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We study the internal resonance, energy transfer, activation mechanism, and control of a model of

DNA division via parametric resonance. While the system is robust to noise, this study shows that it

is sensitive to specific fine scale modes and frequencies that could be targeted by low intensity

electro-magnetic fields for triggering and controlling the division. The DNA model is a chain of

pendula in a Morse potential. While the (possibly parametrically excited) system has a large number

of degrees of freedom and a large number of intrinsic time scales, global and slow variables can be

identified by (1) first reducing its dynamic to two modes exchanging energy between each other and

(2) averaging the dynamic of the reduced system with respect to the phase of the fastest mode.

Surprisingly, the global and slow dynamic of the system remains Hamiltonian (despite the

parametric excitation) and the study of its associated effective potential shows how parametric

excitation can turn the unstable open state into a stable one. Numerical experiments support the

accuracy of the time-averaged reduced Hamiltonian in capturing the global and slow dynamic of the

full system.VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4790835]

In this paper, we study the internal resonance, energy

transfer, activation mechanism, and control of a model of

DNA division via parametric resonance. While DNA

macro-molecules are robust to noise, our study shows that

they are sensitive to specific fine scale modes and frequen-

cies that could be targeted by low intensity electro-

magnetic fields for triggering and controlling the division.

The suggested method of control is supported not only by

the observation that DNA vibrations induced by electric-

fields or microwave absorption are an experimental reality

but also by the fact that electric field-induced molecular

vibrations have already been used as a noninvasive cell

transfection protocol. Our study also raises the question

on whether enzymes are using the proposed mechanism to

initiate the opening of DNA strands. This question is to put

into correspondence with increasing theoretical and exper-

imental evidence that low-frequency vibrations do exist

and play significant biological functions in proteins, DNA

molecules, and other bio-macromolecules.

I. INTRODUCTION

The model considered in this paper is a chain of pendula

in a Morse potential with torsional springs between pendula,

which mimic real DNA characteristics.24,38 Previous stud-

ies,8,9,24 mainly numerical, showed that this model exhibits an

intriguing phenomenon of structured activations observed in

many bio-molecules: While the system is robust to noise, it is

sensitive to certain specific fine scale modes that can trigger

the division. Below, we will describe briefly the results of our

analytical study on this intriguing phenomenon and our effort

in the control of this DNA model via parametric resonance.

By using the Fourier modal coordinates,8,12,23 this model

can be seen as a small nonlinear perturbation of n harmonic

oscillators with frequencies xa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cos 2pa=nÞp

;
a ¼ 0;…; n� 1. The coarse variable of the (approximate) 0th

mode, which is the average angle of the pendula, corresponds

to the angle of the frame defined by the radius of gyration in

our molecular studies.40–42 This variable is a global and slow

variable and it plays an important role as the reactive coordi-

nate for our DNA work. Moreover, this reactive mode forms a

nearly 0:1 resonance with any other mode, each of which has

an O(1) frequency. This fact leads to small denominators or

coupling terms in the corresponding averaged equations or

normal forms.2,14,18,20,26–29,35 Since other modal frequencies

are not rationally commensurate or have significant time scale

separation, we do not expect strong resonance among them.

Extensive simulations confirmed our expectation. We observed

(1) the energy transfers mainly from an excited mode to the re-

active mode, triggering the division, and (2) only an extremely

small amount of energy transfers from the excited mode to one

or two other modes via near resonance. This observation, to-

gether with a rigorous error estimate,8 shows that two-mode or

three-mode truncation, i.e., a truncated system that includes

the reactive mode, the excited mode, and perhaps a mildly

affected mode should provide an adequate reduced model for

our analytical study on the activation mechanism.

By applying the method of partial averag-

ing1,12,14,18,26,28,35 for nearly 0:1 resonance, we obtained the

averaged equations for the reduced models of this chain of
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Morse oscillators up to nonlinear terms of very high degree.

These averaged reduced equations not only reveal the cou-

pling between the action of the excited modes and the dy-

namics of the reactive mode but also shed lights on the phase

space structure of the activation mechanism. Moreover, they

allow us to estimate analytically the minimum activation

energy for each excited mode. These analytical estimates not

only match well with those obtained from simulations of the

full DNA model but also uncover a relationship between the

frequency of the excited mode and its corresponding mini-

mum activation energy. These findings also provide an ana-

lytical and deeper understanding of the internal mechanism

that is responsible for the phenomenon of structured

activations.

Based on our understanding of its internal dynamics,

we introduce a method for controlling the division of this

DNA model via parametric excitation, that is, in resonance

with its internal trigger modes. By choosing appropriate

external excitations and frictions, we uncover a class of tra-

jectories that show how the parametric resonance can be

used to drive the averaged reduced model from its (almost)

equilibrium state to its open state. The identification of an

effective Hamiltonian (after reduction and partial averag-

ing) opens the possibility of studying the global phase space

structures of our averaged reduced model and sheds lights

on the significant trajectories mentioned above. Moreover,

we extend the results for the averaged reduced model with

parametric resonance and friction to the reduced as well as

the full model with parametric resonance and friction.

These findings support the conjectures that (1) low intensity

electro-magnetic fields can be used with parametric reso-

nance to inject energy into the trigger modes and destabi-

lize the DNA chain and keep it near the open state for

replication and transcription, and (2) enzymes may use

similar method to initiate open state dynamics for DNA

replication and transcription. Although the issues of inho-

mogeneity, helicity, and environmental effects (such as

noises) will be ignored for now, they will be taken into

consideration in our future work.

II. A MODEL OF DNA DIVISION AND STRUCTURED
ACTIVATIONS

Our analytical study has been inspired by the work of

Mezić and Eisenhower at UC Santa Barbara and Marsden

and Du Toit at Caltech. Recall that their, mainly numerical,

work contained in Refs. 8, 9, 11, and 24 showed that the pen-

dula DNA model exhibits an intriguing phenomenon of

structured activations. Two important differences are that

here we will consider a more complex potential (the Morse

potential) in our analytical study and we will also study the

effect of parametric resonance. Our choice of the Morse

potential is motivated by the fact that it is closer to practical

applications. Note that, as explained in Ref. 12, the study

provided in Refs. 10–12 was limited to the simpler Duffing

potential because, “The exponential form of the Morse

potential makes analytical progress difficult, ….”

A. A model of DNA division

The model was first introduced in Ref. 24. It is a chain

of equivalent pendula that rotate about the axis of a fixed

backbone with an angle hk measured from the upward posi-

tion. The pendula interact with nearest neighbors along the

backbone through harmonic torsional coupling, and with

pendula on the opposing immobilized strand through a

Morse potential that has two stable equilibria and a saddle.

See Figure 1.

The Hamiltonian that describes the motion of these n
coupled pendula is given by

Hðh;PhÞ ¼
Xn
k¼1

P2
hk

2mh2
þ 1

2
Sðhk � hk�1Þ2

� �

þ
Xn
k¼1

D

2adh

�
e�adfhð1þcos hkÞ�x0g � 1

�2
; (1)

with periodic boundary condition, h0 ¼ hn. The first term is

the kinetic energy terms of n-pendula. The second term is

the torsional coupling terms. The third term is the Morse

FIG. 1. (a) A model of DNA division with 30 pendula. (b) The phase space ðh; phÞ of a single pendulum in a Morse potential without coupling. It has two stable

equilibria and a saddle. The black curve is the homoclinic orbit that separates two types of motion, namely, the libration near the equilibria

ðhe; 0Þ ¼ ð62:346; 0Þ, and the flipping across the saddle (0, 0).
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potential terms, which model the hydrogen bonds of the re-

spective DNA base pairs. In Eq. (1), m and h represent,

respectively, the mass and the length of each pendulum, and

Phk ¼ mh2ðdhk=dtÞ is the generalized momenta conjugate to

hk. The parameter S determines the strength of the nearest

neighbor coupling, while the parameters D; x0, and ad deter-
mine the strength, the equilibrium distance, and the width of

the Morse potential, respectively. All the parameter values

were chosen to best represent the typical values for the open-

ing and closing dynamics of DNA division4,22 as follows:

m¼ 300 amu (typical mass of a DNA base (nucleotide)),

h¼ 1 nm (typical radius of DNA), S¼ 42 eV, D¼ 0.42 eV,

x0 ¼ 0:3 nm, and ad ¼ 7 nm�1.

After dividing the both sides of Eq. (1) by S, the Hamil-

tonian can be non-dimensionalized as

Hðh; phÞ ¼
Xn
k¼1

1

2
p2hk þ

1

2
ðhk � hk�1Þ2

� �

þ
Xn
k¼1

�
�
e�að1þcos hk�d0Þ � 1

�2
; (2)

where phk � dhk=ds is the dimensionless momentum defined

with respect to the dimensionless time s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
S=mh2

p
t. Thus,

in the present study, one unit time (s ¼ 1) corresponds to

t ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
mh2=S

p ¼ 0:272 ps. In Eq. (2), the dimensionless am-

plitude of Morse potential � is a small parameter and is equal

to � ¼ D=ð2SadhÞ ¼ 1=1400. We have also introduced the

dimensionless decaying coefficient of Morse potential

a � adh ¼ 7, and the dimensionless equilibrium distance

d0 � adx0=a ¼ 0:3.
For our analytical study, we use, as in previous numerical

studies,11,24 a Hamiltonian system composed of 30 coupled

pendula. Figure 1(a) is a model of 30 coupled pendula. Before

studying its dynamics, it is instructive to look at a single

pendulum in a Morse potential without coupling. Figure 1(b)

shows the phase space of such single pendulum. It has two

stable equilibria and a saddle. The black curve is the homo-

clinic orbit that separates two types of motion, namely, the os-

cillation near the equilibria ðhe; 0Þ ¼ ð62:346; 0Þ, and the

flipping across the saddle (0, 0). The n-coupled pendula have

similar but much more complicated behaviors. First, the sys-

tem has two global stable equilibria, achieved when all the

pendula have the same angular displacements hk ¼ he (thus

nullifying the nearest neighbors coupling) and each is posi-

tioned at the equilibria of a single pendulum. It also has a rank

one saddle at hk ¼ 0 where all pendula are at the upward posi-

tion. For small energy, the pendula are liberating near one of

the global stable equilibria where all angles hk are the same

and equal to he. For large enough energy, it has been observed
that a local activation can cause the pendula to move collec-

tively from one energy basin to the other and to flip across the

rank one saddle.

B. Phenomenon of structured activations

Previous studies,8,9,11,24 mainly numerical, showed that

this model exhibits an intriguing phenomenon of structured

activations observed in many bio-molecules: While the sys-

tem is robust to noise, it is sensitive to certain specific fine

scale modes that can trigger the division. Figure 2 provides

the numerical data for such claim. The figure shows the rela-

tionship between the initial amount of energy injected for

various types and shapes of activation and the time for DNA

division.

In order to appreciate this figure and the phenomenon of

structured activations, we need to introduce the Fourier

modal coordinates q which relate to the original system coor-

dinates h through the following linear transformation

(h ¼ Tq):

FIG. 2. Relationship between the initial amount of

energy injected for various types and shapes of acti-

vation and the time for DNA division. The colored

dots are the data points for various Fourier modes

(0th to 13th mode). White “�”s show the data for

the random noise. See the text for detail. Reprinted

with permission from B. Eisenhower, “Targeted

escape in large oscillator networks,” Ph.D. disserta-

tion (University of California Santa Barbara, 2009).

Copyright 2009 Bryan Eisenhower.
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hk ¼
ffiffiffi
2

n

r X̂n2�1

a¼0

1ffiffiffi
2

p q0 þ cos
2pka
n

qa

� �

þ
ffiffiffi
2

n

r Xn2�1

a¼0

ð�1Þjffiffiffi
2

p qn
2
þ sin

2pka
n

qn
2
þa

" #
; (3)

where k¼ 1,…, n and a ¼ 0;…; n� 1. Here, we assume that

the number of pendula n is even. If n is odd, we merely need

to have the middle column corresponding to a ¼ n
2
removed

and the column altered accordingly.

These modal coordinates help to reveal the natural dy-

namics of the system by diagonalising the linear coupling

terms and rewriting the Hamiltonian as follows:

Hðq; pÞ ¼
Xn�1

a¼0

1

2
p2a þ

1

2
x2

aq
2
a

� �
þ �
Xn
k¼1

U
Xn�1

b¼0

Tkbqb

 !
;

(4)

where UðhÞ ¼ ðe�að1þcos h�d0Þ � 1Þ2 is the Morse potential

for a single pendulum. More specifically, the matrix T is

nothing but the matrix of orthonormal eigenvectors used for

the diagonalization and xa are their corresponding eigenval-

ues. By using this coordinate system, the model can be seen

as a small perturbation of n harmonic oscillators with fre-

quencies xa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos ð2pa=nÞp

; a ¼ 0;…; n� 1. This

can also be seen clearly if we write the equation of motion in

the Lagrangian form

€q0 ¼ ��M0ðq0; q1;…; qn�1Þ;
€qa þ x2

aqa ¼ ��Maðq0; q1;…; qn�1Þ;
(5)

where

Mðq0; q1;…; qn�1Þ ¼
Xn
k¼1

U
Xn�1

b¼0

Tkbqb

 !
(6)

is the Morse potential term, and M0 ¼ @M=@q0;Ma ¼
@M=@qa are the partial derivatives of M with respect to

q0; qa, respectively.
Observe that the coordinate of the (approximate) 0th

Fourier mode, given as follows:

q0 ¼ 1ffiffiffi
n

p
Xn
k¼1

hk ¼
ffiffiffi
n

p �h (7)

is the average amplitude of the pendula except for a constant

factor of
ffiffiffi
n

p
. It plays a special role as the collective variable,

the reactive coordinate, and the slow variable for the system.

Because the torsional coupling is much stronger than the

nonlinearity, the conformational transition of the DNA chain

is collective, closely follows the mean. Therefore, the aver-

age angle of pendula q0 can be used to monitor and mark the

time of DNA division. Other (n� 1) modal coordinates qa
are the fine scale variables, the bath coordinates, and the fast

variables.

Now we are ready to appreciate Figure 2. The figure

shows the relation between the initial amount of energy

injected for various Fourier modes of activation and the time

for DNA division. The curves have been constructed by

choosing the initial activation as a single Fourier mode. Take

the magenta curve of the 4th mode as an example. Assuming

that the initial position of the system is at its equilibrium

point ðq0;…; qðn�1ÞÞ ¼ ð� ffiffiffi
n

p
he; 0;…; 0Þ, certain amount of

the momentum of the 4th mode ðp0;…; pðn�1ÞÞ ¼
ð0; 0; 0; 0; p4ð0Þ; 0;…; 0Þ is injected for the initial activation

at t¼ 0 and its amplitude could be modified to vary the

amount of activation energy Ea ¼ p4ð0Þ2=2. After the system
evolves for awhile, the time of division td could be deter-

mined as the time when the average angle q0 first crosses the
position where q0 ¼ 0. In this way, a curve of ðEa; tdÞ is

obtained that shows the amount of activation energy vs the

time to DNA division for each Fourier mode. The integration

time is set for 3000 units, which is approximately equal to

2=�. Notice that there are 14 such curves from left to right

representing those from 0th mode to 13th mode, respec-

tively. Each curve has an asymptote at the low energy limit

and will be named the minimum activation energy for each

excited mode. White “�”s show the data for the random

noise. From the figure, we can see that the minimum activa-

tion energy depends on the way this energy is injected into

the system. While the system is robust to noise, it is sensitive

to certain specific fine scale modes that can trigger the divi-

sion. There may also exist a relation between the minimum

activation energy of each Fourier mode and its modal fre-

quency. In this paper, we would like to develop the analyti-

cal methods to reveal the activation mechanism and to

compute the minimum activation energy for each mode.

Moreover, we want to develop the techniques for controlling

the real DNA division via low intensity electro-magnetic

fields and to reveal how enzymes initiate the DNA opening

dynamics.

III. ANALYTICAL STUDYOF STRUCTURED
ACTIVATIONS

Let us start our analytical study of the phenomenon of

structured activations.

A. Nearly 0:1 resonance and partial averaging

Recall that the equations of motion of our system are

given by Eq. (5) which can be seen as a nonlinear perturba-

tion of n harmonic oscillators with frequencies

xa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2 cos ð2pa=nÞp

; a ¼ 0; 1;…; n� 1. Note that

besides x0 ¼ 0; xa varies from 0.2091 to 2. Hence, the reac-

tive mode forms a nearly 0:1 resonance with any other

mode, each of which has an O(1) frequency

mx0 þ 0xa ¼ 0; with m ¼ 1: (8)

While such a relationship may not be seen as a resonance in

the classical “engineering sense,” it certainly is in the mathe-

matical sense. This fact leads to small denominators and cou-

pling terms in the corresponding averaged equations or

normal form. Other modal frequencies, from 1st to 14th

mode (and from 15th to 29th mode), are not rationally com-

mensurate and do not have significant time scale separation.
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We do not expect strong resonance among them. Hence, we

believe that nearly 0:1 resonance should be the main focus of

our study.

Nayfeh et al.,26,28 Haller,18 Feng and Liew,14 Tuwankotta

and Verhulst,35 Langford and Zhan,20 and Broer et al.2 have

studied such a degenerate resonance. Both Langford and Zhan

and Broer et al. used the method of normal form. Nayfeh

et al., Haller, and Feng and Liew applied a modified averaging

method directly to a two mode truncation of a simple mechani-

cal system with parametric or external excitation. Tukwankotta

and Verhulst applied a similar method to the study of nonlinear

wave equations. While Eisenhower and Mezić did not mention

the term, nearly 0:1 resonance, in their papers,10–12 they did

apply Arnold’s method of partial averaging1 to a truncated

Hamiltonian in the study of a chain of Duffing oscillators. As

shown in Appendix A, the method that they employed is

equivalent to those used by Nayfeh et al.

B. Two mode truncation is adequate

In order to carry out the analytical work for such a high

dimensional system, certain reduced model is needed. The

success of Eisenhower and Mezić,12 Du Toit et al.,8 Nayfeh
et al.,26,28 and other researchers18,23,35 shows that the method

of modal truncation is a viable method if it is used with care.

Our understanding of the nearly 0:1 resonance in our DNA

model and the results of our extensive numerical simulation

have convinced us that two mode truncation is adequate for

our analytical study of the phenomenon of structured

activations.

Figure 3(a) shows the projections of a sample trajectory

on the phase spaces of the first 15 modes. The activation has

been chosen to be a single 6th mode. From the numerical

simulation which use q0ð0Þ ¼
ffiffiffi
n

p
he and p6ð0Þ ¼

ffiffiffiffiffiffi
2E

p
as the

initial condition (where E¼ 1.221 is the amount of energy

injected into the 6th mode), we observe that (1) the energy

transfer takes place over-whelmingly from the excited mode

to the reactive mode, inducing the division, and (2) only an

extremely small amount of energy transfers from the excited

mode to one or two other modes via near resonance. Hence,

we expect that the two-mode or three-mode truncations, i.e.,

a truncated system that includes the reactive mode, the

excited mode, and perhaps a mildly affected mode, should

provide an adequate reduced model for our analytical study

on the nearly 0:1 resonance, the energy transfer, and the acti-

vation mechanism. We refer to Appendix B for a discussion

on the accuracy of the two mode truncation and rigorous

error estimates.

What follow are the equations for any two-mode trunca-

tion (the reactive mode and the cth mode)

€q0 ¼ ��M
ð2Þ
0 ðq0; qcÞ

€qc þ x2
cqc ¼ ��Mð2Þ

c ðq0; qcÞ;
(9)

where

Mð2Þðq0; qcÞ ¼
Xn
k¼1

U

� X
b¼f0;cg

Tkbqb

�
(10)

is the reduced Morse potential term, and M0 ¼ @Mð2Þ=
@q0;M

ð2Þ
c ¼ @Mð2Þ=@qc are its partial derivatives with respect

to q0; qc, respectively. Note that for notational simplicity,

Mðq0; qcÞ will be used later for Mð2Þðq0; qcÞ whenever there
is no ambiguity.

Figure 3(b) shows the amount of activation energy vs

the time of DNA division for the 6th mode. The blue “o”s

are the data points for the full equations of 30 modes; the red

“*”s are correspondent data points for a two mode truncation

(the reactive mode and the 6th mode). Both have almost the

same minimum activation energy 1.205. Even their time of

division differs very little if the actuation energy is slightly

larger than the minimum activation energy (away from the

asymptote). The above observation also holds true for all the

other modes.

Now we are ready to do the truncation and apply the

method of partial averaging to obtain the averaged equations

for the reduced models of this chain of coupled Morse oscil-

lators, and use them to study the activation mechanism and

compute the minimum activation energy for each mode.

C. Averaged reduced Hamiltonian

Since in our case, the partial averaging of Euler-

Lagrangian equations is equivalent to the partial averaging

FIG. 3. (a) Projections of a sample trajectory on the phase spaces of the first 15 modes. E¼ 1.221 is the amount of initial kinetic energy injected into the 6th

mode. (b) Amount of activation energy vs the time of DNA division for the 6th mode. The blue “o”s are the data points for the full equations of 30 modes; the

red “*”s are correspondent data points for the two mode truncation. Both have almost the same minimum activation energy 1.205.
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of its Hamiltonian and our main concern is on energy trans-

fer, we preferred to use the Hamiltonian formulation in this

study. This equivalence and its derivation are described in

Appendix A.

Recall that the Hamiltonian of the two mode reduced

model is given by

Hc
2ðq; pÞ ¼

X
a¼f0;cg

1

2
p2a þ

1

2
x2

aq
2
a

� �

þ �
Xn
k¼1

U

� X
b¼f0;cg

Tkbqb

�
: (11)

The averaged reduced Hamiltonian can be obtained as fol-

lows. First, we approximate (via Taylor expansion) the

Morse potential U, which involves the exponential function,

by a polynomial of degree 26 at h ¼ 0

Hc
2ðq; pÞ ¼

X
a¼f0;cg

1

2
p2a þ

1

2
x2

aq
2
a

� �

þ �
Xn
k¼1

X26
j¼0

aj

� X
b¼f0;cg

Tkbqb

�j

; (12)

where aj; j ¼ 0;…; 26 are the coefficients of the expansion.

As pointed out in Ref. 12, the Morse potential is indeed a dif-

ficult function to work with. Since the geometry of the Morse

potential requires a polynomial of degree at least 26 for an

accurate approximation, we decide to use such a high degree

expansion for our computation of the averaged reduced

Hamiltonian.

Then, we use the angle-action coordinates defined as

follows:

qc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ic=xc

q
sin/c; pc ¼

ffiffiffiffiffiffiffiffiffiffiffi
2Icxc

p
cos/c; (13)

and rewrite the reduced Hamiltonian as Hc
2ðq0; p0; Ic;/cÞ.

Notice that, besides q0; p0, the action Ic is also a slow vari-

able. Hence, the averaged reduced Hamiltonian can be

obtained by averaging the only fast variable /c

�H
c
2ð�q0; �p0; �IcÞ ¼

1

2p

ð2p
0

Hc
2ðq0; p0; Ic;/cÞd/c: (14)

After renaming variables, the averaged reduced Hamil-

tonian is given by

�H2 ¼ 1

2
y2 þ xI þ �

�
na0 þ

X13
k¼0

c2kðIÞx2k
�
; (15)

where x ¼ �q0; y ¼ �p0 are the Cartesian coordinates of the re-

active mode; I;x are the action and the constant frequency

of the other mode, respectively; �na0 ¼ 0:0214 is the energy

value at the saddle; c2kðIÞ are polynomials in I. For example,

c0ðIÞ is a 13 degree polynomial in I given by

c0ðIÞ ¼
X13
j¼1

bjI
j; (16)

where bj are numerical coefficients. Also, for the simplicity

of notation, the letter c is dropped from the averaged reduced

Hamiltonian �H
c
2.

We refer to Appendix C for a description of the accu-

racy of our application of the method of partial averaging

including error estimates.

D. Phase space of averaged reduced equations

Given the averaged reduced Hamiltonian, we obtain the

averaged reduced Hamiltonian equations as follows:

_x ¼ y;

_y ¼ ��

 X13
k¼1

2kc2kðIÞx2k�2

!
x;

_I ¼ 0;

_/ ¼ xþ �
X13
k¼0

dc2k
dI

x2k

 !
:

(17)

Notice that the action I of the excited mode is a constant of

motion. Hence, the averaged equations of the reactive mode,

i.e., the x, y equations, and their phase space structures are

parametrized by I.
Therefore, the averaged reduced Hamiltonian, Eq. (15),

can be used to study the phase spaces of the reactive mode of

the averaged reduced equations that are parametrized by I.
Figure 4(a) shows the contour plots of the averaged reduced

Hamiltonian and the phase space for the reactive mode of

the averaged reduced equations, when I¼ 5. Notice that this

phase space has a separatrix which separates two types of

motion: liberation and flipping. Figure 4(b) shows three

of such phase spaces stacked up in increasing I (action of

excited mode). In the (x, y, I) space, the vertical axis can also

be seen as the axis of increasing activation energy by scaling

with x, Eact ¼ xI. Notice that the phase space and the sepa-

ratrix “shrink” towards the saddle as Eact increases. To-

gether, these separatrices form a homoclinic manifold and

can be used in studying the minimum activation energy for

each excited mode.

E. Analytical study of minimum actuation energy

Recall that for large enough energy in the excited mode,

the energy transferred to the reactive mode will surpass those

at the saddle and the system will be driven from its initial

equilibrium across the separatrix, causing the flipping. See

Figure 3. But for the averaged reduced system, this process

manifests itself via the changes in the phase space and the

separatrix of the reactive mode parametrized by I. See Figure
4(b) for illustration. For activation energy slightly larger

than the minimum activation energy, Eminð¼xIm), the initial
stable equilibrium at ðxe; 0Þ, now parametrized by Iþmin, will
cross the separatrix parametrized by Iþm , move into the flip-

ping region of phase space parametrized by Iþm , and induce

the DNA division. Hence, Emin can be found by the condition

that the point ðxe; 0; ImÞ is on the separatrix that passes

through ð0; 0; ImÞ. Since the separatrix is the energy curve

(x, y) defined by
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�H2ðx; y; ImÞ ¼ �H2ð0; 0; ImÞ; (18)

where �H2 is the averaged reduced Hamiltonian, Emin can be

found by solving the following equation for Im:

�H2ðxe; 0; ImÞ ¼ �H2ð0; 0; ImÞ; (19)

where ð0; 0; ImÞ is a saddle at Im and ðxe; 0Þ is the initial equi-
librium point at I¼ 0.

As pointed out earlier, �H2 of Eq. (15) has been com-

puted using a Taylor expansion of the Morse potential U at

h ¼ 0. Strictly speaking, it may be better to denote it as �H
0
2.

Even though we have already tried to find an excellent

Taylor expansion that can take care of the approximation of

U at both the neighborhood near the saddle h ¼ 0 and the

basins around the stable equilibria h ¼ 6he, the accuracy of

U and H0
2 at the latter is still not as good as those at the for-

mer. For example, while the actual stable equilibria should

be at ð6 ffiffiffi
n

p
he; 0Þ ¼ ð612:85; 0Þ, the approximated ones

will be at ð612:59; 0Þ if �H
0
2 is used. Since any significant

error in the approximation of the Morse potential U at the

stable equilibria 6he will cause a large error in the estima-

tion of the minimum activation energy, another averaged

Hamiltonian He
2 has also been computed using an expansion

of the Morse potential U at one of the stable equilibria

h ¼ �he

�H
e
2 ¼

1

2
y2 þ xI þ �

 X26
j¼0

c0jðIÞðxþ
ffiffiffi
n

p
heÞj
!
: (20)

Here, the letter e stands for the word “equilibria.” Now, The

minimum activation energy can be analytically estimated by

solving the following equation:

�H
e
2ð�

ffiffiffi
n

p
he; 0; ImÞ ¼ �H

0
2ð0; 0; ImÞ: (21)

Straightforward substitution will give us

xIm þ �c00ðImÞ ¼ xIm þ �ðna0 þ c0ðImÞÞ: (22)

After simplification, the minimum activation energy can be

analytically estimated by solving

c00ðImÞ � c0ðImÞ � na0 ¼ 0: (23)

For the two-mode truncation of the reactive mode and the

6th mode, Im=x6 ¼ 0:8539. Therefore, Emin ¼ x6 � 0:8539
�x6 ¼ 1:1801, as compared with 1.205 from numerical

simulation.

Figure 5(a) compares the analytical estimation of mini-

mum activation energy with the numerical simulation

obtained from two-mode reduced model. The data for cyan

“o”s are from the numerical simulation obtained from the

two-mode truncation. For example, the 6th data point (for

the 6th mode) with x6 ¼ 1:17 needs minimum activation

energy Eð6Þ
m ¼ 1:205. The data for magenta “*”s are from an-

alytical computation. For example, the 6th data point with

x6 ¼ 1:17 has E
ð6Þ
min ¼ 1:1801 Clearly, the data from numeri-

cal simulation and the data from analytical computation

match very well. Moreover, Emin (except the 15th mode) can

be approximated as a parabola

Emin ¼ 0:8539� x2: (24)

Here, we would like to remark that the use of two different

Taylor expansions of the Morse potential function U, one at

h ¼ 0 and another at h ¼ he, not only allows us to deal with

the difficulty posed by the exponential form of the Morse

potential function but also improves the accuracy of our ana-

lytical estimation of the minimum activation energy for each

excited mode.

Figure 5(b) shows the comparison between numerical

simulation obtained from the two mode truncations with the

numerical simulation obtained from the full model. The

blue “o”s are the data from numerical simulation of the full

equations (30 modes). For example, the 6th data point (for

the 6th mode) with x6 ¼ 1:17 needs minimum activation

energy Eð6Þ
m ¼ 1:205. The red “*”s are from simulations of

the two-mode truncations Eð6Þ
m ¼ 1:205. Besides the 14th

FIG. 4. (a) The contour plots for the averaged reduced Hamiltonian when I¼ 5. This phase space (x, y) has a separatrix which separates two types of motion:

liberation (also referred to as “breathing” in Ref. 4) and flipping. (b) Three such phase spaces stacked up in increasing I in the (x, y, I) space. Notice that the
phase space and the separatrix “shrink” towards the saddle as I increases. Together, these separatrices form a homoclinic manifold and can be used in studying

the minimum activation energy for each excited mode.
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mode (with error less than 5%), all other data values of blue

“o”s and red “*”s have differences less than 1%. Therefore,

for the study of the minimum actuation energy, the analyti-

cal estimation provides accurate prediction for the full

system.

F. Summary of analytical results on structured
activations

By applying the method of partial averaging, we have

obtained the averaged reduced equation (17) for a chain of

coupled Morse oscillators. (1) These equations reveal the

coupling between the action and energy of the excited mode

and the dynamics of the reactive mode, as well as the phase

space structure of the activation mechanism. (2) They allow

us to estimate analytically the minimum activation energy

for each excited mode and discover a relation between the

frequency of the excited mode and their corresponding mini-

mum activation energy. (3) These estimates match very well

with the numerical simulations obtained from the reduced

and the full model. The results show that the nearly 0:1 inter-

nal resonance is responsible for the structured activation of

our DNA model.

G. Remark on pitchfork bifurcation

We observe that the reactive mode of the averaged

reduced model has a pitchfork bifurcation at Ib � 38. This

can be seen clearly by studying the following averaged equa-

tions of the reactive mode parametrized by I:

_x ¼ y; _y ¼ ��

�X13
k¼1

2kc2kðIÞx2k�2

�
x: (25)

Notice that the equilibria of this system are given by (0, 0)

and ðxeðIÞ; 0Þ where xeðIÞ are the solutions of
X13
k¼1

2kc2kðIÞx2k�2 ¼ 0: (26)

See the blue curve in Figure 6(a). Clearly, ðxeðIÞ; 0Þ are sta-

ble equilibria, except at (0, 0). In fact, they are surrounded

by liberation contours as shown in Figure 4. As for the equi-

libria (0, 0) for each I, their stability is determined by the

sign of the coefficient of the linear term in x, namely,

�2�c2ðIÞ. For c2ðIÞ < 0, they are saddles. For c2ðIÞ > 0,

they are stable equilibria. Figure 6(b) shows a graph of c2ðIÞ
which has a simple zero at Ib � 38. Hence, the system has a

pitchfork bifurcation as shown in Figure 6(a). As will be

shown in Sec. IV, this bifurcation will play an important role

in our study on the control of this DNA model via parametric

resonance.

IV. CONTROLVIA PARAMETRIC RESONANCE

Building on our understanding of its internal dynamics,

we want to control the division of this DNA model via

parametric excitation, that is in resonance with its internal

trigger modes. This effort is guided by two observations

and two conjectures: The two observations are (1) the aver-

aged reduced model has a pitchfork bifurcation at

Ib � 38—the physical interpretation of this is that if

enough energy is injected into the trigger mode with a

value larger than its bifurcation value, the chain of pendula

will remain near its open state; and (2) parametric reso-

nance is an efficient way for energy transfer from an exter-

nal source. Hence, our two conjectures are (1) low intensity

electro-magnetic fields can be used with the mechanism of

parametric resonance to pump energy into the trigger

modes and keep the real DNA chain near the opening state

for replication and transcription. Here, we note that electric

field-induced molecular vibrations have already led to the

development of a noninvasive cell transfection protocol

that enables foreign DNA molecules to cross cell mem-

branes and penetrate into the cytoplasm by eliciting vigor-

ous vibration between molecules and cells;33,44 and (2)

enzymes may use similar method to initiate the opening dy-

namics for DNA replication and transcription. For

FIG. 5. (a) Analytical estimation of minimum activation energies vs numeri-

cal simulation obtained from two mode reduced models. The data for ma-

genta “*”s are from analytical computation. The data for cyan “o”s are from

numerical simulation obtained from the two-mode truncations. They match

very well. (b) Numerical simulation of two mode reduced models vs numeri-

cal simulation obtained from the full model. The blue “o”s are the data from

numerical simulation of the full equations (30 modes). The red “*”s are

from simulation of the two-mode truncations.
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discussions and evidence of important relations between

low-frequency vibrations in DNA molecules (and other

bio-macromolecules) and significant biological functions,

we refer to Refs. 3–5, 13, 21, 31, 32, and 45.

Our three main results in this section are as follows: (1)

We identify excitation parameters (as a function of friction)

and a class of trajectories that show how parametric reso-

nance can be used to drive the averaged reduced model from

its almost equilibrium state to its open state; (2) by identify-

ing the averaged reduced effective Hamiltonian (after para-

metric excitation), we uncover the global phase space

structure and analyze the characteristic trajectories men-

tioned above; and (3) We extend the results for the averaged

reduced model with parametric excitation and friction to the

reduced and to the full model with parametric resonance and

friction. The findings uncover a method for controlling DNA

division via parametric resonance. Although the issues of

inhomogeneity, helicity, and environmental effects (such as

noises) are ignored for now, they will be taken into consider-

ation in our future work.

A. Equations of motion with parametric excitation

The equations of motion of our full DNA model with

parametric excitation and frictions can be written as follows:

€hk � ðhkþ1 � 2hk þ hk�1Þ � �U0ðhkÞ ¼ �hkf cosXt� �l _hk;

(27)

where k¼ 1,…, n, h0 ¼ hn, U is the Morse potential function,

and U0 is its derivative. Notice that the left hand side is the

original equations of motions, without parametric excitation

or frictions. See Eq. (2). Moreover, f ;X are the amplitude

and the frequency of the parametric excitation, respectively;

X is in a nearly 1:2 parametric resonance with a chosen inter-

nal trigger mode xc; l is the frictional coefficient.

Note that the friction terms represent energy loss

caused by interaction with surrounding molecules. Noise

terms (ignored here) would represent energy gain caused by

(thermal) interaction with surrounding molecules.25 The

parametric excitation terms represent interactions with

electro-magnetic fields, we note that DNA vibrations

induced by electric-fields or microwave absorption are an

experimental reality.33,44

As pointed out in Ref. 44, the bases of DNA have dipole

moments,7 which could couple with an external electromag-

netic field. In principle, this coupling can induce a periodic

wave-like forcing over DNA bases. Since an electromagnetic

field has a polarization, it is reasonable to assume that the cou-

pling between an electromagnetic field and a DNA base is de-

pendent on the orientation of the base, hk. This motivates us

to introduce the parametric excitation term in our model equa-

tion (the first term on the right-hand side of Eq. (27) above).

After using the Fourier modal coordinates, the equations

of motion for a corresponding two mode reduced model are

given by

_q0 ¼ p0;

_p0 ¼ ��M0 � �lp0 þ �fq0 cosXt;

_qc ¼ pc;

_pc ¼ �x2
cqc � �Mc � �lpc þ �fqc cosXt;

(28)

where q0; p0 and qc; pc are the coordinates for the reactive

mode and the c-mode, respectively; M is the reduced Morse

potential term; and M0;Mc are its partial derivatives with

respect to q0; qc, respectively. See Eqs. (9) and (10) for

detail.

After applying the method of partial averaging to Eq.

(28) using the angle-action variables

qc ¼
ffiffiffiffiffiffiffiffiffiffi
4I=X

p
sin

X
2
tþ b

� �
;

pc ¼
ffiffiffiffiffiffi
IX

p
cos

X
2
tþ b

� �
;

(29)

renaming variables, and setting X ¼ 2x, we obtain the aver-

aged reduced equation of motion

FIG. 6. Figure (a) shows that the reactive mode of the averaged reduced system has a pitchfork bifurcation at the parameter value I � 38. Figure (b) shows a

graph of c2ðIÞ which has a simple zero at I � 38.
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_x ¼ y; _b ¼ �ð �MI � r=2xþ f cos 2b=4xÞ;
_y ¼ ��ð �Mx þ lyÞ; _I ¼ �Iðf sin 2b=2x� lÞ;

(30)

where I; b are the action and the phase of the chosen internal

trigger mode, respectively; r is a detuning parameter,

defined by X2=4 ¼ x2 þ �r; �M is the averaged Morse term;

and �Mx; �MI are its partial derivatives with respect to x, I,
respectively. See Eq. (17) for comparison.

The derivation is similar to what has been done in Refs.

18 and 28 and is parallel to the method used in Appendix A

with only minor modification. We first rewrite Eq. (28) in

the following first order form:

_q0 ¼
ffiffi
�

p
p0 qc ¼ pc;

_p0 ¼ � ffiffi
�

p
R0 pc ¼ �x2

cqc � �Rc;
(31)

where

R0 ¼ M0 þ lp0 � fq0 cosXt;
Rc ¼ Mc þ lpc � fqc cosXt:

(32)

By using the angle-action variables defined by Eq. (29), we

can transform Eq. (31) into the Lagrangian standard form

_q0 ¼
ffiffi
�

p
p0 _b ¼ �ð ~Rc=

ffiffiffiffiffiffi
IX

p
Þ sin/;

_p0 ¼ � ffiffi
�

p
R0

_I ¼ �� ~Rc

ffiffiffiffiffiffiffiffiffiffi
4I=X

p
cos/;

(33)

where / ¼ ðX
2
tþ bÞ and

~Rc ¼ Rc � r
ffiffiffiffiffiffiffiffiffiffi
4I=X

p
sin/: (34)

Hence, we can apply the standard averaging theory (by aver-

aging t from 0 to 4p=X) and obtain the averaged reduced

equations

_x ¼ ffiffi
�

p
y;

_y ¼ �
ffiffi
�

p
2p

ð2p
0

R0d/c;

_b ¼ �

2p

ð2p
0

ð ~Rc=
ffiffiffiffiffiffi
IX

p
Þsin/d/;

_I ¼ ��

2p

ð2p
0

ð ~Rc

ffiffiffiffiffiffiffiffiffiffi
4I=X

p
Þcos/d/;

(35)

where x ¼ �q0; y ¼ �p0. Then, after performing the averaging

(similar to Appendix A), renaming variables, and setting

X ¼ 2x, we obtain Eq. (30).

Moreover, the averaged reduced system (without fric-

tion) has an effective Hamiltonian

HPR ¼ 1

2
y2 þ � �M � �

r
2x

I þ � f
I cos 2b
4x

; (36)

that can provide insights on the global phase space structure

of this averaged reduced model. Notice that since angle-

action variables are used in our derivation, the Hamiltonian

that we have obtained is canonical. See Ref. 18 for

comparison.

B. Merging local bifurcation analysis with global
geometry of the effective Hamiltonian

Detailed local bifurcation analysis of the averaged

reduced system can be used to reveal the ranges of r and

other parameters, f ; l, where the desired dynamics may be

available.26,28 For example, for f ¼ 2:5; l ¼ 0:5=x where

x ¼ x6 ¼ 1:17, the frequency response curves for the aver-

aged reduced system can be depicted as in Figure 8. These

frequency response curves can be obtained by studying the

fixed points of Eq. (30) and their stability that are parame-

trized by the detuning parameter r. Notice first that for all

fixed points, y ¼ ye ¼ 0. Moreover, there are two types of

fixed points, I¼ 0 or I 6¼ 0.

1. Fixed points with I50

There exist two sub-cases: (i) x¼ 0 and the fixed point

is (x, y, q, p)¼ (0, 0, 0, 0), and (ii) x ¼ xe ¼ 612:59 and the

fixed points are ðx; y; q; pÞ ¼ ðxe; 0; 0; 0Þ. These two types of

solutions can be obtained by solving the following

equation:

�Mx ¼
�X13

k¼1

2kc2kðIÞx2k�2

�
x ¼ 0 (37)

with I¼ 0. Notice that in our study of the fixed points and

their stability with I¼ 0, the following Hamiltonian polar

coordinates has been used:

q ¼
ffiffiffiffiffiffiffiffiffiffi
2I=x

p
sin b; p ¼

ffiffiffiffiffiffiffiffi
2Ix

p
cos b: (38)

That is why (q, p)¼ (0, 0) when I¼ 0.

For case (i), the eigenvalues of the fixed point are given

by

k ¼
��l6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�lÞ2 � 8�b

q
2

;

� �l
2
6

�

4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 � 4ðr� 2bÞ2

q
(39)

where b ¼ c2ð0Þ ¼ �0:47� 10�4. For example, as r
decreases from 3 to� 2, this fixed point goes through two

bifurcations, one at 1.1455 and another at �1.1457. In the

interval (�1.1457, 1.1455), it is a rank two saddle (sad-

dle� saddle), marked with red dashed lines. In the intervals

ð�1;�1:1457Þ and ð1:1455;1Þ, it is a saddle� stable foci,

marked with magenta dashed and dotted lines. See Figures

8(a) and 8(b).

For case (ii), the eigenvalues of the fixed points are

given by

k ¼
��l6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�lÞ2 � 4� �Mxx

q
2

;

� �l
2
6

�

4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 � 4ðr� 2x �MIÞ2

q
(40)

where �Mxx is the second partial derivative of the averaged

Morse potential term �M with respect to x and �MI is the first
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partial derivative of �M with respect to I. In the interval (�2,

3), these two fixed points (612.59, 0, 0, 0) are stable (stable

foci� stable foci), marked with blue lines. See Figures 8(c)

and 8(d). Even though they do go through bifurcations at

55.6726 and 57.9636, we do not include their analyses in this

paper because they are far outside of the region where we

have found the desired dynamics.

2. Fixed points with I 6¼ 0

For these fixed points, b ¼ be ¼ 1
2
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2xl=f

p
.

Again, there exist two sub-cases. (iii) x¼ 0 and the fixed

points are ðx; y; I; bÞ ¼ ð0; 0; Ie; beÞ where Ie ¼ IeðrÞ is

obtained by solving the following equation for Ie:

�MI ¼ 1

2x
r6

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 � 4ðxlÞ2

q� �
(41)

with x¼ 0. See Figures 7(a) and 7(b) for the curves of these

fixed points. (iv) x 6¼ 0 and the fixed points are ðx; y; I; bÞ ¼
ðx�; 0; I�; beÞ where I� ¼ I�ðrÞ; x� ¼ x�ðrÞ are obtained by

solving the two nonlinear equations (37) and (41) simultane-

ously. See Figures 7(c) and 7(d) for the curves of these fixed

points.

For case (iii), the eigenvalues of the fixed points are

given by

k ¼
��l6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�lÞ2 � 4� �Mxx

q
2

� �l
2
6

�

2x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxlÞ2 þ 4x fI �MII cos 2be

q
: (42)

Numerical computation shows that (1) the fixed points of the

upper left branch of Ie ¼ IeðrÞ in Figure 7(a) are stable (stable

FIG. 8. Frequency response curves. This figure shows how the fixed points and their stability change as the detuning parameter r is varied. Since for all the

fixed points, y¼ 0 and b ¼ be, only (a) I vs r and (b) x vs r are plotted. For example, in the neighborhood of r ¼ ð�0:5; 0:5Þ, the system has four types of

fixed points for each r: (1) the red dashed curves where I¼ 0, x¼ 0 denote saddle� saddle; (2) the solid blue curves where I ¼ 0; x ¼ xe ¼ 612:59 denote sta-
ble foci� stable foci (only positive xe is drawn); (3) the solid blue curves where I ¼ Ie; x ¼ 0 denote stable foci� stable foci; (4) the magenta dashed dotted

curves where I ¼ I�; x ¼ x� denote saddle� stable foci.

FIG. 7. Figures (a) and (b) and (c) and

(d) show the curves of fixed points

for Ie ¼ IeðrÞ; x ¼ 0 and I� ¼ I�ðrÞ; x�
¼ x�ðrÞ, respectively. (a) (1) the fixed

points of the upper left branch of Ie ¼
IeðrÞ are stable (stable foci� stable foci)

for �1:4825 < r < 1, marked with the

blue line; (2) the fixed points of lower

left branch are saddle� saddle, marked

with the red dashed line; (3) the fixed

points of right branch are saddle� stable

foci, marked with the magenta dashed

and dotted line. (b) For simplicity of pre-

sentation, only part of the x¼ 0 solution

that corresponds to upper left branch in

(a) has been marked with the blue line

(stable foci� stable foci). (c) and (d) (1)

the fixed points of the left branches are

saddle� stable foci, marked with the ma-

genta dashed and dotted lines; (2) the

fixed points of the right branches are sta-

ble (stable foci� stable foci), marked

with the blue lines.
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foci� stable foci) for �1:4825 < r < 1; (2) the fixed points

of lower left branch are saddle� saddle; and (3) the fixed

points of right branch are saddle� stable foci. Note that for

simplicity of presentation, only part of the x¼ 0 solution in

Figure 7(b) that corresponds to upper left branch in Figure

7(a) has been marked with blue line (stable foci� stable foci).

For case (iv), the characteristic equation of the eigenval-

ues of the fixed points is given by

k4 þ s1k
3 þ s2k

2 þ s3kþ s4 ¼ 0; (43)

where

s1 ¼ 2�l;

s2 ¼ �2 l2 þ � �Mxx � �2fI �MII cos 2b=x;

s3 ¼ �2 l �Mxx � �3 lfI �MII cos 2b=x;

s4 ¼ �3 fIð �MIx � �Mxx
�MIIÞ cos 2b=x:

Numerical computation shows that (1) the fixed points of the

left branches of Figures 7(c) and 7(d) are saddle� stable

foci; and (2) the fixed points of the right branches are stable

(stable foci� stable foci).

Figure 8 is the combined result of the case studies. The

frequency response curves in this figure show how the fixed

points and their stability change as the detuning parameter r
(and hence the frequency X) of parametric excitation is var-

ied. By analyzing the relationship between all these curves,

we can see that the averaged reduced model may have the

desired dynamics in the neighborhood of r ¼ 0. For exam-

ple, at r ¼ 0, the phase space has four types of fixed points

as follows:

1. (x, y, q, p)¼ (0, 0, 0, 0) is a rank two saddle.

2. ðx; y; q; pÞ ¼ ðxe; 0; 0; 0Þ where xe ¼ 612:59 are stable

foci. Notice that these fixed points locate at the bottom of

the potential well of the averaged reduced system.

3. ðx; y; I; bÞ ¼ ð0; 0; Ie; beÞ where Ie ¼ 45:74� x6; be ¼
1
2
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x6l=f

p
are stable foci. Notice that the (x, y)

coordinates of these fixed points mark the DNA division.

4. ðx;y;I;bÞ¼ðx�;0;I�;beÞ where x� ¼68:7478;I� ¼5:312
�x6 are stable foci�saddle. If the frictional coefficient

l is small, these fixed points are essentially rank one

saddles.

According to the theory of tube dynamics,15,16,19 these modi-

fied rank one saddles may provide a low energy pathway

from the neighborhood of the bottom of the well to the

region which marks the DNA division.

3. Global geometry of the effective Hamiltonian

While the local bifurcation analysis does provide many

basic ingredients for our study, it does not by itself give a

clear and global picture of the dynamics of the averaged

reduced system. Hence, the effective Hamiltonian

HPRðx; y; I; bÞ is needed to fill in this gap. Notice that in the

Hamiltonian polar coordinates Eq. (38), b ¼ p=2 corre-

sponds to the case where p¼ 0. Therefore,

HPRðx; 0; I; p=2Þ ¼ � �M � �
r
2x

I � � f
I

4x
(44)

provides an effective potential for the averaged reduced

system.

Figure 9(a) shows the energy contours of this effective

potential when r ¼ 0. It provides us with the insights for the

global phase space structure of the averaged reduced system.

From the figure, we can see clearly how the four types of

fixed points obtained previously fit together within the global

geometry of the effective Hamiltonian. Moreover,

• the parametric excitation represented by the parameters

f ; r has turned ð0; IeÞ, which marks the DNA division, into

a sink,
• it also creates two low barrier rank one saddles that are

close to the two DNA equilibrium states (612.59, 0).

Hence, the addition of parametric excitation to the averaged

reduce system should allow certain trajectories with a little

energy in the trigger mode to move from an almost

FIG. 9. (a) Contour plots of the effective potential energy in the (x, I) space. (b) An example of a trajectory that shows how the parametric resonance drives the

averaged reduced system from its almost equilibrium state to its open state in the (x, y, I) space.
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equilibrium state, over the saddle, navigate down the energy

contours, and reach the sink. All these insights drawn from

the local bifurcation analysis and the effective Hamiltonian

enable us to generate a class of trajectories that show how

the parametric resonance drives the averaged reduced system

from its almost equilibrium state to its open state. Figure

9(b) shows an example of this kind of trajectories in the (x,
y, I) space.

C. Parametric resonance drives DNA to division

The data for this trajectory are given as follows. For

the system parameter, we have f ¼ 2:5; l ¼ 0:5=x6; r ¼ 0.

For the initial condition, we have x0 ¼ 12:59; y0 ¼ 0; I0
¼ 0:54015� x6; b0 ¼ 0. The integration is done using the

averaged reduced equation (30). Notice that this trajectory in

Figure 9(b) starts at the equilibrium position of the reactive

mode but with certain small amount of energy in the trigger

mode (6th mode). Without the parametric excitation, the sys-

tem will liberate near the equilibrium state if there is no friction

or die down if the friction exists. However, if the parametric

excitation is turned on at t¼ 0 with the data provided above,

the 1:2 parametric resonance will inject energy into the trigger

mode, increase the value of I, and make the trajectory to reach

the region that marks the DNA division (x¼ 0) but with large

energies in the trigger mode. See Figure 12 below for a physi-

cal interpretation of this class of trajectories when it is near the

DNA open state.

Here, we would like to make a remark on the amount of

initial energy in the trigger mode. Note that if we increase

the amplitude f of the parametric excitation, the magenta

dashed dotted curve of Figure 8(a) will shift downward. Sim-

ilarly, the rank one saddles in Figure 9(a) will also shift

downward. These mean that the amount of initial energy

needed in the trigger mode, namely, the value of I, can be

lower for large f. Numerical simulations of the full system

confirm this observation.

D. Extend the results to the reduced and the full
models

Figure 10 shows two corresponding trajectories, one for

the reduced model and another for the full model. The trajec-

tory in Figure 10(a) is generated with the following data. For

the system parameters, we set f ¼ 2:5; l ¼ 0:5=x6; r ¼ 0 as

before. For the initial condition, we set x0 ¼ q0ð0Þ ¼
12:85; y0 ¼ p0ð0Þ ¼ 0; I0 ¼ 0:8680� x6; b0 ¼ 0 and inte-

grate the trajectory using the reduced equation (28) where

q6ð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2I0=x6

p
sin b0; p6ð0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2I0x6

p
cos b0: (45)

As for the trajectory in Figure 10(b), it is generated with

the following data. For the system parameters, we set f ¼
2:5; l ¼ 0:5=x6; r ¼ 0 as before. For the initial condition,

we set x0 ¼ q0ð0Þ ¼ 12:85; y0 ¼ p0ð0Þ ¼ 0; I0 ¼ 0:86708�
x6; b0 ¼ 0 and integrate the trajectory using the full equation

(27) where ðq6ð0Þ; p6ð0ÞÞ is obtained by Eq. (45) and hkð0Þ
are determined by the Fourier modal transformation, Eq. (3).

E. Remarks on this class of special trajectories

Here, we would like to make a few remarks:

• Despite its simplicity (when compared to the full system),

the averaged reduced model is surprisingly accurate as

illustrated by the fact that the three trajectories in Figures

9(b), 10(a), and 10(b) are very similar. Without a careful

study of the averaged reduced equations, it may be diffi-

cult to guess that such a class of trajectories will exist in

the averaged reduced model, let alone in the reduced and

the full models.
• It is also interesting to point out that the initial conditions

for the reduced and the full models are essentially the

same. Hence, if a small amount of initial energy is in a sin-

gle Fourier mode, the dynamics of the reduced model of a

two mode truncation looks very similar to the dynamics of

FIG. 10. (a) An example of a trajectory that shows how the parametric resonance drive the reduced system from its almost equilibrium state to its open state.

(b) A corresponding trajectory for the full model.
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the full equations of our DNA model. Figure 11 may illus-

trate this point in another way. This figure shows the pro-

jection of the same trajectory of the full model on the

phase space of its first 15 modes. We observe that (1) the

parametric excitation injects energy into the 6th mode,

some of which transfers to the reactive mode and drives

the full system from the almost equilibrium position to the

region that marks the DNA division, and (2) only an

extremely small amount of energy transfers from the

excited mode to the other modes. This observation again

shows that the two mode truncation can provide an

adequate reduced model for studying the control of DNA

division via parametric resonance. See Figure 3 for

comparison.
• Figure 10(b) shows that the trajectory starts at the equilib-

rium position of the reactive mode but with certain small

amount of energy in the trigger mode. Without the para-

metric excitation, the system will liberate near the equilib-

rium state if there is no friction or die down if the friction

exists. However, if the parametric excitation is turned on

at t¼ 0 with the data provided above, the 1:2 parametric

resonance will inject energy into the trigger mode,

increase the value of I, and make the trajectory to reach

the region that marks the DNA division (x¼ 0) but with

large energies in the trigger mode.
• Figure 12 shows a sequence of 5 snapshots of the evolu-

tion of this solution trajectory in the physical space when

it is near the region that marks the DNA division. Notice

that the DNA chain that corresponds to this solution is

near its open state—the chain is near the upright position

(with its average angle near zero) but with a periodic

swing. Figures 12(a) to 12(e) show one of its swings.

Since the 6th mode is used, Figure 12(a) shows a curve of

pendula with six peaks (same for the other 4 figures).

Moreover, it is also interesting to point out that the time

elapsed between Figure 12(a) and Figure 12(e) is 2.7 units

of time which is nothing but the period of the parametric

excitation (2p=2x with x ¼ 1:17Þ.
• Even though qualitatively the trajectories for the averaged

reduced system and the reduced system look the same,

quantitatively there is certain discrepancy in their initial

conditions. The main reason is that in computing the aver-

age of the Morse term �M, the Taylor expansion at h ¼ 0 is

used. Hence, the equilibrium point for the reactive mode

of the averaged reduced system is given by (x, y)¼ (12.59,

0) instead of ðq0; p0Þ ¼ ð ffiffiffi
n

p
he; 0Þ ¼ ð12:85; 0Þ for those

of the reduced system. We expect that if we compute �M
with another Taylor expansion at

ffiffiffi
n

p
he, the discrepancy

will be much less. See Sec. III E. However, since our con-

cern at this stage is to prove the concept that parametric

resonance can be used to control the DNA division, we

will not tackle this numerical issue for now.
• For the cases where the initial energy is in more than one

mode, say in the 6th and the 7th modes, numerical simula-

tion of the full model shows that this kind of trajectories

still exists as long as one of the modes is dominant and the

parametric excitation is in resonance with the dominant

mode. This should not surprise us because while the para-

metric resonance will inject energy into the dominant

mode, the friction will damp out the other mode.
• More studies may be needed in the future for the tradeoffs

between the amplitude f, the detuning parameter r, the

FIG. 11. Projection of the same trajectory of the full model on the phase space of its first 15 modes. The parametric excitation injects energy into the 6th

mode, some of which transfers to the reactive mode and drive the full system from the almost equilibrium position to the region which marks the DNA

division.
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frictional coefficient l on one hand and the initial action-

phase I0; b0 on the other.

V. CONCLUSION

In this paper, we have studied the internal resonance,

energy transfer, activation mechanism, and control of a

model of DNA division via parametric resonance. Our study

has been based on a methodology merging geometric reduc-

tion, partial averaging, techniques of chaotic transport, and

control via parametric resonance. This methodology is not

limited to our current model and its application can be

extended to more general molecular and mechanical systems

(possibly involving multiple scales). This study also high-

lights the importance of inertial effects in molecular dynam-

ics, such effects are usually ignored in classical studies of

molecular systems with Langevin equations (although Lan-

gevin equations preserve the Gibbs distribution as an invari-

ant distribution, they do not account for the electrostatic

screening nor the hydrophobic effects of the solvent and they

introduce strong and not necessarily justified assumptions on

the dynamic of molecular systems). This is why we have in

this first study analyzed a noiseless system. Further studies

are required to analyze the effects of inhomogeneity, helicity

(see Ref. 5), and noise (we note again here that there is no

unique way to introduce noise in such systems, henceforth

the dynamical aspect of the model may become strongly bi-

ased without proper experimental validation). The inertial

effects studied in this paper are important, not only from a

general modeling aspect but also because they can be tar-

geted for purpose of control (possibly with low intensity

electro-magnetic fields). There is also increasing evidence

that these inertial effects play significant biological roles.39

It would be interesting to extend our present framework

to the models of DNA with helicity. As has been done in

Refs. 6 and 17, the effect of the helical geometry of DNA

could be incorporated into the present model by introducing

additional coupling between every N pendula (nucleotides),

where N is typically 4. This kind of coupling could induce

another pathway for intramolecular energy transfer, which

could in turn make the excitation of the reactive mode even

more effective. The helicity of DNA could also be responsi-

ble for the coupling between the dynamics of DNA bases

and that of the DNA backbone. Since the division of DNA is

associated with the slowest-scale dynamics among the dy-

namics of the bases as we have seen in the present study, the

division dynamics of DNA could be coupled (or in reso-

nance) with the slow-scale dynamics of the DNA backbone.

In order to study this kind of couplings between the bases

and the backbone of DNA, it would be important to imple-

ment a novel DNA model that takes into consideration the

three-dimensional helical geometry more directly along the

lines of Refs. 36 and 43. Since the helical geometry is ubiq-

uitous among biomolecules, one can expect that the helicity

plays a fundamental role in the functions of biomolecules.
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APPENDIX A: PARTIAL AVERAGING OF LAGRANGIAN
EQUATIONS IS EQUIVALENT TO PARTIAL AVERAGING
OF ITS HAMILTONIAN FOR THE REDUCED MODEL

1. Partial averaging of Lagrangian equations

Recall the reduced equations of motion in the Lagran-

gian form given by

€q0 ¼ ��M0ðq0; qcÞ;
€qa þ x2

aqa ¼ ��Mcðq0; qcÞ:
(A1)

They can be rewritten as a first order system as follows:

_q0 ¼
ffiffi
�

p
p0 qc ¼ pc;

_p0 ¼ � ffiffi
�

p
M0 pc ¼ �x2

cqc � �Mc:
(A2)

Clearly, the set of equations in the reactive coordinates is al-

ready in the standard Lagrange form with a small parameterffiffi
�

p
. Moreover, by using the angle-action variables defined

by

qc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ic=xc

q
sin/c pc ¼

ffiffiffiffiffiffiffiffiffiffiffi
2Icxc

p
cos/c; (A3)

where /c ¼ xctþ wc, we transform the other set of equa-

tions also into the Lagrange standard form

_q0 ¼
ffiffi
�

p
p0 _wc ¼ �ðMc=

ffiffiffiffiffiffiffiffiffiffiffi
2Icxc

p Þsin/c;

_p0 ¼ � ffiffi
�

p
M0

_Ic ¼ ��Mc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ic=xc

q
cos/c:

(A4)

Hence, we can apply the standard theory of averaging (by

averaging t from 0 to 2p=xc) and obtain the averaged

reduced equations

_x ¼ ffiffi
�

p
y;

_y ¼ �
ffiffi
�

p
2p

ð2p
0

M0d/c;

_w ¼ �

2p

ð2p
0

ðMc=
ffiffiffiffiffiffiffiffi
2Ix

p
Þsin/cd/c;

_I ¼ ��

2p

ð2p
0

ðMc

ffiffiffiffiffiffiffiffiffiffi
2I=x

p
Þcos/cd/c;

(A5)

where x ¼ �q0; y ¼ �p0; I ¼ �Ic;w ¼ �wc;x ¼ xc.

2. Partial averaging of its Hamiltonian

Recall the averaged reduced Hamiltonian given by

�H2 ¼ 1

2
y2 þ xI þ �

2p

ð2p
0

Md/c; (A6)

where Mðq0; qcÞ is a polynomial in q0; qc. Its Hamiltonian

equation is given by

_x ¼ y _/ ¼ xþ �

2p
@

@I

ð2p
0

Md/c;

_y ¼ � �

2p
@

@x

ð2p
0

Md/c
_I ¼ 0:

(A7)

3. Two methods are equivalent for the reduced model

Recall M0 ¼ @M=@q0;Mc ¼ @M=@qc. Since

@M

@/c
¼ @M

@qc

@qc
@/c

@M

@I
¼ @M

@qc

@qc
@I

(A8)

and _w ¼ _/ � x, the _I and the _w of Eqs. (A5) and (A7) are

the same. Moreover, sinceð2p
0

@M

@q0
d/c ¼

@

@x

ð2p
0

Md/c; (A9)

the two sets of equations for the reactive coordinates are also

the same if they are rewritten in the second order forms.

APPENDIX B: ERROR ESTIMATES FOR TWO MODE
TRUNCATIONS

Here, we show that the solution trajectories of our two

mode truncation, Eq. (9), are within Oð�Þ of the solution tra-

jectories of the original full system described in Eq. (5) for at

least Oð1Þ times.

The proof is an extension of the one in Du Toit et al.,8

where a general system that has the same form as Eq. (5)

was studied. In that paper, the authors (1) proposed a gen-

eral technique for obtaining an 1 1
2

degree of freedom

reduced system and (2) were able to provide a rigorous

error estimate for their procedure. First, they introduced an

approximation by replacing Eq. (5) with the analytical

solutions of the unperturbed linear system, as defined by

Qa ¼ Aa cosxatþ BaðsinxatÞ=xa; a ¼ 1;…; n� 1 where

Aa andBa are the initial conditions. Then, they obtain their

reduced equation

€Q0 ¼ ��M0ðQ0;Q1;…;Qn�1Þ (B1)

via simple substitutions. Hence, the information contained

in the other modes persists in the reduced equation of the

reactive mode via the initial conditions. The error esti-

mate that they provided claims that the solution trajecto-

ries of Eq. (B1) are within Oð�Þ of the solution

trajectories of the original full system described in Eq. (5)

for at least Oð1Þ times. This result is shown by applying a

standard error analysis technique: substituting a formal

expansion of the solutions, using the Lipschitz continuity

of M0, and then applying the Gronwall lemma as is done

in the proof of Theorem 9.1 in Ref. 37 (see also Ref. 34

for a more detailed analysis on why removing small non-

linear perturbation to harmonic oscillations incurs small

error).
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Notice that the equations of our two mode truncation,

Eq. (9), can be obtained by simply setting all the initial condi-

tions Aa andBa for Eq. (5) equal to zero except if a ¼ c.
Hence, the solution trajectories of our two mode truncation,

Eq. (9), should also be within Oð�Þ of the solution trajectories

of the original full system described in Eq. (5) for times Oð1Þ.
Moreover, this error estimate is valid for an arbitrary

forcing function. But for our DNA model, the exponential

decay of the Morse potential with the distance implies that

when the pendula escapes the immediate vicinity of the

opposing pendula, the Morse potential and its consequent per-

turbation are effectively zero. Hence, our error bound is very

loose because it utilizes only the fact that � is small, but not

the specific feature of our DNA model, which is that the forc-

ing term is also small in a large region of phase space. This is

why we numerically observed that the two mode truncation

remains accurate over a timescale much longer thanOð1Þ.

APPENDIX C: ERROR ESTIMATES FOR
THE AVERAGING AND THE ENTIRE TREATMENT

By applying the standard averaging theory for differen-

tial equations (see, for instance, Ref. 30; we again recall that

averaging the Hamiltonian is equivalent to averaging the

equations), we can conclude that the solution trajectories of

the averaged reduced equations are within Oð ffiffi
�

p Þ of the

solution trajectories of the reduced equations for at least

Oð1= ffiffi
�

p Þ times.

There are three approximations that we made in our

treatment: Taylor approximations of the potential, truncation

into two modes, and averaging. We found that the truncation

and averaging, respectively, induce Oð�Þ and Oð ffiffi
�

p Þ errors

for at least Oð1Þ and Oð1= ffiffi
�

p Þ times. In addition, as long as

the solution remains bounded, Taylor approximations result

in a small oð�Þ error in the nonlinear forces, which again by

Gronwall only induces Oð�Þ error in the solution till at least

Oð1Þ times. Put together, our entire treatment induces at

most an Oð ffiffi
�

p Þ error till at least Oð1Þ time.

Moreover, this error estimate is valid for an arbitrary

forcing function. But for our DNA model, the exponential

decay of the Morse potential with the distance implies that

when the pendula escapes the immediate vicinity of the

opposing pendula, the Morse potential and its consequent

perturbation are effectively zero. Hence, our error bound is

very loose because it utilizes only the fact that � is small,

but not the specific feature of our DNA model, which is that

the forcing term is also small in a large region of phase

space. This is why we numerically observed that our

approximation remains accurate over a timescale much lon-

ger than Oð1Þ.
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