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Optimal
Uncertainty Quantification 

Technology, in common with many other activities, tends toward 
avoidance of risks by investors.  Uncertainty is ruled out if 
possible.  People generally prefer the predictable.  Few recognize 
how destructive this can be, how it imposes severe limits on 
variability and thus makes whole populations fatally vulnerable to 
the shocking ways our universe can throw the dice.

Frank Herbert (Heretics of Dune)



The UQ challenge in the certification context
You want to certify that

Problem

and

Optimal Uncertainty Quantification. H. Owhadi, Clint Scovel, T. Sullivan, M. 
McKerns and M. Ortiz. SIAM Review Vol. 55, No. 2 : pp. 271-345, 2013



The UQ challenge in the certification context 
(safety of a new model of airplane)

You want to certify that

Problem

• You don’t know all possible causes of a crash

• You don’t know P



The UQ challenge in the certification context
(Performance of a weapon system)

You want to certify that

Problem

• You cannot test it.
• You don’t know all possible causes of a failure
• You don’t know P

BUT
• You can simulate
• You have 20 samples from the old system



The UQ challenge in the prediction context
(Climate modeling)

You want to find a 95% interval 
of confidence on average 
global temperatures in 50 
years

Problem • Incomplete information
on underlying processes

• Limited computation capability
• You don’t know P



The UQ challenge in the prediction context
(Deepwater Horizon Disaster)

You want to find a 
95% interval of 
confidence on the 
spill rate

Problem

• You don’t know P
• No one really knows how to measure
deep water spills of this type.



You want to certify that

Problem

and

Best thing to do

optimal bounds P[G(X) ≥ a]
given available information.

Compute

Best and Worst case scenarios



F min( Yield Strain 
- Axial Strain )

Ground 
Acceleration

We want to certify that

Seismic Safety Assessment of a Truss Structure



Historical Data Method

1940 Elcentro

2010 Haiti

1999 Izmit
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Filtered White Noise Model

White noise

Ground 
acceleration

Filter



Vulnerability Curves (vs earthquake magnitude)



A simple example

What is the least upper bound on

If all you know is

and ?

Answer



You are given one pound of play-doh. 
How much mass can you put above a while 
keeping  the seesaw balanced  around m?

You have to use the whole pound. 
The play-doh can be spread arbitrarily over the seesaw.



Answer

You are given one pound of play-doh. 
How much mass can you put above a while 
keeping  the seesaw balanced  around m?

Markov’s inequality



Reduction of optimization variables



Caltech Small Particle Hypervelocity Impact Range

G

Projectile velocity

Plate thickness

Plate Obliquity

Perforation area
We want to certify that

Marc Adams, Leslie Lamberson, Jonathan Mihaly, Laurence Bodelot, Justin
Brown, Addis Kidane, Anna Pandolfi, Guruswami Ravichandran, and Ares Rosakis



Caltech Hypervelocity Impact Surrogate Model

G(h,α, v) = K

µ
h

Dp

¶p
(cosα)u

µ
tanh

µ
v

vbl
− 1

¶¶m
+

,

Projectile velocity

Plate thickness

Plate Obliquity

Deterministic surrogate model for the perforation area (in mm^2)

Thickness, obliquity, velocity: independent random variables

Mean perforation area: in between 5.5 and 7.5 mm^2



The optimization variables can be reduced to the tensorization 
of 2 Dirac masses on thickness, obliquity and velocity

Support Points at iteration 0



Numerical optimization

Support Points at iteration 150



Numerical optimization

Support Points at iteration 200



Velocity and obliquity marginals each collapse to a single Dirac mass. The plate 
thickness marginal collapses to have support on the extremes of its range.

Iteration
1000

Probability non-perforation maximized by  distribution supported on minimal, not 
maximal, impact obliquity. Dirac on velocity  at a non extreme value.



Important observations

Extremizers are singular

They identify key players
i.e. vulnerabilities of the physical system

Extremizers are attractors



Initialization with 3 support points per marginal

Support Points at iteration 0



Initialization with 3 support points per marginal

Support Points at iteration 500



Initialization with 3 support points per marginal

Support Points at iteration 1000



Initialization with 3 support points per marginal

Support Points at iteration 2155



Initialization with 5 support points per marginal

Support Points at iteration 0



Initialization with 5 support points per marginal

Support Points at iteration 1000



Initialization with 5 support points per marginal

Support Points at iteration 3000



Initialization with 5 support points per marginal

Support Points at iteration 7100



Previous examples

NO DATA

What if you have data?



Previous examples

NO DATA

What if you have data?

Optimal bounds become functions of 
the data (intervals of confidence)

How do we compute the best functions
of the data?

QOI



Scientific Computation of Optimal 
Statistical Estimators

How do we use computers to extract as 
much juice as possible from the data?



Solving PDEs: Two centuries ago

A. L. Cauchy 
(1789-1857)

S. D. Poisson 
(1781-1840)



Solving PDEs: Now.



Paradigm shift

J. V. Neumann 
(1903-1957)

H. Goldstine 
(1913-2004)



Where are we at in finding statistical estimators?



Find the best climate model given current information

Exascale Co-Design Center for  Materials in Extreme Environments



Where are we at in finding statistical estimators?

Find the
best estimator
or model



Can we turn model design into a computation?

Find the
best estimator
or model



The UQ Problem with sample data
We want to estimate

We observe

You know μ† ∈ A

Your estimation: 
function of the data θ(d)



Statistical 
Error

E(θ,μ†) = Ed∼(μ†)n θ(d)− Φ(μ†) 2

Optimal bound on the statistical error

max
μ∈A

E(θ,μ)
Optimal statistical estimators
min
θ
max
μ∈A

E(θ,μ)

Estimation error θ(d)− Φ(μ†)



Game theory and statistical decision theory

John Von Neumann Abraham Wald



θ μ
E(θ,μ)

You The universe

Estimator Measure of probability

Loss/Statistical Error

Minimize Maximize



θ μ
E(θ,μ)

Computer The universe

Estimator Measure of probability

Loss/Statistical Error

Minimize Maximize



Arithmetic and Boolean logic

The space of admissible scenarios along with 
the space of relevant information, 
assumptions, beliefs and models tend to be 
infinite dimensional, whereas calculus on a 
computer is necessarily discrete and finite



We need a form of calculus allowing us to 
manipulate infinite dimensional information 
structures



Paul is given one pound of play-doh. 
What can you say about how much mass he is
putting above a if all you have is the belief that
he is keeping the seesaw balanced around m?

New form of reduction calculus
A simple example



q1 q2

10,000 children are given one pound of play-doh. 
On average, how much mass can they put above a
While, on average, keeping  the seesaw balanced  
around m?

q3 q4
q1+···+q10,000

10,000 = m

max
M1+···+M10,000

10,000 ?

M1

M4M3

M2



What is the least upper bound on

If all you know is ?

Answer









Why develop this form of calculus? What else 
could we do?



θ μ
E(θ,μ)

Computer The universe

Estimator Measure of probability

Loss/Statistical Error

Minimize Maximize



Min/Max Tree
Allows you to design optimal experimental campaigns
and turn the process of scientific discovery into a computation



Machine learning Develop the best 
model of reality 
given available 
information

Act based on 
That model

Gather new 
information



Provide the ability to compute optimal strategies in 
information games/wars

MDA STTR
solicitation

Quantifying MDA’s confidence in
M&S-based predictions of BMDS
performance 

Application: MDA
Missile Defense Strategies

Provide the ability to make optimal decisions with regards to 
information available to and assumptions made by 
participants in a conflict.



Well posed problem

UQ is the business of computing
optimal bounds or making optimal 

predictions on quantities of interest 
given available information

It is about the optimal processing of 
information



Why optimal? 2010 Iceland ash cloud
Under-estimate risk = Loss of Life

Over-estimate risk = Economic Loss



Why turn the UQ challenge into a well 
posed mathematical question

What is the meaning of life?

42



The UQ challenge in the prediction context
(Deepwater Horizon Disaster)

You want to find a 
95% interval of 
confidence on the 
spill rate

6 different techniques lead to 6 distinct predictions
with non-overlapping 95% confidence intervals



You may as well ask Paul the octopus

Paul the Octopus (hatched in 2008, died 
October 2010) came to worldwide attention 
with his accurate predictions in the 2010 
World Soccer Cup.



Available Information defines the (optimization) 
problem to solve

You don’t want to ignore possibly relevant 
information

2003 Space Shuttle Columbia disaster 



Why you don’t want to add possibly 
false assumptions

In particular be careful about 
assumptions concerning the 

occurrence and impact of rare 
events.

What gets us into trouble is not 
what we don't know. 
It's what we know for sure that 
just ain't so.

--Mark Twain 



The design of most of our nuclear power plants is based 
on the assumption of the availability of a steady supply 
of electricity to power the cooling system pumps for both 
the reactor cores as well as nearby “spent fuel ponds” 
where decommissioned reactor fuels rods are stored.

Our nuclear power plants are only required to 
store enough fuel on hand to keep the backup 
generators running for one week.



Carrington event (solar super-storm of 1859)

“Telegraph systems all over Europe and North America failed, in 
some cases giving telegraph operators electric shocks. 
Telegraph pylons threw sparks. Some telegraph systems 
continued to send and receive messages despite having been 
disconnected from their power supplies. Compasses and other 
sensitive instruments reeled as if struck by a massive magnetic 
fist.”

2008 NASA-funded study by the National Academy of Sciences  ``Severe 
Space Weather Events—Understanding Societal and Economic Impacts.’’



2008 NASA-funded study by the National Academy of Sciences 
``Severe Space Weather Events—
Understanding Societal and Economic Impacts.’’

Regions susceptible to 
system collapse due to 
the effects of extreme 
geomagnetic disturbance.

Location 
nuclear power 
plants





The UQ challenge in the prediction context
(Deepwater Horizon Disaster)

You want to find a 
95% interval of 
confidence on the 
spill rate

6 different techniques lead to 6 distinct predictions
with non-overlapping 95% confidence intervals



In developing this calculus we have

Uncovered extreme brittleness of Bayesian Inference.

Discovered new Selberg Integral formulas.

Bayesian Brittleness. H. Owhadi, C. Scovel, T. Sullivan. 2013. 
arXiv:1304.6772

Brittleness of Bayesian inference and new Selberg
formulas. H. Owhadi, C. Scovel. 2013. arXiv:1304.7046



Reverend Thomas Bayes
1701-1761

Pierre Simon Laplace
1749-1827

Application of Bayes theorem in absence of genuine prior 
information has fueled a 250 years old debate with practical 

consequences in science, industry, medicine and law  

When the prior is the data generating distribution

No controversy. Bayesian estimators are optimal.

When the prior may not be the data generating distribution

The controversy starts when Bayesian estimators are 
used without rigorous performance analysis.



A warm-up problem

You have a bag containing 100 coins

99 coins are fair

1 always land on head

You pick one coin at random from the bag
You flip it 10 times and 10 times you get head

What is the probability that the coin that you have 
picked is the unfair one?



Answer

A: The coin is unfair B: You observe 10 heads

Robustness

fair coins are slightly unbalanced: 
probability of a head is 0.51

If
bag contains 101 coins

and

(1) still a good approximation of correct answer
Then

(1)

What if random outcomes are not head or tail but decimal 
numbers, perhaps given to finite precision?



Problem 2
We want to estimate

We observe



Assume

Bayesian Answer

μ†: Random
element of

©
μ(θ) | θ ∈ Θ

ª



Questions

What happens to posterior values if our Bayesian 
model is a little bit wrong?

How sensitive is Bayesian Inference to
local misspecification?

G. E. P. Box “Essentially, all models are wrong, 

but some are useful”

“Remember that all models are 

wrong; the practical question is how 

wrong do they have to be to not be 

useful?”



Answer

If you perturb the model (prior) just a 
little and if the resolution of your 
measurements is fine enough, then no 
matter the size of the data your posterior 
values can be anything you want



Are these results compatible with classical 
Robust Bayesian Inference?

Perform posterior Sensitivity Analysis over classes of 
priors

Box (1953) Huber (1964) Wasserman(1991)

Classical Robust Bayesian Inference:

Our brittleness results:



Is Bayesian Inference Brittle?
Where do we go from here? 

Robust Bayesian Inference as it currently stands leads to
Brittleness under finite information or local misspecification

Why? Robust Bayesian Inference as it currently stands is based
on estimates posterior to the observation of data

Can we fix it?

Perhaps: compute robustness and accuracy estimates prior to
the observation of the data

Difficulty Need a new form of reduction calculus allowing us to 
solve optimization problems over spaces of measures 
over spaces of measures and functions

Need to compute optimal priors
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