Optimal
Uncertainty Quantification

Houman Owhadi

Technology, in common with many other activities, tends toward
avoidance of risks by investors. Uncertainty is ruled out if
possible. People generally prefer the predictable. Few recognize
how destructive this can be, how it imposes severe limits on
variability and thus makes whole populations fatally vulnerable to

the shocking ways our universe can throw the dice.
Frank Herbert (Heretics of Dune)
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The UQ challenge in the certification context
You want to certify that

Problem

PIG(X) >a]l <e

e You don’t know .
and

e You don’t know P



The UQ challenge in the certification context
(safety of a new model of airplane)

You want to certify that

P[Crash per hour of ﬂight] <1077

Problem

e You don’t know all possible causes of a crash

e You don’t know P



The UQ challenge in the certification context
(Performance of a weapon system)
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Problem

e You cannot test it.

e You don’t know all possible causes of a failure
e You don’t know P

BUT

e You can simulate

¢ You have 20 samples from the old system



The UQ challenge in the prediction context
(Climate modeling)

You want to find a 95% interval
of confidence on average
global temperatures in 50
years

Sea ice concentration (%)

Problem

e Incomplete information
on underlying processes

e Limited computation capability
e You don’t know P



The UQ challenge in the prediction context
(Deepwater Horizon Disaster)

You want to find a
95% interval of
confidence on the
i spill rate

Problem

e You don’t know P

e No one really knows how to measure
deep water spills of this type.



You want to certify that

PIG(X) >al <e

Problem

e You don’t know .
and

e You don’t know P
Best thing to do Compute

optimal bounds P|G(X) > al
given available information.

Best and Worst case scenarios




Seismic Safety Assessment of a Truss Structure
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Historical Data Method
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Power Spectrum

Amplitude
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A simple example
What is the least upper bound on D[X 2 CL]

If all you know is E[X] < m
and P0< X <1]=1 ”?
E—

o A a 1

Answer Sup [L [X Z CL}
neA

A= € M([0, 1)) [ E,[X] < mj




You are given one pound of play-doh.

How much mass can you put above a while
keeping the seesaw balanced around m?
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You are given one pound of play-doh. .
How much mass can you put above a while | = £/
keeping the seesaw balanced around m? ==

l—p p
0 A a 1
T
Answer ) maxp
subject to ap <m

Markov’s inequality | |SUP LL[X > a} —
ueA

A=A{pe M(0,1)) | E,[X] <m}




Reduction of optimization variables

(f: X >R, pcPX))

|

k
{f: X — R, p€P(X) M—Z@k%k}
1=1

V
{f:4L,2,....n} =R, p e P({L,2,...,n})}

¢

{{1,2,...,q}, p € P({1,2,...,n})}




Plate thickness Perforation area
We want to certify that

Plate Obliquity

Projectile velocity -D[G — O] S €

Marc Adams, Leslie Lamberson, Jonathan Mihaly, Laurence Bodelot, Justin
Brown, Addis Kidane, Anna Pandolfi, Guruswami Ravichandran, and Ares Rosakis




Caltech Hypervelocity Impact Surrogate Model
1.524,2.667] mm,

Plate Obliquity ¢ € Xo 1= -07 %]7

Projectile velocity ¢ < Xg P — 217 28] ki - S_l.

Plate thickness f, € X7 :

Thickness, obliquity, velocity: independent random variables

Mean perforation area: in between 5.5 and 7.5 mm”2

Deterministic surrogate model for the perforation area (in mm”2)

G(h,a,v) = K (Dﬁp)p (cos @) (tanh (vibl _ 1))?

Hy=0.5794km-s~", s=14004, n=04482, K =10.3936mm”,
p = 0.4757, u=1.0275, m = 0.4682. — ( h )3

(cos )™




The optimization variables can be reduced to the tensorization
of 2 Dirac masses on thickness, obliquity and velocity
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Numerical optimization
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Numerical optimization
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Velocity and obliquity marginals each collapse to a single Dirac mass. The plate
thickness marainal collapses to have support on the extremes of its range.
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maximal, impact obliquity. Dirac on velocity at a non extreme value.




Important observations

Extremizers are singular

They identify key players
l.e. vulnerabilities of the physical system

Extremizers are attractors




Initialization with 3 support points per marginal
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Initialization with 3 support points per marginal
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Initialization with 3 support points per marginal
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Initialization with 3 support points per marginal
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Initialization with 5 support points per marginal
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Initialization with 5 support points per marginal
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Initialization with 5 support points per marginal
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Initialization with 5 support points per marginal

|
%2.7
r26%£
fz.sg
T2.4
123
g fz.z
@
< 25
e kd 2&)\@
6570758(;85' v _ 101560\\
icknegs 95 100 ’

Support Points at iteration 7100




Previous examples

NO DATA

& Lo ©

What if you have data?
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Previous examples
NO DATA
What if you have data?

Optimal bounds become functions of
the data (intervals of confidence)

How do we compute the best functions
of the data?



How do we use computers to extract as
much juice as possible from the data?
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Scientific Computation of Optimal
Statistical Estimators



Solving PDEs: Two centuries ago

A. L. Cauchy
(1789-1857)

W S. D. Poisson
¥ (1781-1840)



- Now.
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Solving PDEs




Paradigm shift

J. V. Neumann
(1903-1957)

H. Goldstine
(1913-2004)
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Where are we at In finding statistical estimators?

Percentage Points of the Chi-Square Distribution

Degrees of Probability of a larger value of x z
Freedom 0.99 0.95 0.90 0.75 0.50 0.25 0.10 0.05
1 0.000 0.004 0.016 0.102 0.455 1.32 2.71 3.84
2 0.020 0.103 0.211 0.575 1.386 2.77 4.61 5.99
3 0.115 0.352 0.584 1.212 2.366 4.11 6.25 7.81
4 0.297 0.711 1.064 1.923 3.357 5.39 7.78 9.49
5 0.554 1.145 1.610 2.675 4.351 6.63 9.24 11.07
6 0.872 1.635 2.204 3.455 5.348 7.84 10.64 12.59
7 1.239 2.167 2.833 4,255 6.346 5.04 12.02 14.07
a8 1.647 2.733 3.490 5.071 7.344 10.22 13.36 15.51
it} 9 2.088 3.325 4.168 5.899 8.343 11.35 14.68 16.92

(Y
(=]

2.558 3.940 4.865 6.737 9.342 12.55 15.99 18.31
3.053 4.575 5.578 7.584 10.341 13.70 17.28 19.68

M

X°=3 (o)

12 3571 5226 6304 8438  11.340 1485 1855  21.03

13 4107 5892 7042 9209 12340 1598 1981  22.36

e 14 4660 6571 7790 10165 13339 1712 2106  23.68

where 15 5220  7.261 8547 11037 14339 1825 2231 2500
16 5812 7962 9312 11912 15338 1937 2354 2630

7. . 17 6.408 8672 10085 12792 16338 2049 2477  27.59

X<ls Chi-squared, 18 7015 9390 10865 13.675 17.338 2160 2599  28.87

2 stands for summation, 19 7633 10117 11651 14562 18338 2272 2720  30.14

b
o

0 |S the Gbsewed Values £ 8.260 10.851 12.443 15.452 19.337 23.83 28.41 21.41

. th t d | 22 9.542 12.338 14.041 17.240 21.337 26.04 30.81 33.92

e 15 e expec ed values. 24 10.856 13.848 15.659 19.037 23.337 28.24 33.20 36.42
26 12.198 15.379 17.292 20.843 25.336 30.43 35.56 38.89

28 13.565 16.928 18.939 22.657 27.336 32.62 37.92 41.34

30 14.953 18.493 20.599 24.478 29.336 34.80 40.26 43.77

40 22.164 26.509 29.051 33.660 35.335 45.62 51.80 55.76

50 27.707 34.764 37.689 42,942 45.335 56.33 63.17 67.50

=)
o

37.485 43.188 46.459 52.294 59.335 £6.98 74.40 79.08




Find the best climate model given current information

land-surface - ABL - radiation interactions

above-ABL
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% negative feedback above optimal values

— DOSTIVE fERIDICK

———= surface l3yer/ABL processes ——= RANO-SUrtace ——— = ra0iation == == - NEalive feecback

Exascale Co-Design Center for

Sea ice concentration (%)

.20 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Sea surface temperature (deg C)

Materials in Extreme Environments

Ab-initio Methods

Molecular Dynamics

Phase-Field Modeling

Continuum Methods

Inter-atomic force model,
equation of state,

Defect and interface mobility,
nucleation

Direct numerical simulation of
multi-phase evolution

Multi-phase material response,
experimental observables

» 16 GPa
-0.2

2.0

a)_l b)

Code: Qbox/LATTE
Motif: Particles and

| wavefunctions, plane
wave DFT with nonlocal
norm-conserving,
ScalAPACK, BLACS, and
custom parallel 3D FFTs
Prog. Model: MPI

Code: SPaSM/ddcMD

Motif: Particles, domain
decomposition, explicit time
integration, neighbor and
linked lists, dynamic load
balancing, parity error
recovery, and in situ
visualization

Prog. Model: MPI + Threads

Code: AMPE/GL

Motif: Regular and
adaptive grids, implicit
time integration, real-
space and spectral
methods, complex order
parameter (phase, crystal,
species)

Prog. Model: MPI

Code: VP-FFT/ALE3d

Motif: Regular and irregular
grids, implicit time
integration, 3D FFTs,
polycrystal and simgle
crystal plasticity,

Prog. Model: MPI




Where are we at Iin finding statistical estimators?

Find the

best estimator
or model

+ (sample) data

'

0(data)



Can we turn model design into a computation?

Find the

best estimator
or model

+ (sample) data

e H(da,!a,)



he UQ Problem with sample data
mate. P(u') = p'[X > a

1- Unknown or partially known
o measure of probability on R

d:(dl,...,dn)ERn

n i.i.d samples from u'

Your estimation:
function of the data (9 (d)




Estimation error Q(d) _ (I)(MT)

Statistical
Error

5((9,,LLT) —

“d~(pt)m

[0(d) - @(u)]*

Optimal bound on the statistical error

(0
max & (6, )

Optimal statistical estimators

min max £ (6, u)

0 ucA



Game theory and statistical decision theory

John Von Neumann Abraham Wald



The universe

Estimator Measure of probability

9 . Loss/Statistical Error _ ,LL
(0, p)

Minimize Maximize



Computer The universe

Estimator Measure of probability

9 . Loss/Statistical Error _ ,LL
(0, p)

Minimize Maximize



The space of admissible scenarios along with
the space of relevant information,
assumptions, beliefs and models tend to be
Infinite dimensional, whereas calculus on a
computer Is necessarily discrete and finite

v 1 —|0|1 @01

A 0
000 0|01 011 ~0]0|1
NER IR SERERE o1 IR
Figure 1. Truth tables
X X X X
y y y y
Figure 2. Logic gates
‘ XAY e xvy ‘— X—=Yy ‘ x®y
y Y 4 iy y

Figure 3. De Morgan equivalents

vy x=y XDy
Figure 4. Venn diagrams

Arithmetic and Boolean logic




We need a form of calculus allowing us to
manipulate infinite dimensional information
structures




New form of reduction calculus
A simple example

Paul Is given one pound of play-doh.

What can you say about how much mass he is
putting above a if all you have is the belief that
he is keeping the seesaw balanced around m?




10,000 children are given one pound of play-doh.
On average, how much mass can they put above a
While, on average, keeping the seesaw balanced

around m?
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What Is the least upper

~

o |11

If all you know Is

0 A
Trl
nwe A:=M([0,1])

poound on
X > aﬂ
o | Eu[X]] = m ?
]
a 1

Answer

mell

sup E o [p[X > al

Il := {7'(' S M(A) : {"uwﬂ‘[4




mwell
= {7 € MM((0,1))) : Eypor[B,[X]] = m]|
0 A A «a 1
m q
sup E o |[1[X > a]| = sup
mell QeM([0,1]) : Eglg]=m




N
0 A A «a 1
mq
sup B, |[1[X > a]] = sup
mell QeM([0,1]) : Eg[g]=m

S . 4
Lg~Q [mm(a, 1)}




sup B, [p[X > a]

mell
1= {7 € M(M(0,1))) : Epr[E,[X]] = m }
A a
0 T
: T
sup Ej o || X > al| = o
mell




Why develop this form of calculus? What else
could we do?




Computer The universe

Estimator Measure of probability

9 . Loss/Statistical Error _ ,LL
(0, p)

Minimize Maximize



Min/Max Tree

Allows you to design optimal experimental campaigns
and turn the process of scientific discovery into a computation




Machine learning
STEP ONE: BEAT HUMAN AT

Develop the best
' model of reality ~
glven available
“information

4

smmm EHSHI‘IIE nu (12 Act based on
LT R That model

!

Gather new
Information




Provide the ability to compute optimal strategies in
Information games/wars

Provide the ability to make optimal decisions with regards to
Information available to and assumptions made by
participants in a conflict.

MDA STTR
solicitation

Quantifying MDA's confidence in
M&S-based predictions of BMD¢
performance

Early Warning System Satellite

Application: MDA
Missile Defense Strategies

PUTek

] Ballistic Missile Launch .‘aitrl




Well posed problem

UQ iIs the business of computing
optimal bounds or making optimal
predictions on quantities of interest

given available information

It Is about the optimal processing of
Information



Why optimal? 2010 Iceland ash cloud
Under-estimate risk = Loss of Life
Over-estimate risk = Economic Loss

Volcanic cloud continues to ground fllghts
Reykjavik Predicted extent _EARE
ICELAND of ash plume '

Emaffhﬂajoakuﬂ Monday, o
AN .‘___.«. -'_-'_'l wfcano 18:00GMT j"f:

~ ) .
REPUBLIC_. )5 3
OF |HEMND b London E 2 ,-

S

\;.'J — N ™
400km e, 5} ) S o ,_‘ ~
Source: Met Office © GRAPHIC NEWS

Airlines want payouts for ‘overreaction’

KATHERINE HADDON PUBLISHED: 2010/04/23 07:38:00 AM

AS EUROPE's airspace reopened and weary passengers

boarded long- delayed flights home, airline executives Qemrspace was being closed based on

pressed for government compensation to cover the Industry’s theoretical models, not on facts?9
huge losses for what some deemed an overreaction by

governments.



Why turn the UQ challenge into a well
posed mathematical question

What is the meaning of life?

re

A
- T.!

!r
VoA A

e~ %
- Yes, | thought it over
quite thoroughly. it's 42,



The UQ challenge in the prediction context
(Deepwater Horizon Disaster)

You want to find a
95% Interval of
confidence on the
i spill rate

6 different techniques lead to 6 distinct predictions
with non-overlapping 95% confidence intervals

— —>




You may as well ask Paul the octopus

Opponent Tournament Stage Date Prediction Result Outcome
= Poland Euro 2008 group stage 8 June 2008 | Germany 2-0 Correct
=== Croatia Euro 2008 group stage |12 June 2008 Germanyp]m 1-2 Incorrect
= Austria Euro 2008 group stage |16 June 2008 Germany 1-0 Correct
n Portugal Euro 2008 quarter-finals |19 June 2008 Germany 3-2 Correct
Turkey Euro 2008 semi-finals 25 June 2008 | Germany 3-2 Correct
== Spain Euro 2008 final 29 June 2008 | Germany”! 0-1 Incorrect
B Australia |World Cup 2010|  group stage |13 June 2010 Germanym] 4-0 Correct
™ Serbia World Cup 2010 group stage |18 June 2010 Serbia™¥ 0-1 Correct
= Ghana World Cup 2010 group stage |23 June 2010 Germanym] 1-0 Correct
—}= England |World Cup 2010 round of 16 |27 June 2010 Germany[m] 4-1 Correct

Argentina World Cup 2010| quarter-finals 3 July 2010 Germany[24] 4-0 Correct
= Spain World Cup 2010 semi-finals 7 July 2010 Spain[azl 0-1 Correct
—= Uruguay |World Cup 2010 3rd place play-off| 10 July 2010 Germany 3-2 Correct

Paul the Octopus (hatched in 2008, died
October 2010) came to worldwide attention
with his accurate predictions in the 2010
World Soccer Cup.



Available Information defines the (optimization)
problem to solve

You don’t want to ignore possibly relevant
Information

| | ANATOMY OF O-RING

RRRRRRRR
T GA!

aaaaaaa

The initial leak could 1

have been resealed

by debris, but flight -

stresses caused gap | | & T

to open again. B . i - Y
i i 3

2003 Space Shuttle Columbia disaster



Why you don’t want to add possibly
false assumptions

What gets us into trouble is not
what we don't know.

It's what we know for sure that
just ain't so.

--Mark Twalin

In particular be careful about
assumptions concerning the
occurrence and impact of rare
events.




The design of most of our nuclear power plants is based
on the assumption of the availability of a steady supply
of electricity to power the cooling system pumps for both
the reactor cores as well as nearby “spent fuel ponds”
where decommissioned reactor fuels rods are stored.

Our nuclear power plants are only required to
store enough fuel on hand to keep the backup
generators running for one week.



2008 NASA-funded study by the National Academy of Sciences Severe
Space Weather Events—Understanding Societal and Economic Impacts.”

Carrington event (solar super-storm of 1859)

“Telegraph systems all over Europe and North America failed, in
some cases giving telegraph operators electric shocks.
Telegraph pylons threw sparks. Some telegraph systems
continued to send and receive messages despite having been
disconnected from their power supplies. Compasses and other
sensitive instruments reeled as if struck by a massive magnetic
fist.”



2008 NASA-funded study by the National Academy of Sciences

"~ Severe Space Weather Events—
Understanding Societal and Economic Impacts.”

Regions susceptible to
system collapse due to
the effects of extreme

geomagnetic disturbance.

Location
nuclear power
plants




THE
HUFFINGTON
POST

400 Chernobyls

Posted: 01/03/11 11:23 AM ET

MIT engineer warns of nuclear Armageddon, urges preventative measures

There are nearly 450 nuclear reactors in the world, with hundreds more either under construction or in the planning stages.
Imagine what havoc it would wreak on our civilization, and the planet's ecosystems, if we were to suddenly experience not just
one or two nuclear meltdowns, but 400. In this article, you will come to understand that unless we take significant preventative
measures, this Apocalyptic scenario is not only possible, but probable.

Over the past 152 years the Earth has been struck by at least two naturally occurring severe geomagnetic solar storms of such
a magnitude that if they were to occur today, in all likelihood would initiate a chain of events leading to catastrophic failures at
most of our world's nuclear reactors. During the Great Geomagnetic Storm of May 14-15, 1921, brilliant aurora displays were
reported in the Northern Hemisphere as far south as Mexico and Puerto Rico, and in the Southern Hemisphere as far north as
Samoa. Just 62 years earlier, an even more powerful solar storm, referred to as "The Carrington Event," raged from August 28
to September 4, 1859.



The UQ challenge in the prediction context
(Deepwater Horizon Disaster)

You want to find a
95% Interval of
confidence on the
i spill rate

6 different techniques lead to 6 distinct predictions
with non-overlapping 95% confidence intervals

— —>




In developing this calculus we have

Uncovered extreme brittleness of Bayesian Inference.

Bayesian Brittleness. H. Owhadi, C. Scovel, T. Sullivan. 2013.
arxiv:1304.6772

Discovered new Selberg Integral formulas.

Brittleness of Bayesian inference and new Selberg
formulas. H. Owhadi, C. Scovel. 2013. arXiv:1304.7046



P[A|B] = P[B\A]%

Posterior

f|data] = Likelihood data/|f]

prior|6]

prior|datal

Reverend Thomas Bayes

1701-1761

Pierre Simon Laplace
1749-1827

Application of Bayes theorem in absence of genuine prior
iInformation has fueled a 250 years old debate with practical
consequences in science, industry, medicine and law

When the prior is the data generating distribution

No controversy. Bayesian estimators are optimal.

When the prior may not be the data generating distribution

The controversy starts when Bayesian estimators are
used without rigorous performance analysis.



A warm-up problem

You have a bag containing 100 coins

99 coins are fair

1 always land on head ¢

FRONT BACK

You pick one coin at random from the bag
You flip it 10 times and 10 times you get head

What is the probability that the coin that you have
picked is the unfair one?



Answer (11)

]P)_ | |
P[B]  1+99-(0.5)10

D>.

P[A|B] = P[B|A] ~ 0.91

A: The coin IS unfair B: You observe 10 heads

Robustness |f

bag contains 101 coins

and
fair coins are slightly unbalanced:

probability of a head is 0.51

Then
(1) still a good approximation of correct answer

What if random outcomes are not head or tail but decimal
numbers, perhaps given to finite precision?



mate @(MI) — IUIIX > a’I

/’[’I . Unknown or partially known
. measure of probability on R

We observe  d = (dl, Cee dn) c R"

n i.i.d samples from u!

n
d € Bg’ = Hi:l Bg(ﬂ?@)
Bs(x): open ball of radius ¢ centered on x
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I I | | I I



Bayesian Answer Bayesian model class

60O

M(R) | (o) |0 €oej

po—* %_\) Assume
\ 1T: Random

element of

ut e {ud)|0coei
Model is well specified

u' & {u(0) |6 € OF
Model is misspecified




Questions

What happens to posterior values if our Bayesian
model is a little bit wrong?

How sensitive Is Bayesian Inference to
local misspecification?

G.E.P.BOoX  “Eysentially, all madels are arang,

wnong do they ltave to be to nol be
7"



Answer

If you perturb the model (prior) just a
little and If the resolution of your
measurements is fine enough, then no
matter the size of the data your posterior
values can be anything you want

~igure. As measurement
resolution & — 0, the
smooth dependence of the
prior value on the prior
(top-left) shatters into a
patchwork of diametrically
opposed posterior values.




Are these results compatible with classical
Robust Bayesian Inference?

Perform posterior Sensitivity Analysis over classes of
priors

Box (1953) Huber (1964) Wasserman(1991)

Classical Robust Bayesian Inference:

What you do

not know is finite |

> Robustness

Our brittleness results:

What you know ) Brittleness
is finite




s Bayesian Inference Brittle?
Where do we go from here?

Robust Bayesian Inference as it currently stands leads to
Brittleness under finite information or local misspecification

Why? Robust Bayesian Inference as it currently stands is based
on estimates posterior to the observation of data

Can we fix it?

Perhaps: compute robustness and accuracy estimates prior to
the observation of the data

Need to compute optimal priors

Difficulty Need a new form of reduction calculus allowing us to
solve optimization problems over spaces of measures
over spaces of measures and functions
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