Houman Owhadi

CSE15

Main Question

Can we, to some degree, turn a scientific problem into a UQ problem and, to some degree, solve it as such in an automated fashion using techniques developed to deal with missing information in epistemic and model uncertainty?

Example Problem: Find a method for solving (1) as fast as possible to a given accuracy

$$
\begin{aligned}
& \text { (1) } \begin{array}{r}
\left\{\begin{array}{r}
-\operatorname{div}(a \nabla u)=g, \\
u=0, \\
u \in r^{2} \\
\\
\Omega \subset \mathbb{R}^{d} \quad \\
\partial \Omega \text { is piec. Lip. }
\end{array}\right. \\
a \text { unif. ell. } \\
a_{i, j} \in L^{\infty}(\Omega)
\end{array} \log _{10}(a)
\end{aligned}
$$

Multigrid Methods

Multigrid: [Fedorenko, 1961, Brandt, 1973, Hackbusch, 1978]
Multiresolution/Wavelet based methods
[Brewster and Beylkin, 1995, Beylkin and Coult, 1998, Averbuch et al., 1998]

- Linear complexity with smooth coefficients

Problem Severely affected by lack of smoothness
Robust/Algebraic multigrid
[Mandel et al., 1999,Wan-Chan-Smith, 1999, Xu and Zikatanov, 2004, Xu and Zhu, 2008], [Ruge-Stüben, 1987]

- Some degree of robustness but problem remains open with rough coefficients

Why? Interpolation operators are unknown
Don't know how to bridge scales with rough coefficients!

Low Rank Matrix Decomposition methods

Fast Multipole Method: [Greengard and Rokhlin, 1987] Hierarchical Matrix Method: [Hackbusch et al., 2002]
[Bebendorf, 2008]:

$$
N \ln ^{d+3} N \text { complexity }
$$

Common theme between these methods

Their process of discovery is based on intuition, brilliant insight, and guesswork

Can we turn this process of discovery into an algorithm?

Answer: Yes by identifying an underlying information game and finding an optimal strategy for playing the game

[Owhadi 2015, Multi-grid with rough coefficients and Multiresolution PDE decomposition from Hierarchical Information Games, arXiv:1503.03467]

Resulting method:

$$
N \ln ^{2} N \text { complexity }
$$

This is a theorem

Resulting method:

$$
\left\{\begin{aligned}
-\operatorname{div}(a \nabla u) & =g \text { in } \Omega \\
u & =0 \text { on } \partial \Omega
\end{aligned}\right.
$$

$H_{0}^{1}(\Omega)=\mathfrak{W J}^{(1)} \oplus_{a} \mathfrak{W}^{(2)} \oplus_{a} \cdots \oplus_{a} \mathfrak{W J}^{(k)} \oplus_{a} \cdots$
$<\psi, \chi>_{a}:=\int_{\Omega}(\nabla \psi)^{T} a \nabla \chi=0$ for $(\psi, \chi) \in \mathfrak{W}^{(i)} \times \mathfrak{W}^{(j)}, i \neq j$

Theorem For $v \in \mathfrak{W}^{(k)}$

$$
\frac{C_{1}}{2^{k}} \leq \frac{\|v\|_{a}}{\|\operatorname{div}(a \nabla v)\|_{L^{2}(\Omega)}} \leq \frac{C_{2}}{2^{k}}
$$

$$
\|v\|_{a}^{2}:=<v, v>_{a}=\int_{\Omega}(\nabla v)^{T} a \nabla v
$$

Looks like an eigenspace decomposition

$$
\begin{aligned}
& u=w^{(1)}+w^{(2)}+\cdots+w^{(k)}+\cdots \\
& w^{(k)}=\text { F.E. sol. of PDE in } \mathfrak{W}^{(k)} \\
& \text { Can be computed independently }
\end{aligned}
$$

$B^{(k)}$: Stiffness matrix of PDE in $\mathfrak{W}^{(k)}$

Theorem

$$
\frac{\lambda_{\max }\left(B^{(k)}\right)}{\lambda_{\min }\left(B^{(k)}\right)} \leq C
$$

$$
\downarrow
$$

Just relax in $\mathfrak{W}^{(k)}$ to find $w^{(k)}$
Quacks like an eigenspace decomposition

Multiresolution decomposition of solution space

Solve time-discretized wave equation (implicit time steps) with rough coefficients in $\mathcal{O}\left(N \ln ^{2} N\right)$-complexity

Swims like an eigenspace decomposition

\mathfrak{V} : F.E. space of $H_{0}^{1}(\Omega)$ of dim. N

Theorem The decomposition

$$
\mathfrak{V}=\mathfrak{W}^{(1)} \oplus_{a} \mathfrak{W}^{(2)} \oplus_{a} \cdots \oplus_{a} \mathfrak{W}^{(k)}
$$

Can be performed and stored in

$$
\mathcal{O}\left(N \ln ^{2} N\right) \text { operations }
$$

Doesn't have the complexity of an eigenspace decomposition

Basis functions look like and behave like wavelets:
Localized and can be used to compress the operator and locally analyze the solution space

Discovery process Identify underlying information game

$$
\left\{\begin{aligned}
-\operatorname{div}(a \nabla u) & =g \text { in } \Omega, \\
u & =0 \text { on } \partial \Omega,
\end{aligned}\right.
$$

Measurement functions: $\phi_{1}, \ldots, \phi_{m} \in L^{2}(\Omega)$

Player A

Player B

Chooses

$$
\begin{aligned}
& g \in L^{2}(\Omega) \\
& \|g\|_{L^{2}(\Omega)} \leq 1
\end{aligned}
$$

$$
\text { Sees } \int_{\Omega} u \phi_{1}, \ldots, \int_{\Omega} u \phi_{m}
$$

$$
\text { Chooses } u^{*} \in L^{2}(\Omega)
$$

$$
\left\|u-u^{*}\right\|_{L^{2}(\Omega)}
$$

Deterministic zero sum game

Player A \& B both have a blue and a red marble At the same time, they show each other a marble

How should A \& B play the (repeated) game?

Optimal strategies

Game theory

 are mixed strategiesOptimal way to
play is at random

Player B

$$
q \bigcirc \quad \bigcirc 1-q
$$

A 's expected payoff
John Von Neumann
Player A

$$
1-p \bigcirc
$$

John Nash

$$
\begin{aligned}
& =3 p q+(1-p)(1-q)-2 p(1-q)-2 q(1-p) \\
& =1-3 q+p(8 q-3)=-\frac{1}{8} \quad \text { for } q=\frac{3}{8}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Player A } \\
& \text { Chooses } \\
& g \in L^{2}(\Omega) \\
& \|g\|_{L^{2}(\Omega)} \leq 1
\end{aligned} \quad \text { Player B }
$$

Continuous game but as in decision theory under compactness it can be approximated by a finite game

Abraham Wald

The best strategy for A is to play at random Player's B best strategy live in the Bayesian class of estimators

Player B's class of mixed strategies

Pretend that player A is choosing g at random

$$
g \in L^{2}(\Omega) \Longleftrightarrow \xi: \text { Random field }
$$

$$
\left\{\begin{array} { r l }
{ - \operatorname { d i v } (a \nabla u) } & { = g \text { in } \Omega , } \\
{ u } & { = 0 \text { on } \partial \Omega , }
\end{array} \Longleftrightarrow \left\{\begin{array}{rl}
-\operatorname{div}(a \nabla v) & =\xi \text { in } \Omega \\
v & =0 \text { on } \partial \Omega,
\end{array}\right.\right.
$$

Player B's bet

$u^{*}(x):=\mathbb{E}\left[v(x) \mid \int_{\Omega} v(y) \phi_{i}(y) d y=\int_{\Omega} u(y) \phi_{i}(y) d y, \forall i\right]$
Player's B optimal strategy?
Player B's best bet? \Rightarrow min max problem over distribution of ξ

Computational efficiency $\Rightarrow \xi \sim \mathcal{N}(0, \Gamma)$

Elementary gambles form deterministic basis functions for player's B bet

Theorem

$u^{*}(x)=\sum_{i=1}^{m} \psi_{i}(x) \int_{\Omega} u(y) \phi_{i}(y) d y$

Gamblets

ψ_{i} : Elementary gambles/bets
Player B's bet if $\int_{\Omega} u \phi_{j}=\delta_{i, j}, j=1, \ldots, m$

$$
\psi_{i}(x):=\mathbb{E}_{\xi \sim \mathcal{N}(0, \Gamma)}\left[v(x) \mid \int_{\Omega} v(y) \phi_{j}(y) d y=\delta_{i, j}, j \in\{1, \ldots, m\}\right.
$$

What are these gamblets?
 Depend on

- Γ : Covariance function of ξ (player's B decision)
- $\left(\phi_{i}\right)_{i=1}^{m}$: Measurements functions (rules of the game)

Example
[Owhadi, 2014]

$$
\begin{aligned}
& \Gamma(x, y)=\delta(x-y) \\
& \phi_{i}(x)=\delta\left(x-x_{i}\right)
\end{aligned}
$$

$$
a=I_{d} \Longleftrightarrow \psi_{i}: \text { Polyharmonic splines }
$$

[Harder-Desmarais, 1972] [Duchon 1976, 1977,1978]
$a_{i, j} \in L^{\infty}(\Omega) \longleftrightarrow \psi_{i}$: Rough Polyharmonic splines [Owhadi-Zhang-Berlyand 2013]

What is player's B best strategy?

What is player's B best choice for

$$
\Gamma(x, y)=\mathbb{E}[\xi(x) \xi(y)] ?
$$

$$
\begin{aligned}
& \int_{\Omega} \xi(x) f(x) d x \sim \mathcal{N}\left(0,\|f\|_{a}^{2}\right) \\
& \|f\|_{a}^{2}:=\int_{\Omega}(\nabla f)^{T} a \nabla f
\end{aligned}
$$

$$
\mathcal{L}=-\operatorname{div}(a \nabla \cdot)
$$

The recovery is optimal (Galerkin projection)

Theorem If $\Gamma=\mathcal{L}$ then $u^{*}(x)$ is the F.E. solution of (1) in $\operatorname{span}\left\{\mathcal{L}^{-1} \phi_{i} \mid i=1, \ldots, m\right\}$

$$
\left\|u-u^{*}\right\|_{a}=\inf _{\psi \in \operatorname{span}\left\{\mathcal{L}^{-1} \phi_{i}: i \in\{1, \ldots, m\}\right\}}\|u-\psi\|_{a}
$$

$$
\mathcal{L}=-\operatorname{div}(a \nabla \cdot)
$$

(1) $\left\{\begin{array}{rr}-\operatorname{div}(a \nabla u)=g, & x \in \Omega, \\ u=0, & x \in \partial \Omega,\end{array}\right.$

Optimal variational properties

Theorem

$\sum_{i=1}^{m} w_{i} \psi_{i}$ minimizes $\|\psi\|_{a}$
over all ψ such that $\int_{\Omega} \phi_{j} \psi=w_{j}$ for $j=1, \ldots, m$

Variational characterization

Theorem ψ_{i} : Unique minimizer of
$\left\{\begin{array}{l}\text { Minimize } \\ \text { Subject to }\end{array}\right.$
$\|\psi\|_{a}$
$\psi \in H_{0}^{1}(\Omega)$ and $\int_{\Omega} \phi_{j} \psi=\delta_{i, j}, \quad j=1, \ldots, m$

Selection of measurement functions

Example Indicator functions of a Partition of Ω of resolution H

$$
\phi_{i}=1_{\tau_{i}}
$$

Theorem

$$
\left\|u-u^{*}\right\|_{a} \leq \frac{H}{\lambda_{\min }(a)}\|g\|_{L^{2}(\Omega)}
$$

Elementary gamble

ψ_{i} Your best bet on the value of u given the information that

$$
\int_{\tau_{i}} u=1 \text { and } \int_{\tau_{j}} u=0 \text { for } j \neq i
$$

Exponential decay of gamblets

Theorem

$$
\int_{\Omega \cap\left(B\left(\tau_{i}, r\right)\right)^{c}}\left(\nabla \psi_{i}\right)^{T} a \nabla \psi_{i} \leq e^{-\frac{r}{l H}}\left\|\psi_{i}\right\|_{a}^{2}
$$

Localization of the computation of gamblets

$\psi_{i}^{\text {loc, } r}$: Minimizer of
$\begin{cases}\text { Minimize } & \|\psi\|_{a} \\ \text { Subject to } & \psi \in H_{0}^{1}\left(S_{r}\right) \text { and } \int_{S_{r}} \phi_{j} \psi=\delta_{i, j}\end{cases}$ for $\tau_{j} \in S_{r}$

> | No loss of accuracy if |
| :--- |
| localization $\sim H \ln \frac{1}{H}$ |

$$
u^{*, \operatorname{loc}}(x)=\sum_{i=1}^{m} \psi_{i}^{\mathrm{loc}, \mathrm{r}}(x) \int_{\Omega} u(y) \phi_{i}(y) d y
$$

Theorem If $r \geq C H \ln \frac{1}{H}$

$$
\left\|u-u^{*, l o c}\right\|_{a} \leq \frac{1}{\sqrt{\lambda_{\min }(a)}} H\|g\|_{L^{2}(\Omega)}
$$

Formulation of the hierarchical game

Hierarchy of nested Measurement functions

$\phi_{i_{1}, \ldots, i_{k}}^{(k)}$ with $k \in\{1, \ldots, q\}$

$$
\phi_{i}^{(k)}=\sum_{j} c_{i, j} \phi_{i, j}^{(k+1)}
$$

Example

$\phi_{i}^{(k)}$: Indicator functions of a hierarchical nested partition of Ω of resolution $H_{k}=2^{-k}$

$$
\phi_{2}^{(1)}=1_{\tau_{2}^{(1)}}
$$

$$
\phi_{2,3}^{(2)}=1_{\tau_{2,3}^{(2)}}
$$

$$
\phi_{2,3,1}^{(3)}=1_{\tau_{2,3,1}^{(3)}}
$$

In the discrete setting simply aggregate elements (as in algebraic multigrid)

Formulation of the hierarchy of games

Player A

Chooses
$g \in L^{2}(\Omega)$
$\|g\|_{L^{2}(\Omega)} \leq 1$

Player B

Sees $\left\{\int_{\Omega} u \phi_{i}^{(k)}, i \in \mathcal{I}_{k}\right\}$
Must predict
u and $\left\{\int_{\Omega} u \phi_{j}^{(k+1)}, j \in \mathcal{I}_{k+1}\right\}$

Player B's best strategy

$$
\xi \sim \mathcal{N}(0, \mathcal{L})
$$

$\left\{\begin{aligned}-\operatorname{div}(a \nabla u) & =g \text { in } \Omega, \\ u & =0 \text { on } \partial \Omega,\end{aligned}\right.$

$$
\left\{\begin{aligned}
-\operatorname{div}(a \nabla v) & =\xi \text { in } \Omega, \\
v & =0 \text { on } \partial \Omega,
\end{aligned}\right.
$$

Player B's bets

$$
u^{(k)}(x):=\mathbb{E}\left[v(x) \mid \int_{\Omega} v(y) \phi_{i}^{(k)}(y) d y=\int_{\Omega} u(y) \phi_{i}^{(k)}(y) d y, i \in \mathcal{I}_{k}\right]
$$

The sequence of approximations form a martingale under the mixed strategy emerging from the game

$$
\mathcal{F}_{k}=\sigma\left(\int_{\Omega} v \phi_{i}^{(k)}, i \in \mathcal{I}_{k}\right) \quad \begin{array}{|c}
v^{(k)}(x):=\mathbb{E}\left[v(x) \mid \mathcal{F}_{k}\right]
\end{array}
$$

Theorem

$$
\mathcal{F}_{k} \subset \mathcal{F}_{k+1}
$$

$$
v^{(k)}(x):=\mathbb{E}\left[v^{(k+1)}(x) \mid \mathcal{F}_{k}\right]
$$

Accuracy of the recovery

Theorem

$$
\left\|u-u^{(k)}\right\|_{a} \leq \frac{H_{k}}{\lambda_{\min }(a)}\|g\|_{L^{2}(\Omega)}
$$

$$
H_{k}:=\max _{i} \operatorname{diam}\left(\tau_{i}^{(k)}\right)
$$

$$
\phi_{i}^{(k)}=1_{\tau_{i}^{(k)}} \quad \operatorname{diam}\left(\tau_{i}^{(k)}\right) \leq H_{k}
$$

In a discrete setting the last step of the game recovers the solution to numerical precision

Gamblets Elementary gambles form a hierarchy of deterministic basis functions for player's B hierarchy of bets

Theorem $u^{(k)}(x)=\sum_{i} \psi_{i}^{(k)}(x) \int_{\Omega} u(y) \phi_{i}^{(k)}(y) d y$
$\psi_{i}^{(k)}:$ Elementary gambles/bets at resolution $H_{k}=2^{-k}$

$$
\psi_{i}^{(k)}(x):=\mathbb{E}\left[v(x) \mid \int_{\Omega} v(y) \phi_{j}^{(k)}(y) d y=\delta_{i, j}, j \in \mathcal{I}_{k}\right]
$$

Gamblets are nested

$$
\begin{equation*}
\mathfrak{Y}^{(k)}:=\operatorname{span}\left\{\psi_{i}^{(k)}, i \in \mathcal{I}_{k}\right\} \tag{1}
\end{equation*}
$$

Interpolation/Prolongation operator

$R_{i, j}^{(k)}=\mathbb{E}\left[\int_{\Omega} v(y) \phi_{j}^{(k+1)}(y) d y \mid \int_{\Omega} v(y) \phi_{l}^{(k)}(y) d y=\delta_{i, l}, l \in \mathcal{I}_{k}\right]$
$R_{i, j}^{(k)}$ Your best bet on the value of $\int_{\tau_{j}^{(k+1)}} u$ given the information that

$$
\int_{\tau_{i}^{(k)}} u=1 \text { and } \int_{\tau_{l}} u=0 \text { for } l \neq i
$$

At this stage you can finish with classical multigrid

But we want multiresolution decomposition

Elementary gamble

Your best bet on the value of u given the information that

$$
\int_{\tau_{i}^{(k)}} u=1, \int_{\tau_{i-}^{(k)}} u=-1 \text { and } \int_{\tau_{j}^{(k)}} u=0 \text { for } j \neq i
$$

$$
\chi_{i}^{(k)}=\psi_{i}^{(k)}-\psi_{i^{-}}^{(k)}
$$

$$
i=\left(i_{1}, \ldots, i_{k-1}, i_{k}\right)
$$

$$
\psi_{i_{1}, j_{1}}^{(2)} \psi_{i_{1}, j_{2}}^{(2)} \psi_{i_{1}, j_{3}}^{(2)} \psi_{i_{1}, j_{4}}^{(2)}
$$

$$
i^{-}=\left(i_{1}, \ldots, i_{k-1}, i_{k}-1\right)
$$

$$
-1+1
$$

$$
\chi_{i}^{(k)}=\psi_{i}^{(k)}-\psi_{i^{-}}^{(k)}
$$

Multiresolution decomposition of the solution space

$$
\mathfrak{V}^{(k)}:=\operatorname{span}\left\{\psi_{i}^{(k)}, i \in \mathcal{I}_{k}\right\}
$$

$\mathfrak{W}^{(k)}:=\operatorname{span}\left\{\chi_{i}^{(k)}, i\right\}$
$\mathfrak{W}^{(k+1)}$: Orthogonal complement of $\mathfrak{V}^{(k)}$ in $\mathfrak{V}^{(k+1)}$ with respect to $<\psi, \chi>_{a}:=\int_{\Omega}(\nabla \psi)^{T} a \nabla \chi$

Theorem

$$
H_{0}^{1}(\Omega)=\mathfrak{V}^{(1)} \oplus_{a} \mathfrak{W}^{(2)} \oplus_{a} \cdots \oplus_{a} \mathfrak{W}^{(k)} \oplus_{a} \cdots
$$

Multiresolution decomposition of the solution

Theorem

$$
u^{(k+1)}-u^{(k)}=\text { F.E. sol. of PDE in } \mathfrak{W}^{(k+1)}
$$

Subband solutions $u^{(k+1)}-u^{(k)}$
can be computed independently

Uniformly bounded condition numbers

$$
A_{i, j}^{(k)}:=\left\langle\psi_{i}^{(k)}, \psi_{j}^{(k)}\right\rangle_{a}
$$

$$
B_{i, j}^{(k)}:=\left\langle\chi_{i}^{(k)}, \chi_{j}^{(k)}\right\rangle_{a}
$$

Theorem

4.5

$$
u=\sum_{i} c_{i}^{(1)}\left\|\frac{\psi_{i}^{(i)}}{\left\|\psi_{i}^{(i)}\right\|_{a}}+\sum_{k=2}^{a}=\sum_{j} c_{j}^{(k)}\right\| \frac{x_{i}^{(k)}}{\left\|x_{i}^{(i)}\right\|_{a}}
$$

Coefficients of the solution in the gamblet basis

Operator Compression

Gamblets behave like wavelets but they are adapted to the PDE and can compress its solution space

Compression ratio $=105$
Energy norm relative error $=0.07$

Throw 99\% of the coefficients

Fast gamblet transform $\mathcal{O}\left(N \ln ^{2} N\right)$ complexity

$$
\text { Nesting } A^{(k)}=\left(R^{(k, k+1)}\right)^{T} A^{(k+1)} R^{(k, k+1)}
$$

Level(k) gamblets and stiffness matrices can be computed from level $(k+1)$ gamblets and stiffness matrices

Well conditioned linear systems

Underlying linear systems have uniformly bounded condition numbers
$\psi_{i}^{(k)}=\psi_{(i, 1)}^{(k+1)}+\sum_{j} C_{i, j}^{(k+1), \chi} \chi_{j}^{(k+1)}$

Localization

$$
\begin{array}{r}
C^{(k+1), \chi}=\left(B^{(k+1)}\right)^{-1} Z^{(k+1)} \\
Z_{j, i}^{(k+1)}:=-\left(e_{j}^{(k+1)}-e_{j^{-}}^{(k+1)}\right)^{T} A^{(k+1)} e_{(i, 1)}^{(k+1)}
\end{array}
$$

The nested computation can be localized without compromising accuracy or condition numbers

Theorem

Localizing $\left(\psi_{i}^{(k)}\right)_{i \in \mathcal{I}_{k}}$ and $\left(\chi_{i}^{(k)}\right)_{i}$ to subdomains of size
$\geq C H_{k} \ln ^{2} \frac{1}{H_{k}} \Rightarrow$ Cond. No $\left(B^{(k), \text { loc }}\right) \leq C$
$\geq C H_{k}\left(\ln ^{2} \frac{1}{H_{k}}+\ln \frac{1}{\epsilon}\right) \Rightarrow$

$$
\| u-u^{(1), \text { loc }}-\sum_{k=1}^{q-1}\left(u^{(k+1), \text { loc }}-u^{(k), \text { loc })} \|_{a} \leq \epsilon\right.
$$

Theorem
The number of operations to achieve accuracy ϵ is $\sim N\left(\ln ^{2} N+\ln \frac{1}{\epsilon}\right) \ln \frac{1}{\epsilon}$
Complexity

$$
\mathcal{O}\left(N \ln ^{2} N\right)
$$

$\varphi_{i}, A^{h}, M^{h} \longrightarrow \psi_{i}^{(q)}, A^{(q)} \longrightarrow \chi_{i}^{(q)}, B^{(q)} \longrightarrow u^{(q)}-u^{(q-1)}$

$$
\psi_{i}^{(q-1)}, \overparen{A^{(q-1)}} \xrightarrow{\longrightarrow} \chi_{i}^{(q-1)}, B^{(q-1)} u^{(q-1)}-u^{(q-2)}
$$

Parallel

 operating diagram both in space$$
\longrightarrow u^{(2)}-u^{(1)}
$$ and in

$$
\psi_{i}^{(2)}, A^{(2)} \longrightarrow \chi_{i}^{(2)}, B^{(2)}
$$ frequency

$$
\psi_{i}^{(3)}, A^{(3)} \longrightarrow \chi_{i}^{(3)}, \dot{B}^{(3)} \longrightarrow u^{(3)}-u^{(2)}
$$

$$
\psi_{i}^{(1)}, \widehat{A^{(1)}}
$$

Generalization to linear systems of equations

Identification of the optimal prior/mixed strategy in that setting

Approximate solution x of

$$
A x=b
$$

A : Known $n \times n$ symmetric positive definite matrix
b : Unknown element of \mathbb{R}^{n}
Based on the information that

$$
\Phi x=y
$$

Φ : Known $m \times n$
rank m matrix $(m<n)$
$b^{T} b \leq 1$
y : Known element of \mathbb{R}^{m}

Game theoretic formulation

Player A

 Chooses $b \in \mathbb{R}^{n}$$$
A x=b
$$

Sees Player B

$$
b^{T} b \leq 1
$$

$y=\Phi x$
Chooses x^{*}

$$
\left\|x-x^{*}\right\|_{2}
$$

Zero sum game
Best way to play: Mixed strategy

Player B's mixed strategy

$$
\begin{array}{rl}
A x=b & A X=\xi \\
& \xi \sim \mathcal{N}(0, Q)
\end{array}
$$

Player's B bet

$$
x^{*}=\mathbb{E}[X \mid \Phi X=y]=\Psi y
$$

Theorem

Accuracy of the recovery

$$
\left\|x-x^{*}\right\|_{K^{-1}}=\min _{z \in \mathbb{R}^{m}}\left\|Q^{-\frac{1}{2}} b-Q^{-\frac{1}{2}} A^{\frac{1}{2}} K^{\frac{1}{2}} \Phi^{T} z\right\|
$$

$$
\|x\|_{K^{-1}}^{2}:=x^{T} K^{-1} x \quad K=A^{-1} Q A^{-1}
$$

Player B's optimal decision

$$
Q=A \Rightarrow K=A^{-1}
$$

Theorem

$$
\left.\left\|x-x^{*}\right\|_{A}=\min _{z \in \mathbb{R}^{m}} \| A^{-\frac{1}{2}} b-A^{-\frac{1}{2}} \Phi^{T} z \right\rvert\,
$$

Perspectives

How is this related to model uncertainty?

Motivations for developing this kind of framework

Solving PDEs: Two centuries ago

$$
\Delta u=f
$$

Solving PDEs: Now. $\Delta u=f$

Find the best climate model now

Find a 95\% interval of confidence on average global temperatures in 50 years

Problem

- Incomplete information on underlying processes
- Limited computation capability
- You don't know \mathbb{P}
- You have limited data

Can a machine compute the best climate model?

2 Major problems

- Even if you have access to the most powerful computer in the universe, what do you compute?
- The space of models is infinite and calculus on a computer is discrete and finite.

Need a framework to turn this problem into a well posed one.
Need a calculus to manipulate infinite dimensional information structures

Framework: Game/Decision Theory

Player A

Chooses candidate

Player B

Sees data
Chooses model

\mathcal{E} (candidate, model(data))

Game theory and statistical decision theory

John Von Neumann

John Nash

Abraham Wald

The best strategy is to play at random
Obtained by finding the worst prior in the Bayesian class of estimators

Leads to optimization problems over measures over spaces of measures and functions

Collaborators

Clint Scovel (Caltech), Tim Sullivan (Warwick), Mike McKerns (Caltech), Michael Ortiz (Caltech), Lei Zhang (Jiaotong), Leonid Berlyand (PSU),

Research supported by

Air Force Office of Scientific Research

U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research, through the Exascale Co-Design Center for Materials in Extreme Environments

National Nuclear Security Administration
National Nuclear Security Administration

