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Space-time FLAVORS: finite difference, multisymlectic, and

pseudospectral integrators for multiscale PDEs

Molei Tao, Houman Owhadi, and Jerrold E. Marsden

ABSTRACT. We present a new class of integrators for stiff PDEs. These inte-
grators are generalizations of FLow AVeraging integratORS (FLAVORS) for
stiff ODEs and SDEs introduced in [32] with the following properties: (i)
Multiscale: they are based on flow averaging and have a computational cost
determined by mesoscopic steps in space and time instead of microscopic steps
in space and time; (ii) Versatile: the method is based on averaging the flows
of the given PDEs (which may have hidden slow and fast processes). This by-
passes the need for identifying explicitly (or numerically) the slow variables or
reduced effective PDEs; (iii) Nonintrusive: A pre-existing numerical scheme re-
solving the microscopic time scale can be used as a black box and easily turned
into one of the integrators in this paper by turning the large coefficients on over
a microscopic timescale and off during a mesoscopic timescale; (iv) Convergent
over two scales: strongly over slow processes and in the sense of measures over
fast ones; (v) Structure-preserving: for stiff Hamiltonian PDEs (possibly on
manifolds), they can be made to be multi-symplectic, symmetry-preserving
(symmetries are group actions that leave the system invariant) in all variables
and variational.
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1. Introduction

Multi-scale PDEs can be divided into two (possibly over-lapping) categories:
PDEs with highly oscillating or rough coefficients and PDEs with large (or stiff)
coefficients. Classical numerical methods are usually: (i) stable but arbitrarily in-
accurate for the former category (consider, for instance, a finite element method for
the elliptic operator — div(aV) with a rapidly changing coefficient @ € L*°), or (ii)
unstable for the latter category. Accurate numerical methods for the former cate-
gory, called numerical homogenization methods, are, in absence of local ergodicity
or scale separation, based on the compactness of the solution space (we refer, for
instance, to [26, 2, 27]). Numerical methods for the latter category are, in essence,
based on the existence of slow and fast variables (or components) [14]. When fast
variables converge toward Dirac (single point) distributions, asymptotic-preserving
schemes [15] allow for simulations with large time steps. We also refer to [18, 25]
for multi-scale transport equations and hyperbolic systems of conservation laws
with stiff diffusive relaxation. Well-identified slow variables can be simulated with
large time-steps using the two-scale structure of the original stiff PDEs (we refer to
[1] and [12] for existing examples; slow variables satisfy a non-stiff PDE that can
be identified in analogy to equations (A.9) and (A.13) of [32]; we also refer to [14]
for a definition of slow variables).

In this paper, we consider the second category of PDEs and propose a gen-
eralization of FLow AVeraging integratORS (FLAVORS) (introduced in [32] for
stiff ODEs and SDEs) to stiff PDEs. Multi-scale integrators for stiff PDEs are
obtained without the identification of slow variables by turning on and off stiff co-
efficients in single-step (legacy) integrators (used as black boxes) and alternating
microscopic and mesoscopic time steps (Subsection 2.2). We illustrate the general-
ity of the proposed strategy by applying it to finite difference methods in Section 2,
multi-symplectic integrators in Section 3, and pseudospectral methods in Section
4 (although we have not done so in this paper, the proposed strategy can also be
applied to finite element methods or finite volume methods). The convergence of
the proposed strategy, after semi-discretization in space, is analyzed in Subsection
5.1, where a non-asymptotic error bound indicates the two-scale convergence ([32],
i.e., strong with respect to hidden slow variables and weak with respect to hid-
den fast variables) of PDE-FLAVORS. As illustrated by numerical (Figure 2) and
theoretical results (Section 5), an explicit tuning ((h/€)> < H < h/e) between
microscopic h and mesoscopic (H) time-steps and the stiff parameter 1/e is neces-
sary and sufficient for convergence. We also show in Section 6 that applying the
FLAVOR strategy to characteristics leads to accurate approximations of solutions
of stiff PDEs.

These results, along with those of [32], diverge from the concept that, in sit-
uations where the slow variables are not linear functions of the original variables,
multiscale algorithms “do not work” “if the slow variables are not explicitly identi-
fied and made use of” (page 2 of [13]).

2. Finite difference and space-time FLAVOR mesh

2.1. Single-scale method and limitation. Consider a multiscale PDE:

(1) F(1, et w(x, t), ug(, t), up(x,t), Upe (2, t), uge(z, 1), uge(z,t),...) =0
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where F is a given function (possibly nonlinear), € is a small positive real parameter
and z and t are spatial and temporal coordinates.

To obtain a numerical solution of (1), the simplest single-scale finite difference
approach employs a uniform rectangular mesh with time step length h and space
step length k, and approximates the solution u at its values at discrete grid points.
Differential operators will be approximated by finite differences; for instance, ac-
cording to forward space forward time rules: w,(ik,jh) ~ (ui+1,; — w;;)/k and
u(ik, jh) = (w; j41 — Ui ;)/h, where u;; is the numerical solution at discrete grid
point with space index ¢ and time index j. After this discretization, the original
PDE is approximated by a finite dimensional algebraic system, which can be solved
to yield the numerical solution.

Of course, a necessary condition for obtaining stability and accuracy in the nu-
merical solution is that h and k have to be small enough. A quantitative statement
on how small they need to be will depend on the specific PDE and discretization.
For 1D linear advection equations u, — au; = 0 and forward time forward space
discretizations, the h < k/a CFL condition [11] has to be met to ensure stabil-
ity, which is also a neccessary condition for accuracy [19]. Intuitively, the CFL
condition guarantees that information does not propagate faster than what the
numerical integrator can handle. The Von Neumann stability analysis [9] helps
determine analogous CFL conditions for linear equations with arbitrary discretiza-
tions. The stability of numerical schemes for general nonlinear equations remains
a topic of study. We refer to [31] for additional discussions on single-scale finite
difference schemes. In general, the presence of a stiff coefficient ¢! in equation (1)
requires h and k to scale with ¢ in order to guarantee the stability of numerical
integration schemes. This makes the numerical approximation of the solution of
(1) computationally untractable when e is close to 0.

2.2. Multiscale FLAVORIization and general methodology. FLAVORs
are multiscale in the sense that they accelerate computation by adopting both larger
time and space steps. A finite difference scheme can be FLAVORized by employing
two rules:

First, instead of a uniform mesh, use a mesh as depicted in Figure 1, in which
a uniform spatial grid corresponds to a mesoscopic space step K that does not
scale with ¢, and an alternating temporal grid corresponds to two time steps, mi-
croscopic h (scaling with €) and mesoscopic H — h (H independent from ¢). It is
worth mentioning that when using this non-uniform mesh, grid sizes have to be
taken into consideration when derivatives are approximated by finite differences.
1st-order derivatives are straightforward to obtain, and we refer to Section 3 for
approximations of higher order derivatives.

Second, the stiff parameter e~* should be temporarily set to be 0 (i.e., turned
off) when the current time step is the mesoscopic H — h; if the small time step h is
used instead, the large value of e~! needs to be restored, or in other words, stiffness
should be turned on again.

The rule of thumb is that £ and h should be chosen such that the integration
of (1) with these step sizes and stiffness turned on is stable and accurate. On the
other hand, there is another pair of step size values such that the same integration
with stiffness turned off is stable and accurate, and K and H should be chosen to
be an order of magnitude smaller than these values. FLAVORS does not require a
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FIGURE 1. Mesh used by FLAVORS. A uniform mesoscopic space step is
used and two alternating small and mesoscopic time steps are used. Stiffness
is turned on in red regions and turned off otherwise.

microscopic k, but only a mesoscopic space-step K, a microscopic time-step h, and
a mesoscopic time-step H.

The intuition is as follows: adopt the point of view of semi-discrete approach
for PDE integration, in which space is discretized first and the PDE is approxi-
mated by a system of ODEs. The integration (in the time) of the resulting finite
dimensional ODE system can be accelerated by applying the FLAVOR strategy to
any legacy scheme (used as a black box). Turning on and off stiff coefficients in the
legacy scheme and alternating microscopic time steps (stiffness on) with mesoscopic
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time steps (stiffness on) preserves the symmetries of that scheme and at the same
time induces an averaging of the dynamic of (possibly hidden) slow variables with
respect to the fast ones. With this strategy, the FLAVORized scheme advances in
mesoscopic time steps without losing stability. The (possibly hidden) slow dynamic
is captured in a strong sense, while the fast one is captured only in the (weak) sense
of measures. A rigorous proof of convergence of the proposed method relies on the
assumption of existence of (possibly hidden) slow variables and of local ergodicity
of (possibly hidden) fast variables (we refer to Section 5). It is important to observe
that the proposed method does not require the identification of slow variables.

2.3. Example: conservation law with Ginzburg-Landau source. Con-
sider a specific stiff PDE:

(2) ue + fu)e = € u(l —u?)

in which f(u) =sinwu and 0 < e < 1. Use the boundary condition of u(x = 0,t) =
u(z = L,t) and the initial condition of u(z,t = 0) = sin(7z). This system contains
two scales: the fast process corresponds to u quickly converging towards 1 or —1,
and the slow process corresponds to the front (with steep gradients) separating
u > 0 from u < 0 propagating at an O(1) velocity.

We will FLAVORIze the following Lax-Friedrichs finite difference scheme:

A Uit2 jHULG

(3) {Ui“vﬂ‘fl = Uiy1,j —h (f“(ﬂiﬂd)%k_u” +e Mg 5(1 - ﬂfﬂ,j))
Uit1j = 3

where u;j = ujir/p; and u;y = sin (7(i — 1)k). If the domain of integration is

restricted to [0, L] x [0,T], then i =1,2,...,|L/k|+1,and j =1,2,...,|T/h] + 1.

We use h = 0.1€ and k = 0.2¢ for our purposes, both of which we found numerically

at the order of the stability limit. In our experiment, we chose € = 2 - 1073, and

therefore h = 0.0002 and k& = 0.0004.
The FLAVORIized version of this scheme is:

Uiy1,; = Uip15—h (fu(ﬂm,j)% +e iy (1 - a?“vj))
(4) Uiy = (Uiraj +uig)/2
Uitl,j+1 = % — (H —h) (fu(ui“’];ui’j)Uiﬁéjlgui’j)

where w; ; = u;y1/k,; and u;; = sin (7(i — 1)K). If the domain of integration is
restricted to [0, L] x [0, 7], theni =1,2,...,|L/K|+1,and j =1,2,...,|T/H]|+1.
We use the same h as before, and choose H = 0.005 and K = 0.01, which ensures
that the stability of the integration remains independent of e.

Errors of FLAVOR based on Lax-Friedrichs with different H and h values
are computed by comparing the results to a benchmark Lax-Friedrichs integration
with fine steps h = 0.1¢ and k = 0.2¢. More precisely, we calculated the distance
between two vectors respectively corresponding to FLAVOR and Lax-Friedrichs
integrations, which contain ordered wu(z,t) values on the intersection of FLAVOR
and Lax-Friedrichs meshes (which is in fact the FLAVOR mesh as long as H is
a multiple of 0.1¢). l-norm is used and normalized by the number of discrete
points to mimic the L' norm for the continuous solution. Experimental settings
are e =2-1073, L =2 and T = 2. As we can see in Figure 2, FLAVOR is indeed
uniformly convergent in the sense that the error scales with H, as long as h takes
an appropriate value. This is not surprising, because we have already proven in the
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Ll distance between u, by FLAVOR and benchmark
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FIGURE 2. Errors of FLAVOR. based on Lax-Friedrichs as a function of H
and h. H samples multiples of 0.1¢, starting from 2x to 50x with 1x increment,
and h ranges from 0.0le to 3e with 0.01le increment. Errors with magnitude
bigger than 1 are not plotted, for they indicate unstable integrations.

ODE case that the error is bounded by a function of H (uniformly in €) as long as
(%)2 < H < h/e, and this error can be made arbitrarily small as H | 0 (notice H
can still be much larger than € as € | 0).
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Single scale finite difference FLAVOR

FIGURE 3. Numerical solutions to (2) by Lax-Friedrichs (left, Eq. 3) and
its FLAVORization (right, Eq. 4).

Also, a typical run of FLAVOR (H = 0.005 and K = 0.01) in comparison
to the benchmark (h = 0.0002 and k = 0.0004) is shown in Figure 3. FLAVOR
captured the slow process strongly in the sense that it obtained the correct speeds
of both steep gradients’ propagations (up to arithmetic error and fringing). In this
setting, FLAVOR achieves a % = 312.5 fold acceleration. It is worth restating
that both spatial and temporal step lengths of FLAVOR are mesocopic, whereas the
counterparts in a single scale finite difference method have to be both microscopic
for stability. The computational gain by FLAVOR will go to infinity as ¢ — 0, and
this statement will be true for all FLAVOR examples shown in this paper.

3. Multisymplectic integrator for Hamiltonian PDEs

3.1. Single-scale method. We refer to [7, 21, 22] for a discussion on the
geometry of Hamiltonian PDEs (e.g., multi-symplectic structure). We will now
recall the Euclidean coordinate form of a Hamiltonian PDE:

(5) Mz + Kz =V, H(2)

where z(x,t) is a n-dimensional vector, M and K are arbitrary skew-symmetric
matrices on R”, and H : R” — R is an arbitrary smooth function. The solution
preserves the multi-symplectic structure in the following sense:

(6) Buu(U, V) + 8,6(U, V) = 0
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where ¢ and k are differential 2-forms defined by

(7) vz, y) = (Maz,y) and  k(z,y) = (Kz,y)

and U and V are two arbitrary solutions to the variational equation (the solution
is identified with dz : R? — R"):

(8) Mdz + Kdz, = D, H(2)dz, dz(z,t) e R"

Preservation of multi-symplecticity can be partially and intuitively interpreted as
a conservation of infinitesimal volume in the jet bundle, which generalizes the con-
servation of phase space volume in Hamiltonian ODE settings to field theories.

A broad spectrum of PDEs fall in the class of Hamiltonian PDEs, including
generalized KdV, nonlinear Schrédinger models, nonlinear wave equations, atmo-
spheric flows, fluid-structure interactions, etc. [4, 3, 6, 7]. We also refer to [8] and
references therein for surveys on numerical recipes, and to [20] for an application
to numerical nonlinear elastodynamics.

Hamiltonian PDEs (5) can be viewed as Euler-Lagrange equations for field
theories, which are obtained by applying Hamilton’s principle (i.e., a variational
principle of 6§/0z = 0) to the following action:

(9) S(z(+,+)) = //E(z,zt,zx) dt dx
where the Lagrangian density is given by

1 1
(10) L(z, 2t 2¢) = §<Mzt, z) + §<’sz7 z) — H(z)

This variational view of Hamiltonian PDEs will intrinsically guarantee the
preservation of multi-symplecticity, and there will be a field generalization of Noether’s
theorem, which ensures conservation of momentum maps corresponding to symme-
tries.

Numerically, instead of discretizing the equations (5), we prefer the approach of
variational integrators because they are intrinsically multi-symplectic and therefore
structure-preserving [21, 22, 23, 20]. These integrators are obtained as follows:
first discretize the action (9) using quadratures, then apply variational principle
to the discrete action (which depends on finitely many arguments), and finally,
solve the algebraic system obtained from the variational principle, i.e., the discrete
Euler-Lagrange equations.

For an illustration, consider a nonlinear wave equation:

(11) Utt — Uggy = V/(u)
with periodic boundary condition u(z + L,t) = u(
ditions u(z,t = 0) = f(z) and w(x,t = 0) = g(=
the solution in a domain [0, L] x [0, T.

Rewrite the high order PDE as a system of first order PDEs (notice these
covariant equations can be obtained through an intrinsic procedure, which works
on manifolds as well [5]):

(12) Uy — Wy = V’(u)
(13) Ut
(14) Uy = w

t) and compatible initial con-

tr7
). Suppose we are interested in

v
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The corresponding Lagrangian density is:

1 1
(15) L= Euf - §ui +V(u)

Using a forward time forward space approximation, we obtain the following
discrete Lagrangian:

1 (w501 —u > 1 /u 1 u 2
A i,J+1 T Yi,g 2 i4+1,j — UWUi,j o
hz]ku [2 ( hij ) ) ( k‘”) +V(u17])]

tjp1=tj+h;; Tip1=2;+k;; 1 1
/ dt/ dx [uf ——ul + V(u)}
‘. o 2 2

J 7

(1>

d
(16) Lg;

(17)

Q

where space step k;; and time step h;; define a rectangular grid of size k;; x hy;.
The simplest single-scale choice would be k;; = k and h;; = h for some k£ and h.
As a consequence, the continuous action S is approximated by a discrete action:

N M

(18) Sd:ZZLiﬁzS://Edtdx
a=1pp=1

and Hamilton’s principle of least action dS; = 0 gives

9 N M
() S 3 NP

a=1p=1

for1<i< Nand1l<j< M, where N and M are such that Ziv:l ko = L for
any  and 224:1 hap =T for any «.

Taking derivative with respect to u; j, we obtain the following discrete Euler-
Lagrange equations:

Ui j = Wijy1 Ui = Uit1, ’
hig == iy + hijki V' (ui)
9 9

Uiyj — Uij—1 Uiyj — Ui-1,j

(20) “V‘ki,jfl - hifltj =0

hi,j—l ki—l,j

The system of above equations is explicitly solvable when equipped with bound-
ary conditions and initial conditions; for instance, below is a consistent discretiza-
tion of the continuous version:

Ui j = Ui+ N,j5) Vi, j
(21) win = f (Chc k) vi
Ui 2 = U1+ hirg (Z;zl kaz) , Vi

This numerical receipt is convergent. In fact, multi-symplectic integrators ob-
tained from variational principles can be viewed as special members of finite differ-
ence methods, whose error analysis is classical.

We wish to point out that the above procedure works for any Hamiltonian
PDEs of form (5). Also, notice that high-order derivatives are dealt with in an
intrinsic way regardless of whether mesh is uniform.
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3.2. FLAVORIization of multi-symplectic integrators. Now consider a
multiscale Hamiltonian PDE

(22) M1 e Nz + K1 e Nz, = Vo H(L e 2)

Any single-scale multi-symplectic integrator can be FLAVORized (to achieve
computational acceleration) by using the following strategy: (i) Use the two-scale
mesh illustrated in Figure 1, and (ii) Turn off large coefficients when taking meso-
scopic time-steps. Unlike FLAVORizing a general finite difference scheme, we FLA-
VORize the action S, instead of the PDE. Specifically, choose

kij = K, Vi, j
(23) hij = h, Vi and odd j
hij = H —h, Viand even j

and let e' =0 in ng for even j’s and all i’s, while the large value of €' is kept
in Lﬁ ; for odd j’s and all i’s. h and H correspond to a small and a mesoscopic
time-step, and K corresponds to a mesoscopic space-step; the same rule of thumb
for choosing them in Section 2 applies.

After applying the discrete Hamilton’s principle, the resulting discrete Euler
Lagrange-equations corresponding to a multi-symplectic integrator will still be (20),
except that stiffness is turned off in half of the grids. Multisymplecticity is automat-
ically gained, because the updating equations originate from a discrete variational
principle [21].

3.3. Example: multiscale Sine-Gordon wave equation. Consider a spe-
cific nonlinear wave equation (11) in which V(u) = — cos(wu) — cos(u). If w = 0,
this corresponds to Sine-Gordon equation, which has been studied extensively due
to its soliton solutions and its relationships with quantum physics (for instance, as
a nonlinear version of Klein-Gordon equation). We are interested in the case in
which w (identified with e~1) is big, so that a separation of timescale exhibits.

Arbitrarily choose L = 2 and use periodic boundary condition w(z + L,t) =
u(z,t), and let initial condition be u(x,0) = sin(2wz/L) and u(x,0) = 0. Denote
total simulation time by T. Use the FLAVOR mesh (23). In order to obtain a
stable and accurate numerical solution, k and h have to be o(1/w), and K and H
need to be o(1).

A comparison between the benchmark of the single-scale forward time forward
space multi-symplectic integrator (Eq. 20 with h;; = h and k;; = k) and its
FLAVORIzation (Eq. 20 with mesh (23) and V'(u) = wsin(wu) + sin(u) for odd j
and V'(u) = sin(u) for even j) is presented in Figure 4. w = 20, k = L/20/w and
h=k/2,and K = L/40 and H = K/2. Tt is intuitive to say that the slow process
of wave propagation is well-approximated by FLAVOR, although the fast process
of local fluctuation is not captured in the strong sense. Error quantification is not
done, because what the slow and fast processes are is not rigorously known here.
HK /2hk = 50-fold acceleration is obtained by FLAVOR.

Readers familiar with the splitting theory of ODEs [24] might question whether
FLAVORS are equivalent to an averaged stiffness of & = w% (which corresponds
@ = 2 in the numerical experiment described above). The answer is no, because
the equivalency given by the splitting theory is only local. In fact, the same single-
scale forward time forward space multi-symplectic integration of the case w = 2 is
shown in Figure 5, which is clearly distinct from the FLAVOR result in Figure 4.
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Single scale 1st order multisymplectic: =20 FLAVOR: =20

FIGURE 4. Numerical solutions to multiscale Sine-Gordon equation by
single-scale 1st-order multi-symplectic integrator (left) and its FLAVORiza-
tion (right). For clarity, the surface plots (but not simulations) use the same
mesh size.

Moreover, because of the e““T error term, changing stiffness alone will not result

in a converging method (and result in a O(1) error on slow variables).

4. Pseudospectral methods

4.1. Single-scale method. Consider a PDE
(24) ug(x,t) = Lu(x,t)
with periodic boundary condition u(x,t) = u(z+L,t) and initial condition u(zx,0) =
f(x), where L is a differential operator involving only spatial derivatives.

The Fourier collocation method approximates the solutions by the truncated
Fourier series:
(25) un(x,t) = Z an(t)em?me/L

In|<N/2

and solves for a,(t)’s by requiring the PDE to hold at collocation points y;:
(26) dun(yj,t) — Lun(y;,t) =0

This yields N ODEs, which can be integrated by any favorite ODE solver. Of
course, specific choices of collocations points will affect the numerical approxima-
tion. Oftentimes, the simplest choice of y; = Lj/N,j =0,...,N —1 is used, and
in this case, the method is also called a pseudospectral method. We refer to [17]
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Single scale 1st order multisymplectic: =2

FIGURE 5. Numerical solutions to multiscale Sine-Gordon equation with the
‘equivalent’ stiffness by single-scale 1st-order multi-symplectic integrator. For
clarity, the surface plot (but not the simulation) uses the same mesh size (as
in Figure 4).

for additional details on Fourier collocation methods. It is worth mentioning that
pseudospectral methods can also be multi-symplectic when applied to Hamiltonian
PDEs [10].

4.2. FLAVORIization of pseudospectral methods. When the PDE is stiff
(for instance, when £ contains a large parameter e~ '), FLAVORS can be employed
to integrate the stiff ODEs (which will still contain €~!) resulting from a pseu-
dospectral discretization.

Similarly, for the FLAVORization of a pseudospectral method, it is sufficient
to choose N >> L instead of N > e 1L, i.e., the space-step can be coarse (K =
o(1)). For time stepping, alternatively switching between h = o(e) and H — h for
a mesoscopic H = o(1) is again needed, and stiffness has to be turned off over the
mesoscopic step of H — h. In a sense, we are still using the same FLAVOR ‘mesh’
(Figure 1), except that here we do not discretize space, but instead truncate Fourier
series to resolve the same spatial grid size.
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4.3. Example: a slow process driven by a non-Dirac fast process.
Consider the following system of PDEs

U+ up — q° =0
(27) G +q—p=0
Pt +ps +wig=0

with periodic boundary conditions u(z,t) = u(z + L,t), q(x,t) = q(z + L,t), and
p(z,t) = p(z + L,t), and initial conditions u(x,0) = f*“(z), ¢(z,0) = f4(z), and
p(z,0) = fP(x). The integration domain is restricted to [0, 7] x [0, L]. The stiffness
¢! is identified with w?. We choose the initial condition of f“(x) = fi(x) =
cos(2mx/L) and fP(x) = 0.

In this system, g and p correspond to a fast process, which is a field theory
version of a harmonic oscillator with high frequency w. wu is a slow process, into
which energy is pumped by the fast process in a non-trivial way.

We have chosen to FLAVORize (27) because it does not fall into the (simpler)
category of systems with fast processes converging towards Dirac (single point sup-
port) invariant distributions [15].

We use the classical 4th order Runga-Kutta scheme (see, for instance, [16])
for the (single-step) time integration of the pseudospectrally discretized system
of ODEs (26). Write ¢7;2 2 abTP(t) w— aPi(t + h) its numerical flow over a
microscopic time step h (consisting of four sub-steps), where a¥'?P(t) are numerical
approximations to the Fourier coefficients in (25), for the unknowns u, ¢ and p at
an arbitrary time ¢. Then, the corresponding FLAVOR update over a mesoscopic
time step H will be ¢%, O ¢‘,‘l’2, which consists of eight sub-steps.

We present in Figure 6 and Figure 7 a comparison between the benchmark
of single-scale pseudospectral simulation and its FLAVORization. It can be seen
that the slow process of u is captured in strong (point-wise) sense, whereas the fast
process of ¢ is only approximated in a weak sense (i.e. as a measure, in the case,
wave shape and amplitude are correct, but not the period). We choose L = 2,
T = 10 and w = 1000. The single-step integration uses N = 20 and h = 0.1/w
(notice that this is already beyond the stability /accuracy region of a single-scale
finite difference, since the space step does not depend on 1/w; the spectral method is
more stable/accurate for a large space-step), and FLAVOR uses N = 20, h = 1/w?
and H = 0.01. H/2h = 50-fold acceleration is achieved by FLAVOR.

5. Convergence analysis

5.1. Semi-discrete system. All FLow AVeraging integratORS described in
previous sections are illustrations of the following (semi-discrete) strategy: first,
space is discretized or interpolated; next, spatial differential operators are approxi-
mated by algebraic functions of finitely many spatial variables; finally, the resulting
system of ODEs is numerically integrated by a corresponding ODE-FLAVOR [32].
In this section, we will use the semi-discrete ODE system as an intermediate link to
demonstrate that these PDE-FLAVORS are convergent to the exact PDE solution
under reasonable assumptions (in a strong sense with respect to (possibly hidden)
slow variables and in the sense of measures with respect to fast variables).

More precisely, consider a spatial mesh (vector) M = [z1, 79, ...], a temporal
mesh (vector) MT = [t1,ts,...], and a domain mesh (matrix) M = M* x MT.
Examples of these meshes include the FLAVOR mesh M* = [K,2K, ..., NK] and
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Pseudospectral: slow process FLAVOR: slow process

FIGURE 6. Single-scale (left) and multiscale pseudospectral (right) integra-
tions of slow u in system (27). Plotting mesh for the single-scale simulation is
coarser than its computation mesh.

MT =[h H H+h,2H,...,(M—1)H, (M —1)H +h, M H], and a usual single-scale
(step) integration mesh M = [k, 2k, ..., L] and MT = [h,2h,...,T] (recall the
domain size is L = NK by T = M H). We will use the FLAVOR mesh throughout
this section. We will compare the solution of the PDE (28) with the solution
obtained with the FLAVOR strategy at these discrete points.

For simplicity, assume the PDE of interest is 1st-order in time derivative:

(28) ug(z,t) = F(1,e Y a, t,u(z, t), ug (, 1), .. .)

Observe that a PDE (1) with higher-order time derivatives can be written as a
system of 1st-order (in time derivatives) PDEs.

Now consider a consistent discretization of PDE (28) with space step K and
time step h (we refer to Page 20 of [31] for a definition of the notion of consistency,
which intuitively means vanishing local truncation error). Letting A | 0 in this
discretization, we obtain a semi-discrete system (continuous in time and discrete
in space). This semi-discrete system is denoted by the following system of ODEs,
with approximated spatial derivatives:

al(t) = fl(ul,ug, R ,’LLN,G_l,t)

(29) Ug(t) = folur,ug,...,un,e 't

UN(t) = fN(u17u27"'7uN76_1at)
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Pseudospectral: fast process FLAVOR: fast process

FIGURE 7. Single-scale (left) and multiscale pseudospectral (right) integra-
tions of fast ¢ in system (27). Plotting mesh for the single-scale simulation
is coarser than its computation mesh. The same color does not indicate the
same value in these two plots.

Assuming existence and uniqueness of an exact C! strong solution u to the PDE
(28), and writing u(M? 1) its values at the spatial discretization points, we define
for each ¢ the following remainder:

s O
ot
which is a real function of ¢ indexed by e~ !.

Then, u;(t) approximates the exact solution u(M?,t) evaluated at grid points
in the sense that these remainders vanish as e 'K | 0 (where K := M? — M ):

(30) Ri(e_lvt) (Misat) _fi(u(Mfat)’u(M§7t)v""U(M]%7t)76_17t)

LEMMA 5.1. Assume that F in (28) satisfies
(31)
|F(1, et ot u(a, t), ug(z,1),...)| < (14 e HIF(1, 1,2, tu(z, t), ug(z,t),...)|

Assume that the f; in (29) satisfy similar inequalities. Then, there exists a constant
C; independent from €, h, H or K, such that for bounded t and u

(32) |Ri(e 1) < (1 4+ ¢ HOK

REMARK 5.1. (31) is true, for instance, in cases where

(33)  F(l,e 'z, t,u(x,t),...) = Folz, t,u(z,t),...) + e "Fi(z, t,u(z,t),...).
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PROOF. The linear scaling with K in (32) immediately follows from the defi-
nition of consistency, and the parameter 1 + ¢! in (32) has its origin (31). O

REMARK 5.2. The consistency of finite difference methods can be easily shown
using Taylor expansions. For instance, applying a Taylor expansion to the solution
of us — e tu, = a(u) leads to

K
+O(K)) + a(u(iK, jh))) + O(h?)

” u(iK, (j + 1)h) =u(iK, jh) + h(e_l(

which implies
0 i+ 1K, t) —u(iK,t

(35)  guliK.t) = (Y K) WK | iR, 1) + e O(K)
and naturally establishes the correspondence of
_r Ui () —ui(t)

K
and R; = e O(K) for a 1st-order finite difference scheme. Notice that the remain-
ders are still stiff, but we will see later that this is not a problem, since they can
be handled by ODE-FLAVORs. The consistency of pseudospectral method can be
shown similarly using Fourier analysis.

With R; defined in (30), consider the following system of ODEs:
ul(t) = fl(u17u27 -5 UN, 6_1at) + Rl(e_lvt)

filut,...,un,e 1 t) =€ + a(u;(t))

(36) :
iLN(t) = fN(ul,UQ, ..., UN, Eil,t) —+ RN(Eil,t)

with initial condition u;(0) = u(M?,0). Obviously, its solution (u;(t))1<i<n is the
exact PDE solution sampled at spatial grid points, i.e., u;(t) = u(M7,t).

We will now establish the accuracy of PDE-FLAVOR by showing that an ODE-
FLAVOR integration of (36) leads to an accurate approximation of (u;(t))1<i<n-
Since space (with fixed width L) is discretized by N grid points, we use the following
(normalized by N) norm in our following discussion (suppose v;(t) = v(M?#,t) for
a function v):

1
(37) o1 (@) va(®), - on @ = 7 Mr (1), v2(®), - o ()]
Observe that if v(+,t) is Riemann integrable, then
. 1
(38) lim M), (M, 8), . v (MEL D] = £ oG Bl s

(recall L = NK is fixed), and hence the norm (37) does not blow up or vanish as
N — oo.

5.2. Sufficient conditions for convergence, ODE-FLAVORS, and two-
scale convergence of PDE-FLAVORS. We will now prove the accuracy of
PDE-FLAVORs under the assumption of existence of (possibly hidden) slow and
locally ergodic fast variables. The convergence of PDE-FLAVORs will be expressed
using the notion of two-scale flow convergence introduced in [32] (corresponding to
a strong convergence with respect to slow variables and weak one with respect to
fast ones).
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CONDITION 5.1. Assume that the ODE system (36) satisfies the following con-
ditions:
(1) (Ezistence of hidden slow and fast variables): There exists a (possibly
time-dependent) diffeomorphism nt : [uq(t), ..., un(t)] — [z(t),y(t)] from
RY onto RVN=PxRP with uniformly bounded C*, C? derivatives with respect
to u;’s and t, and such that for all € > 0, (x(t),y(t)) satisfies

{ab(t) = f(x(t),y(1), 1)
y(t) =etg(z(t),y(t),t)

where f and g have bounded C derivatives with respect to x, y and t.

(2) (Local ergodicity of vast variables): There exists a family of probability
measures pt(z,dy) on RP indexed by x € RVN"P and t € R, and a family
of positive functions T — E'(T) satisfying limr_,., E*(T) = 0 for all
bounded t, such that for all xq,yo,to, T bounded and ¢ uniformly bounded
and Lipschitz, the solution to

(40) Y; = g(20, Yz, to) Yo=wuo

satisfies

)

(41)
T

7 | otvds = [ s @osdy)| < x (1o, w0) DT ol +[9]2)
0 RP

where v — x*(r) is bounded on compact sets, and pt has bounded deriv-
atiwe with respect to t in total variation norm.

Under Conditions 5.1, the computation of the solution of PDE (28) can be
accelerated by applying the FLAVOR strategy to a single-scale time integration of
its semi-discretization (29).

Write ®f;, . the numerical flow of a given (legacy) ODE integrator for (29):
(42) Oy an(t), .. un(@)] = (@ (t+7), ... an(t+7)],

where u;(s) approximates wu;(s) for all s, 7 is the integration time step, and « is
a controllable parameter that replaces the stiff parameter e=! in (29) and takes
values of €1 (stiffness ‘on’) or 0 (stiffness ‘off’).

DEFINITION 5.1 (ODE-FLAVORS). The FLow AVeraging integratOR, associ-
ated with ® is defined as the algorithm simulating the process:

[’[Ll(t), . ,’[LN(t)]
0 :
= (q)(k—l)H-',-h,kH °© <I)(k—1)H,(k—1)H+h) O

(43) o ((I)(I)’J+h,2H © (I)I%{,H-',-h) °© (@2,1{ °© (I)g,h)([ul(o)7 - un(0)])

where (the number of steps) k is a piece-wise constant function of ¢ satisfying
kH <t < (k+ 1)H, h is a microscopic time step resolving the fast timescale
(h <€), H is a mesoscopic time step independent of the fast timescale satisfying
h<e< H<1 and

h h
(44) QF<H<Z
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CONDITION 5.2. Consider the legacy ODE integrator with one-step update map
@3, introduced in (42). Suppose there exists constants C > 0 and Hy > 0
independent of N and «, such that for any 7 < Hymin(1/«a, 1) and bounded vector
[ut,y ..., un],

H<I)fit+7(u1,...,u1v) — [ut, ... un] = 7[fi(ur, ..., un, o, t), ...

(45) oo In(ug, o uns as ]| < O+ a)?,

Condition 5.2 corresponds to the assumption that the integrator ®¢,, . is con-
sistent for (29).

Observe that we are integrating (29) but not (36), since the remainders R;’s are
a-priori unknown unless the exact PDE solution is known. However, the following
lemma implies that the FLAVORization of this integration is in fact convergent to
the solution of (36), even though R;’s are possibly stiff.

LEMMA 5.2. Assume that ®f,, ., introduced in (42), satisfies Condition 5.2.
Let h and H be the time steps used in the FLAVORization 5.1. If h < ¢, H < h/e,
and K = O(H), then

||<I>§ft+f(u1,...,uN) — [u1,...,un] — 7[fi(ur, ... ,un, o, t) + Ri(a,t),...
(46) "'afN(ula---quaavt) +RN(aat)H| S CT2(1+06)2

where T = h when a =€ ' and 7 = H — h when a = 0.

Proor. By Condition 5.2, we have

\|(I’fjt+7(u1,...,u1v) — [u1,...,un] = 7[fi(us, ..., un, o, t), ...

(47) oo In(un, . uns as )] < 0T+ a)?

for any 7 < min(1/a, 1)Hy. In addition, Lemma 5.1 gives a bound on the remain-
ders: when o = ¢!, there exists a constant C' > 0 independent of N and e~!, such
that for all 4,

(48) ITRi(e7 1, 1) < TCKe !

Because we use 7 = h in this case and K < e 17, the above is bounded by
7C(Cetr)e™t < O7%(1 + «)? for some constants C' < 1 and C = CC. When
a = 0 on the other hand, there exists a constant C' > 0 such that for all 4

(49) |TRi(6_17t)| <7CK

Because K = O(H) and we use 7 = H — h = O(H) in this case, the above is
bounded by 7CCr < C712(1 + a)? for some constants C' and we let C = CC.
Notice that the value of K is fixed in both cases but 7 has different values: the
flow map used in FLAVOR associated with o = 0 is the one with mesoscopic step
DYy 1y -6, T=H —h; when a = ¢! on the other hand, the flow map is @g;;h
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and 7 = h. Finally, the triangle inequality gives
||q)?,t+7'(ula v 7uN) - [Ul, ey 'U,N]
—7lfi(us, ..., un, o t) + Ri(a,t),. ..
"afN(u17"'7uN;a7t)+RN(O{,t)]H

< ||q)tajt+7—(u17 o auN) - [ulv cee 7UN]*
Tfi(ur, .. un,aut), oo v (ug, .o un, o t)]]]
1 XN
(50) + N ; ITRi(a, t)] < 207%(1 + a)?,
which finished the proof after absorbing the coefficient 2 into C. O

We also need the usual regularity and stability assumptions to prove the accu-
racy of FLAVORS for (36).

CONDITION 5.3. Assume that

(1) fi1, fa,-.., fn are Lipschitz continuous.

(2) For all bounded initial condition [u1(0),...,un(0)]’s, the exact trajectories
([wr(®), ..., un(®)])o<t<T (i-e., solution to (36)) are uniformly bounded in
€.

(3) For all bounded initial condition [u1(0),...,un(0)]’s, the numerical tra-

jectories ([ (t), ..., un(t)])o<i<r (defined by (43)) are uniformly bounded
ine, 0 < H < Hy, h <min(Hpe, H).

The following theorem shows the two-scale flow convergence (strong on slow
variables z and in the sense of measures on fast ones y, see [32]) of FLAVORs under
the above conditions.

THEOREM 5.1. Consider FLAVOR trajectories in Definition 5.1. Under Con-
ditions 5.1, 5.2 and 5.3, there exist C > 0, C > 0 and Hy > 0 independent from
et and N, such that for K/C < H < Hy, h < Hoe and t > 0,

(51) ||.%'(t) - [nt]x(ﬁl(t>7 s 7aN(t))|| < CeCtXI(ul(O)a AR uN(O)’ €, H, h)
and for all bounded and uniformly Lipschitz continuous test functions ¢ : RN — R,

1 rrar ) . o
x [ el ds— [ o e ). d)

(52) < X2(u1<0)7 s ’UN(O)v €, H,h, Ata t)(”(p”L“’ + HVSDHL“’)

where x1 and X2 are bounded functions converging towards zero as e < H/(C'ln %),
b10, £H |0 and (2)>% | 0 (and At | 0 for x2).

Recall notations: NK = L is the fixed spatial width, [']® and [nf]~! respec-
tively denote the z (slow) component and the inverse of the diffeomorphism n?
(defined in Condition 5.1), z(t) = [n*]*(ui(t),...,un(t)) corresponds to the slow
component of the exact PDE solution sampled at grid points. w;(t) and @;(t) repre-
sent the exact and the FLAVOR approximation of the solution to the semi-discrete
system with the remainders (36).
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PRrROOF. The proof of Theorem 5.1 is analogous to that of Theorem 1.2 of [32]
(which will not be repeated here). The proof requires (46), which is guarantied
from Condition 5.2 by Lemma 5.2. It is easy to check that the slow dependence on
time of f, g, n and p does not affect the proof given in [32]. O

REMARK 5.3. Condition 5.2 implies that the constant C' in Theorem 5.1 does
not depend on N or K. This is important because although using a finer mesh
leads to a smaller K and a larger N = L/K, Condition 5.2 (which is equivalent
to the accuracy of the semi-discrete approximation of the PDE) ensures that, as
long as K = O(H) and h > eH, the constant C in the error bounds on the slow
component (51) and the fast component (52) will not blow up.

REMARK 5.4. Observe that the application of the FLAVOR strategy does not
require the identification of the diffeomorphism 7 (which may depend on the spatial
discretization).

6. On FLAVORizing characteristics

The convergence result of the previous section is based on the semi-discretization
of the original PDE. PDEs and ODEs are also naturally connected via the method of
characteristics, and henceforth it is natural to wonder whether a numerical integra-
tion of those characteristics by FLAVORs would lead to an accurate approximation
of the solution of the original PDE. The answer to this question will be illustrated
by analyzing the following (generic) PDE:

F(Du,u,q,e ') =0, cU

u(q) = (), gerl

where U C R? is the domain in which solution is defined, T' and ~ define ini-
tial/boundary conditions.

The following condition corresponds to assuming that characteristics are well-
posed.

CONDITION 6.1. Assume that
(1) The PDE F(Du,u,q,e ') =0 admits characteristics:

= f(qa 2 6_1)
z 9(q, 2)
(56) u(q(t)) = 2(t)

where ¢ € U is a vector corresponding to coordinates of characteristics in
the domain of the PDE, and z corresponds to the unknown’s value along
the characteristics.

(2) For arbitrary €, any point in U is reachable from the initial condition via
one and only one characteristics.

—~
[ SN
[ SENTSN

=

I

The following conditions correspond to the assumption of existence of (possibly
hidden) slow and locally ergodic fast variables for those characteristics.

CONDITION 6.2. Consider ODE (54). Assume that:
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(1) There ewists a z-dependent diffeomorphism n* : q — [z,y] from R onto
RI=P x RP with uniformly bounded C*,C? derivatives with respect to both
q and t, such that (z,y) satisfies (with z(t) given by (55))

S fl (.’[, Y, Z)

y :6_1f2($7y7z)
where f1, fa, and g have bounded C' derivatives with respect to x, y and z,
and u([n?]71(z,y)) has bounded C* derivatives with respect to the (slow)
variables © and z.

(2) There exists a family of probability measures p*(x,dy) on RP indezxed by
x € RYP and z € R, as well as a family of positive functions T — E*(T)
satisfying imr_,oo E*(T) = 0, such that for all xg,yo,z0,T bounded and
¢ uniformly bounded and Lipschitz, the solution to

(58) Y: = fa(wo, Y, 20) Yo =10

satisfies

(59)
T

7 | otvds= [ ot (o] < (o)) E* ()0l + [V6]1)
0 RP

where r — x*(r) is bounded on compact sets, and p* has bounded deriv-
ative with respect to z in total variation norm.

The second item of Condition 6.2 corresponds to the assumption that the fast
variable y is locally ergodic with respect to a family of measures u drifted by the
slow variables x and z.

The following lemma shows that, under the above conditions, the solution of
PDE (53) is nearly constant on the orbit of the fast components (y) of the charac-
teristics.

LEMMA 6.1. Under Conditions 6.1 and 6.2, for any fized constant Cy (inde-
pendent of € 1), there exists a constant Cy independent of €=t such that for any
0<t; <Cp, 0<ty <Cy and (fired) xo and zo,

(60) u (%) (@0, Y (t1))) — u (0] (20, Y (t2))) | < Cae
where Y (t1) and Y (t3) are two points on the orbit of Y (t) = fa(zo,Y (), 20).

ProoF. Under Conditions 6.1 and 6.2, it is known (we refer for instance to
[29] or to Theorem 14, Section 3 of Chapter II of [30] or to [28]) that = and z
converge as € — 0 towards Z and Z defined as the solution to the following ODEs
with initial condition zg and zj

(61) {% I SN
z =[] N (@,y), 2)u’ (&, dy)
Therefore, writing y(t) the solution of § = e~1 fo(Z,y, ), we have as € — 0
(62) W[ O) L@ (), 4(6) — 5(0)
Now, taking the time derivative of & = u o !, we obtain
(63) lig 4 Ty + 0.2 = % + R(e)

where R(e) is a function of ¢ that goes to 0 as € — 0.
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Furthermore,
Y (t) = fa(wo,Y (), 20)

= fo(Z(et), y(et), Z(et)) + %{;2 (Z(et) — )
+ S22 atet) = 20) + L2 w(en) - YD)

+ o(e) + o(y(et) — Y(t))

By Taylor expansion, Z(et) — xg and Z(et) — 2o are obviously O(e). Applying Gron-
wall’s lemma, we also obtain that y(et) — Y (t) = O(e). Therefore,

(64) Y(t) = fa(@(et), y(et), Z(et)) + O(e) = €j(t) + o(e)
Combining Eq. 63 with Eq. 64, we obtain

w (7 (0, Y (81))) — u (57 (w0, Y (£2))) = / oy V() dt

t1
ta
:e/ Uy -y dt + o(e)
ty

ta

(65) =¢ (/tt(z — {pd — 1, %) dt + R(e)

)+ (e

Since i, &, i; and Z are bounded, and R(e) is vanishing (and hence bounded), we
conclude that the right hand side is O(e). O

t1

CONDITION 6.3. Assume that the domain U is bounded (independently from
1)
LEMMA 6.2. If Conditions 6.1, 6.2, and 6.3 hold, then every point in U is reach-

able by a characteristics from the initial condition in bounded time (independently
from e™1).

PRrROOF. From Condition 6.1, we already know that every point is reachable,
and therefore it suffices to show that hitting times do not blow up as ¢ — 0. Since
x(+) converges to Z(-) (see proof of Lemma 6.1), by considering the z component
of the characteristics (projected by n), it becomes trivial to show that the hitting
time converges to a fixed value (and hence, does not blow up). Using Condition
6.3, we conclude that that any point in U can be hit in (uniformly) bounded time
from the initial condition. U

Analogously to the Integrator 5.1, a legacy integrator for (54) and (55) can be
FLAVORized, and shown to be convergent under regularity and stability conditions
(analogous to Condition 5.3) requiring f1, fo and g to be Lipschitz continuous and
G(t) and 2(t) to be bounded. The convergence result is analogous to Theorem 5.1,
modulo the following change of notation: the slow index is now z instead of ¢, the
original coordinates are ¢ instead of u;, the vector field of the original coordinates is
f instead of f;, and the dynamics of the slow index comes from the non-trivial drift
of 2 = g(q, 2) instead of the trivial = 1. We define @(§(t)) := 2(¢) for all ¢ on each
FLAVORIzed characteristics [¢(t), 2(t)]. Naturally, @ is only defined at discrete
points in the domain U. These discrete points, however, densely ‘fill’ the space
in the sense that (as shown by the proof of the following theorem) FLAVORied
characteristics remain very close to exact characteristics (x components are close in
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Euclidean distance, and y components are close as well in terms of orbital distance
induced by the infimum of point-wise Euclidean distances).

By the two-scale convergence theorem, we can quantify: the strong conver-
gence of the slow coordinate of the characteristics and the unknown’s value along
the characteristics, and the weak convergence of fast coordinate of the character-
istics. Finally, these single characteristics’ ODE approximation error bounds can
be transferred to the PDE approximation error bounds by considering the entire
family of characteristics starting from all points (in initial condition).

THEOREM 6.1. Write 4(§) the solution obtained by FLAVORizing all character-
istics. Under Conditions 6.1, 6.2, 6.3, the consistency and regularity and stability
Conditions corresponding to Conditions 5.2 and 5.8 (with the change of notation
described above), there exist a constant C independent of €1 and qo € T, such that

(66) |1~L(Cj) - u(@)' <Cxa (QO7 fY(qO)a €0, T)(l + X2<QOa 'V(qO)’ €0,7,T, t))

for any § on any FLAVORized characteristics, where gy € I' and y(qo) correspond
to the initial condition that leads to ¢ via a FLAVORized characteristics, and x1
and x2 are vanishing error bound functions.

REMARK 6.1. When T is compact (such as in the case of periodic boundary
condition), x; and 2 can be further chosen to be independent of ¢o (hence ¢) by
taking a supremum over I'.

ProOF. By Condition 6.1, all ¢ € U can be traced back to gp € I through a
characteristics. By Lemma 6.2, characteristics starting from gy reach ¢ in bounded
time T'. Using the two-scale convergence of the FLAVORization of these character-
istics (a result analogous to Theorem 5.1), we deduce that the approximation error
associated with zr (on FLAVORized characteristics) can be bounded Cx; (with
respect to the true value u(q) = 27, the error Ce®” has been replaced by C because
T is bounded).

Now observe that Gr # gr, where gr is the coordinate of the FLAVORized
characteristics starting from gg. As before, let [xr,yr] = n(qr) and [Zr,yr] =
1(gr). The error on the slow component is ||xr — Z7|| < Cxi1. The possible large
error on the fast component is not a problem because we can look for a near-by
point on the fast orbit with introducing only an O(¢) error on the unknown’s value
(Lemma 6.1):

) {um(xT, yr)) = uln(er,yp) + O(C)
Yp = argminy, v sy, 197 = Vel
Since ||Zp — x|| is small, the local ergodic measures that represent the orbits given
by Y; = f(zr,Y;) and Y; = f(Z7,Y;) will be small: (T, dy) — w(@r, dy)|[r.v. <
C'x1x2 is by chain rule. Because gr is on the orbit of Y; = f(Zr,Y}:), we will have
lyr — n"(ar)|| < Cxaxe.
All together, we obtain
|a(qr) — uw(gr)| = [2r — u(gr)]
< |zZr —w(q)| + |u(gr) — u(dr)|
< Oxa + CIV(uon)os (lze —n"(gr)ll + llyr —n*(gr)l)
(68) < Cx1+Cx + xax2) = Oxa + Oxaxe
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REMARK 6.2. To keep the presentation concise, we have written C' all constants
that do not depend on essential parameters.

REMARK 6.3. As shown above, u will be captured strongly. Du, on the other
hand, depends on a derivative with respect to the fast variable, and therefore will
only be convergent in a weak sense.

Relevance to an error analysis for PDE-FLAVORS. The above result guaran-
tees the convergence of FLAVORized characteristics. It is also possible to establish
an error bound on the difference between a specific PDE-FLAVOR discretization
and the approximation given by the above FLAVORized characteristics (and hence
prove the convergence of this specific PDE-FLAVOR discretization). Such an er-
ror bound could be obtained by first transforming FLAVORized characteristics to
PDE-FLAVOR grid points via interpolating functions, and then using the fact that
coordinate transformations do not affect the efficiency of FLAVORS. For the sake
of conciseness, we did not elaborate on this point here.
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