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Abstract

Imaging and simulation methods are typically constrained to resolu-
tions much coarser than the scale of physical micro-structures present in
body tissues or geological features. Mathematical and numerical homoge-
nization address this practical issue by identifying and computing appro-
priate spatial averages that result in accuracy and consistency between
the macro-scales we observe and the underlying micro-scale models we
assume. Among the various applications benefiting from homogenization,
Electric Impedance Tomography (EIT) images the electrical conductivity
of a body by measuring electrical potentials consequential to electric cur-
rents applied to the exterior of the body. EIT is routinely used in breast
cancer detection and cardio-pulmonary imaging, where current flow in
fine-scale tissues underlies the resulting coarse-scale images.

In this paper, we introduce a geometric approach for the homoge-
nization (simulation) and inverse homogenization (imaging) of divergence-
form elliptic operators with rough conductivity coefficients in dimension
two. We show that conductivity coefficients are in one-to-one correspon-
dence with divergence-free matrices and convex functions over the do-
main. Although homogenization is a non-linear and non-injective oper-
ator when applied directly to conductivity coefficients, homogenization
becomes a linear interpolation operator over triangulations of the domain
when re-expressed using convex functions, and is a volume averaging op-
erator when re-expressed with divergence-free matrices. We explicitly give
the transformations which map conductivity coefficients into divergence-
free matrices and convex functions, as well as their respective inverses.
Using weighted Delaunay triangulations for linearly interpolating convex
functions, we apply this geometric framework to obtain a robust homog-
enization algorithm for arbitrary rough coefficients, extending the global
optimality of Delaunay triangulations with respect to a discrete Dirichlet
energy to weighted Delaunay triangulations. We then consider inverse
homogenization, which is known to be both non-linear and severely ill-
posed, but that we can decompose into a linear ill-posed problem and a
well-posed non-linear problem. Finally, our new geometric approach to
homogenization and inverse homogenization is applied to EIT.
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1 Introduction

In this paper, we introduce a new geometric framework of the homogenization
(upscaling) and inverse homogenization (downscaling) of the divergence-form
elliptic operator

∆σ: u→ −div(σ∇u) (1.1)

where the tensor σ is symmetric and uniformly elliptic, with entries σij ∈ L∞.
Owing to its physical interpretation, we refer to the spatial function σ as the
conductivity.

The classical theory of homogenization is based on abstract operator con-
vergence and deals with the asymptotic limit of a sequence of operators of
the form (1.1) parameterized by a small parameter ε. A large array of work
in this area, using G-convergence for symmetric operators, H-convergence for
non-symmetric operators and Γ-convergence for variational problems, has been
proposed [27, 36, 44, 66, 68, 79, 80]. We refer readers to [18] for the original
formulation based on asymptotic analysis, and [52] for a review.

However, considering an ε-family of media is not useful for most practical en-
gineering applications. One has, instead, to understand homogenization in the
context of finite dimensional approximation using a parameter h that represents
a computational scale determined by the available computational power and the
desired precision. This observation gave rise to methods such as special finite
element methods, metric based upscaling and harmonic change of coordinates
considered in [15, 16, 19, 60, 72–74]. This point of view recovers not only re-
sults from classical homogenization with periodic or ergodic coefficients but also
allows for homogenization of a given medium with arbitrary rough coefficients.
In particular we need not make assumptions of ergodicity and scale separation.
Rather than studying the homogenized limit of an ε-family of operators of the
form (1.1), we will construct in this paper a sequence of finite dimensional and
low rank operators approximating (1.1) with arbitrary bounded σ(x).

Our formalism is closely related to numerical homogenization which deals
with coarse scale numerical approximations of solutions of the Dirichlet problem
(see Eq. (2.1) below). Related work includes the subspace projection formal-
ism [70], the multiscale finite element method [49], the mixed multiscale finite
element method [12], the heterogeneous multiscale method [40, 43], sparse chaos
approximations [48, 85]; finite difference approximations based on viscosity so-
lutions [29], operator splitting methods [13] and generalized finite element meth-
ods [81]. We refer to [41, 42] for an numerical implementation of the idea of a
global change of harmonic coordinates for porous media and reservoir modeling.

Contributions. In this paper, we focus on the intrinsic geometric framework
underlying homogenization. First we show that conductivities σ can be put
into one-to-one correspondence with (i.e., can be parameterized by) symmetric
definite positive divergence free matrices, and by convex functions as well (Sec-
tion 2.2). While the transformation which maps σ into effective conductivities
qh per coarse edge element is a highly non-linear transformation (Section 2.1),
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Figure 1.1: Relationships between parameterizations of conductivity. Straight
and wavy lines represent linear and non-linear relationships, respectively.

we show that homogenization in the space of symmetric definite positive diver-
gence free matrices acts as volume averaging, and hence is linear, while homog-
enization in the space of convex functions acts as a linear interpolation operator
(Section 3). Moreover, we show that homogenization as it is formulated here is
self-consistent and satisfies a semi-group property (Section 3.3).

Hence, once formulated in the proper space, homogenization is a linear in-
terpolation operator acting on convex functions. We apply this observation
to construct algorithms for homogenizing divergence form equations with arbi-
trary rough coefficients by using weighted Delaunay triangulations for linearly
interpolating convex functions (Section 4). Figure 1.1 summarizes relationships
between the different parameterizations for conductivity we study.

We use this new geometric framework for reducing the complexity of an in-
verse homogenization problem (Section 5). Inverse homogenization deals with
the recovery of the physical conductivity σ from coarse scale, effective conduc-
tivities. This problem is ill-posed insofar as it has no unique solution, and the
space of solutions is a highly nonlinear manifold. We use this new geometric
framework to re-cast inverse homogenization as an optimization problem within
a linear space.

We apply this result to Electrical Impedance Tomography (EIT), the prob-
lem of computing σ from Dirichlet and Neumann data measured on the bound-
ary of our domain. First, we provide a new method for solving EIT problems
through parameterization via convex functions. Next we use this new geometric
framework to obtain new theoretical results on the EIT problem (Section 6). Al-
though the EIT problem admits at most one isotropic solution, this isotropic so-
lution may not exist if the boundary data have been measured on an anisotropic
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medium. We show that the EIT problem admits a unique solution in the space
of divergence-free matrices. The uniqueness property has also been obtained
in [5]. When conductivities are endowed with the topology of G-convergence
the inverse conductivity problem is discontinuous when restricted to isotropic
matrices [5, 57] and continuous when restricted to divergence-free matrices [5].

If an isotropic solution exists we show how to compute it for any conductiv-
ity having the same boundary data. This is of practical importance since the
medium to be recovered in a real application may not be isotropic and the asso-
ciated EIT problem may not admit an isotropic solution but if such an isotropic
solution exists it can be computed from the divergence-free solution by solving
PDE (6.6). As such, we suggest that the space of divergence-free matrices pa-
rameterized by the space of convex functions is the natural space to look into
for solutions of the EIT problem.

2 Homogenization of conductivity space.

To illustrate our new approach, we will consider, as a first example, the homog-
enization of the Dirichlet problem for the operator ∆σ{

−div (σ∇u) = f, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(2.1)

Ω is a bounded convex subset of Rd with a C2 boundary, and f ∈ L∞(Ω). The
condition on f can be relaxed to f ∈ L2(Ω), but for the sake of simplicity we
will restrict our presentation to f ∈ L∞(Ω).

Let F : Ω→ Ω denote the harmonic coordinates associated with (2.1). That
is, F (x) =

(
F1(x), . . . , Fd(x)

)
is a d-dimensional vector field whose coordinates

satisfy {
div (σ∇Fi) = 0, x ∈ Ω,

Fi(x) = xi, x ∈ ∂Ω.
(2.2)

In dimension d = 2 it is known that F is a homeomorphism from Ω onto Ω and
det(∇F ) > 0 a.e. [6, 10, 11]. For d ≥ 3, F may be non-injective, even if σ is
smooth [10, 11, 28]. We will restrict our presentation to d = 2.

For a given symmetric matrix M , we denote by λmax(M) and λmin(M) its
maximal and minimal eigenvalues. We also define

µ :=
∣∣∣λmax((∇F )T∇F )

λmin((∇F )T∇F )

∣∣∣, (2.3)

with which the non-degeneracy condition on the anisotropy of (∇F )T∇F is
expressed as:

µ <∞. (2.4)

Note that for d = 2, condition (2.4) is always satisfied if σ is smooth [6] or even
Hölder continuous [11].
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Domain discretization and Nomenclature. Let Ωh be a triangulation
of Ω having resolution h (i.e., h represents the average edge length of the mesh).
Let Xh be the set of piecewise linear functions on Ωh with Dirichlet boundary
conditions. Let Nh be the set of interior nodes of Ωh. For each node i ∈ Nh,
denote ϕi the piecewise linear nodal basis functions equal to 1 on the node i
and 0 on all the other nodes. Let Eh be the set of interior edges of Ωh, hence if
eij ∈ Eh then i and j are distinct interior nodes that are connected by an edge
in Ωh. Finally, let j ∼ i be the set of interior nodes j, distinct from i, that share
an edge with i.

2.1 Homogenization as a non-linear operator

For a given domain discretization Ωh, we can now define the notion of homoge-
nization and effective conductivities.

2.1 Definition (Effective edge conductivities). Let qh be the mapping from Eh
onto R, such that for eij ∈ Eh

qhij := −
∫

Ω

(∇(ϕi ◦ F ))Tσ(x)∇(ϕj ◦ F ) dx. (2.5)

Observe that qhij = qhji, hence qh is only a function of undirected edges eij . We

refer to qhij as the effective conductivity of the edge eij .

Let M be the space of 2 × 2 uniformly elliptic, bounded and symmetric
matrix fields on Ω. Let Tqh,σ be the operator mapping σ onto qh defined by
(2.5). Let Qh be the image of Tqh,σ.

Tqh,σ : M−→ Qh
σ −→ Tqh,σ[σ] := qh.

(2.6)

Observe that Tqh,σ is both non-linear and non-injective.

2.2 Definition (Homogenized problem). Consider the vector (uhi )i∈Nh of RNh
such that for all i ∈ Nh,∑

j∼i
qhij(u

h
i − uhj ) =

∫
Ω

f(x)ϕi ◦ F (x) dx. (2.7)

We refer to this finite difference problem for (uhi )i∈Nh associated to qh as the
homogenized problem.

The identification of effective edge conductivities and the homogenized prob-
lem is motivated by the following theorem:

2.3 Theorem. The homogenized problem (2.7) has a solution (uhi )i∈Nh and it
is unique. Moreover, let u be the solution of (2.1) and define

uh :=
∑
i∈Nh

uhi ϕi ◦ F. (2.8)
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If condition (2.4) holds, then

‖u− uh‖H1
0 (Ω) ≤ Ch‖f‖L∞(Ω). (2.9)

Remarks.
• We refer to [73] and [74] for numerical results associated with Theorem 2.3.

• The constant C depends on ‖1/λmin(σ)‖L∞(Ω), ‖λmax(σ)‖L∞(Ω), Ω, and
µ. Replacing ‖f‖L∞(Ω) by ‖f‖L2(Ω) in (2.9) adds a dependence of C on∥∥(det(∇F ))−1

∥∥
L∞(Ω)

.

• Although the proof of the theorem shows a dependence of C on µ associated
with condition (2.4), numerical results in dimension two indicate that C is
mainly correlated with the contrast (minimal and maximal eigenvalues) of a.
This is why we believe that there should be a way of proving (2.3) without
condition (2.4). We refer to definition 2.1 and sections 2 and 3 of [6] for a
detailed analysis of a similar condition.

• Problem (2.7) and Theorem 2.3 represent an generalization of method I of
[16] to non-laminar media (see also [73]).

• It is also proven in [73] (proof of Theorem 1.14) that if f ∈ L∞(Ω) then there
exist constants C,α > 0 such that u ◦ F−1 ∈ C1,α(Ω) and

‖∇(u ◦ F−1)‖Cα(Ω) ≤ C‖f‖L∞(Ω), (2.10)

where constants C and α depend on Ω, ‖1/λmin(σ)‖L∞(Ω), ‖λmax(σ)‖L∞(Ω),
and µ. We also refer to [16] (for quasi-laminar media) and [6] for similar ob-
servations (on connections with quasi-regular and quasi-conformal mappings)

• Unlike a canonical finite element treatment, where we consider only approx-
imation of the solution, here we are also considering approximation of the
operator. This consideration is important, for example, in multi-grid solvers
which rely on a set of operators which are self-consistent over a range of scales.

The proof of Theorem 2.3 is similar to the proofs of Theorems 1.16 and 1.23
in [73] (we also refer to [19]). For the sake of completeness we will recall its
main arguments in the Appendix.

The fact that qh, as a quadratic form on RNh , is positive definite can be
obtained from the following proposition:

2.4 Proposition. For all vectors (vi)i∈Nh ∈ RNh ,∑
i∼j

viq
h
ijvj =

∫
Ω

(∇(v ◦ F ))Tσ∇(v ◦ F ), (2.11)

where v :=
∑
i∈Nh vi ϕi.

Proof. The proof follows from first observing that∑
i∼j

viq
h
ijvj =

∫
Ω

(∇v)T (y)Q(y)(∇v)(y) dy, (2.12)

then applying the change of variables y = F (x).
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Remark. Despite the fact that positivity holds for any triangulation Ωh, we
shall examine in Section 4 that one can take advantage of the freedom to choose
Ωh to produce qhij which give linear systems representing homogenized prob-
lems (2.7) having good conditioning properties.

2.2 Parameterization of the conductivity space

We now take advantage of special properties of σ when transformed by its
harmonic coordinates F to parameterize the space of conductivities. We discuss
two parameterizations, first mapping σ to the space of divergence-free matrices,
then to a space of convex scalar functions.

2.5 Definition (Space of divergence-free matrices). We say that a matrix field
M on Ω is divergence-free if its columns are divergence-free vector fields. That
is, M is divergence-free if for all vector fields v ∈ C∞0 and vectors ζ ∈ R2∫

Ω

(∇v)T M.ζ = 0 (2.13)

2.6 Definition (Divergence-free conductivity). Given a domain Ω and a con-
ductivity σ associated to (1.1), define Q to be the symmetric 2 × 2 matrix
given by the push-forward of σ by the harmonic homeomorphism F (defined in
equation (2.2)):

Q = F∗σ :=
(∇F )Tσ∇F

det(∇F )
◦ F−1. (2.14)

2.7 Proposition (Properties of Q). Q satisfies the following properties:

1. Q is positive-definite, symmetric and divergence-free.

2. Q ∈ (L1(Ω))d×d.

3. det(Q) is uniformly bounded away from 0 and ∞.

4. Q is bounded and uniformly elliptic if and only if σ satisfies the non-
degeneracy condition (2.4).

Proof. Equations (.23) and (.24) of the Appendix imply that for all û ∈ H1
0 ∩

H2(Ω) and all ϕ ∈ C∞0 (Ω)∫
Ω

(∇ϕ)TQ∇û = −
∫

Ω

ϕ
∑
i,j

Qij∂i∂j û. (2.15)

Let ζ ∈ Rd; choosing the vector field û such that ∇û = ζ, we obtain that for all
ζ ∈ Rd ∫

Ω

(∇ϕ)TQ · ζ = 0 (2.16)

It follows by integration by parts that div(Q ·ζ) = 0 in the weak sense and hence
Q is divergence-free (its columns are divergence-free vector fields, this has also
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been obtained in [73]). The second and third part of the Proposition can be
obtained from

det(Q) = det
(
σ ◦ F−1

)
, (2.17)

and ∫
Ω

Q =

∫
Ω

(∇F )Tσ∇F (2.18)

The last part of the Proposition can be obtained from the following inequalities
(valid for d = 2). For x ∈ Ω a.e.,

λmax(Q) ≤ λmax(σ)

√
λmax((∇F )T∇F )

λmin((∇F )T∇F )
(2.19)

λmin(Q) ≥ λmin(σ)

√
λmin((∇F )T∇F )

λmax((∇F )T∇F )
(2.20)

Inequalities (2.19) and (2.20) are a direct consequence of Definition (2.14) and
the fact that (in dimension two) λmin((∇F )T∇F ) ≤ (δ(∇F ))◦F−1 ≤ λmax((∇F )T∇F ).

Proposition 2.7 implies the parameterization of σ as a mapping. Write TQ,σ
the operator mapping σ onto Q through equation (2.14):

TQ,σ : M−→Mdiv

M −→ TQ,σ[M ] :=
(∇FM )TM∇FM

det(∇FM )
◦ F−1

M ,
(2.21)

where FM are the harmonic coordinates associated to M through equation (2.2)
(for σ ≡ M) and Mdiv is the image of M under the operator TQ,σ. Observe
(from Proposition 2.7) thatMdiv is a space of 2× 2 of symmetric, positive and
divergence-free matrix fields on Ω, with entries in L1(Ω) and with determinants
uniformly bounded away from 0 and infinity.

Since for all M ∈ Mdiv, TQ,σ[M ] = M (TQ,σ is a non-linear projection
onto Mdiv) it follows that TQ,σ is a non-injective operator from M onto Mdiv.
Now denote Miso the space of 2 × 2 isotropic, uniformly elliptic, bounded and
symmetric matrix fields on Ω. Hence matrices in Miso are of the form σ(x)Id
where Id is the d× d identity matrix and σ(x) is a scalar function.

2.8 Theorem. The following statements hold in dimension d = 2:

1. The operator TQ,σ is an injection from Miso onto Mdiv.

2.
T−1
Q,σ[Q] =

√
det(Q) ◦G−1 Id, (2.22)
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where G are the harmonic coordinates associated to Q√
det(Q)

. That is,

Gi(x), i = 1, 2, is the unique solution ofdiv

(
Q√

det(Q)
∇Gi

)
= 0 x ∈ Ω,

Gi(x) = xi x ∈ ∂Ω.

(2.23)

3. G = F−1 where G is the transformation defined by (2.23), and F are the
harmonic coordinates associated to σ := T−1

Q,σ[Q] by (2.2).

Remarks.
• Observe that the non degeneracy condition (2.4) is not necessary for the
validity of this theorem.

• TQ,σ is not surjective from Miso onto Mdiv. This can be proven by contra-
diction by assuming Q to be a non-isotropic constant matrix. Constant Q is
trivially divergence-free, yet it follows that σ =

√
det(Q)Id, F (x) = x and Q

is isotropic, which is a contradiction.

• TQ,σ is not an injection from M onto Mdiv . However it is known [65] that
for each σ ∈ M there exists a sequence σε in Miso H-converging towards
σ. (Moreover, this sequence can be chosen to be of the form a(x, x/ε), where
a(x, y) is periodic in y.) SinceMiso is dense inM with respect to the topology
induced by H-convergence, and since TQ,σ is an injection fromMiso, the scope
of applications associated with the existence of T−1

Q,σ would not suffer from a
restriction from M to Miso.

Proof of Theorem 2.8. First observe that if σ is scalar then we obtain from
equation (2.14) that

det(Q) =
(
σ ◦ F−1

)2
, (2.24)

and hence
σ =

√
det(Q) ◦ F . (2.25)

Consider again equation (2.14). Let R be the 2 × 2, π
2−rotation matrix in

R2, that is,

R =

(
0 −1
1 0

)
. (2.26)

Recall that for a 2× 2 matrix A,

(A−1)T =
1

det(A)
RART . (2.27)

Write G := F−1, which implies:

∇G = (∇F )−1 ◦ F−1. (2.28)

Applying (2.28) to (2.14) yields

Q∇G = det(∇G)((∇G)−1)Tσ ◦G. (2.29)
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Using
√

det(Q) = σ ◦G and applying equation (2.27) to ((∇G)−1)T we obtain:

Q√
det(Q)

∇G = R ∇G RT . (2.30)

Observing that in dimension two, div(R∇v) = 0 for all functions v ∈ H1, we
obtain from (2.30) that G satisfies equation (2.23). The boundary condition
comes from the fact that G = F−1, where F is a diffeomorphism and F (x) = x
on ∂Ω.

Let us now show that equation (2.23) admits a unique solution. If G′i is
another solution of equation (2.23) then

∇(Gi −G′i)
Q√

det(Q)
∇(Gi −G′i) = 0 (2.31)

Since Q is positive with L1 entries and det(Q) is uniformly bounded away from
zero and infinity it follows that Q/

√
det(Q) is positive and its minimal eigen-

value is bounded away from infinity almost everywhere in Ω. It follows that
∇(Gi − G′i) = 0 almost everywhere in Ω and we conclude from the boundary
condition on Gi and G′i that Gi = G′i almost everywhere in Ω.

We now turn to the parameterization of σ in a space of convex functions.

2.9 Definition (The space of convex functions). Consider the space of W 2,1(Ω)
convex functions on Ω whose discriminants (determinant of the Hessian) are
uniformly bounded away from zero and infinity. Write S the quotient set on
that space defined by the equivalence relation: s ∼ s′ if s − s′ is an affine
function. Let R be the rotation matrix (2.26).

2.10 Theorem (Scalar parameterization of conductivity in R2). For each diver-
gence-free matrix Q ∈Mdiv there exists a unique s ∈ S such that

Hess(s) = RTQR, (2.32)

where R is the rotation matrix defined as 2.26 and Hess(s) is the Hessian of s.

Remark. Since Q is positive-definite one concludes that Hess(s) is positive-
definite, and thus, s(x) is convex. Furthermore, the principal curvature direc-
tions of s(x) are the eigenvectors of Q, rotated by π/2. Note that this geometric
characteristic will be crucial later when we approximate s(x) by piecewise-linear
polynomials, which are not everywhere differentiable—but for which the notion
of convexity is still well defined.

Proof of Theorem 2.10. In R2, the symmetry and divergence-free constraints
on Q reduce the number of degrees of freedom of Q(x) to a single one. This
remaining degree of freedom is s(x), our scalar convex parameterizing function.
To construct s(x), observe that as a consequence of the Hodge decomposition,
there exist functions h, k ∈W 1,1(Ω) such that

Q =

(
a b
b c

)
=

(
hy ky
−hx −kx

)
(2.33)
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Figure 2.1: The three parameterizations of conductivity, and the spaces to which
each belongs.

where a, b, c are scalar functions. These choices ensure that the divergence-free
condition is satisfied, namely that ax + by = bx + cy = 0. Another application
of the Hodge decomposition gives the existence of s ∈W 2,1(Ω) such that ∇s =

(−k, h)
T

. This choice ensures that b = −hx = ky = −sxy, the symmetry
condition. The functions h and k are unique up to the addition of arbitrary
constants, so s is unique up to the addition of affine functions of the type
αx+ βy + γ, where α, β, γ ∈ R are arbitrary constants.

This second parameterization suggests a new mapping. We write Ts,Q the
operator from Mdiv onto S mapping Q onto s. Observe that

Ts,Q : Mdiv −→ S
Q −→ Ts,Q[Q] = s

(2.34)

is a bijection and
T−1
s,Q[s] = RHess(s)RT . (2.35)

Refer to Figure 2.1 for a summary of the relationships between σ, Q and s.
Figure 2.2 shows an example conductivity in each of the three spaces.

3 Discrete geometric homogenization

We now apply the results of Section 2 to show that in our framework, homoge-
nization can be represented either as volume averaging or as interpolation. Un-
like direct homogenization of σ ∈ M, homogenization in Mdiv or S is actually
a linear operation. Moreover, this homogenization framework inherits the semi-
group property enjoyed by volume averaging and interpolation, demonstrating
its self-consistency.

3.1 Homogenization by volume averaging

The operator Tqh,σ defined in (2.6) is a non-linear operator onM. However, its
restriction to Mdiv, which is a subset of M, is linear and equivalent to volume

11



Figure 2.2: (Top left) An scalar conductivity σ(x) = 0.05 Id in blue regions,
σ(x) = 1.95 Id in red regions, and σ(x) = 1.0 Id in green regions. (Top right)
This conductivity is distorted via harmonic coordinates into

√
det(Q) = σ◦F−1.

(Bottom) Two views of the fine-scale function s(x) represented as a height field
surface for the laminated conductivity σ highlight both the fine-scale pattern in
σ(x), and the coarse-scale anisotropy in the curvature.

averaging as shown by Theorem 3.1 below. Using the notation of Section 2.1,
this operator restricted to Mdiv is:

Tqh,Q : Mdiv −→ Qh
Q −→ Tqh,σ[Q],

(3.1)

where for Q ∈Mdiv and eij ∈ Eh, one has(
Tqh,Q[Q]

)
ij

= −
∫

Ω

(∇ϕi)TQ∇ϕj . (3.2)

3.1 Theorem (Homogenization by volume averaging). Tqh,Q is a linear, volume-
averaging operator on Mdiv. Moreover:

1. For Q ∈Mdiv one has

Tqh,σ[Q] = Tqh,Q[Q]. (3.3)

2. For σ ∈M
Tqh,σ[σ] = Tqh,Q ◦ TQ,σ[σ]. (3.4)
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3. Writing xj the locations of the nodes of Ωh, for all ζ ∈ R2

qhii(ζ.xi) +
∑
j∼i

qhij(ζ.xj) = 0. (3.5)

Remarks.
• Equation (3.3) states that Tqh,Q is the restriction of the operator Tqh,σ to
the space of divergence-free matrices Mdiv. It follows from (3.4) that the
homogenization operator Tqh,σ is equal to the composition of the linear non-
injective operator Tqh,Q, which acts on divergence-free matrices, with the non-
linear operator TQ,σ, which projects into the space of divergence-free matrices.
Observe also that TQ,σ is injective as an operator from Miso, the space of
scalar conductivities, onto Mdiv.

• Equation (3.5) is essentially stating that qh is divergence free at a discrete
level, see [39, Section 2.1] for details.

Proof of Theorem 3.1. Using the change of coordinates y = F (x) we obtain∫
Ω

(∇(ϕi ◦ F ))Tσ(x)∇(ϕj ◦ F ) dx =

∫
Ω

(∇ϕi)TQ∇ϕj , (3.6)

which implies (3.4). One obtains equation (3.3) by observing that since Q is
divergence-free, its associated harmonic coordinates are just linear functions and
thus Tσ,Q[Q] = Q. Since Q is divergence-free, we have, for any vector ζ ∈ R2,∫

Ω

(∇ϕi)TQ(x).ζ dx = 0. (3.7)

Now, denote by Vh the set of all nodes in the triangulation Ωh and by xj the
location of node j ∈ Vh. The function z(x) :=

∑
j∈Vh xjϕj(x) is the identity

map on Ωh, so we can write ζ = ∇
(∑

j∈Vh(ζ.xj)ϕj(x)
)

. Combining this result

with (3.7) yields (3.5).

3.2 Homogenization by linear interpolation

Now, define Tsh,s to be the linear interpolation operator over Ωh; that is, for
s ∈ S and sh := Tsh,s[s], we have that for x ∈ Ω,

sh(x) =
∑
i

s(xi)ϕi(x), (3.8)

where the sum in (3.8) is taken over all nodes of Ωh.If we call Sh the space
of linear interpolations of elements of S on Ωh, then our linear interpolation
operator for convex functions is defined as:

Tsh,s : S −→ Sh
s −→ Tsh,s[s] :=

∑
i

s(xi)ϕi(x). (3.9)
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Figure 3.1: Notation for computing qhij from the values si, sj , sk and sl.

For eij ∈ Eh, let δeij (x) be the uniform Lebesgue (Dirac) measure on the
edge eij (as a subset of R2). Let R be the 900 counterclockwise rotation matrix
already introduced in (2.26). For sh ∈ Sh observe that RHess(sh)RT is a Dirac
measure on edges of Ωh. For eij ∈ Eh define

(
Tqh,sh [sh]

)
ij

as the curvature (i.e.,

integrated second derivative) of sh along the dual edge orthogonal to edge eij ;
then, one has

Tqh,sh : Sh −→ Qh
sh −→ Tqh,sh [sh]

(3.10)

with ∑
i,j eij∈Eh

(
Tqh,sh [sh]

)
ij
δeij = RHess(sh)RT . (3.11)

For simplicity, let si be s(xi), that is, the value of the convex function s at
node i. Then Tqh,sh [sh] on the edge eij is expressed as(

Tqh,sh [sh]
)
ij

=− 1

|eij |2
(cot θijk + cot θijl) si

− 1

|eij |2
(cot θjik + cot θjil) sj

+
1

2|tijk|
sk +

1

2|tijl|
sl,

(3.12)

while diagonal elements
(
Tqh,sh [sh]

)
ii

are expressed as(
Tqh,sh [sh]

)
ii

= −
∑
j∼i

(
Tqh,sh [sh]

)
ij
,

14



where j ∼ i is the set of vertices distinct from i and sharing an edge with vertex
i, |eij | is the length of edge eij , |tijk| is the area of the triangle with vertices
(i, j, k), and θijk is the interior angle of triangle tijk at vertex j (see Figure 3.1).

Note that (3.12) is valid only for interior edges. Because of our choice to
interpolate s(x) by piecewise linear functions, we have concentrated all of the
curvature of s(x) on the edges of the mesh, and we need a complete hinge,
an edge with two incident triangles, in order to approximate this curvature.
Without values for s(x) outside of Ω and hence exterior to the mesh, we do not
have a complete hinge on boundary edges. This will become important where we
apply our method to solve the inverse homogenization problem in EIT. However,
for the homogenization problem, our homogeneous boundary conditions make
irrelevant the values of qhij on boundary edges.

Tqh,sh defined through (3.12) has several nice properties. For example, direct
calculation shows that Tqh,sh [sh] computed using (3.12) is divergence-free in the
discrete sense given by (3.5) for any values si. This fact allows us to parame-
terize the space of edge conductivities qh satisfying the discrete divergence-free
condition (3.5) by linear interpolations of convex functions.

3.2 Proposition (Discrete divergence-free parameterization of conductivity).
Tqh,sh defined using (3.12) has the following properties:

1. Affine functions are exactly the nullspace of Tqh,sh ; in particular, qh :=
Tqh,sh [sh] is divergence-free in the discrete sense of (3.5).

2. The dimension of the range of Tqh,sh is equal to the number of edges in
the triangulation, minus the discrete divergence-free constraints (3.5).

3. Tqh,sh defines a bijection from Sh onto Qh and for sh ∈ Sh

T−1
sh,qh

[sh] = T−1
s,Q[sh]. (3.13)

Proof. These properties can be confirmed in both volume-averaged and inter-
polation spaces:

1. The first property can be verified directly from the hinge formula (3.12).

2. For the Dirichlet problem in finite elements, the number of degrees of free-
dom in a stiffness matrix which is not necessarily divergence-free equals
the number of interior edges on the triangle mesh. The divergence-free con-
straint imposes two constraints—one for each of the x− and y−directions—
at each interior vertex such that the left term of (2.7), namely

∑
j∼i q

h
ij(vi−

vj), is zero for affine functions. Thus, the divergence-free stiffness matrix
has

EI − 2VI (3.14)

degrees of freedom, where EI is the number of interior edges, and VI is
the number of interior vertices.

The piecewise linear interpolation of s(x) has V − 3 degrees of freedom,
where there are V vertices in the mesh. The restriction of 3 degrees of
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freedom corresponds to the arbitrary addition of affine functions to s(x)
bearing no change to Q.

Our triangulation Ωh tessellates our simply connected domain Ω of trivial
topology. For this topology, it is easy to show that the number of edges
E is

E = 2V + VI − 3. (3.15)

Recalling that the number of boundary edges equals the number of bound-
ary vertices, we have

EI − 2VI = V − 3, (3.16)

Consequently, the discrete versions of s(x) and Q(x) on the same mesh
have the same degrees of freedom when Q(x) is divergence-free.

3. This property can be easily checked from the previous ones.

3.3 Theorem. Tsh,s, a linear interpolation operator on S, has the following
properties:

1. For Q ∈Mdiv,
Tqh,Q[Q] = Tqh,sh ◦ Tsh,s ◦ Ts,Q[Q]. (3.17)

2. For σ ∈M,
Tqh,σ[σ] = Tqh,sh ◦ Tsh,s ◦ Ts,Q ◦ TQ,σ[σ]. (3.18)

Remarks.
• It follows from equations (3.17) and (3.18) that homogenization is a linear
interpolation operator acting on convex functions. Observe that Tqh,sh , Tsh,s
and Ts,Q are all linear operators. Hence, the non-linearity of the homogeniza-
tion operator is confined to the non-linear projection operator TQ,σ in (3.18)
whereas if σ is scalar its non-injectivity is confined to the linear interpolation
operator Tsh,s. Equation (3.13) is understood in terms of measures on edges of
Ωh and implies that the bijective operator mapping qh onto sh is a restriction
of the bijective operator mapping Q onto s to the spaces Qh and Sh.

• Provided that the si’s sample a convex function s(x), the edge values qhij =(
Tqh,sh [sh]

)
ij

form a positive semi-definite stiffness matrix even if not all qhij
are strictly positive. We discuss this further in the next section, where we
show that even with this flexibility in the sign of the qhij , it is always possible

to triangulate a domain such that qhij > 0.

Proof of Theorem 3.3. Define a coordinate system ξ-η such that edge eij
is parallel to the η-axis as illustrated in Figure 3.1. Using (.27) to rewrite
Tqh,Q ◦ TQ,s[s] in this rotated coordinate system yields

qhij = −
∫

Ω

(∇ϕi)T
(
sηη −sξη
−sξη sξξ

)
∇ϕj . (3.19)
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A change of variables confirms that integral (3.19) is invariant under rotation
and translation. We abuse notation in that the second derivatives are under-
stood here in the sense of measures since piecewise linear functions do not have
pointwise second derivatives everywhere. We are concerned with the values
of s(x) interpolated at i, j, k, and l, as these are associated to only the corre-
sponding hat basis functions sharing support with those at i and j. The second
derivatives of ϕ are non-zero only on edges, and due to the support of the gra-
dients of the ϕ, contributions of the second derivatives at edges eik, ejk, eil,
and ejl are also zero. Finally, the terms ∂ξηϕ and ∂ηηϕ are zero along ij, so
the only contributions of s(x) to Tqh,Q ◦ TQ,s[s] defined through the integral
are its second derivatives with respect to ξ along edge eij . The contributions
of four integrals remain, and by symmetry, it reduces to only two integrals to
compute. Noting that the singularities in the first and second derivatives are
not coincident, from direct computation of the gradients of the basis functions
and integration by parts we have∫

tijk∪tijl
∂ηϕi∂ξξϕi∂ηϕj =

1

|eij |2
(cot θijk + cot θijl) , (3.20)∫

tijk∪tijl
∂ηϕi∂ξξϕk∂ηϕj = − 1

2|tijk|
, (3.21)

where |eij | is the length of the edge with vertices (i, j), and |tijk| is the area
of the triangle with vertices (i, j, k). θijk is the interior angle of triangle ijk
at vertex j as indicated in Figure 3.1. The only contribution to these integrals
is in the neighborhood of edge eij . Combining these results, we have that the
elements of the stiffness matrix are given by formula (3.12).

Figure 3.2 provides a visual summary of the results of this subsection.

3.3 Semi-group properties in geometric homogenization

Consider three different approximation scales 0 < h1 < h2 < h3. We now show
that homogenization from h1 to h3 is identical to homogenization from h1 to
h2, followed by an homogenization from h2 to h3. We identify this property as
a semi-group property.

Let ΩH be a coarse triangulation of Ω, and Ωh be a finer, sub-triangulation
of Ω; that is, all vertices of ΩH are also in Ωh. Let ϕHi , ϕ

h
i be the piecewise linear

nodal basis functions centered on the interior nodes of ΩH and Ωh. Observe that
for each interior node of the coarse triangulation i ∈ NH , ϕHi can be written as a
linear combination of ϕhk , we write φik the coefficients of that linear combination.
Hence

ϕHi =
∑
k∈Nh

φikϕ
h
k . (3.22)

Define TqH ,qh as the operator mapping the effective conductivities of the edges
of fine triangulation onto the effective conductivities of the edges of the coarse
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Figure 3.2: Summary of discrete homogenization, showing the relationships
between the discrete spaces approximating the spaces introduced in Section 2.

triangulation. Hence

TqH ,qh : Qh −→ QH
qh −→ TqH ,qh [qh]

(3.23)

with, for eij ∈ EH , (
TqH,qh [qh]

)
ij

=
∑

l,k∈Nh
elk∈Eh

φikφjlq
h
kl. (3.24)

Let TsH,sh be the linear interpolation operator mapping piecewise linear func-
tions on Ωh onto piecewise linear functions on ΩH :

TsH,sh : Sh −→ SH
sh −→ TsH,sh [sh].

(3.25)

As in (3.8), we have, for x ∈ Ω,

TsH,sh [sh](x) =
∑
i∈NH

sh(xi)ϕ
H
i (x). (3.26)

3.4 Theorem (Semi-group properties in geometric homogenization). The linear
operators TqH,qh and TsH,sh satisfy the following properties:

1. TsH,sh is the restriction of the interpolation operator TsH,s to piecewise
linear functions on Ωh. That is, for sh ∈ Sh,

TsH,sh [sh] = TsH,s[s
h]. (3.27)
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2. For Q ∈Mdiv,
TqH,Q[Q] = TqH,qh ◦ Tqh,Q[Q]. (3.28)

3. For s ∈ S,
TsH,s[s] = TsH,sh ◦ Tsh,s[s]. (3.29)

4. For σ ∈M,
TqH,σ[σ] = TqH,qh ◦ Tqh,σ[σ]. (3.30)

5. For qh ∈ Qh,

TqH,qh [qh] = TqH,sH ◦ TsH,sh ◦ T−1
qh,sh

[qh]. (3.31)

6. For h1 < h2 < h3,

Tsh3 ,sh1 = Tsh3 ,sh2 ◦ Tsh2 ,sh1 . (3.32)

7. For h1 < h2 < h3,

Tqh3 ,qh1 = Tqh3 ,qh2 ◦ Tqh2 ,qh1 . (3.33)

Remarks.
• As we will see below, if the triangulation Ωh is not chosen properly sh =
Tsh,s[s] may not be convex. In that situation TsH,s in (3.27), when acting on
sh, has to be interpreted as a linear interpolation operator over ΩH acting on
continuous functions of Ω. We will show in the next section how to choose
the triangulation Ωh (resp. ΩH) to ensure the convexity of sh (resp. sH).

• The semi-group properties obtained in Theorem 3.4 are essential to the self-
consistency of any homogenization theory. The fact that homogenizing di-
rectly from scale h1 to scale h3 is equivalent to homogenizing from scale h1 to
scale h2 then from h2 onto h3 is a property that is in general not satisfied by
most numerical homogenization methods found in the literature when applied
to PDEs with arbitrary coefficients, such as non-periodic or non-ergodic con-
ductivities. Figure 3.3 illustrates the sequence of scales referred to by these
semi-group properties. Readers apprised with multi-scale solvers – such as
multi-grid techniques – will no doubt find this type of diagram familiar.

4 Optimal weighted Delaunay triangulations

In this section, we use the convex function parameterization s ∈ S to construct
triangulations of the compact and simply-connected domain Ω which give ma-
trices approximating the elliptic operator ∆σ with good numerical conditioning.
In particular, we show that we can triangulate a given set of vertices such that
the off-diagonal elements of the stiffness matrix qhij are always non-positive,
which minimizes the radii of the Gershgorin disks containing the eigenvalues
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Figure 3.3: Discrete geometric homogenization showing the sequence of scales
referred to by the semi-group properties.

of qhij . The argument directly uses the geometry of s(x), constructing the tri-
angulation from the convex hull of points projected up onto the height field
s(x). We show that this procedure, a general case of the convex hull projection
method for producing the Delaunay triangulation from a paraboloid, produces
a weighted Delaunay triangulation. That is, we provide a geometric interpre-
tation of the weighted Delaunay triangulation. We also introduce an efficient
method for producing Q-adapted meshes by extending the Optimal Delaunay
Triangulation approach [31] to weighted triangulations.

Throughout this section, since Ω ⊂ R2, we shall identify the arguments of
scalar functions as in s(x), x ∈ R2, or s(u, v), u, v ∈ R interchangeably.

4.1 Construction of positive Dirichlet weights

The numerical approximation constant C in (2.9) can be minimized by choosing
the triangulation in a manner that ensures the positivity of the effective edge
conductivities qhij . The reason behind this observation lies in the fact that the
discrete Dirichlet energy of a function f(x) satisfying the homogenized problem
(2.7) is

EQ(f) =
1

2

∑
i∼j

qhij (fi − fj)2
(4.1)

where i ∼ j are the edges of the triangulation, and fi samples f(x) at vertices,
i.e., fi = f(xi).
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We now show that for Q divergence-free, we can use a parameterization
s(x) to build a triangulation such that qhij ≥ 0. qhij , identified here as Dirichlet
weights are typically computed as elements of the stiffness matrix, where Q is
known exactly. In this paper, we have introduced the parameterization s(x)
for divergence-free conductivities, and if we interpolate s(x) by piecewise-linear
functions, qhij is given by the hinge formula (3.12).

In the special case where Q is the identity, it is well-known [75] that

qhij =
1

2
(cot θikj + cot θilj) , (4.2)

and in such case, all qhij ≥ 0 when the vertices are connected by a Delaunay tri-
angulation. Moreover, the Delaunay triangulation can be constructed geomet-
rically. Starting with a set of vertices, the vertices are orthogonally projected
to the surface of any regular paraboloid

p(u, v) = a
(
u2 + v2

)
, (4.3)

where a>0 is constant. These projected vertices are now in 3D with coordinates
(ui, vi, p(ui, vi)). The 3D convex hull of these points forms a triangulation over
the surface of p(x), and the projection of this triangulation back to the uv-plane
is Delaunay. See Figure 4.1 and [71], for example. Our observation is that the
correspondence

Q = identity⇒ s(u, v) =
1

2

(
u2 + v2

)
, (4.4)

can be extended to all positive-definite and divergence-free Q. By constructing
our triangulation as the projection of the convex hull of a set of points projected
on to any convex s(x), we have the following:

4.1 Theorem. Given a set of points V, there exists a triangulation of those
points such that all qhij ≥ 0. We refer to this triangulation as a Q-adapted

triangulation. If there is no edge for which qhij = 0, this triangulation is unique.

Remarks.
• The set Vh containing the nodes in the resulting triangulation Ωh may only
include a subset of the points in V; i.e., some points in V may not be part of
the Q-adapted triangulation. This case will be discussed in more details in
the remark following Proposition 4.2.

• While s(x, y) may be convex, an arbitrary piecewise linear interpolation may
not be. Figure 4.2 illustrates two interpolations of s(u, v), one of which gives
a qhij > 0, and the other of which does not. Moreover, we note that as long as
the function s(u, v) giving our interpolants si is convex, the discrete Dirichlet
operator is positive semi-definite, even if some individual elements qhij < 0.
Figure 4.2 also illustrates how a Q-adapted triangulation can be non-unique:
if four interpolants forming a hinge are co-planar, both diagonals give qhij = 0.

21



Figure 4.1: A Delaunay triangulation of 2D points can be computed by lifting
its points to the paraboloid p(u, v) in 3D, computing the convex hulls of the
resulting 3D points, and projecting the connectivity down. Our Q-adapted
meshes are constructed the same way, where now the projection is performed
on the convex function s(x).

Proof of Theorem 4.1. We proceed by constructing the triangulation as fol-
lows. Given V, we orthogonally project up each 2D point onto the surface s(x)
corresponding to Q. Take the convex hull of these points in 3D. Orient each
convex hull normal so that it faces outward from the convex hull. Discard poly-
hedral faces of the convex hull with normals having positive z-components; i.e.,
remove the “top” of the convex hull. Arbitrarily triangulate polyhedra on the
convex hull which are not already triangles. The resulting triangulation, once
projected back orthogonally onto the 2D plane, is the Q-adapted triangulation.
Indeed, it is simple to show by direct calculation that the hinge formula (3.12)
is invariant under the transformation {si → si+aui+ bvi+ c}, where a, b, c ∈ R
are constants independent of i. This is consistent with the invariance of Q under
the addition of affine functions to s(x).

Now consider edge eij in Figure 3.1. Due to the invariance under affine
addition, we can add the affine function which results in si = sj = sk = 0.
Then, we have:

qhij =
1

2|tijl|
sl, (4.5)

where |tijl| is the unsigned triangle area, and so the sign of qij equals the sign
of sl. That is, when sl lies above the xy-plane, qij > 0, showing that the hinge
is convex if and only if qij > 0, and the hinge is flat if and only if qij = 0. All
hinges on the convex hull of the interpolation of s(x, y) are convex or flat, so
all qij ≥ 0, as expected. Moreover, qhij = 0 corresponds to a flat hinge, which in
turn corresponds to an arbitrary triangulation of a polyhedron having four or
more sides. This is the only manner in which the Q-adapted triangulation can
be non-unique.
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Figure 4.2: Edge flips can replace non-convex edges (where qab < 0) with convex
edges without changing the interpolated values si. For the given hinge, the
diagonal giving a negative edge is on the left; a positive edge is on the right.

4.2 Weighted Delaunay and Q-adapted triangulations

There is a connection between s(x) and weighted Delaunay triangulations, the
dual graphs of “power diagrams.” Glickenstein [45] studies the discrete Dirichlet
energy in context of weighted Delaunay triangulations (see also [59]). In the
notation of (3.12) and Figure 3.1, Glickenstein shows that for weights wi, the
coefficients of the discrete Dirichlet energy are

qhij =
1

2
(cot θikj + cot θilj)

+
1

2|eij |2
(cot θijk + cot θijl)wi

+
1

2|eij |2
(cot θjik + cot θjil)wj

− 1

4|tijk|
wk −

1

4|tijl|
wl.

(4.6)

Comparison of this formula with (3.12) indicates that this is the discretization
of

qhij = −
∫

Ω

∇ϕTi
(
I2 −

1

2
Qw

)
∇ϕj , (4.7)

where I2 is the 2× 2 identity matrix, and

Qw =

(
wvv −wuv
−wuv wuu

)
. (4.8)

So, modulo addition of an arbitrary affine function, the interpolants

si =
1

2

(
u2
i + v2

i

)
− 1

2
wi (4.9)
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can be used to compute Delaunay weights from interpolants of s(x).
Thus, we have demonstrated the following connection between weighted De-

launay triangulations and Q-adapted triangulations:

4.2 Proposition. Given a set of points V, the weighted Delaunay triangulation
of those points having weights

wi = u2
i + v2

i − 2si (4.10)

gives the same triangulation as that obtained by projecting the convex hull of
points (ui, vi, si) onto the xy-plane, where si = s(ui, vi) are interpolants of the
convex interpolation function s(x).

Remarks.
• Weighted Delaunay can be efficiently computed by current computational
geometry tools, see for instance [2]. Thus, we use such a weighted Delau-
nay algorithm instead of the convex hull construction to generate Q-adapted
triangulations in our numerical tests below.

• In contrast to Delaunay meshes, weighted Delaunay triangulations do not
necessarily contain all of the original points V. The “hidden” points corre-
spond to values si that lie inside the convex hull of the other interpolants
of s(u, v). In our setting, as long as we construct wi from si interpolating a
convex function s(u, v) (that is, weights representing a positive-definite Q),
our weighted Delaunay triangulations do contain all the points in V.

• The triangulation is specific to Q, not to s(u, v). The addition of an affine
function to s(u, v) does not alter the effective conductivities qij given by the
hinge formula, a fact which can be confirmed by direct calculation. This is
consistent with the observation that modifying the weights by the addition
of an affine function {wi → wi + aui + bvi + c}, a, b, c ∈ R are constants
independent of i, does not change the weighted Delaunay triangulation. This
can be seen by considering the dual graph determined by the points and their
Delaunay weights, whereby adding an affine function to each of the weights
only translates the dual graph in space, thereby leaving the triangulation
unchanged.

• The convex hull construction of a weighted Delaunay triangulation gives
the global energy minimum result which is an extension of the result for the
Delaunay triangulation. That is, the discrete Dirichlet energy (4.1) with qij
computed using hinge formula (3.12), where si interpolate a convex s(x), gives
the minimum energy for any given function fi provided the qhij are computed
over the weighted Delaunay triangulation determined by weights (4.10).
To see this, consider the set of all triangulations of a fixed set of points. Each
element of this set can be reached from every other element by performing a
finite sequence of edge-flips. The local result is that if two triangulations differ
only in a single flip of an edge, and the triangulation is weighted Delaunay
after the flip, then the latter triangulation gives the smaller Dirichlet energy.
A global result is not possible for general weighted Delaunay triangulations
because the choice of weights can give points with non-positive dual areas,
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whereupon these points do not appear in the final triangulation. However,
if the weights are computed from interpolation of a convex function, none
of the points disappear, and the local result can be applied to arrive at the
triangulation giving the global minimum of the Dirichlet norm. Similarly, if
an arbitrary set of weights is used to construct interpolants si using (4.10),
taking the convex hull of these points removes exactly those points which give
non-positive dual areas. See comments in [45] for further discussion of this
global minimum result.

4.3 Computing optimal weighted Delaunay meshes

Using the connection that we established between s(x) and weighted Delaunay
triangulations, we can design a numerical procedure to produce high quality
Q-adapted meshes, that we will call Q-optimized meshes. Although limited to
2D, we extend the variational approach to isotropic meshing presented in [9, 31]
to Q-optimized meshes. In our case, we seek a mesh that produces a matrix
associated to the homogenized problem (2.7) having a small condition number,
while still providing good interpolations of the solution.

The variational approach in [9] proceeds by moving points on a domain so as
to improve triangulation quality. At each step, the strategy is to adjust points
to minimize, for the current connectivity of the mesh, the cost function

Ep =

∫
Ω

|p(u, v)− ph(u, v)|dV, (4.11)

where p(u, v) = 1
2 (u2 + v2) and ph(u, v) is the piecewise linear interpolation of

p(x, y) at each of the points. That is, ph(u, v) inscribes p(u, v), and Ep represents
the L1 norm between the paraboloid and its piecewise linear interpolation based
on the current point positions xi = (ui, vi) and connectivity. The variational
approach proceeds by using the critical point of Ep to update point locations
iteratively, exactly as in [9].

Our extension consists of replacing the paraboloid p(u, v) with the conduc-
tivity parameterization s(u, v). Computing the critical point of

Es =

∫
Ω

|s(u, v)− sh(u, v)|dV (4.12)

with respect to point locations is found by solving

Hess(s)(u∗i , v
∗
i ) =

Hess(s)(ui, vi)−
1

|Ki|
∑
tj∈Ki

∇(ui,vi)|tj |

[∑
k∈tj

s(uk − ui, vk − vi)

] (4.13)

for the new position (u∗i , v
∗
i ). Here, Hess(s) denotes the Hessian of s(u, v),

Ki is the set of triangles adjacent to vertex i, tj is a triangle that belongs to
Ki, and |tj | is the unsigned area of tj . Once the point positions have been
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Figure 4.3: Comparison of a spatially isotropic and a Q-optimized mesh. The
figure on the left shows the lack of directional bias expected for a mesh suitable
for the isotropic problem, while the figure on the right is suitable for the case
where the conductivity is greater in the v-direction then in the u-direction.

updated in this fashion, we then recompute a new tessellation based on these
points and the weights si through a weighted Delaunay algorithm as detailed in
the previous section.

4.3 Algorithm (Computing a Q-optimal mesh). Following [9], our algorithm
for producing triangulations that lead to well-conditioned stiffness matrices for
the homogenized problem (2.7) is as follows:

Read the interpolation function s(x)
Generate initial vertex positions (xi, yi) inside Ω
Do

Compute triangulation weights using (4.10)
Construct weighted Delaunay triangulation of the points
Move points to their optimal positions using (4.13)

Until (convergence or max iteration)

Figures 4.3 to 4.4 give the results of a numerical experiment illustrating the
use of our algorithm for the case

Q =

(
0.1 0
0 10

)
. (4.14)

Consistent with theory, the quality measures of interpolation and matrix con-
dition number do not change at a greater rate than if a spatially isotropic mesh
is used with this conductivity. However the constants in the performance met-
rics of the Q-optimized meshes are significantly less than those for the isotropic
meshes.
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Figure 4.4: (Top left) Q-optimized meshes improve interpolation quality as mea-
sured by the L2-norm error in a linear interpolation of s(u, v); error diminishes
as O(N−1) in both cases, but is offset by a factor of about 4 for Q-optimized
meshes. (Top right) The behavior is roughly similar if the h1-semi-norm error is
used instead. (Bottom) Matrix conditioning also improves; the condition num-
ber of the stiffness matrix grows as O(N) in both cases, but is offset by a factor
of about 5 for Q-optimized meshes.

5 Relationship to inverse homogenization

Consider the following sequence of PDEs indexed by ε.−div
(
σ(
x

ε
)∇uε

)
= f, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(5.1)

Assuming that y → σ(y) is periodic and in L∞(Td) (where Td is the d-dimensional
unit torus), we know from classical homogenization theory [18] that uε converges
towards u0 as ε ↓ 0 where u0 is the solution of the following PDE{

−div (σe∇u0) = f, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(5.2)

Moreover σe is constant positive definite d× d matrix defined by

σe :=

∫
Td
σ(y)(Id +∇χ(y)) (5.3)
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Figure 5.1: Illustration of Theorem 5.1.

where the entries of the vector field χ := (χ1, . . . , χd) are solutions of the cell
problems 

−div (σ(y)∇(yi + χi(y))) = 0, y ∈ Td,

χi ∈ H1(Td) and

∫
Td
χi(y) = 0

(5.4)

Consider the following problem:

Inverse homogenization problem: Given the effective matrix σe find σ.

This problem belongs to a class of problems in engineering called inverse
homogenization, a structural or shape optimization corresponding to the com-
putation of the microstructure of a material from its effective or homogenized
properties or the optimization of effective properties with respect to micro-
structures belonging to an “admissible set”. These problems are known to be
ill-posed in the sense that they don’t admit a solution but a minimizing se-
quence of designs. It is possible to characterize the limits of these sequences
by following the theory of G-convergence [80] as observed in [62, 67]. For non-
symmetric matrices the notion of H-convergence has been introduced [66, 67].
The modern theory for the optimal design of materials is the relaxation method
through homogenization [32, 62, 63, 67, 84]. This theory has lead to numerical
methods allowing for the design of nearly optimal micro-structures [8, 17, 61].
We also refer to [33, 65, 86] for the related theory of composite materials.

In this section, we observe that at least for the conductivity problem in 2D,
it is possible to transform the problem of looking for an optimal solution within
a highly non-linear into the problem of looking for an optimal solution within
a linear space, as illustrated by Theorem 5.1 and Figure 5.1 for which efficient
optimization algorithms could be developed.

5.1 Theorem. Let Q be defined by (2.14), then
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1. Q is divergence-free, periodic and associated with a convex function s on
[0, 1]2 through (2.32).

2.

σe =

∫
Td
Q(y) dy (5.5)

3. If σ is isotropic then
σ =

√
det(Q) ◦G−1Id (5.6)

where G(y) := y + χ̄, χ̄ := (χ̄1, χ̄2) and
−div

(
Q√

det(Q)
(y)∇(yi + χ̄i(y))

)
= 0, y ∈ Td,

χ̄i ∈ H1(Td) and

∫
Td
χ̄i(y) = 0

(5.7)

The problem of the computation of the microstructure of a material from
macroscopic information is not limited to inverse homogenization: in many ill
posed inverse problems, one can choose a scale coarse enough for which the
problem admits a unique solution. These problems can be formulated as the
composition of a well posed (eventually non-linear) problem with an inverse ho-
mogenization problem. The approach proposed here can also used to transform
these problems (looking for an optimal solution within a highly non-linear, non-
convex space) into the problem of looking for an optimal solution within a linear
space, as illustrated in Figure 5.2 for which efficient optimization algorithms can
be used. As an example, we examine Electric Impedance Tomography (EIT) in
subsection 6.1.

6 Electric Impedance Tomography

We now apply our new approach to the inverse problem referred to as Elec-
tric Impedance Tomography (EIT), which considers the electrical interpretation
of (2.1). The goal is to determine electrical conductivity from boundary voltage
and current measurements, whereupon σ(x) is an image of the materials com-
prising the domain. Boundary data is given as the Dirichlet-to-Neumann (DtN)

map, Λσ : H
1
2 (∂Ω) → H−

1
2 (∂Ω), where this operator returns the electrical

current pattern at the boundary for a given boundary potential.
Λσ can be sampled by solving the Dirichlet problem{

−div(σ∇u) = 0, x ∈ Ω,

u = g, x ∈ ∂Ω,
(6.1)

and measuring the resulting Neumann data f = σ ∂u∂n , x ∈ ∂Ω. (In EIT, Neu-
mann data is interpreted as electric current.) Although boundary value prob-
lem (6.1) is not identical to the basic problem (2.1), we can still appeal to
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Figure 5.2: Relationships between spaces in inverse homogenization.

the homogenization results in [73] provided we restrict g ∈ W 2− 1
p ,p, in which

case, we again have regular homogenization solutions û ∈ W 2,p, that is, those
obtained by applying conductivity Q(x) or s(x). If p > 2, a Sobolev embed-
ding theorem gives û ∈ C1,α, α > 0, already seen in Section 2.1, although this
restriction is not necessary for this section.

The EIT problem was first identified in the mathematics literature in the
seminal 1980 paper by Calderón [30], although the technique had been known in
geophysics since the 1930s. We refer to [20] and references therein for simulated
and experimental implementations of the method proposed by Calderón. From
the work of Uhlmann, Sylvester, Kohn, Vogelius, Isakov and more recently,
Alessandrini and Vessella, we know that complete knowledge of Λσ uniquely
determines an isotropic σ(x) ∈ L∞(Ω), where Ω ⊂ Rd, d ≥ 2 [7, 51, 56, 83].

For a given diffeomorphism F from Ω onto Ω, write

F∗σ :=
(∇F )Tσ∇F

det(∇F )
◦ F−1 (6.2)

It is known [47] (see also [14, 46, 69, 82]) that for any diffeomorphism F : Ω→
Ω, F ∈ H1(Ω), the transformed conductivity σ̃(x) = F∗σ(x) has the same
DtN map as the original conductivity. If σ(x) is not isotropic, then σ̃ 6= σ.
However, as shown in [14], this is the only manner in which σ(x) ∈ L∞(Ω) can
be non-unique.

Let Σ(Ω) be set of uniformly elliptic and bounded conductivities on Ω ∈ R2,
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that is,

Σ(Ω) = {σ ∈ L∞(Ω;R2×2) | σ = σT , 0 < λmin(σ) < λmax(σ) <∞}. (6.3)

The main result of [14] is that Λσ uniquely determines the equivalence class of
conductivities

Eσ ={σ1 ∈ Σ(Ω) | σ1 = F∗σ,

F : Ω→ Ω is an H1-diffeomorphism and F |∂Ω= x}.
(6.4)

It has also been shown that there exists at most one γ ∈ Eσ such that γ is
isotropic [14].

Our contributions in this section are as follows:
• Proposition 6.1 gives an alternate and very simple proof of the uniqueness of

an isotropic γ ∈ Eσ. This is in contrast to Lemma 3.1 of [14], which appeals
to quasi-conformal mappings. Moreover, Proposition (6.1) identifies isotropic
γ by explicit construction from an arbitrary M ∈ Eσ.

• Proposition 6.2 shows that there exists equivalent classes Eσ admitting no
isotropic conductivities.

Proposition 6.3 shows that a given σ ∈ Σ(Ω) there exists a unique divergence-
free matrix Q such that ΛQ = Λσ. It has been brought to our attention that
Proposition 6.3 has also been proven in [5]. Hence, although for a given DtN
map there may not exist an isotropic σ such that Λ = Λσ, there always exists
a unique divergence-free Q such that Λ = ΛQ. This is of practical importance
since the medium to be recovered in a real application may not be isotropic and
the associated EIT problem may not admit an isotropic solution. Although the
inverse of the map σ → Λσ is not continuous with respect to the topology of
G-convergence when σ is restricted to the set of isotropic matrices, it has also
been shown in section 3 of [5] that this inverse is continuous with respect to
the topology of G-convergence when σ is restricted to the set of divergence-free
matrices.

We suggest from the previous observations and from Theorem 2.10 that the
space of convex functions on Ω is a natural space in which to look for a parame-
terization of solutions of the EIT problem. In particular if an isotropic solution
does exist, Proposition (6.1) allows for its recovery through the resolution the
PDE (6.6) involving the Hessian of that convex function.

6.1 Proposition. Let γ ∈ Eσ such that γ is isotropic. Then in dimension
d = 2,

1. γ is unique.

2. For any M ∈ Eσ
γ =

√
det(M) ◦G−1 Id, (6.5)

where G = (G1, G2) are the harmonic coordinates associated to M√
det(M)

,
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that is, G is the solution of
div
( M√

det(M)
∇Gi

)
= 0, x ∈ Ω,

Gi(x) = xi, x ∈ ∂Ω.

(6.6)

3. G = F−1 where G is the transformation given by (6.6), and F is the
diffeomorphism mapping γ onto M through equation (6.2).

Proof. The proof is identical to the proof of Theorem 2.8.

6.2 Proposition. If σ is a non isotropic, symmetric, definite positive, constant
2× 2 matrix, then there exists no isotropic γ ∈ Eσ.

Proof. Let us prove the proposition by contradiction. Assume that γ exists.
Then, it follows from Proposition 6.1 that γ is constant and equal to

√
det(σ)Id.

Moreover, it follows from (6.6) that F−1(x) = x. Using

σ =
(∇F )T γ∇F

det(∇F )
◦ F−1 (6.7)

we obtain that σ is isotropic which is a contradiction.

6.3 Proposition. Let σ ∈ Eσ. Then in dimension d = 2,

1. There exists a unique Q such that Q is a positive, symmetric divergence-
free and Q = F∗σ. Moreover, F are the harmonic coordinates associated
to σ given by (2.2).

2. Q is bounded and uniformly elliptic if and only if the non-degeneracy
condition (2.4) is satisfied for an arbitrary M ∈ Eσ.

3. Q is the unique positive, symmetric, and divergence-free matrix such that
ΛQ = Λσ.

Proof. The existence of Q follows from Proposition 2.7. Let us prove the unique-
ness of Q. If

Q =
(∇F )Tσ∇F

det(∇F )
◦ F−1 (6.8)

is divergence free, then for all l ∈ Rd and ϕ ∈ C∞0 (Ω)∫
Ω

(∇ϕ)TQ · l = 0. (6.9)

Using the change of variables y = F (x) we obtain that∫
Ω

(∇ϕ)TQ · l =

∫
Ω

(∇(ϕ ◦ F ))Tσ∇F · l. (6.10)

It follows that F are the harmonic coordinates associated to σ which proves
the uniqueness of Q. The second part of the proposition follows from Proposi-
tion 2.7.
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6.1 Numerical tests

We close by examining two numerical methods for recovering conductivities
from incomplete boundary data using the ideas of geometric homogenization.
By incomplete we mean that potentials and currents are measured at only a
finite number of points of the boundary of the domain. (For example, we have
data at 8 points in Figure 6.2 for the medium shown in Figure 6.1.)

The first method is an iteration between the harmonic coordinates F (x) and
the conductivity σ(x). The second recovers sh(x) from incomplete boundary
data, and from sh(x) we compute qh(x), then Q. Both methods regularize the
reconstruction in a natural way as to provide super-resolution of the conductivity
in a sense we now make precise.

The inverse conductivity problem with an imperfectly known boundary has
also been considered in [58]. We refer to [54] and reference therein for an analysis
of the reconstruction of realistic conductivities from noisy EIT data (using the
D-bar method by studying its application to piecewise smooth conductivities).

Even with complete boundary data this inverse problem is ill-posed with
respect to the resolution of σ(x). The Lipschitz stability estimate in [7] states

‖σ(1,N)(x)− σ(2,N)(x)‖L∞
≤ C(N)‖Λσ(1,N) − Λσ(2,N)‖

L(H
1
2 (∂Ω),H−

1
2 (∂Ω))

, (6.11)

where L(H
1
2 (∂Ω), H−

1
2 (∂Ω)) is the natural operator norm for the DtN map.

σ(j,N)(x) are scalar conductivities satisfying the ellipticity condition 0 < λ ≤
σ(x) ≤ λ−1 almost everywhere in Ω and belonging to a finite-dimensional space
such that

σ(j,N)(x) =

N∑
i=1

σ
(j,N)
i z

(N)
i (x) (6.12)

for known basis functions z
(N)
i (x). Thus, the inverse problem in this setting is

to determine the real numbers σ
(j,N)
i from the given DtN map Λσ(j,N) .

The Lipschitz constant C(N) depends on λ,Ω and z
(N)
i . As shown by con-

struction in [76], when z
(N)
i are characteristic functions of N disjoint sets cov-

ering Ω ⊂ Rd, the bound

C(N) ≥ A exp
(
BN

1
2d−1

)
(6.13)

for absolute constants A,B > 0 is sharp. That is, the amplification of error
in the recovered conductivity with respect to boundary data error increases
exponentially with N .

From (6.13), we infer a resolution limit on the identification of σ(x). Setting
C̄ our upper tolerance for the amplification of error in recovering σ(x) with
respect to boundary data error, and introducing resolution r̄ = N−1/d, which
scales with length, we have

r̄ ≥
(

1

B
log

C̄

A

)− 2d−1
d

. (6.14)
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We refer to any features of σ(x) resolved at scales greater than this limit as
stably-resolved and knowledge of features below this limit as super-resolved.

6.1.1 Harmonic coordinate iteration.

The first method provides super-resolution in two steps. First, we stably-resolve
conductivity using a resistor-network interpretation. From this stable resolu-
tion, we super-resolve conductivity by computing a function σ(x) and its har-
monic coordinates F (x) consistent with the stable resolution.

To solve for the conductivity at a stable resolution, we consider a coarse
triangulation of Ω. Assigning a piecewise linear basis over the triangulation
gives the edge-wise conductivies

qhij := −
∫

Ω

(∇ϕi)TQ(x)∇ϕj dx. (.27)

As we have already examined, when σ(x) (hence Q(x)) is known, so too
are the qhij . The discretized inverse problem is, given data at boundary vertices,

determine an appropriate triangulation of the domain and the qhij over the edges
of the triangulation. We next specify our discrete model of conductivity in order
to define what we mean by “boundary data.”

Let VI be the set of interior vertices of a triangulation of Ω, and let VB be
the boundary vertices, namely, the set of vertices on ∂Ω. Let the cardinality of
VB be VB . Suppose vector u(k) solves the matrix equation

∑
j∼i

qhij(u
(k)
i − u

(k)
j ) = 0, i ∈ VI ,

u
(k)
i = g

(k)
i , i ∈ VB ,

(6.15)

where g(k) is given discrete Dirichlet data. Then we define

f
(k)
i =

∑
j∼i

qhij(u
(k)
i − u

(k)
j ), i ∈ VB (6.16)

as the discrete Neumann data. The VB linearly independent g(k) and their
associated f (k) together determine the matrix ΛVB

qh
, which we call the discrete

Dirichlet-to-Neumann map. ΛVB
qh

is linear, symmetric, and has the vector g =

(1, 1, . . . , 1) as its nullspace. Hence, ΛVB
qh

has VB(VB − 1)/2 degrees of freedom.
In practice, the discrete DtN map is provided as problem data without a

triangulation specified: only the boundary points where the Dirichlet and Neu-
mann data are experimentally collected are given. We refer to this experimentally-
determined discrete DtN map as ΛVBσ .

We are also aware that to make sense in the homogenization setting, the qhij
must be discretely divergence-free. That is, we require that∑

j∼i
qhij(x

(p)
i − x

(p)
j ) = 0, i ∈ VI , p = 1, 2, (6.17)
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where (x
(1)
i , x

(2)
i ) is the xy-location of vertex i.

Set T VB the set of triangulations having boundary vertices VB specified by
ΛVBσ , and {qhij} the edge-values over T VB . The complete problem is

minimise
T VB ,{qhij}

‖ΛVB
qh
− ΛVBσ ‖∗,

subject to {qhij} discretely divergence-free.

(6.18)

The norm ‖·‖∗ is a suitable matrix norm—as a form of regularization, we use a
thresholded spectral norm which under-weights error in the modes associated to
the smallest eigenvalues. We solve this non-convex constrained problem using
Constrained Simulated Annealing (CSA). See [87], for example, for details on
the CSA method.

EIT has already been cast in a similar form in [22], where edge-based data
was solved for using a finite-volume treatment, interpreting edges of the graph
which connects adjacent cells as electrical conductances. They determine the
edge values using a direct calculation provided by the inverse theory for resistor
networks [34, 35]. Although our work shares some similarities with this prior
art, we do not assume that a connectivity is known a priori.

An inversion algorithm for tomographic imaging of high contrast media
based on a resistor network theory has also been introduced in [21]. The al-
gorithm of [21] is based on the results of an asymptotic analysis of the forward
problem showing that when the contrast of the conductivity is high, the current
flow can be roughly approximated by that of a resistor network. Here our algo-
rithm is based on geometric structures hidden in homogenization of divergence
form elliptic equations with rough coefficients.

Given an optimal triangulation T ∗ and its associated stably-resolved {qhij}
representing conductivity, we now compute a fine-scale conductivity σf (x) con-
sistent with our edge values, as well as its harmonic coordinates F (x). To help
us super-resolve the conductivity, we also regularize σf (x).

Set T f a triangulation which is a refinement of triangulation T ∗ from the
solution to the stably-resolved problem. Let σf (x) be constant on triangles of
T f . Suppose coordinates F (x) are given, and solve

minimise ‖σf (x)‖∗,

subject to −
∫

Ω

(∇(ϕi ◦ F ))Tσf (x)∇(ϕj ◦ F ) = qhij , i, j ∈ T ∗.
(6.19)

Here, ‖·‖∗ is some smoothness measure of σf (x). Following the success of regu-
larization by total variation norms in other contexts, see [4, 55] for example (in
particular we refer to [77] and references therein for convergence results the regu-
larization of the inverse conductivity problem with discontinuous conductivities
using total variation and the Mumford-Shah functional.), we choose

‖z(x)‖∗ = ‖z(x)‖TV :=

∫
Ω

|∇z(x)|. (6.20)
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Figure 6.1: A sample isotropic conductivity for testing reconstruction. The
image on the left is σ, while the image on the right is

√
detQ = σ ◦ F−1. The

dark blue background has conductivity 1.0, the red circle has conductivity 10.0
and the yellow bar has conductivity 5.0. In this case, all of the features shrink
in harmonic coordinates.

This norm makes sense for typical test cases, where the conductivity takes on
a small number of constant values. This “cartoon-like” scenario is common
when a small blob of unusual material is included within a constant background
material. The constraints in (6.19) are linear in the values of σf (x) on triangles
of T f , and the norm is convex, so (6.19) is a convex optimization problem. In
particular, it is possible to recast (6.19) as a linear program (LP), see [26], for
example. We use the GNU Linear Programing Kit to solve the LP [3], and build
our refined triangulation using Shewchuk’s Triangle program [78].

The harmonic coordinates F (x) are not in general known. We set F (x) = x
initially, and following the solution of (6.19), we compute{

−div(σf∇F ) = 0, x ∈ Ω,

F = x, x ∈ ∂Ω,
(6.21)

using σf (x) from the previous step. We can now iterate, returning to solve (6.19)
with these new harmonic coordinates.

Figures 6.1 and 6.2 show the results of a numerical experiment illustrating
the method. In particular, the harmonic coordinate iteration resolves details of
the true conductivity at scales below that of the coarse mesh used to resolve
{qhij}. We observe numerically that this iteration can become unstable and fail
to converge. However, before becoming unstable the algorithm indeed super-
resolves the conductivity. We believe that this algorithm can be stabilized and
we plan to investigate its regularization in a future paper.

6.1.2 Divergence-free parameterization recovery.

Our second numerical method computes s(x) from boundary data in one step. In
essence, we recover the divergence-free conductivity consistent with the bound-
ary data, without concern for the fine-scale conductivity that gives rise to the
coarse-scale anisotropy.
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Figure 6.2: Output of the harmonic coordinate iteration. The figure on the
top left is the coarse mesh produced by simulated annealing, the input to the
harmonic coordinate iteration. Left to right, top to bottom, the remaining three
images show the progression of the iteration at 1, 10, and 20 steps, showing its
instability. The true conductivity is that of Figure 6.1.

We begin by tessellating Ω by a fine-scale Delaunay triangulation, and we
parameterize conductivity by shi , the piecewise linear interpolants of s(x) over
vertices of the triangulation. From the shi , we can compute qhij using the hinge
formula in order to solve the discretized problem (6.15). This determines the
discrete DtN map Λsh in this setting.

We shall also need a relationship between the shi and Qhijk, an approximation
of Q(x) constant on triangles. One choice is to presume that s(x) can be locally
interpolated by a quadratic polynomial at the vertices of each triangle, and the
opposite vertices of its three neighbours, see Figure 6.3. Taking second partial
derivatives of this quadratic interpolant gives a linear relationship between Qhijk
and the six nearest shi . This quadratic interpolation presents a small difficulty,
as triangles at the edge of Ω have at most two neighbours. Our solution is to
place ghost vertices outside the domain near each boundary edge, thus extending
the domain of s(x) and adding points where shi must be determined.

We solve for the shi using optimization by an interior point method. Although
the algorithm we choose is intended for convex optimization—the non-linear
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relationship between Λsh and the shi makes the resulting problem non-convex—
we follow the practise in the EIT literature of relying on regularization to make
the algorithm stable [25, 38]. We thus solve

minimise
1

2

K∑
k=1

‖Λshg(k) − f (k)‖2L2(∂Ω) + α‖trQh‖TV,

subject to qhij ≥ 0.

(6.22)

In our examples, we use the IpOpt convex optimization software package to
solve this problem [1].

The data are provided as K measured Dirichlet-Neumann pairs of data,
{(g(k), f (k))}, and the Tikhonov parameter α is determined experimentally (a
common method is the L-curve method). Again, the total variation norm is used
to evaluate the smoothness of the conductivity. We could just as well regularize
using detQ rather than trQ. Using the trace makes the problem more com-
putationally tractable (the Jacobian is easier to compute), and our experience
with such optimizations shows that regularizing with respect to the determi-
nant does not improve our results. We compute the Jacobian of the objective’s
“quadratic” term using a primal-adjoint method, see [38], for example.

We constrain qhij ≥ 0 on all edges, despite the possibility that our choice of
triangulation may require that some edges should have negative values. Our
reasons for this choice are practical: edge-flipping in this case de-stabilizes the
interior point method. Moreover, numerical experiments using triangulations
well-adapted to σ(x) do not give qualitatively better results.

Figures 6.4 and 6.5 show reconstructions of the conductivities in Figures 6.1
and 2.2, respectively. We include the reconstruction of the conductivity in Fig-
ure 6.1 only to show that our parameterization can resolve this test case, a
typical one in the EIT literature. For such tests recovering “cartoon blobs,”
our method does not compete with existing methods such as variational ap-
proaches [25], or those based on quasi-conformal mappings [50, 53]. Our recov-
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Figure 6.4: Reconstruction of the isotropic conductivity in Figure 6.1. The
left-hand figure shows trQ, while the right-hand figure shows

√
detQ. The

reconstruction blurs the original σ, similar to other methods in the literature,
but does not underestimate the dynamic range of the large rectangle.

ery of the conductivity in Figure 2.2, however, achieves a reconstruction, to our
knowledge, which has not previously been realized. The pitch of the laminations
in this test case are below a reasonable limit of stable resolution. Hence, we do
not aim to recover the laminations themselves, but we do recover their upscaled
representation. The anisotropy of this upscaled representation is apparent in
Figure 6.5. Admitting the possibility of recovering anisotropic, yet divergence-
free conductivities by parameterizing conductivity by s(x) provides a plausible
recovered conductivity. Due to the stable resolution limit, parameterizing σ(x)
directly by a usual parameterization (such as the linear combination in (6.12),
choosing zi(x) as characteristic functions) is not successful.

Finally, we note that the spirit of our paper is close to methods based on the
construction of optimal grids or resistor networks for EIT problems from possibly
partial measurements. In [23, 24] for instance, optimal grids are constructed via
conformal mappings and solutions with minimum anisotropy are recovered. We
instead provide a framework in which optimal grids are naturally identified via
harmonic coordinates and weighted Delaunay triangulations; solutions are then
naturally represented via convex functions, without introducing any bias on the
possible anisotropy of the solutions.

Acknowledgments. The authors wish to thank Dr. Lei Zhang for providing
feedback. This paper is an extended version of a Caltech technical report [37].
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Figure 6.5: Anisotropic reconstruction showing the parameterization s(x) we
recover using EIT (left image), and the pattern of anisotropy we see by rendering
the orientation of the maximal eigenvalue of Q (right image). The colour-bar in
the right image indicates the strength of the anisotropy as |λmax − λmin|/trQ.

Appendix

Proof of Theorem 2.3. Write Q the matrix (2.14). Replacing u by û ◦ F
in (2.1) we obtain after differentiation and change of variables that û := u◦F−1

satisfies 
−
∑
i,j

Qij∂i∂j û =
f

det(∇F )
◦ F−1, x ∈ Ω,

u = 0, x ∈ ∂Ω.

(.23)

Similarly, multiplying (2.1) by test functions ϕ◦F (with ϕ satisfying a Dirichlet
boundary condition), integrating by parts and using the change variables y =
F (x) we obtain that∫

Ω

(∇ϕ)TQ∇û =

∫
Ω

ϕ
f

det(∇F )
◦ F−1. (.24)

Observing that û satisfies the non-divergence form equation, we obtain, using
Theorems 1.2.1 and 1.2.3 of [64], that if Q is uniformly elliptic and bounded,
then û ∈W 2,2(Ω) with

‖û‖W 2,2(Ω) ≤ C‖f‖L∞(Ω). (.25)

The constant C depends on Ω and bounds on the minimal and maximal eigen-
values of Q. We have used the fact that the Cordes-type condition on Q required
by [64] simplifies for d = 2.

Next, let Vh be the linear space defined by ϕ ◦ F for ϕ ∈ Xh. Write uh the
finite element solution of (2.1) in Vh. Writing uh as in (2.8) we obtain that the
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resulting finite-element linear system can be written as

− qhiiuhi −
∑
j∼i

qhiju
h
j =

∫
Ω

f(x)ϕi ◦ F (x) dx, (.26)

for i ∈ Nh. We use definition (2.5) for qhij . Using the change of variables

y = F (x) we obtain that qhij can be written

qhij := −
∫

Ω

(∇ϕi)TQ(x)∇ϕj dx. (.27)

Decomposing the constant function 1 over the basis ϕj we obtain that

−
∫

Ω

(∇ϕi)TQ(x).∇(
∑
j

ϕj) dx = 0, (.28)

from which we deduce that

qhii +
∑
j∼i

qhij = 0. (.29)

Combining (.29) with (.26) we obtain that the vector (uhi )i∈Nh satisfies equa-
tion (2.7).

Using the change of variables y = F (x) in∫
Ω

(∇(ϕi ◦ F ))Tσ(x).∇uh dx =

∫
Ω

ϕi ◦ F f, (.30)

we obtain that ûh := uh ◦ F−1 satisfies∫
Ω

(∇ϕi)TQ∇ûh =

∫
Ω

ϕi
f

det(∇F )
◦ F−1. (.31)

Hence ûh is the finite element approximation of û. Using the notation σ[v] :=∫
Ω
∇vTσ∇v we obtain through the change of variables y = F (x) that σ[v] =

Q[v ◦ F−1]. It follows that

σ[u− uh] = Q[û− ûh]. (.32)

Since ûh minimizes Q[û − v] over v ∈ Xh we obtain equation (2.9) from the
W 2,2-regularity of û (.25).
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