be

• non-binding for D̂k with respect to O if

D̂k[X , G|O∪{z0}, L] = D̂k[X , G|O, dL];

• non-binding for P̂ with respect to O if

P̂ [X , G|O∪{z0}, L, m] = P̂ [X , G|O, L, m].

Otherwise, an observation is said to be binding. Note well that the inclusion of a binding observation strictly
changes the extreme value of the optimization problems, not just the set of extremizers.

Clearly, if including an observation at z0 does not change the feasible set for, say, the D̂k problem (3.1), then
including it does not change the extreme value of (3.1); that is, every redundant data point is non-binding,
and every binding data point is relevant. The converse implications, however, are false: in general, there are
data points that do change the feasible set for the optimization problems for D̂k and P̂ , but do not change the
extreme values. See Figure 6 for some illustrations based upon the earlier Example 4.3. See also Figure 7, which
illustrates the set of all second data points (z2, G(z2)) ∈ [0, 1]× R that are redundant with respect to the first
data point from Example 4.3.

A sufficient (but not necessary) condition for the extreme value of an optimization problem to be unchanged
upon the introduction of a new constraint is that the extremizer of the original problem is feasible with respect
to the new constraint. This, a sufficient condition for a data point to be non-binding is provided by the following
result:

Proposition 5.4 (Non-binding data points). Let O ⊆ X , z0 ∈ X , L and G|O∪{z0} be given.

1. Let (x̄, ȳ, x̄′, ȳ′) be a maximizer for (3.1) with observations O. If

|ȳ −G(z0)| ≤ dL(x̄, z0) and |ȳ′ −G(z0)| ≤ dL(x̄′, z0), (5.7)

then z0 is non-binding and D̂k[X , G|O∪{z0}, L] = D̂k[X , G|O, dL].
2. Let (x̄0, x̄1, ȳ, p̄) be a maximizer for (4.12) with observations O. If

|ȳε −G(z0)| ≤ dL(x̄ε, z0) for all ε ∈ {0, 1}K, (5.8)

then z0 is non-binding and P̂ [X , G|O∪{z0}, L, m] = P̂ [X , G|O, L, m].

Proof. Since O ⊆ O∪{z0}, every (x, y, x′, y′) that is feasible for (3.1) with observations O∪{z0} is also feasible
for (3.1) with observations O. Hence

D̂k[X , G|O, dL] ≥ D̂k[X , G|O∪{z0}, L].

Now let (x̄, ȳ, x̄′, ȳ′) be a maximizer for (3.1) with observations O and suppose that (5.7) holds; then (x̄, ȳ, x̄′, ȳ′)
satisfies the criteria to be a feasible point for (3.1) with observationsO∪{z0}, and has the same objective function
value |ȳ − ȳ′|. Hence,

D̂k[X , G|O, dL] ≤ D̂k[X , G|O∪{z0}, L],

and the claim for D̂k follows. The proof of the claim for P̂ is analogous. �
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Figure 6. Additional binding and non-binding data points for the one-dimensional Exam-
ple 4.3. As before, black dots show data points and white dots the locations of maximizing
(x0, y0) and (x1, y1), with P̂ =

(
1− m+

|y1−y0|
)
+
.

Note well that the converse of Proposition 5.4 is false in general: the introduction of a new data point may
render some of the previous (non-unique) maximizers infeasible but still fail to change the maximum value of
the problem.

Nevertheless, the simple algebraic conditions of Proposition 5.4 suggest a practical method for calculating
D̂k or P̂ if the data set O = {z1, . . . , zN} is a large finite set that is believed to contain many redundant points.
The idea is to introduce the data points one at a time and only solve (3.1) (for D̂k) or (4.12) (for P̂ ) when
strictly necessary. In the following algorithm, Oi ⊆ O will denote the data points (constraints) that are enforced
at iteration i, while Õi ⊆ O will denote those that are potentially binding and will be checked for feasibility at
iteration i. Note well that, in general, Oi ∪ Õi � O.

Algorithm 5.5. Initialize with O0 = ∅ and Õ0 = O. Then, for i = 1, 2, . . . ,

(1) For each z ∈ Õi−1, calculate D̂k[X , G|Oi−1∪{z}, L].
(2) Let M⊆ Õi−1 be the set of maximizers of z �→ D̂k[X , G|Oi−1∪{z}, L] among z ∈ Õi−1.
(3) Set Oi := Oi−1 ∪M and calculate D̂k[X , G|Oi , L].
(4) Let Õi consist of those z ∈ O \ Oi such that the extremizer for D̂k[X , G|Oi , L] is infeasible with respect to

(z, G(z)) (i.e. fails (5.7)), and hence is possibly binding.
(5) Terminate if Õi = ∅.
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Figure 7. In grey, those locations for the second data point in the one-dimensional Example 4.3
that are non-binding with respect to the first point (the black dot); cf. (a)–(d) of Figure 4.

The algorithm for P̂ is analogous, with (5.8) in place of (5.7).
In the numerical examples that have been considered so far, it has been observed that relatively few elements

of O determine D̂k or P̂ , even though, in principle, every element of O could supply a binding constraint. This
situation is somewhat analogous to the simplex algorithm in linear programming: in the theoretical worst case,
the simplex method can take exponential time [15], but it “usually” requires polynomial time in practice. We
will reserve detailed numerical analysis of this algorithm for a future work.

6. Further remarks

6.1. Feasible lipschitz constants

Given O ⊆ X and the associated observations G|O, let Lip(G|O) denote the set of Lipschitz constants for G
that are consistent with the observations G|O, i.e.

Lip(G|O) :=
{

L ∈ RK

∣∣∣∣ for all z, z′ ∈ O,
|G(z)−G(z′)| ≤ dL(z, z′)

}
. (6.1)

It is easy to check that, for any given O ⊆ X and G|O, Lip(G|O) is a convex subset of RK . This remains the
case if additional inequality constraints on the Lk are supplied: e.g. if it is required that �−k ≤ Lk ≤ �+

k , then

Lip′(G|O) :=
{

L ∈ Lip(G|O)
∣∣∣∣ �−k ≤ Lk ≤ �+

k for each k ∈ {1, . . . , K}
}

is a convex set.
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It is not immediately clear what one should regard as the “smallest” element of Lip(G|O). However, recall
that Theorem 3.3 shows that the gap size Γ of the data set with respect to dL controls the error D̂k −Dk[G]:

0 ≤ D̂k[X , G|O , dL]−Dk[G] ≤ 4Γ (X ,O, dL).

Therefore, it makes sense to search among the feasible Lipschitz constants L ∈ Lip(G|O) for one L∗ that
minimizes the gap size. Unfortunately, this is not a convex minimization problem in the sense of [7], Section 4.2,
since Γ (X ,O, dL) is not a convex function of L: for each x ∈ X , dL(x,O) is a concave function of L, and a
supremum of a family of concave functions can be badly behaved. D̂k[X , G|O , dL∗ ] is then the upper bound on
Dk[G] that has the tightest error estimate that can be justified by the data G|O alone; of course, further data
might invalidate this scenario.

6.2. Sensitivity and robustness analysis

In some applications, there may be doubt about the correct values for the Lipschitz constants L1, . . . , LK .
Such doubt necessarily propagates to doubt about the validity of the bounds D̂k and P̂ : however, it does not do
so in an entirely uncontrolled fashion. It is possible to perform a (local or global) sensitivity/robustness analysis
of D̂k and P̂ with respect to L1, . . . , LK and thereby determine which Lipschitz constants strongly control the
values of D̂k and P̂ ; the key Lipschitz constants can be identified for further, more detailed, research; the less
important ones can be (relatively) safely accepted as they stand.

Notably, as in the optimal concentration-of-measure inequalities of McDiarmid and Hoeffding type [28],
Section 4 some Lk may turn out to have zero influence on D̂k and P̂ . Indeed, by rescaling arguments, it is easy
to see that just as D̂k and P̂ may be discontinuous as functions of the observed data G|O (as in Example 4.3),
D̂k and P̂ may be discontinuous as functions of L.

7. Numerical examples

This section covers the numerical calculation of P̂ in two example cases. The first case (Sect. 7.2) is a
validation exercise, in which the closed-form results of Example 4.3 are replicated numerically. The second case
(Sect. 7.3) is a more involved calculation, in which the response function is a function of three variables and the
data set comes from an archive of impact engineering experiments.

7.1. Overview of the numerical method

A description of the OUQ algorithm, as implemented in the mystic framework [21], can be found in [22,23]. In
those earlier implementations of OUQ, it was the case that the response function was known/modelled exactly,
and so it was only necessary to numerically represent the unknown probability measure μ. To implement the
“Legacy OUQ” method of this paper, it was necessary to extend the existing OUQ algorithm in the following
ways:

• Mystic’s product_measure class, which provides a numerical representation of a probability measure μ of
the form (4.5)/(4.6), was extended to associate to each of the support points of a product measure μ a scalar
value, thereby providing a numerical representation of a pair (g, μ) ∈ AΔ as in (4.8). Such an object will be
referred to as a scenario and denoted X; typically, X is stored in the “compressed” form of (x0, x1, p, y) as
used in (4.12) and elsewhere, but is sometimes converted into other representations.

• A dataset class, which numerically represents the observed data G|O and the cone structure that comes
from the Lipschitz constants, was added. As alluded to in the previous bullet point, a scenario object X
can be regarded as a dataset object by “forgetting” the probabilistic structure and remembering only the
points in input parameter space and their associated output values. Below, the legacy data set G|O will be
denoted data.
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• Methods were added to both of these classes to allow for efficient calculation of dL distances (and hence
whether or not a given scenario object X is dL-short with respect to itself and data) and integrals with
respect to μ as in (4.7).

The overall structure of the optimization calculations is that of an outer and an inner optimization loop.
The outer loop generates the next population of candidate scenario objects X to which the objective function
F (the probability-of-failure functional) will be applied. The inner loop applies the constraints (bounds, mean,
and shortness) to those generated candidates X so that F is only ever evaluated on scenario objects X’=C(X)
that satisfy the constraints imposed by C.

The outer optimization loop, as described in [22], is used with the “expanded solver interface” described
in [23]. A differential evolution solver [29, 34] was used with termination condition ChangeOverGenerations,
population size npop = 32, ngen = 100, and tol = 10−6; that is, the calculations used populations of 32
candidates and terminated when the best objective function value had shown no improvement greater than
10−6 for 100 consecutive iterations of the outer loop. The objective function value F(X), when X represents
(g, μ), is the probability of failure for g under μ as defined in (4.7) with r(x) := 1[g(x) ≤ θ]. The optimizer
generates values for the weights and positions of the measure points in each coordinate direction. For Legacy
OUQ, the optimizer must also generate scalar values y = g(x) for each point x in the support of the product
measure μ.

In mystic, constraints are solved explicitly through algebraic or numerical means. A constraints solver C
is built to impose the set of constraints on the candidate scenario generated by the outer loop optimizer
at each iteration. Constraints solvers are functions that map any (not necessary feasible) scenario object X
to a scenario object X’=C(X) that satisfies all of the required constraints. Thus, only valid solutions to the
constraints equations are seen by the objective function F. Effectively, the value of the objective function value
evaluated by the outer loop optimizer at each step is F(C(X)). In contrast, standard optimizers use penalty
functions P (and often dynamic multipliers k) so that the objective function F as evaluated by the optimizer is
in fact F(X)+k*P(X); this approach corrupts the structure of the problem by severing an explicit connection to
the constraints.

The constraints function used in the Legacy OUQ algorithm first builds the scenario object X from the
optimizer-generated inputs to the objective function. A first constraints solver C’ is then applied: this ensures
that the weights of each of the underlying discrete measures sum to 1.0. A second constraints solver C’’ is then
applied, which imposes the mean constraint Eμ[g] ≥ m; this is done through mystic’s impose_mean function,
which, in our example, shifts the coordinates of X so that X has the desired mean. At this point, the candidate
scenario objects X generated by the optimizer have passed through the constraints solvers C’ and C’’, and
only provide the objective function F with valid solutions X’=C*(X)=C’’(C’(X)) of the given bounds and mean
constraints. If the resulting candidate scenario object X’ is not dL-short with respect to itself and to the legacy
data data, i.e. the inequality

|g(x)− g(x′)| ≤ dL(x, x′)

fails for some x in the support of μ and some x′ either in the support of μ or in O, then mystic’s set_feasible
function is used in a third constraints solver C to impose the desired shortness on the scenario object X’.
Unlike for C’ and C’’, the constraints in C can not be imposed algebraically. Instead, the application of C is an
inner optimization loop.

The details of how mystic checks for shortness and how feasibility is imposed on a scenario object are worth
a little further discussion.

The check for shortness of a scenario X with respect to the legacy data data is done by first converting X
into a dataset object with the load method, and then applying the is_short function, which calculates the a
2-dimensional array dist with elements |y−y′|−dL(x, x′) for each combination of x, x′ from the two collections
of support points (here, the legacy data set data and the scenario X regarded as a data set). The result is a
matrix corresponding to the distances required for shortness, where all distances less than a given tolerance
short_tol are treated as acceptably close to zero; if all entries of the matrix dist are at most short_tol, then,
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modulo that tolerance, X is dL-short with respect to data; otherwise, the positivity of the matrix dist provides
a numerical measure of the failure of shortness. Shortness of X with respect to itself is calculated similarly.

Shortness is imposed through an inner optimization loop that solves for a candidate scenario object X’ for
which dist<=short_tol. Similarly to the outer optimization loop, this inner optimization loop uses a differential
evolution solver – however, the termination condition used in the inner loop is VTR [21], and solver parameters are
set to npop = 40 and tol = 10−9. The constraints solver C* described above is reused by the inner optimization
loop to ensure that the constraints on the weights and mean are also respected by C. For shortness, the objective
function for the inner loop is the sum over all elements of the matrix max(0.0, dist-short_tol). When the
inner loop terminates, a candidate scenario object X’=C(X) is produced that satisfies all constraints imposed
by the solver C (and thus also C*).

The solution produced by the outer optimization loop is a scenario object C(X) that both satisfies all of the
above constraints and maximizes the probability of failure F(C(X)).

7.2. One data oint in one dimension

As a first exercise in applying the protocol, we numerically replicate the exact values for P̂ in Example 4.3.
Numerical convergence plots are given in Figure 8. In this subsection and the next, P̂n denotes the optimizer’s
best approximation to P̂ after n outer loop iterations.

It may be useful to note that the dimensionality of the problem can be slightly reduced, and more accurate
results obtained more quickly, if instead of searching over

(x0, x1, y0, y1, p) ∈ [0, 1]2 × R2 × [0, 1],

one instead forces (x1, y1) to be a failure, and therefore searches over

(x0, x1, y0, y1, p) ∈ [0, 1]2 × R× {0} × [0, 1].

The same value for P̂ is attained using either approach; if y = 0 is not a feasible value for any x ∈ [0, 1], then
the optimizer detects this fact and reports that the feasible set is empty, from which we infer that the maximum
probability of failure is zero.

7.3. Three-dimensional example

This subsection reports the results of implementing the above method for obtaining optimal bounds on prob-
abilities using a data set generated by physical experiments. These experiments were performed at the California
Institute of Technology’s Small Particle Hypervelocity Impact Range (SPHIR) facility. A brief description of
the experimental setup is given in the next two paragraphs; the essential mathematical point is that Table 1
forms the legacy data for a function G of three real-valued inputs with smoothness given by (7.1).

In these experiments, a solid steel ball of diameter 0.07 inches is fired at an aluminium plate of thickness h.
The projectile impacts the plate at an angle α away from the plate normal (referred to as the obliquity of the
impact), and at a speed v. This impact event may result in the plate being perforated8 by the projectile.

The impact event is very complicated, with many physical processes happening at very high rates; the
experimental diagnostics and the numerical modelling of the entire event are beyond the scope of this paper,
and further details can be found in [1, 13]. To simplify matters and focus on the relevant mathematics, this
example selects a single, scalar, “post mortem” quantity of interest: after the impact event, the cross-sectional
area G(h, α, v) (in mm2) of the perforation in the plate is measured using an optical scanner and recorded, with
the obvious convention that failure to perforate means that G(h, α, v) = 0.

8 To be precise, perforation (also known as complete penetration) means that the impact event has caused a hole in the plate
that passes fully from one side of the plate to the other; a topologist would say that the plate has changed topology from genus
0 to genus ≥ 1. The opposite situation, in which the plate is merely “dented” by the projectile, is referred to as a penetration or
partial penetration. The shorthand terms “a complete” and “a partial” are in common use.
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Figure 8. Log-linear plot illustrating typical numerical convergence of the approximate max-
ima P̂n as a function of the number n of outer loop iterations in the numerical implementation
of Example 4.3. Note the approximate convergence rate of |P̂n − P̂ | ≈ 10−(1+n/60). After the
last iteration shown in each plot, |P̂n− P̂ | ≤ 10−6, i.e. the two are equal up to the convergence
tolerance.

The results of a series of such impact tests are given in Table 1, which forms the legacy data set G|O for this
example. The protocol described above is now applied over the parameter space

(h, α, v) ∈ X := [0.062, 0.125] in× [0, 30] deg× [2300, 3200] m · s−1.

The data are, in fact, multi-valued (two distinct perforation areas were observed for the same input triplet
(h, α, v)). Therefore, the response function is not Lipschitz continuous, and so we apply a natural generalization
of the above protocol using the following “Lipschitz with tolerance” constraint:

|G(h, α, v)−G(h′, α′, v′)| ≤ dL((h, α, v), (h′, α′, v′)) + T , (7.1)

where

L := (Lh, Lα, Lv), T := 1.0 mm2,

Lh := 175.0 mm2/in, Lα := 0.075 mm2/deg, Lv := 0.1 mm2/(m · s−1).

Condition (7.1) is satisfied by the observed data in Table 1, and we assume that it remains valid for the system
in operation. We also assume that the system in operation will be exposed to random (h, α, v) taking values in
X , with independent components, and such that E[G(h, α, v)] ≥ 11.0 mm2.

In this example, the “failure” event is that the perforation area G(h, α, v) falls below some threshold area θ.
Figure 9 shows the computed least upper bound on P[G(h, α, v) ≤ θ] for θ ∈ {0, 1, . . . , 12}mm2. As expected,
the least upper bound on P[G(h, α, v) ≤ θ] is indeed 1 when θ ≥ m and decreases as m− θ increases.
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Table 1. Hypervelocity impact legacy data. Note that this data set corresponds to a multi-
valued function: see shots A62 and A77.

ID plate thickness impact obliquity impact speed perforation area
h/in α/deg v/m · s−1 G(h, α, v)/mm2

A48 0.062 0.0 2288.0 7.73
A49 0.125 30.0 2840.0 13.38
A50 0.125 0.0 2556.0 11.83
A51 0.062 30.0 2329.0 6.31
A52 0.062 0.0 2363.0 7.78
A53 0.125 0.0 2326.0 9.26
A54 0.125 30.0 3235.0 15.98
A55 0.062 0.0 2686.0 9.86
A56 0.062 30.0 2728.0 11.35
A57 0.062 30.0 2627.0 12.09
A58 0.125 30.0 2531.0 11.24
A60 0.125 0.0 2363.0 9.93
A61 0.062 0.0 2707.0 9.96
A62 0.062 30.0 2756.0 11.07
A63 0.062 0.0 2614.0 9.02
A64 0.125 0.0 2439.0 10.52
A65 0.062 0.0 2485.0 8.56
A66 0.125 0.0 2607.0 12.46
A67 0.125 30.0 3036.0 15.36
A68 0.125 30.0 2325.0 8.15
A69 0.062 30.0 2702.0 10.81
A70 0.062 30.0 2473.0 9.52
A71 0.121 30.0 2520.0 9.47
A72 0.121 0.0 2439.0 10.19
A73 0.121 30.0 2366.0 9.42
A74 0.121 30.0 2402.0 8.68
A75 0.062 30.0 2413.0 9.19
A77 0.062 30.0 2756.0 11.32
A78 0.121 30.0 2432.0 10.00
A79 0.062 30.0 2393.0 9.29
A80 0.121 30.0 2479.0 9.53
A81 0.060 30.0 2356.0 8.27
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Figure 9. Numerical results for the least upper bound on P[G(h, α, v) ≤ θ] for various θ. Note
the close agreement with the Markov bound (7.2) (grey line): for θ ≥ 2.0 mm2, the difference is
less than the change-over-generations criterion of 10−6. Convergence plots are given in Figure 11.
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Remark 7.1 (Markov bound and non-binding data). One interesting feature of Figure 9 is that the numerical
results demonstrate very close agreement with the Markov bound

P[G(h, α, v) ≤ θ] ≤ M −m

M − θ
, (7.2)

where
M := sup

(h,α,v)∈X
inf
z∈O

(
G(z) + dL(z, (h, α, v)) + T

) ≈ 39.895 mm2 (7.3)

with maximizer at
(hM , αM , vM ) ≈ (0.062 in, 0.0 deg, 3138.6 m · s−1) (7.4)

is the largest perforation area that can be realised anywhere in X subject to the data and the Lipschitz
constraints. (We note in passing that efficient algorithms for finding extrema of Lipschitz functions are an
area of independent interest: see e.g. [12].) Indeed, for θ ≥ 2.0 mm2, the difference between the computed P̂
and Markov’s bound is dominated by the numerical convergence criterion (less than tol = 10−6 change over
ngen = 102 consecutive generations).

This observation shows that most of the data set (i.e. those data points that do not determine M) consists
of non-binding data points; indeed, only the constraints corresponding to data points A54 and A67 in Table 1
hold as equalities at ((hM , αM , vM ), M). Put another way, the other 30 data points carry no information about
P̂ , and could have been ignored. Also, this finding suggests that the best next experiment to reduce the gap
between P̂ and P[G(h, α, v) ≤ θ] would be to determine G(hM , αM , vM ), since if it is discovered that in fact
G(hM , αM , vM )�M , then P̂ will decrease considerably.

However, for θ ≤ 1.0 mm2, a significant difference (10−2 or greater) is observed between the computed P̂ and
Markov’s bound; this order-10−2 difference was confirmed using runs with an extended convergence criterion (less
than tol = 10−6 change over ngen = 103 consecutive generations). This suggests that data points other than
A54 and A67 supply relevant data in these cases, and that it is no longer feasible to have all the μ-probability
mass located at ((hM , αM , vM ), M) and ((h′, α′, v′), θ).

It is worth noting, though, that working with only the two relevant data points did not result in a statistically
significant shortening of the algorithmic run-time. Instead, significant – even dramatic – reductions in compu-
tational cost resulted from reducing the dimension of the optimization problem rather than its constraints, as
discussed in the next remark. This is not unexpected: problem (4.12) is a problem in ∼2K unknowns with
∼K2K + |O|2K distinct constraints, so it is unsurprising that K has a much greater effect on computational
cost than |O|.
Remark 7.2 (Dimensional collapse). An interesting empirical observation about the solutions of the optimiza-
tion problem is that, during the course of the calculation, the approximate maximizers appear to undergo a
kind of “dimensional collapse”, as illustrated in Figure 10. That is, the extremizing measure μ does not have
support on the 8 distinct points of a non-degenerate discrete cube C(x0, x1); instead, the support of the measure
collapses to just one point in the h and α marginals. This indicates that the uncertainty in the impact velocity
v is the dominant uncertainty in this problem.

Furthermore, once this “dimensional collapse” phenomenon has been observed, even approximately, it is
natural to try the calculation of P̂ using 1× 1× 2 product measures instead of 2× 2× 2 product measures; this
approach always produces valid lower bounds on P̂ and, as Figure 11 shows, can greatly reduce the computational
burden. In this way, lower bounds on the solution of a large OUQ problem can be found relatively quickly by
considering lower-dimensional sub-problems.

The automated implementation of this heuristic for general OUQ problems with n1 × · · · × nK product
measures, in which dimensional collapse events are diagnosed “on the fly” during an optimization and then
enforced as additional simplifying constraints, and the resulting improvements to computational efficiency, will
be the topic of a future paper.
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Figure 10. Illustration of the dimensional collapse phenomenon for the approximate maxi-
mizers for θ = 9.0 mm2 in Figure 9. The first three rows show the μ-probability (left column)
and position (right column) of the h, α and v coordinates of the support of μ. The bottom-left
figure shows the y-values, and the bottom-right the negative of μ[g(X) ≤ θ], i.e. −P̂n. In the
later iterations, μ is effectively a 1× 1× 2, not a 2× 2× 2, product measure.
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Figure 11. Log-linear plot illustrating typical numerical convergence for the approximate
maximum P̂n for θ = 9.0 mm2 in Figure 9 at full 2× 2× 2 dimensionality and reduced 1× 1× 2
dimensionality. Note the improvement to the convergence rate obtained by operating at reduced
dimensionality.
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• ≤ E[X2] ≤ • G2, data O2,
L2-Lipschitz

• ≤ E[Y2] ≤ •

• ≤ E[X1] ≤ • G1, data O1,
L1-Lipschitz

• ≤ E[Y1] ≤ •

G3, data O3,
L3-Lipschitz

• ≤ E[Z] ≤ •

Figure 12. For i ∈ {1, 2}, bounds on the expected value of Xi can be propagated through
a system Gi that is known on Oi and has Lipschitz constant Li to yield optimal bounds on
the expectation of some output quantity Yi. The bounds on Y1 and Y2 can then be propagated
through a third system G3, and so on.

8. Generalizations

8.1. Additional statistical information

The approach of Section 4 is open to a great deal of generalization, much more so than that of Section 3.
In principle, any information about G and P can be used to define a set of admissible scenarios A for the
optimization problem (4.1)–(4.2); also, the objective function can be more general than the probability of
failure. Let r : X → R be measurable. As shown in [28], if A is described by independence constraints and
inequalities of the form

Eμ

[
ϕ′

i

] ≤ 0, for i ∈ {1, . . . , n′},
Eμk

[
ϕ

(k)
i

] ≤ 0, for k ∈ {1, . . . , K}, i ∈ {1, . . . , nk},

for given measurable functions ϕi : X → R and ϕ
(k)
i : Xk → R, then, to extremize Eμ[r] over μ ∈ A, it is sufficient

to search over measures μ =
⊗K

k=1 μk ∈ A with μk supported on at most n′ + nk + 1 points of Xk; this paper
made use only of the case r = 1[f ≤ θ], n′ = 1, ϕ′

1 = m− f , nk ≡ 0. In particular, independence assumptions
can be relaxed, and information about the moments and correlations of the input random variables Xk can be
included in the definition of A. If such information is used, then a reduced upper bound on the probability of
failure is obtained, but at the cost of solving a higher-dimensional optimization problem.

Since, in general, the same methods can be used to provide optimal bounds on Eμ[r] for any quantity
of interest r, the methods of this paper can be used to optimally propagate uncertainties through a hierarchy
(directed acyclic graph) of partially-observed input-output relationships, as in [38]. See Figure 12 for a schematic
illustration.

8.2. Measurement uncertainty

Bounded measurement uncertainty can also be incorporated in the inequality constraints. More precisely,
suppose that an error of up to ±δ is associated to the observed value G(z), and an error of up to δ′ with respect
to the metric dL is associated to the corresponding input parameter value z. Then the observed datum is not
(z, G(z)) but rather some

(
z̃, G̃(z̃)

) ∈ X × R such that

dL(z, z̃) ≤ δ′ and
∣∣∣G(z)− G̃(z̃)

∣∣∣ ≤ δ.
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In this situation, the Lipschitz constraints of the form

|y −G(z)| ≤ dL(x, z) (8.1)

generalize to ∣∣y − γ| ≤ dL(x, ζ), (8.2)

where (ζ, γ) ∈ X ×R is a new optimization variable that plays the rôle of the imperfectly-observed input-output
pair (z, G(z)), and, therefore, is constrained to satisfy

dL(ζ, z̃) ≤ δ′ and
∣∣∣γ − G̃(z̃)

∣∣∣ ≤ δ. (8.3)

Note that, geometrically, (8.2)–(8.3) corresponds to a pointed double cone with a movable vertex that must
remain close to

(
z̃, G̃(z̃)

)
, whereas (7.1) corresponds to a fixed and blunt double cone. Note that, as in the

simple situation of Example 4.3, the bounds D̂k and P̂ may be discontinuous as functions of δ and δ′.
If specific statistical information is available about the measurement uncertainty (e.g. Gaussian scatter),

then confidence intervals can be used in the above procedure. The resulting bounds on P[G(X) ≤ θ] will be
probabilistic in nature, and will become looser as the required level of confidence increases.

8.3. Model-based certification

In many applications, although the real response function G : X → R cannot be easily exercised, there may
be a model F : X → R for G that can be used instead. Quantitative relationships between G and F can be used
to define sets of admissible scenarios as before. For example, suppose that it is known that

‖G− F‖∞ := sup
x∈X

|G(x)− F (x)| ≤ CV , (8.4)

where CV ≥ 0 is some constant resulting from an exercise in model validation. Then, compared with the
admissible set A of (4.2), the corresponding set AF that uses also the model F and the information (8.4) is

AF :=

⎧⎨⎩(g, μ)
∣∣∣∣ g : X → R is dL-short,

μ = μ1 ⊗ · · · ⊗ μK ∈⊗K
k=1 P(Xk),

‖g − F‖∞ ≤ CV , g = G on O, and Eμ[g] ≥ m

⎫⎬⎭ ⊆ A.

Hence, in the AF -analogue of the reduced problem (4.12), the model F and (8.4) induce additional constraints
of the form

|yε − F (xε)| ≤ CV for each ε ∈ {0, 1}K.

As remarked above, D̂k and P̂ may be discontinuous as functions of CV .
Other quantitative measures of model validity can be used in similar ways. Without going into detail, we

note that the uniform norm in (8.4) is too strong for many applications, particularly those in which F or G may
have discontinuities: in such cases, ‖F −G‖∞ being small requires that F and G have approximately the same
discontinuities in R at exactly the same locations in X , which is a very strong requirement. Therefore, metrics
that allow “wiggle room” in both X and R, e.g. the various Skorohod metrics [6, 32], are expected to be of use
in this area. For example, it may be reasonable to assume that the distance between the graphs of F and G as
subsets of X × R is small enough that, for some C′

V ≥ 0,

sup
x∈X

inf
x′∈X

max{dL(x, x′), |G(x) − F (x′)|} ≤ C′
V ; (8.5)

i.e. every point on the graph of G lies within distance C′
V of some point on the graph of F . (Note well that the

roles of F and G in (8.5) are not symmetric.) In this case, the corresponding constraint satisfied by any feasible
(xε, yε) ∈ X × R is that

inf
x′∈X

dL(xε,x′)≤C′
V

|yε − F (x′)| ≤ C′
V .
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8.4. Set-valued lipschitz functions

In many applications (e.g. inverse problems, which are often ill-posed), the system of interest cannot be
accurately represented as a single-valued function G : X → R. For example, the system outcome may depend
on so-called unknown unknowns, which can be neither controlled nor even observed, but have the effect that
G(x) is not a uniquely determined real number for each fixed x ∈ X . One resolution to this problem is to
treat G as a partially-observed set-valued function G : X � R, i.e. an operation that assigns to each x ∈ X a
(possibly empty) subset of R. There is a notion of Lipschitz continuity for set-valued functions [2]: for metric
spaces (X , dX ) and (Y, dY), a set-valued function G : X � Y is said to be a set-valued Lipschitz function with
Lipschitz constant L ≥ 0 if, for all x, x′ ∈ X ,

G(x) ⊆
{

y ∈ R

∣∣∣∣ dist(y, G(x′)) := inf
y′∈G(x′)

dY(y, y′) ≤ LdX (x, x′)
}

, (8.6)

that is, G(x) is a subset of the uniform LdX (x, x′)-neighbourhood of G(x′); or, equivalently, the Hausdorff
distance between the sets G(x) and G(x′) is at most LdX (x, x′).

It would be an interesting and natural extension of the present work to consider set-valued response functions.
Indeed, the set of single-valued Lipschitz extensions E(X , G|O , dL) as defined in (3.2) defines a set-valued function
G̃ : X � R by

G̃(x) := {g(x) | x ∈ X , g ∈ E(X , G|O , dL)}.
G̃ is a set-valued Lipschitz function, with Lipschitz constant 1 with respect to the metric dL, and E(X , G|O , dL) is
the collection of Lipschitz selections [2], Section 9.4.3 of G̃. In this paper, since G is assumed to be single-valued,
the sets G̃(x) are all convex; in the general situation, this need not be the case.
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[14] M.D. Kirszbraun, Über die zusammenziehende und Lipschitzsche Transformationen. Fund. Math. 22 (1934) 77–108.

[15] V. Klee and G.J. Minty, How good is the simplex algorithm?, Inequalities, III, in Proc. Third Sympos. (Univ. California, Los
Angeles, Calif., 1969; dedicated to the memory of Theodore S. Motzkin). Academic Press, New York (1972) 159–175.

[16] P. Limbourg, Multi-objective optimization of problems with epistemic uncertainty, Evolutionary Multi-Criterion Optimization,
in Lect. Notes Comput. Sci., of vol. 3410, edited by C.A. Coello Coello, A. Hernández Aguirre and E. Zitzler. Springer
Berlin/Heidelberg (2005) 413–427.

[17] L.J. Lucas, H. Owhadi and M. Ortiz, Rigorous verification, validation, uncertainty quantification and certification through
concentration-of-measure inequalities. Comput. Methods Appl. Mech. Engrg. 197 (2008) 51–52, 4591–4609.

[18] C. McDiarmid, On the method of bounded differences, Surveys in combinatorics, London Math. Soc. in vol. 141 of Lecture
Note Ser. Cambridge Univ. Press, Cambridge (1989) 148–188.

[19] C. McDiarmid, Centering sequences with bounded differences, Combin. Probab. Comput. 6 (1997) 79–86,

[20] C. McDiarmid, Concentration, Probabilistic Methods for Algorithmic Discrete Mathematics. In vol. 16 of Algorithms Combin.
Springer, Berlin (1998) 195–248.

[21] M. McKerns, P. Hung and M. Aivazis, Mystic: A simple model-independent inversion framework (2009).

[22] M. McKerns, H. Owhadi, C. Scovel, T.J. Sullivan and M. Ortiz, The optimal uncertainty algorithm in the mystic framework,
Caltech CACR Technical Report, August 2010, available at http://arxiv.org/pdf/1202.1055v1.

[23] M.M. McKerns, L. Strand, T.J. Sullivan, A. Fang and M.A.G. Aivazis, Building a framework for predictive science. Proc. of
the 10th Python in Science Conference (SciPy 2011), edited by S. van der Walt and J. Millman (2011) 67–78.
Available at http://jarrodmillman.com/scipy2011/pdfs/mckerns.pdf.

[24] E.J. McShane, Extension of range of functions. Bull. Amer. Math. Soc. 40 (1934) 837–842.

[25] R. Morrison, C. Bryant, G. Terejanu, K. Miki and S. Prudhomme, Optimal data split methodology for model validation, Proc.
of World Congress on Engrg and Comput. Sci. (2011) vol. II, 1038–1043.

[26] W.L. Oberkampf, J.C. Helton, C.A. Joslyn, S.F. Wojtkiewicz and S. Ferson, Challenge problems: Uncertainty in system
response given uncertain parameters. Reliab. Eng. Sys. Safety 85 (2004) 11–19.

[27] W.L. Oberkampf, T.G. Trucano and C. Hirsch, Verification, validation and predictive capability in computational engineering
and physics. Appl. Mech. Rev. 57 (2004) 345–384.

[28] H. Owhadi, C. Scovel, T. J. Sullivan, M. McKerns and M. Ortiz, Optimal Uncertainty Quantification. SIAM Rev. To appear.

[29] K.V. Price, R.M. Storn and J.A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization, Natural
Comput. Ser. Springer-Verlag, Berlin (2005).

[30] C.J. Roy and W.L. Oberkampf, A complete framework for verification, validation and uncertainty quantification in scientific
computing, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (2010).

[31] L. Schwartz, Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures, Published for the Tata Institute of
Fundamental Research, Bombay by Oxford University Press, London (1973). Tata Institute of Fundamental Research Studies
in Mathematics, No. 6.

[32] A.V. Skorohod, Limit theorems for stochastic processes, Teor. Veroyatnost. i Primenen. (Theor. Probab. Appl.) 1 (1956),
289–319.

[33] L.A. Steen and J.A. Seebach, Jr., Counterexamples in Topology, 2nd edn. Springer-Verlag, New York (1978).

[34] R. Storn and K. Price, Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces.
J. Global Optim. 11 (1997) 341–359.

[35] A.M. Stuart, Inverse problems: a Bayesian perspective. Acta Numer. 19 (2010) 451–559.

[36] T. J. Sullivan, U. Topcu, M. McKerns and H. Owhadi, Uncertainty quantification via codimension-one partitioning. Int. J.
Numer. Meth. Engng. 85 (2011) 1499–1521.

[37] M. Talagrand, Concentration of measure and isoperimetric inequalities in product spaces. Inst. Hautes Études Sci. Publ. Math.
(1995) 73–205.

[38] U. Topcu, L. J. Lucas, H. Owhadi and M. Ortiz, Rigorous uncertainty quantification without integral testing. Reliab. Eng.
Sys. Safety 96 (2011) 1085–1091.

[39] F.A. Valentine, A Lipschitz condition preserving extension for a vector function. Amer. J. Math. 67 (1945) 83–93.

[40] V.H. Vu, Concentration of non-Lipschitz functions and applications, Random Structures Algorithms 20 (2002) 262–316.

[41] M.L. Wage, The product of Radon spaces, Uspekhi Mat. Nauk 35 (1980) 151–153, International Topology Conference (Moscow
State Univ., Moscow, 1979), Translated from the English by A.V. Arhangel′skĭı.
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