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Abstract

We consider divergence form elliptic operators in dimension n > 2 with L™ co-
efficients. Although solutions of these operators are only Holder-continuous, we
show that they are differentiable (C @) with respect to harmonic coordinates. It
follows that numerical homogenization can be extended to situations where the
medium has no ergodicity at small scales and is characterized by a continuum
of scales. This new numerical homogenization method is based on the trans-
fer of a new metric in addition to traditional averaged (homogenized) quantities
from subgrid scales into computational scales. Error bounds can be given and
this method can also be used as a compression tool for differential operators.
© 2006 Wiley Periodicals, Inc.

1 Introduction and Main Results

Let © be a bounded and convex domain of class C>. We consider the benchmark
PDE

—div(a(x)Vu(x)) =g inQ

1.1
G u=>0 in 082

where g is a function in L>(2) and x — a(x) is a mapping from 2 into the
space of positive definite symmetric matrices. We assume a to be symmetric and
uniformly elliptic with entries in L™ (£2).

e Is it possible to upscale (1.1)?

Homogenization theory [15, 54] allows us to do so by transferring bulk (averaged)
information from subgrid scales into computational scales. This transfer from a
numerical homogenization point of view is justified under two fundamental as-
sumptions:

e ergodicity at small scales and
e scale separation.

Can we get rid of these assumptions?
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e Can we numerically homogenize (1.1) when a is arbitrary? In particular,
can we when « is characterized by a continuum of scales with no ergodicity
at small scales?

What do we mean by numerical homogenization when a is arbitrary? It is
important to recall that F. Murat and L. Tartar’s theory of H-convergence [61] pro-
vides a mathematical framework for analysis of composites in complete generality
without any need for geometrical hypotheses such as periodicity or randomness.
This theory is based on a powerful tool called compensated compactness or the
div-curl lemma introduced in the 1970s by Murat and Tartar [60, 73], which has
been characterized by a wide range of applications and refinements [26]. Here we
consider homogenization from a slightly different point of view: we want to solve
(1.1) on a coarse mesh, and we want to understand which information should be
transferred from fine scales to coarse scales when the entries of a are arbitrary. For
that purpose we need a new form of compensation given in Section 1.1.

It is important to observe that if one needs to solve (1.1) only one time (with
one g) the method proposed here does not reduce the number of numerical oper-
ations.! Indeed. we need to compute (1.1) n times (n being the space dimension)
with 0 in the right-hand side in (1.1) and linear boundary conditions. However,
if one needs to solve (1.1) for a large number (M) of different right-hand sides g
(M > n, which would happen if one tries to optimize specific properties of u with
respect to g) then the methods proposed here have a practical use since they basi-
cally say that after solving (1.1) n times it is sufficient to solve (1.1) on a coarse
mesh (with N”?" nodes instead of N, for instance) M times.

Let us recall that (1.1) can be solved in O(N(In N)"*?*) operations using hier-
archical matrix methods [9, 10, 11, 12, 13] or in O(N) operations using iterative
methods (see [76. 77]).

Finally, the point of view of this paper is to observe the “redundancy” of so-
lutions of (1.1) at small scales rather than “fast computation.” Indeed, it is not
obvious that (1.1) can be homogenized when the medium does not satisfy the usual
assumptions on periodicity, ergodicity, or scale separation. Moreover, if (1.1) can
indeed be homogenized. it is important to understand what minimal quantity of
information should be kept from small scales to obtain an accurate homogenized
operator. Once the correct coarse parameters are identified (the bulk quantities and
the upscaled metric), one can try to model, estimate, or simulate them, but the first
step is to identify them.

1.1 A New Form of Compensation
To introduce the new form of compensation, we need to introduce the so-called

a-harmonic coordinates associated to (1.1), i.e., the weak solution of the boundary

1t will be shown in [67] that for parabolic and reaction-diffusion equations the situation is differ-
ent: the methodology introduced in this paper can be used to reduce the number of operations even
when one needs to solve these equations only once.
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value problem
(1.2) divaVF =0 inQ
F(x) =x on d%2.

By (1.2) we mean that F is an n-dimensional vector field F(x) = (F(x),...,
F,(x)) such that each of its entries satisfies

IdivaVF,- =0 inQ

(1.3)
Fi(x) = x; on 2.

The new compensation phenomenon is controlled by the following object:

DEFINITION 1.1 We write

(1.4) o :="VFaVF.
We write p,, for the anisotropic distortion of o defined by
Amax(0 (X))
(1.5) Ly 7= €SSSup, (——)
’ Prea| 3n(o ()

where Amax(M) and Amin(M) denote the maximal and minimal eigenvalues of M,
respectively.

DEFINITION 1.2 Indimensionn = 2, we say that o is stable if and only if u, < o0
and there exists a constant € > 0 such that (tr(¢)) '€ € L(Q).

Remark 1.3. According to [4], in dimension 2 if a is smooth then o is stable.
According to [1]. F is always an homeomorphism in dimension 2 even with a; ; €
L ().

THEOREM 1.4 Assume that o is stable and n = 2. Then there exist constants
a > 0and C > 0 such that (VF) 'Vu € C*(Q) and

(1.6) I(VF) ' 'Vullcaey < Cligl~e)-

Remark 1.5. The constant a depends on £2, Amax (@) /2min(@), and p1, . The constant
C depends on the constants above. Anyin(a). and I(tr(@)) "¢ 1) We use the
notation Amax (@) := SUp, .o SUP: - TE(:E and Apax (@) := infcq infig - TEat.

Remark 1.6. If one considers a sequence a, such that 1, and ||(tr(o, )) = Iz
are uniformly bounded away from oo and Ayin(a.) and Ay, (a.) are uniformly
bounded away from 0 and o0, then (1.6) is uniformly true. If we consider a period-
ically oscillating sequence a. (x) = a(x/€), o, < o©, and I(te(a) " iy <
oo, then (1.6) is uniformly true.

Remark 1.7. It is easy to check from the proofs of Theorem 1.4 and Theorem 2.4
that if (tr(c,))~" € L9(2) (with ¢ > 2), then it is possible to replace ||g[[;~) by
lgllLro in (1.6) with p depending on g. More precisely, if (tr(o,))™" € L*(2).
then it is possible to replace ||g|l .~ by gl 12+« (q) in (1.6) for any € > 0.
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(a) a in log scale. (b) Vu. (¢) (VF:-_1 Vu.

FIGURE 1|.1. Change of metric on the disk.

Remark 1.8. We don’t need a to be symmetric to obtain 1.4, but for the clarity
of the presentation we have chosen to restrict ourselves to that case. We have not
analyzed Neumann boundary conditions; this will done in a later work.

Remark 1.9. We will use the notation Vyu = (VF) 'Vu. In dimension 2, it is
known [1, 4, 6] that the determinant of V F is strictly positive almost everywhere
and the object Vyu is well-defined. In dimension 3 and higher Vyu is well-defined
when o is stable.

This phenomenon can be observed numerically. In Figures 1.1(a) and 1.2(a) a
is given by a product of random functions oscillating over a continuum of scales.
The entries of the matrix VF are in L? (Figure 1.2(b)), the entries of the gradient
of u in the Euclidean metric are in L” (Figures 1.1(b) and 1.2(c)). yet (VF) 'Vu
is Holder-continuous (Figures 1.1(c) and 1.2(d)).

Let us now introduce the compensation phenomenon in dimension n > 3. We
call B, the Cordes parameter associated to o defined by

(trlo (x)])?
1.7 ki ulfo@oe )]/
A7) Bo :=esssup, .o (" r[To {.\']O’(-\')])

Observe that since f, is also given by
- 2
(Z?:] Aiax)”
Zrl ;'LJ ¥
i=1"io(x)

where (A; yr) denotes the eigenvalues of M, it is a measure of the anisotropy of o.

(1.8) Bo =ess supxeg(n =

DEFINITION 1.10 Indimension n > 3, we say that o is stable if and only if B, < |
and, if n < 4, that there exists a constant € > 0 such that (tr(e'))"/>"2¢ € L'(Q).

Remark 1.11. According to [4, 21] in dimension 3 and higher ¢ can be unstable
even if a is smooth. We refer to Figure 1.6 for an explicit example.

Let us write

-

n N pl2 I/p
(l-g) "U"W{f'pfﬂl = (f ( Z |B,HJU|-) d.r) i

o i.j=1



METRIC-BASED UPSCALING 679

(a) a in log scale. (b) One of the entries VF.

. e

(c) Vu. (d) (VF)" 'V

FIGURE 1.2. Change of metric on the torus.

THEOREM 1.12 Assume that o is stable and n = 3. Then F is an automorphism on
i = 2.p

Q. Moreover, there exist constants p > 2 and C > 0 such thatuo F e W; ()

and

: 1
(1.10) luo F~'lly2rq) < Cllglixc.
Remark 1.13. The constant p depends on n, , and B,. The constant C depends
on the constants above, Ayin(a). and, it n < 4, on ||(tr(o N2 2 Loy

In the following theorem we do not need to assume that €2 is convex.

THEOREM 1.14 Assume n > 2 and (tr(c))~" € L>™(R). Let p = 2. There exists a
constant C* = C*(n. 32) > 0 such that if B, < C* then there exists a real number
v > 0depending only on n, Q, and p such that

(1.11) I(VF)'Vullgy g dt < Cliglieq):

Remark 1.15. The constant C in (1.11) depends on n, ¥, 2, C*. Anin(a). llallL~),
o, and ||(tr(a) " | =)

1.2 Dimensionality Reduction

Observe that (1.1) is a priori an infinite-dimensional problem since a and g can
be irregular at all scales. Yet according to Theorems 1.4 and 1.12, whatever the
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(a) ;. (b) i =g¢;oF.
FIGURE 1.3. The Galerkin elements.

choice of g, at small scales, solutions to (1.1) are correlated to F, which lives in
a functional space of dimension n. More precisely, we will propose a rigorous
justification of a variation of the multiscale finite element method” introduced by
Hou and Wu [50] in its form refined by Allaire and Brizzi [2] in situations where
the medium is not assumed to be periodic or ergodic (these methods are already
rigorously justified when the medium is periodic [2, 50]).

Let 7, be a coarse conformal mesh on € composed of n-simplices (triangles
in dimension 2 and tetrahedra in dimension 3). Here /i is the usual resolution of
the mesh defined as the maximal length of the edges of the tessellation. Let us call
¥ (7;,) the maximum over of the n-simplices K of 7, of the ratio between the radius
of the smallest ball containing K and the largest ball inscribed in K. We assume
v (73) to be uniformly bounded in /.

We write V, € H'(Q) the set of piecewise linear functions on the coarse mesh
vanishing at the boundary of the tessellation. We write \}, the set of interior nodes
of the tessellation and ¢; (i € A},) the usual nodal basis function of V,, satisfying

(1.12) @i(y;) = 8ij.
We consider the elements (v, );-; defined by
(1.13) Vi == g¢; o F(x).

Let us write uy, the solution of the Galerkin scheme associated to (1.2) based on
the elements (V7 );c ;. Observe that the number of elements is on the order of 7™
and we have the following theorem:

THEOREM 1.16 Assume that o is stable and n = 2. Then there exist constants
a, C > 0 such that

(1.14) lu = wpllyr < Ch¥|IgllL>(e)-

~Let us recall that the multiscale finite element method is inspired from Tartar’s oscillating test
functions [74].
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Remark 1.17. The constant a depends only on n, Q, and p,. The constant C
depends on the objects mentioned above plus ||(tr(6)) ™' || .1 (q)s Amin(@). Amax (@),
and y (7).

Remark 1.18. Theorem 1.16 is also valid with @« = 1 as in Theorem 1.23. The
only difference between these two theorems lies in the constant C. In the proof
of Theorem 1.16 we use the property u o F~' € C'*(), and in the proof of
Theorem 1.23 we use the property u o F~' € W22(Q).

Remark 1.19. Let us recall that uj, is an element of the space X, spanned by
(Vi)ien; obtained as the solution of the linear problem

(1.15) alyi upl = (i, 8120
where «[ -, -] is the bilinear form on Hol (2) defined by

(1.16) alv, w)] = vaan.
Q

It follows from Theorem 1.16 that solutions to (1.1) live in the H'-norm neighbor-
hood of a low-dimensional space.

Remark 1.20. The proof of Theorem 1.16 is done for the exact function v; and not
for its discrete version on a fine mesh. If a is regular at a given small scale hq,
then it is easy to check that Theorem 1.16 remains valid as long as the edges of
the fine mesh are smaller than /. A more intriguing case is when a is discrete and
discontinuous on a fine mesh. Numerical experiments show that theorems such
as 1.16 and 1.4 remain valid, but to justify them for the discrete version of the
harmonic coordinates F and elements v; one would have to adapt our theorems to
the discrete setting. In order to remain concise, we have chosen not to include that
adaptation in this paper.

Remark 1.21. We keep the composition rule used in [2]. The only difference be-
tween the elements (1.13) and the ones proposed by Hou, Wu, Allaire, and Brizzi
lies in the fact that we use the global solution to (1.2) and not a local one computed
on each triangle of the coarse mesh through an oversampling technique. We refer
to Remark 3.1 for further comments.

Remark 1.22. Let S be the stiffness matrix a[y;, ¥;]. Then S~' is in general dense
(characterized by N? entries where N is the number of nodes of the mesh). Yet
surprisingly, by combining Theorem 1.16 with theorem 5.4 of [13], one can ap-
proximate S~' (in the L2-norm) with hierarchical matrix M y; such that the matrix
vector product by My, requires only O (N (In N)"*?) operations.

In dimension n > 3 we have the following estimate:

THEOREM 1.23 Assume that o is stable, n > 3, and ||(tr(a)) ™" || 1~(a) < oc. Then
there exist constants «, C > 0 such that

(1.17) le — upllyr < Chligllr=g)-
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FIGURE 1.4. Support of the elements ¢; and ;.

Remark 1.24. The constant C depends on n, ¥(7,), R, Bos Amax(@), Amin(a), and
[(tr(a) | 1 ()

1.3 Galerkin with Localized Elements

For clarity we will restrict ourselves from now on to dimension 2; the general-
ization of the statements to higher dimensions is conditioned on the stability of o
(and the application of Theorem 1.14).

The elements (1.13) can be highly distorted and nonlocal (Figure 1.4) since
(1.18) supp(¥;) := F~' (supp(g;)).

It follows that the elements y; are piecewise linear on a fine mesh different from
the one on which a is defined and F has been computed. Is it possible to avoid
that difficulty by solving (1.1) on a coarse mesh with localized elements? The
answer is yes, but the price to pay for the localization will be the discontinuity of
the elements and the fact that the accuracy of the method will depend on a weak
aspect ratio of the triangles of the tessellation in the metric induced by F.

More precisely, consider a triangle K of the tessellation, and call a, b, and ¢
the nodes of K and @ the interior angle of the triangle (F(a). F(b), F(c)) that is
the closest to /2. We call the weak aspect ratio of the triangle K in the metric
induced by F the quantity

: I
1.19 F (K):= :
(1.19) i (K) sin(d)

So qn“:in(K') is large if the triangle (F(a). F(b), F(c)) is flat (all its interior angles
are close to 0 or r). We define

(1.20) Miin = SUp Nk, (K).

KeT,
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FIGURE 1.5. Localized Galerkin elements &;.

Let us recall that although the coefficients of the PDE (1.1) are irregular, it is
well-known [70] that F is Holder-continuous. Thus it makes sense to look at the
value of F at a specific point. Now let v be a function defined on the nodes of the
triangle K € 7. and let us denote by a. b. and ¢ the nodes of that triangle. It is
usual to look at the coarse gradient of v evaluated at the nodes of the triangle K,
i.e., the vector defined by

=]
(1.21) Vu(K) == (b—ﬂ‘) (1(!))—1_{(3)).
c—a vic) — via)

If nf. (K) < oc, then the following object, called the gradient of v evaluated on
the coarse mesh with respect to the metric induced by F, is well-defined:

=
F(b) — F(a) v(b) —via)
77 : -
(123 VrulK): (F((‘)—F{a]) (t.-'(c)—v(al)'

DEFINITION 1.25 We say that the tessellation 7}, is not unadapted to F if and only
if the determinant of V F(K) is strictly positive for all K € 7.

Remark 1.26. Note that if the tessellation 7 is not unadapted to F then n;; (K) <
oo; Definition 1.25 contains the additional condition that there is no inversion in
the images of the triangles of 7, by F.

Now consider the nodal elements (&;),-; defined by

Ei(-“j )} (S,'j

(1.23) s
Vr&(x) = constant within each K € 7j,.

If the mesh is not unadapted to F, then the elements (Figure 1.5) (1.23) are well-
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defined and given by

Ei(x) =14 (F(x) — F(x;))Vr;(K) ifi~Kandx € K

(1.24) :
£0)=0 in other cases

where the notation i ~ K means that i is a node of K. Observe that the elements
&; are discontinuous at the boundaries of the triangles of the coarse mesh; however,
they are easier to implement since they are localized in these triangles. Denote by
Z), the vector space spanned by the functions &;. For K € 7, we denote by ag the
bilinear form on H'(K) defined by

(1.25) aglv. w] := [TVL’HVH?.

K
We will denote by H'(7,,) the space of functions v € L*(2) such that the restric-
tion of v to each triangle K belongs to H'(K). We will write for v. w € H'(T,)
(1.26) a’lv,w]:= ) ak[v, wl.

KeT,
The localized finite element method can be formulated in the following way: look
for u’ € Z, such that for all i € N,
(1.27) a'lg.u’] = (. 8-
We have the following estimate:

THEOREM 1.27 Assume that o is stable and that the mesh is not unadapted to F.
Then there exists a constant « > 0 such that

(1.28) @ [u—u'D'"? < Crpuh®llgll~)-
Remark 1.28. For a bilinear from B] - . - | we write B[v] := B[v. v].

Remark 1.29. The constant « depends only on n, Q, €, and p,. The constant C
depends on the objects mentioned above plus [|(tr(a)) ' || .1q)-

Remark 1.30. The bilinear operator a*[ -, -] on Z, is characterized by a constant
matrix within each triangle K € 7}, equal to

(1.29) TWVF(K) " ("VFaVF)x(VF(K))

where (v)x means the average of v over K with respect to the Lebesgue measure
{v)k == ﬁ [, v(x)dx, vol(K) being the Lebesgue measure of volume of K).

The error bound given in Theorem 1.27 is given in the norm induced by a*[ - . - ].
We would like to obtain an error bound with respect to the usual H'-norm. Ob-
serve that u/ is discontinuous at the boundaries of the triangles of the coarse mesh,
so we have to find an accurate way to interpolate «” in the whole space using its
values at the nodes of the coarse mesh. Let us denote by F(N},) the image of the
nodes of 7, by F.
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Let 77 represent the triangulation of F(A\}). Let ¢! be the standard piecewise
linear nodal basis of 7. Let us denote by 7, the interpolation operator from the
space of functions defined on the nodes of 7}, into H'(2) defined by

(1.30) Tiv(x) i= ) vix)ef o F(x).

ieNy
Observe that for i € N}, v(x;) = Jpv(x;). We have the following estimate:

THEOREM 1.31 Assume that o is stable and that the mesh is not unadapted to F.
Then there exist constants a, C; > 0 such that

(1.31) lu — Tnte! Ny < Crha®llgli=e)-

Remark 1.32. The constant & depends only on n, €2, and y1,,. The constant Cy can
be written

(1.32) Cr 1= O (MIN( T v9)) 2

where C depends on the objects mentioned above plus || (tr(o))~ ' l21()s Amin(a),
and Amax(a). The quantity npa.x is defined by 1/sin@ where @ is the interior angle
of the triangles of 7, closest to 0 or 7, and n;,,, is defined by 1/siny where y is
the interior angle of the triangles of 7 ¥ closest to 0 or 7. Moreover,

(133) X vol(KF)
2 vV = 80p ————
xen, VOI(F(K))

where K © is the triangle whose nodes are the images of the nodes of K by F.

1.4 Numerical Homogenization from the Information Point of View

The Galerkin scheme described in Sections 1.2 and 1.3 are based on elements
containing the whole fine-scale structure of F. This represents too much informa-
tion. We can wonder what minimal quantity of information should be kept from
the scales in order to upscale (1.1). We would like to keep an accurate version of
(1.1) with minimal computer memory. This point touches the compression issue.
Images can be compressed. Can the same thing be done with operators?

This question has received an answer within the context of the fast multiplica-
tion of vectors with fully populated special matrices arising in various applications
[36]. Let us recall the fast multipole method and the hierarchical multipole method
designed by L. Greengard and V. Rokhlin [44]. Wavelet-based methods have been
designed by G. Beylkin, R. Coifman, and V. Rokhlin [3, 17, 16]. The concept
of hierarchical matrices has been developed by W. Hackbusch et al. [46]. More
precisely, we refer to [9, 10, 11, 12, 13].

The hierarchical matrix method is based on a compression of the inverse of
the stiffness matrix (see Remark 1.22). Here we consider compression from the
point of view of numerical homogenization. We look at the operator (1.1) as a
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bilinear form on Hc: (£2), and we will use V}, as space of test functions to zeom at
the operator associated to a at a given arbitrary resolution:

Qo HNU(Q R
(1.34) o e O(T =
(v, w)——»fg VvaVw.

The upscaled or compressed operator, written U, a, will naturally be a bilinear form
on the space of piecewise linear functions on the coarse mesh with Dirichlet bound-
ary condition:

Vi x Vs, > R
(1.35) Uha:l B N

(v, w) = Upalv, wl.

The question is how to choose U,a. To answer that question we can integrate (1.1)
against a test function ¢ in Vj,; then we obtain that

(1.36) ngbaVu = ftpg.
Q

Q
We will use the test function ¢ to “look at™ the operator (1.1) at the given resolution
h. We can decompose the first term in the integral above as a sum of integrals over
the triangles of the coarse mesh to obtain (we assume that o is stable)

(1.37) fV(,baVu = Z fV¢(x}a(.r)VF(x)(VF(.t)_}"Vu(.t)d.t.

Q KeTh k

Now V¢ is constant within each triangle K € 7. (VF(x)) 'Vu(x) is Holder-
continuous and thus almost a constant within each triangle K and equal to the
gradient of u evaluated on the coarse mesh with respect to the metric induced by
F.i.e., the following vector:

_(Fb) = F@)\" (ub) - ula)
i VRS (F(c) ~ F(a)) (u(c) - u(a))

where a. b, and ¢ are the nodes of the triangle K. It follows that the tensor aV F can
be averaged over each triangle of the coarse mesh, and we will denote by (aV F) g
its average. In conclusion, a good candidate for the upscaled operator Ua is the
bilinear form given by the following formula: for v, w € V,

(1.39) Upalv, w] := Z TVuaVF)x(VF(K))™ 'Vuw.
KEI'IK

Observe that the only information kept from the small scales in the compressed
operator (1.39) are the bulk quantities (aV F)g and the nonaveraged quantities
F(b) — F(a) where a and b are nodes of the triangles of the coarse mesh. The
latter quantity can be interpreted as a deformation of the coarse mesh induced by
the small scales (or a new distance defining coarse gradients). In the particular
case where a = M(x/e) and M is ergodic, then as € | 0 (aV F)g converges to
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Cmcal points

FIGURE 1.6. a in dimension 3.

the usual effective conductivity obtained from homogenization theory and VF(K)
converges to the identity matrix. It follows that the object (1.39) recovers the for-
mulae obtained from homogenization theory when the medium is ergodic and char-
acterized by scale separation. Let us now show that formula (1.39) can be accurate
beyond these assumptions.

To estimate the compression accuracy, we have to use the upscaled operator
Upa to obtain an approximation of the linear interpolation of « on the coarse mesh.
We look for u™ € V,, such that for all i € N},

(1.40) Upalpi, u™] = (@i, 8)12(0)-

The price to pay for the loss of information on the small scales is the loss of ellip-
ticity. This loss can be caused by two correlated factors:

e the new metric can generate flat triangles and
e the upscaled operator can become singular.

The first factor is due to the localization of the scheme. The second factor does not
appear with Galerkin schemes. It is not observed in dimension 2, but it can’t be
avoided in higher dimensions in the sense that the upscaled operator has no reason
to remain elliptic and local.

Indeed. consider a box of dimension 3, and set in that box empty tubes of low
boundary conductivity, as shown in Figure 1.6. Set the left side of the box to
temperature 0°C and the right side to temperature 100°C. Then an inversion in the
temperature profile is produced around the critical points shown in Figure 1.6 (see
[4, 21]; instead of increasing from left to right in these regions the temperature
decreases). Now as the operator is upscaled, the information on the geometry of
the tubes is lost but the inversion phenomenon remains in the loss of ellipticity and
locality of the operator. We will address this issue further in a forthcoming paper.

Nevertheless, it is possible to prove that once stability is achieved, then the
method is accurate (if o is stable). More precisely, for a nodal function v, let us
define the homogeneous Dirichlet form on the graph induced by 7j:

(1.41) Enlv] == Z}u; — v

i~j
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We write i ~ j when those nodes share an edge on the coarse mesh. Let us define
the following stability parameter of the scheme:

? Unalv, w]
1.42 S™ = inf su —
S b e AT LT CA T !

Observe that 8™ depends only on the upscaled parameters so we have a control on
the stability.

DEFINITION 1.33 We say that the scheme is stable if and only if S > 0.

Remark 1.34. Let us recall that for v € V,, £,|v] can be bounded from below and
above by the L*-norm of the gradient of v. More precisely,

(1.43) Enlv] < 1VV125.0, < Nmaxnlv],

4""161)(
where 1, = 1/siné and @ is the closest interior angle of the triangles of 7}, to 0
or .

Remark 1.35. In practice, in dimension 2 the condition number of the scheme
associated to the upscaled operator is as good as the one obtained from a Galerkin
scheme by solving a local cell problem.

Let us denote by Z,u the linear interpolation of u over 7:
(1.44) Tyt i= Z u(x;)g;(x).
ieN,
We have the following estimate:

THEOREM 1.36 Assume that o and the scheme are stable and that the mesh is not
unadapted to F. Then there exist constants a, C,, > 0 such that

(1.45) 1Zhtt — U™ || g1y < Cnh®ligllL=0)-

Remark 1.37. The constant « depends only on n, §2, and p,. The constant C,, can
be written as

(1.46) Ci i uinlimes.

Sm
where C depends on the objects mentioned above plus || (tr(o))~'—* 21+ Amin(a),
and Anqgx(a).

The compressed operator allows us to capture the solution of (1.1) on a coarse
mesh (Figure 1.7). What information should be added to the compressed operator
in order to obtain fine-resolution approximation of u? The answer is a finer reso-
lution of F (Figure 1.8). Indeed, let 7 be the interpolation operator introduced in
(1.30); we then have the following estimate:
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(a) u. (b) u™. (c) Triangle of the coarse
mesh.

FIGURE 1.7. u estimated with the upscaled operator.

(a) Refined F. (b) Refined F. (c) Jpu.

FIGURE 1.8. Taylor expansion with respect to the new metric.

THEOREM 1.38 Assume that o and the scheme are stable and that the mesh is not
unadapted to F. Then there exist constants «, C,, > 0 such that

(1.47) le — Tnte" | g1 ) < Ch® gL~

Remark 1.39. The constant ¢ depends only on n. 2, and j¢,. The constant C,, can
be written

11‘}

/ ”;nu\ Nmax 6
1.48) Cp =C| ———
( ( S’m )
where C depends on the objects mentioned above plus || (tr(a)) ™' || ;1 q)+ Amin(@).
and A (a).

We want to compress a physical system from a fine-scale description (F) to a
coarse-scale description (C). There are two ways of doing so:

e cither we upscale directly from (F) to (C) or
e we do so in two steps: from (F) to an intermediate scale (I) and then from
(I) to (C).

Now if the scales (F). (I). and (C) are not completely separated, a technique based
solely on averaging (upscaling of bulk quantities) will produce two different results
(depending on the presence of an intermediate step). Thus it is important to check
the consistency of the numerical homogenization method if the metric information
F(x;) — F(x;) is upscaled in addition to traditional bulk quantities (aV F)g.
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Lot T 50 7" be a multiresolution tessellation of . Each 7" is a regular
conformal tessellation of ©2. Moreover, 7/*! is a refinement of 7'. Let us denote
by V' the space of piecewise linear functions on 77. We denote by B' the space
of bilinear operators on 7'. We want to compress (upscale) the bilinear operator
al -, -] on the multigrid 7°, ..., 7". We assume that the smallest scale n is fine
enough to capture the irregularities of a; in that case we define a" such that for all
v,uev”

(1.49) alv. u] :=alv. ul.

Since the gradient of an element of V" is constant within each triangle of 7",
a"[ -, -] can be defined by a mapping from 7" onto M,,, the space of n x n constant
matrices. We will denote by a”(K) the constant matrix associated to K € 7".°
Similarly, each bilinear operator of B can be defined by mapping from 7" onto
M,. We define, for k < p, U*”, the upscaling operator mapping B” onto B in
the following way (we assume that the tessellations 7; are not unadapted to F and
that the respective schemes are stable). Let B € B”.

e Let F € VP be the solution of

Blv. F]=0 forallveV”?

(1.50) :
Fi=x on [

where we have denoted by I'' the boundary of 7.
o The bilinear form &*? B is defined by its matrices U*? B(K) for K € T*:

(1.51) UPB(K) := (BVF)x(VF(K))™.

(- ) stands for the averaging operator

(1.52) (BVF)g := mllm > Vol(T)B(T)VF(T).
TeTP.TCK

For k < p < q, U satisfies the semigroup property

(1.53) W =urrure,

Note also that {99 = ;. In particular, if we define fork € {1..... n}

(1.54) a =U""a"

as the upscaled operator, the following semigroup property is satisfied: for k <
p<n
(1.55) a* = U*rar.

Semigroup properties (1.53) and (1.55) are essential to the consistency and coher-
ence of the numerical homogenization method.

3 The bilinear form (1.49) can be written as a sum of integrals over K € 7", The quantities Vv
and Vu are constant over these triangles; thus @ as a bilinear form over V" is determined by a
matrix.
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1.5 Numerical Homogenization from the Transport Point of View

The elliptic operator appearing in (1.1) can be seen as the generator of a sto-
chastic differential equation. This stochastic differential equation can reflect the
transport process of a pollutant in a highly heterogeneous medium such as soil.
The operator A — VVV, whose numerical homogenization is similar to that of
(1.1), can represent a physical system evolving in a highly irregular energy land-
scape V. The simple fact that this evolution taking place in a continuous domain
can be captured by a Markov chain evolving on a graph is far from being obvious
[72]. Our point of view here is to accurately simulate a Markov chain living on
a fine graph by an “upscaled” Markov chain living on a coarse graph. The main
question is how to choose the jump rate y;; of the random walk between the nodes
of the coarse graph. The answer is given by a finite-volume method.

Let us denote by 7,* the dual mesh associated to 7,,. 7,* can be obtained by
drawing segments from the midpoints of the edges of the triangles of 7}, to an
interior point in these triangles (the circumcenter to obtain a Voronoi tessellation,
but one can also choose the barycenter).

Let us denote by V; the control volume associated to the node i of the primal
mesh and y; the characteristic function of V;. The finite-volume method can be
expressed in the following way: look for u" € Z, (Z; being the space spanned by
the elements &; introduced in (1.23)) such that for all i € A\,

(1.56) a’ i u"] = (i @iz

Again, it follows from equation (1.56) that the only information kept from the
scales are the usual bulk quantities (effective conductivities at the edges of the dual
mesh) plus the metric information F(b) — F(a), where a and b are nodes of the
triangles of the primal mesh. Observe also that it is possible to generate with this
finite-volume method a coherent multiresolution compression similar to the one
introduced in Section 1.4. According to (1.56) the good choice for the jump rates
of the random walk should be

(1.57) Yij =a"[xi. &) ifi~ jandi # j.

To properly describe the transport process, one should look at a parabolic oper-
ator instead of the elliptic one. This issue will be addressed in [67]; we will restrict
ourselves to the elliptic case characterizing the equilibrium properties of the ran-
dom walk. Let us denote by S" the stability of the upscaled finite-volume operator.
[t is defined by

: s a*lv. w]
(1.58) SYe=: inf" su — —,
welZy I'EJE:, (E},[L‘]}l"‘{E;,Il.[‘l)l""

THEOREM 1.40 Assume that o and the scheme are stable (S* > 0) and that the
mesh is not unadapted to F. Then there exist constants «, C, > 0 such that

(1.59) I Znu — Zhu' | gy < Coah®liglle=@)
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and
(1.60) e — The" | a1 (@) < Co2h®lIgllL= o)
Remark 1.41. The constant & depends only on n, €2, and p,. The constant C,

can be written

*
Mmin

(1.61) Cy 1= C o2y (o)),

The constant C, > can be written

lmax{ajfi;u’?max W2
Sv ’

The constant C depends on the objects mentioned above plus || (tr(a)) ' |l .1 (q)»

Amin(@), and Agax(a).

(1.62) Cigii= C(

Remark 1.42. Observe that we need the additional condition A (0) < o0 to
prove the convergence of the method. Numerical experiments show that although
the finite-volume method keeps very little information from small scales, it is more
stable and accurate than the method presented in Section 1.4 (it is also more sta-
ble and almost as accurate as the Galerkin method, in which the whole fine-scale
structure of F is upscaled). That is why we believe that the constants in (1.61) and
(1.62) are not optimal.

1.6 Explicit Formulae in Laminar Cases

The harmonic coordinates can be explicitly computed in dimension 1. In this
section we will analyze a toy model to understand the effect of the new metric when
the coefficients of the partial differential equations are characterized by an infinite
number of overlapping scales. Our point is to show that the new metric becomes
multifractal.

Let 2 := (0, 1). Let V € L™(L), and let w(V) denote the weak solution of
the following Dirichlet problem:

_%ezv divie Vw) = f

w=0 on d%2.

With f € L™(2). We denote by w (V) the solution of (1.63). Denote by p. and
¢ the probability measures defined on the Borelian subset of (0, 1):

Jr eV dz
_f;,l eV dz
Define D(V) = (j;; e2V@dz ﬁ)l e~ 2V9dz)~!. Observe that in dimension 1, aV F
is a constant and is equal to D(V). Observe that (1.63) can be explicitly rewritten
d

|
. e DY
(1.65) el

(1.63)

(1.64) 140, x] :=

= f;
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In that sense the metric-based numerical homogenization is exact in dimension 1.
Equations such as (1.65) have been studied in dimension 1 in [39, 40] in order to
introduce a measure-theoretic way of defining differential operators on fractal sets
on the real line.

Let V, be a sequence in L™ (£2). We call a probability measure nondegenerate
if and only if it is atomless and the mass of any nonvoid open subset of Q2 is strictly
positive. We have the following theorem:

THEOREM 1.43 If u _‘f‘ and a weakly converge to nondegenerate probability mea-

sures (. and i, then D(V,)w(V,) converges pointwise to the unique solution of
the following differential equation with Dirichlet boundary condition:

(1.66) g =, ]

In the case of classical homogenization, note that . and p_ are simple Lebesgue
probability measures on [0, 1].

Let T denote the torus of dimension 1 and side of length 1, and let U € C'(T).
Let p € N/{0, 1}. Denote by T, the scaling operator denied on the space of func-
tions by T,U (x) := U(px), and let

n—1
(1.67) S, =) TuU.

p=0

Take V, = S,U in Theorem |.43. Then by the Perron-Frobenius-Ruelle theo-
rem [78], ,u:" and ;" weakly converge to some probability measure g, and p
(eigenvectors of the Ruelle transfer operator), and it is easy to check that they are
nondegenerate. Let us note that similarly it is possible to show that —5 In D(V,)
converges to the sum of topological pressures of U and —U with respect to the shift
induced by the multiplication by p on the space of p-adic decompositions [14, 63].

Theorem 1.43 says that the regularity of v corresponds to the regularity of
1 4[0, x]: thus it is natural to wonder what the regularity of that harmonic measure
is. To answer that question, we will consider the paradigm of binomial measures.
We refer to [68] for a detailed introduction to this subject: for the sake of complete-
ness we will recall its main lines below in our framework. We take U (x) € L*>(T)
with (a # b)

[

a for0<x <

(1.a5) b fori<ux<l.
Let us write

e B eb
[169} npy = m and m = m
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Then p fr" weakly converges to /., and that measure is self-similar in the sense that
it satisfies

(1.70) pa([x, ¥]1) = mop s ([2x. 2y]) + mypy (2x — 1, 2y — 1]).

For x € (0, 1) we denote by x;x;--- its 2-adic decomposition in the sense
that x = Y x,2". We denote by I, _, the cylinder of x € (0,1) such
that x;---x, = y;---Vp. [y is atomless but singular with respect to Lebesgue
measure. Moreover, it is easy to check [68] that p.. and therefore ¥ are Holder-
continuous and their Holder continuity exponent is not a constant.

More precisely, let us write

11 = =

(1.71) wp(x) =TT

and

(1.72) a(x) = lim a,(x)
H—0o0

whenever this limit exists. This limit exists for almost all x (with respect to
Lebesgue measure), and its value depends on the dyadic expansion of x. Denoting
by I,(x) the number of ones appearing in the first n digits of x, we have

L, (x LG
(1.73) a(x) = lim —(l - i(l}) log,(mg) — ﬂ log,(m;).

n—»oc nn Inn

Thus a(x) can take all the values between —log,(mg) and —log,(m;). However,
for almost all x with respect to Lebesgue measure,

1 | fa+b
(1.74) a(x) = g log,(mom;) = —m( o In(e” + é’b})-
Now it is possible to obtain from large-deviation theory ([32] and theorem 2. of
[68]) that

(1.75) Pla,(x) € (0 —€.a +€)) = | +c*(a).

PP being the uniform probability measure on (0. 1), c(g) = 1 —log,(m{ +m), and
¢* denoting the Legendre transform of ¢, i.e., ¢*(«) = inf,(ga — ¢(g)). Thus the
metric associated to our upscaling method is multifractal [25. 41. 52]. Let us recall
that multifractal formalism was originally introduced to describe the regularity of
the velocity field in turbulence [41] and to explain intermittency.

1.7 Literature

The issue of numerical homogenization partial differential equations with het-
erogeneous coefficients has received a great deal of attention and many methods
have been proposed.’ Let us mention a few of them:

4 Wavelet-based methods have been justified in dimension 1. Multiscale finite element methods
have been justified in periodic media under scale separation. Heterogeneous multiscale methods have
been justified in locally ergodic media under the assumption of scale sparation.
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multiscale finite element methods [2, 31, 37, 43, 47, 50, 64]
multiscale finite volume methods [53]

heterogeneous multiscale methods [30]

wavelet-based homogenization [7, 18, 19, 23, 29, 42]
residual free bubbles methods [20]

discontinuous enrichment methods [34, 35]
partition-of-unity methods [38]

energy-minimizing multigrid methods [75].

The methods mentioned above are part of a larger quest aimed at capturing high-
dimensional problems with a few coarse parameters [5, 45, 62, 69] . Paraphrasing
the outcome of a recent DOE workshop [28], we may understand the physics of
multiscale structures at each individual scale; nevertheless, without the ability to
“bridge the scales,” a significant number of important scientific and engineering
problems will remain out of reach.

2 Proofs

2.1 Compensation

Let us prove Theorem 1.4. We need a variation of Campanato’s result [22] on
non-divergence-form elliptic operators. Let us write for a symmetric matrix M,

bl IV
Yici kM
We consider the following Dirichlet problem:
2.2) Lyv=f
with Ly 1=
THEOREM 2.1 Assume that By < 1. If Q is convex, then there exists a real number

p > 2 depending only on n, Q, and By such that if f € LP(QQ) the Dirichlet
problem (2.2) has a unique solution satisfying

(2.1) Vy =

M;;(x)0;0;. We assume M to be elliptic and symmetric.

n
i, j=1

&4
(2.3) Iollyzr @) < ——Ivm fllLr.
] i ﬁM

Remark 2.2. By is the Cordes parameter (1.8) associated to M.

PROOF: Theorem 2.1 is a straightforward adaptation of theorem 1.2.1 of [57];
for the sake of completeness we will give the main lines of ideas leading to estimate
(2.3). Let us recall the Miranda-Talenti estimate [57].

LEMMA 2.3 Let Q C R" be a bounded and convex domain of class C*. Then for
each v € Wy > (2) we get the result

(2.4) fZ(Bjajv)zd.r sf(Au)zdx.
Q Q

i.j=1
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The Laplacian A : Wé"”(ﬂ) — LP(S2) is an isomorphism for each p > 1. Let
A~!(p) be the inverse operator A~' : LP(Q) — W, It is clear from (2.4) that
IA~'(2)|| < 1. Letr € (2. oc); by the convexity of the norms we have

(2.5) A~ ()l < C(p)
with
2.6) C(p) = 1A~ (.

Letting v be a solution of (2.2) (we refer to [57] for the existence of v, which is
obtained from a fixed-point theorem), we have

@7 Ivllyzr g < 1A P IAVILA@)-
Observing that Av = vy f + Av — vy Ly v, we can obtain

(2.8) lAvliLr@) < lvm fllLr@ + 1AV — vy LyvllLri)-
Then, following the proof of theorem 1.2.1 of [57], we have

n

(2.9) A — v Ly} g < f ﬁfﬁ( Z(a;aju}f’)d;-.
Q

i.j=I

Let us choose p > 2 such that 1 — C(p)Bs)° > (1 — B,;°)/2. Combining (2.7),
(2.8), and (2.9) we obtain that

n I/p
2C
2.10) ( f ( S :(Bsaju)"’)dx) e i,
Q I ﬁ“

i.j=1 -
which leads to estimate (2.3). O

Remembering the Sobolev embedding inequality
(2.11) IVollci-np () < Clivlly,

2P (@)
L]
Theorem 2.1 implies the Holder continuity of v in dimension n = 2.
We assume that o is stable. We denote by F~! the inverse of F (which is well-

defined if o is stable). Let Q denote the symmetric positive matrix given by the
equation

(2.12) Q) ((TVF“VF)) F7'()
: V)= ——r s
: e vey )°0 Y
and let w denote the solution of the following equation: for all ¢ € Cg*,
n -
8
2.13 ij0ijw = — :
(2.13) 2 Qudidyw [det(VF)[ o F-!

i.j=1

Let us now prove the following theorem:
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THEOREM 2.4 Assume that o is stable and that 2 is convex. Then there exists

a ]
constants p > 2 and C > 0 such that the solution of (2.13) belongs to Wy ()
and satisfies

(&
(2.14) IVelyirg < T ralel=e.
Remark 2.5. The constant « depends on Q and f,, while C depends on A, (a)
and, if n < 4, on ||(tr(0))"/2~2-¢ o e)-

PROOF: Now let us observe that
Vo tr(o) —1
2.1 —
2-13) det(VF)o F-! _ tw(o?)
Using the change of variables y = F(x) and choosing 1/¢" + 1/q = 1, we obtain
that

Vo tr(o |
2.16 N i '/ S < . det(VF))!\/ra
(2.16) det(VF) o F- ié Eiay I&lre e tr(o 2)( D L)
It is easy to check that
rq
e |ERaawmym]” < e f (@),
LPre(S2) (lmm( ))n;‘
For2 < n < 4 we choose ¢ = 1 in (2.17); for n > 5 we choose ¢ = n/2p. Then
a direct application of Theorem 2.1 and estimate (2.15) to equation (2.13) implies
the theorem (observe that 8o = B,). O

Let ¢ € C°(S2). Write ¢ := ¢ o F~'. Using Theorem 2.4 we obtain that

. - 5 g
(2.18) ( : Q,—-a,-a-w) - —(q‘). - ) :
4 Z 4 4 L) Idet(VF)l Qo }' =¥ L)

i.j=I1
Using the change of variable y = F(x), we deduce that

(2.19) («o, Y oij(@dw) o F) = —(¢. ®)r2cc)-

3
i.j=1 )

Let us observe that
n

(2.20) Y 0ij@9;w) o F = div(@@VF((Vw) o F)).

ij=1
After integrating by parts (and observing that VF (Vw)o F = V(wo F)), it follows
that

(2.21) alg.wo F] = (¢. 8)120)-

It follows from the uniqueness of the solution of the Dirichlet problem (2.21) that
w o F = u. Theorem 1.12 is then a straightforward consequence of Theorem 2.4
and the equality u o F~! = w.
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Remark 2.6. Using the change of variables y = F(x), we obtain forall ¢ € C3*(R2)
(2.22) alg. u] = Q@ il.
The comparison between (2.18) and (2.22) indicates that Q is a divergence-free

matrix. We have not used that property of Q explicitly in our proof above, but it is
present implicitly in the deduction of (2.21) from (2.20).

Remark 2.7. The only place where we use the convexity of £ is for the validity of
Lemma 2.3 (we refer to [57]).

The following lemma is a well-known result obtained from the De Giorgi—
Moser—Nash theory [27, 59, 63] of divergence form elliptic operators with discon-
tinuous coefficients (more precisely, we refer to [70] for global Holder regularity).

LEMMA 2.8 There exists C, @’ > 0 depending on Q2 and dax(a) /Amin(a) such that
F is a'-Holder-continuous and

(2.23) IFllce < C.

Theorem 1.4 is a straightforward consequence of the Sobolev embedding in-
equality (2.11), Theorem 2.4, Lemma 2.1, and the fact that Vyu = Vi o F. Let us
observe that in dimension 2, we have

| 1 1
(2.24) = _(»u'a =} _).
= ﬁa 2 Heo
and the condition 8, < | is equivalent to , < 0.
We will not assume €2 to be convex in Theorem 2.9 given below. Let N7*(Q)

(1 < p <00,0 < i < n) be the weighted Morrey space formed by functions
v : 2 — R such that ||v]|yrig, < o0 with

_ I/p
(2.25) lvlines) = sup ([ |x —.rol“‘lv(x)lf’) .
Q

XER

To obtain the Holder continuity of « o F~! in dimension n > 3 we will use corol-
lary 4.1 of [56]. We will give the result of S. Leonardi below in a form adapted to
our context.

Consider the Dirichlet problem (2.2). We do not assume 2 to be bounded.
We denote by W?”*(Q2) the functions in W?”(Q2) such that their second-order
derivatives are in N”*(w). '

THEOREM 2.9 There exists a constant C* = C*(n, p. A.0R2) > 0 such that if
By <C*and f € N P-%(Q), then the Dirichlet problem (2.2) has a unique solution

in WP+ N WUI'P(Q). Moreover, if 0 < 4 < n < p, then Vv € C*(Q) with
a=1—n/pand

(6
(2.26) IVvlican) = m”fll.w-um

where C = C(n, p, X, 02).
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Theorem 1.14 is a straightforward application of Theorem 2.9.

2.2 Dimensionality Reduction

Let us prove Theorem 1.16. We denote by X, the linear space spanned by the
elements ¥;. The solution of the Galerkin scheme satisfies a[u — u;, v] = 0 for all
v € X;,. Thus

.27 alu —uy) = inf alu — uy, u —'v].
I'EXp,

It follows by the Cauchy-Schwarz inequality that

(2.28) alu —uy) < l_iEnXt;‘ alu — v).

Now writing ¥ := v o F~! and using the change of variable y = F(x), we obtain
(2.29) alu —v] = QOlu — 1].

It follows in dimension n = 2 that

5 . " 5
(2.30) llze — upllyy < - ul'gtt;;, Vi — Vw|l;xq
with
(2.31) D:= [rl:fTVFaVF].
Q

Thus using the following standard approximation properties of the elements ¢;
(see, for instance, [33]).

(2.32) "igf_;' Vi — Vw20, < Cy(Tn)h* it "Cr','“lﬂ'n'
we obtain that

1/2

i o 5
(2.33) lu — up|l g < y(’?},}(_ ) IVa| cah®.
Amin(@)
We conclude by observing that for/ € R”
(2.34) [T:Tvravn = inf fTu + Vfa(l + V).
== FeCgE (@)
Q Q

Theorem 1.16 becomes a direct consequence of (2.30) and Theorem 2.4.
In dimension n > 3 we obtain from (2.29) that

}Lmilx( . - - - 3
) nf |[Vu — Vwl|l}; g,

(2.35 u—up|3, <
) " h H HI ;'Lmjn ({I) #eVs

It is easy to obtain that

(2.36) hmax (Q) < (det(@)) "2l (tr(0)) =2,
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We conclude by observing that u, < C(f,) and using the following standard
approximation properties of the elements ¢; (see, for instance, [33]):

(2.37) Jnf |Vd — Vwllg = Cy (Thlillyzz ).

2.3 Galerkin with Localized Elements

Let us prove Theorem 1.27. We assume that the coarse mesh is not unadapted
to F. Let K be a triangle of 7;,, and let @ be a node of K such that nf, (K) =

1/sin @ where @ is the interior angle between (F (a), F (b)) and (F(a), F([El)n), (b, c)
being the other nodes of K. Let us prove the following lemma:
LEMMA 2.10
(2.38) IVru(K) — Vru@)| < 3n5i (K| Villcal| FIIZ A
PROOF: Itis easy to check that
(2.39) u(b) — u(a) = (F(b) — F(a))Vii o F(a) + (F(b) — F(a)) - Gpa.

where the vector gy, is defined by
I
(2.40) Gba ;=[ [Va[F(a) + s(F(b) — F(a))] — Va[F (a)]}ds.
0
We will use the notation f,, := (F(b) — F(a))/|F(b) — F(a)|. We will denote by

fi- the unit vector obtained by a 90° rotation of fj, toward f.,. Defining g, as in
(2.40), we obtain that

(2.41) Vru(K) = Veu(a) + k
with

(242) k = Goa — My
with

fm(q}m = qra)
(243) A=t — —— =
ft‘a'fbu"'

which leads us to

(2.44) IVeu(K) — Veu(a)| <

IVillce I FIIS, h .

car~Jha+

The following lemma is a direct consequence of Lemma 2.10:
LEMMA 2.11 Let K € 7, and let x € Q2 then
(2.45)  |Vru(K) — Veu(x)| < 3n, [ Vidllcs(1 + | FIE,) (h + dist(x, K))*
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Let us denote by Z,u the interpolation of u over the space Zj:

(2.46) Zyu(x) = ) ux)&(x).
ieNj
LEMMA 2.12 We have
(2.47) a*lu — Zyu) < Col | Vilice | FII%, h* D.
PROOF: We have
(248) aglu — Zpu] = fT(Vpu{x} — Veu(K))o (x)(Vru(x) — Veu(K))dx
K

with o (x) := "VFaVF. Using the change of variables F(x) = y, we obtain that

(2.49) aglu — Zu) = f T(Vﬁ(‘\') — Veu(K))Q(y)(Vi(y) — Veu(K))dy,
F(K)

from which we deduce that

(2.50) aglu — Zyu) < Gl Vitllca | FlIE h5)? f sup TeQe.
F(K)
Thus,
(2.51) a*[u — Zyu) < Cgp I Vitllce | FIE h*)* D
where D has been defined by (2.31). O

Theorem 1.27 is implied by Lemma 2.12, Theorem 2.4, Lemma 2.8, and the in-
equality

(2.52) a*lu —u’] < a*[u — Zyu).
Let us now prove Theorem 1.31. By the triangle inequality
(2.53) alu — J},uf] < alu — Jyul + alJu — /AN

We write Jyu := (Jpu)o F~'. jt. u is a linear interpolation of & on the tessellation
TF. Now using the identity

(2.54) alu — Jyul] = Qlu — j;,u].
we obtain that
(2.55) alu — Jyul < llillc«h®D,

where we have denoted by h the maximal length of the edges of 7F. Observe
thath < h* || F||co. Theorem 1.31 is a consequence of inequalities (2.53), (2.55),
Lemmas 2.13 and 2.12, Theorem 2.4, and the inequality

a*[Zpu — ) < 2a*u — Zyu).
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LEMMA 2.13
- Ao 12 _
(2.56) al Jyu — J;,ttf] < 2611;]“;1;":;3“3_‘(&) a*[Zpu —u']
Amin(a)
and
(2.57) alJyu — Twu!) < pova*[Zpu — u’l.

PROOF: Let us write w := Jyu — Jyu’. We need to bound a[w]. We have
a*[Thwl]
a‘[zhw]

The value of a*[ Z,w] = a*[Z,u — u’ ] has already been estimated in Lemma 2.12.
Observe that

a’[Zyw].

(2.58) alw] =

(2.59) a’'lJyw] = Qw).
The function 1 is piecewise linear on 7°. Using property (1.43), we obtain that
(2.60) Q] = NpaxAmax (@) E[w].

Moreover, observing that

(2.61) Qo (det(a))'/?,

F= a

T (det(0))!2
we obtain that
(2.62) Amax(Q) < pl/*(det(a))' 2.

Equation (2.62) is valid in dimension 2; in dimension higher than 2 we would use
the inequality (2.36)

(2.63) Amax (@) < 12 (Ain(0)) "~ 273 (det(a))'/>.

We now need to bound from below ¢*[Z,w]/E,[w]. For K € T, let us denote by
H (K) the matrix

(2.64) H(K) = fT(VF(K))_'TVF(.\-}HVF(.:}(VF(K)}" dx.
K

We need to estimate inf};_, TIH(K)I. Let us denote by a, b, and ¢ the nodes of
K and

(2.65) f(x):=(F(x)— F(@)VF(K)™"-1
Let us observe that

(2.66) TIH(K)Il = fTVquf.
K
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Moreover, f(a) =0, f(b) = (b —a) -1, and f(c) = (¢ —a) - [. Let us assume
without loss of generality that | f(b)|/|b —a| = | f(c)|/lc — a|. Then

(2.67) TIH(K) = inf fTVu'aVu'.
weC™(Q)

wia)=0 g
w(b)=f(b)

The quantity appearing in (2.67) is the resistance metric distance between the
points a and b, and it is easy to check that (see, for instance, lemma 1.1 of [8])

- b 2
(2:68) inf fTVWﬂVw > ?tmin{a)vol(K)(M) :
weC™(Q) b —al
w(a)=0 K
wib)=f(b)
Thus
b—a)-1\°
(2.69) TH(K) > Amin(a]vnl([{)(%) |
—da

Let us observe that

b—a)-l 1
(2.70) |(b—a) |>

lb—al ~ nmax
It follows that
5 |

(2.?]} a*[zﬂl IU] > ”VIhu-'"E:lmin{“)_‘_-,_-

I6nr_nun
Thus

a*[zhw]

2.72 ——— > Anmi _—,
@12 Eaw] = e

which leads us to equation (2.56).

Remark 2.14. One of the methods employed with nonconformal elements to ensure
the stability and convergence of the scheme is the so-called patch test. In our proof
the stability condition and convergence are ensured by (2.72) and a uniform lower
bound on 77,,.x.

To obtain (2.57). let us observe that

(2.73) alw] = Q[w].
Thus
(2.74) alwl =Y | "V(K")Q()Vi(K")dy.
XET.I’JK;
It follows that
(2.75) alw] < v* Z f J“'“L(Q}TV@(K“’}Q(\»}W;(KFM\-
i = JT'Lmin(Q.) d -

KeThp (k)
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From equation (2.61) we obtain that

AI'I'I:!.:l’.(Q}
< Wg.
o) e 7
Next, observing that
(2.77) Z Tvw(KF)o(y)Vi(KHdy = a*[Z,w).
KeThp (k)
we obtain (2.57). O

2.4 Numerical Homogenization from the Information Point of View

In this section we will prove Theorem 1.36 and Theorem 1.38. The method
introduced in Section 1.4 can be formulated in the following way: look for u™ € Vj,
such that for all i € N,

(2.78) a*lgi. Zpu"] = (¢i. 8)120-
which implies the following finite-volume orthogonality property for all i € Nj:
(2.79) a‘lg;. Zuu™ —u] = 0.

Let us write w = u — Z,u". By equation (1.42) we obtain that

wip o b atlv 2w
(280) (S},[H.l) = S'" l“_’:gl (5;.[1.’])]"3 g

By the orthogonality property. we have

(2.81) a*[v, Z,w] = a*[v, Zyu — ul.

Thus

(2.82) a*[v, Zyw] < (kmax(@)' 2|V 200y (@* [ Zhu — u])'/2.
Using the inequality

(2.83) IVll72 gy < Mmaénlv],

we deduce that

(2:84) Enw]'? < %(:«.m;,xfammax)'—"-’(a'[z,.n —u))'”2.

It follows from (1.43) that

(2.85) IVZhu — Vu" 120y < i}‘g(km(tz))""'3(a”[fz';,u —u)'?,
and we deduce from the Poincaré inequality that

(2.86) I Znte — u™ 120y = Ca %(A,,m{a))‘-"%a*[z,,H —u])'2.

We obtain Theorem 1.36 from equations (2.85) and (2.86), Lemma 2.12, and The-
orem 2.4.
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Let us now prove Theorem 1.38. Using the triangle inequality, we obtain
(2.87) alu — Ju") < alu — Jyul + alTyu — Tpu™].

The object alu — J,u] has already been bounded from above by (2.55). Writing
w = Jyu — Ju", we have

(2.88) ati) =T e,

Enlw]
But &£,[w] has already been estimated in equation (2.84). It remains to notice that
(2.89) alJyw) = Q).

From this point the arguments are similar to the ones employed in Section 2.3;
indeed,

(2.90) O[] = Anax (D)IV | 12(0) = NayAmax (@) ER[w].

2.5 Numerical Homogenization from a Transport Point of View

We assume the mesh to be regular in the following sense: the nodes of the
Vornoi diagram of 7, are contained in the triangles of the primal mesh 7,. In
dimension 2 this means that for each triangle K € 7, the intersection of the median
of K (the circumcenter) belongs to the interior of K. Let us denote by Y}, the vector
space spanned by the functions x;. For v € Z; we define }, v by

2.91) Vivi= ) vixi.

ieN,
The metric numerical homogenization method can be formulated in the following
way: look for u* € Z, (the space spanned by the elements &) such that for all
i € Ny,

(2.92) a*[xi,u'l= (X, 8)r20:
which implies the following finite-volume orthogonality property for all i € A/},
(2.93) a“[xi,u" —ul =0.

Equation (2.92) can be written as
(2.94) Zu}']n ca V& = fg
I~y Vi

Let us write w := Z,u — u". From equation (1.58) we obtain that

RO
(2.95) GeD™ = 5l e

Using the orthogonality property of the finite-volume method. we obtain that for
vEY

(2.96) a‘lv,w]=- Z vi | n-a(VZu—Vu).

€Ny gy,
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Denoting by & the edges of the dual tessellation (edges of the control volumes),
we obtain that

(2.97) a‘[v,w] = Z (v — Uf)[”“ ca(VZu —Vu),
t',,iEEj: eij

where ¢;; is the edge separating the control volume V; from the control volume V;
and n;; is the unit vector orthogonal to e;; pointing outside of V;. It follows that

a*[v, w] < (ElwD' IV Zhu — Veull =)

1/2
5 |
@) ( Z |eij|-lmax(a)lmax(a)) .
¢‘r‘j€£,:
Now let us observe that
(2.99) D leij? < 3nma Vol(R)-
ejeky
We then have from equation (2.95)
3
En[wD? < —IVEZhu — Veul p=g:
(2.100) nlw]) S"” FZh Fulle=;)

1/2

* Nmax VOI(§2) (Apax (@) Amax (0))
Equation (1.59) of Theorem 1.40 is then a straightforward consequence of equation
(1.43) and Lemma 2.11.
Let us now prove equation (1.60) of Theorem 1.40. By the triangle inequality
(2.101) alu — Jyu'] < alu — Jhu) + alTpu — Tnu').
alu — Jyu] has already been estimated in equation (2.55). Writing w := Tt —
Jnut" we have
a*[Jhwl
Enlw]
But £,[w] has already been estimated in equation (2.100). It remains to note that

a*[Tpw)/Ex[w] has already been estimated in equations (2.59) and (2.60), thus
concluding the proof.

(2.102) alw] = Eplw].

3 Numerical Experiments

Let us now illustrate the implementation of this method. The domain is the unit
disk in dimension 2. Equation (1.1) is solved on a fine tessellation characterized by
66 049 nodes and 131 072 triangles. The coarse tessellation has 289 nodes and 512
triangles (Figure 3.1). It is important to recall that since our methods involve the
computation of global harmonic coordinates, the memory requirement and CPU
time are not improved if one needs to solve (1.1) only one time, whereas localized
methods such as the one of Hou and Wu or E and Engquist do improve the memory
requirement or the CPU time.
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(a) a. (b) TF.

FIGURE 3.2. Example 1, trigonometric multiscale.

The elliptic operator associated to equation (1.1) has been upscaled to an opera-
tor defined on the coarse mesh (compression by a factor of 300) using five different
methods:

e the Galerkin scheme described in Section 1.2 using the multiscale finite
element v;. denoted FEM_vr,

e the Galerkin scheme described in Section 1.3 using the localized elements
&, denoted FEM_E,

e the metric-based compression scheme described in Section 1.4, denoted
MBFEM,

e the finite-volume method described in Section 1.5, denoted FVM,

e a multiscale finite element method, denoted LFEM, where F is computed
locally (instead of globally) on each triangle K of the coarse mesh as the
solution of a cell problem with boundary condition F(x) = x on K.
This method has been implemented in order to understand the effect of the
removal of global information on the structure of the metric induced by F.
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A i o e ST e L o s

(a) Condition number. (b) Coarse-mesh L error.

FIGURE 3.3. Example 1, trigonometric multiscale.

Example 1 (Trigonometric Multiscale).
e l(l.l +sin(2rx/€;) 1.1 +sin(2mry/€p)
6\ 1.1 +sin(2wry/e)) 1.1 + cos(2mx/e3)

1.1 +cos(2mx/e3) 1.1 4+ sin(2ry/eq)

1.1 + sin(2y/€e3) 1.1 + cos(2mx /eq)

1.1 + cos(2mx/es)

1.1 4+ sin(2mwy/es)

+ sin(4x?y?) + 1),

where
1 1 1 1 1
G]—g. GZ—E, 63—ﬁ. 64—5, 65—65.

Figure 3.2 is an illustration of 77, the deformation of the coarse mesh (Fig-
ure 3.1) under the metric induced by F. The deformation is small since the medium
is quasi-periodic. The weak aspect ratio for triangles the coarse mesh in the metric
induced by F (defined by equation (1.20)) is n;,,, = 1.1252.

" Table 3.1 gives the relative error estimated on the nodes of the coarse mesh be-
tween the solution u of the initial PDE (1.1) and an approximation obtained from
the upscaled operator on the nodes of the coarse mesh. Table 3.2 gives the relative
error estimated on the nodes of the fine mesh between u and the 7,-interpolation
of the previous approximations with respect to F on a fine resolution. Figure 3.3(a)
gives the condition number of the stiffness matrix associated to the upscaled oper-
ator versus — log, i (logarithm of the resolution). Figure 3.3(b) gives the relative
L-distance between u and its approximation on the coarse mesh in log scale versus
—log, h (logarithm of the resolution).

Observe that for the LFEM method, this error increase with the resolution is
an effect of the so-called cell resonance observed in [2, 51]. This cell resonance
does not occur with the methods proposed in this paper. The finite-volume method
is characterized by the the best stability and one of the most accurate at a coarse
resolution. The increase in the error observed for this method as the resolution is
decreased is a numerical artifact created by the fine mesh: one has to divide the
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[Coarse mesh error | FEM_y [ FEM_& [MBFEM | FVM [ LFEM
(5 0.0042 | 0.0022 | 0.0075 | 0.0032 | 0.0411

L 0.0039 | 0.0024 | 0.0074 | 0.0040 | 0.0441

L™ 0.0059 | 0.0090 | 0.0154 | 0.0117 | 0.0496

"HT 0.0060 | 0.0262 | 0.0568 | 0.0203 | 0.0763

TABLE 3.1. Example I, trigonometric multiscale, coarse mesh error.

| Fine mesh error [ FEM_y | FEM_£ | MBFEM | FVM LFEM

L 0.0042 | 0.0085 | 0.0053 | 0.0080 [ 0.0593

I 0.0043 | 0.0082 | 0.0061 | 0.0078 | 0.0591

= 0.0063 | 0.0112 | 0.0154 | 0.0141 | 0.0597
H" 0.0581 | 0.0540 | 0.0778 | 0.0601 | 0.0943 \

TABLE 3.2. Example I, trigononmetric multiscale, fine mesh error.

coarse tessellation into coarse control volumes. These coarse control volumes are
unions of the control volumes defined on a fine mesh, and when the refinement
between the coarse and the fine mesh is small and the triangulation irregular, it
is not possible to divide the coarse tessellation into control volumes intersecting
the edges of the primal mesh close to the midpoints of those edges and the other
control volumes close to the barycenters of the coarse triangles.

Example 2 (High-Conductivity Channel). In this example a is random and charac-
terized by a fine and long-ranged high-conductivity channel. We choose a(x) =
100 if x is in the channel and a(x) = O(1) if x is not in the channel. The weak
aspect ratio of the triangles of the coarse mesh in the metric induced by F is
N = 2.2630. Table 3.3 gives the relative error estimated on the nodes of the
coarse mesh between the solution « of the initial PDE (1.1) and an approximation
obtained from the upscaled operator on the nodes of the coarse mesh. Table 3.4
gives the relative error estimated on the nodes of the fine mesh between « and the
Jy-interpolation of the previous approximations with respect to F on a fine resolu-
tion. Figure 3.5(a) gives the condition number of the stiffness matrix associated to
the upscaled operator versus — log, & (logarithm of the resolution). Figure 3.5(b)
gives the relative L,-distance between « and its approximation on the coarse mesh
in log scale versus — log, h.

Observe in Figure 3.4 that the effect of the new metric on the mesh is to bring
close together nodes linked by a path of low electrical resistance.

Remark 3.1. Let us recall that the natural distance associated to the Laplace op-
erator on a fractal space is also the so-called resistance metric [8, 55, 71]. Itis
thus natural to find that a similar (not equivalent) notion of distance allows the
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(a) a. b TF.

FIGURE 3.4. Example 2, high-conductivity channel.

/ ===
-— =
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(a) Condition number. (b) Coarse-mesh L' error.

FIGURE 3.5. Example 2, high-conductivity channel error plots.

[ Coarse mesheerror | FEM_v/ [ FEM_¢ | MBFEM | FVM | LFEM
‘ L 0.0022 | 0.0081 0.0127 | 0.0062 | 0.0519
- LT 0.0025 | 0.0096 | 0.0179 | 0.0081 | 0.0606
L® 0.0120 | 0.0227 | 0.0549 | 0.0174 | 0.1223
“HT 0.0120 | 0.0384 | 0.0919 | 0.0265 | 0.1514

" TABLE 3.3. Example 2. high-conductivity channel. coarse mesh error.

numerical homogenization PDEs with arbitrary coefficients. More precisely, the
analogues of the resistance metric here are the harmonic mappings. The analysis
of these mappings allows us to bypass boundary layer effects in homogenization
in periodic media [2] and to obtain quantitative estimates on the heat kernel of pe-
riodic operators [65] or to analyze PDEs characterized by an infinite number of

nonseparated scales [14, 66].
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IFine mesh error H FEM_vr [ FEM_& ]MBFEMl FVM ] LFEM ]

L' 0.0070 | 0.0155 | 0.0164 | 0.0121 | 0.0612
L7 0.0069 | 0.0153 | 0.0202 | 0.0123 | 0.0743
I 0.0133 | 0.0227 | 0.0573 | 0.0214 | 0.1226
“HT 0.0760 | 0.1032 | 0.1838 | 0.0820 | 0.2142

TaBLE 3.4. Example 2, high-conductivity channel, fine mesh error.

-

(a) a.

FIGURE 3.6. Example 3, random Fourier modes.

Example 3 (Random Fourier Modes). In this case, a(x) = "), with

h(x) = Z (ax sin(27k - x) + by cos(27k - x))
[ki<R
where a; and by are independent identically distributed random variables on [—0.3.
0.3] and R = 6. This is another example where scales are not separated. The weak
aspect ratio of the triangles in the metric induced by F is n;,,, = 3.4997. Observe
the deformation induced by the new metric (Figure 3.6). Observe that distances
between u and the interpolation of the coarse-mesh approximations to the fine mesh
are larger (Tables 3.5 and 3.6); this is due to the fact that those errors depend on the
aspect ratio i, (which is not the case for the coarse-mesh errors). Of course, one
could improve the compression by adapting the mesh to the new metric, but this
has not been our point of view here. We have preferred to show raw data obtained
with a given coarse mesh. Figures 3.8 and 3.9 give the L', L?, L™, and H' relative
error (log, basis versus log, basis of the resolution). The x-axis corresponds to
the refinement of coarse mesh; the y-axis is the error. Tables 3.7 and 3.8 give the
convergence rate in different norms (the parameter « in the error of the order of 7*).

Example 4 (Random Fractal). In this case, a is given by a product of discontinu-
ous functions oscillating randomly at different scales, a(x) = a;(x)az(x) - - - a,(x),
and a;(x) = ¢pq forx € [p/2', (p+ 1)/2') x [q/2". (g + 1)/2'), ¢py is uniformly
random in [1/y. y],n = 5, and y = 2. The weak aspect ratio is n,,, = 2.4796.
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(a) Condition number. (b) Coarse mesh L error.

FIGURE 3.7. Example 3, random Fourier modes error plots.
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FIGURE 3.8. Coarse-mesh error (log,): L', L2, L, and H' errors
versus coarse-mesh refinement, Example 3, random Fourier modes.

Table 3.9 gives the relative error estimated on the nodes of the coarse mesh be-
tween the solution u of the initial PDE (1.1) and an approximation obtained from
the upscaled operator on the nodes of the coarse mesh. Table 3.10 gives the relative
error estimated on the nodes of the fine mesh between u and the J,-interpolation of
the previous approximations with respect to F on a fine resolution. Figure 3.11(a)
gives the condition number of the stiffness matrix associated to the upscaled oper-
ator versus — log, & (logarithm of the resolution). Figure 3.11(b) gives the relative
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(¢) L error.
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(b) L2 error.

(d) H' error.

FIGURE 3.9. Fine-mesh approximation error (log,): L', L?, L, and
H' errors versus coarse-mesh refinement for Example 3, random Fourier

713

modes.
| Coarse mesh error | FEM_y | FEM_¢ | MBFEM | FVM LFEM |
L! 0.0027 | 0.0075 | 0.0117 | 0.0106 | 0.1197
L7 0.0028 | 0.0087 | 0.0130 | 0.0125 | 0.1169
LS 0.0066 | 0.0278 | 0.0320 | 0.0376 | 0.1358
“HT 0.0133 | 0.0648 | 0.0805 | 0.0597 | 0.1514

TABLE 3.5. Example 3, random Fourier modes, coarse mesh error.

L -distance between u and its approximation on the coarse mesh in log scale versus

—log, h.

Example 5 (Percolation at Criticality). In this case, the conductivity of each site
is equal to y or 1/y with probability % We have chosen y = 4 in this example.
Observe that some errors are larger for this challenging case because a percolating
medium generates flat triangles in the new metric: indeed, n;, = 22.3395. Ta-
ble 3.11 gives the relative error estimated on the nodes of the coarse mesh between
the solution « of the initial PDE (1.1) and an approximation obtained from the
upscaled operator on the nodes of the coarse mesh. Table 3.12 gives the relative
error estimated on the nodes of the fine mesh between « and the 7 -interpolation of
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[Fine mesherror [ FEM_y [ FEM_¢§ [MBFEM | FVM | LFEM |
L} 00112 | 00148 | 0.0148 | 0.0188 | 0.1304
LT 0.0177 | 0.0223 | 0.0184 | 0.0202 | 0.1265
L® 0.0773 | 0.0824 | 0.0614 | 0.0680 | 0.1669
g 0.0972 | 0.1152 | 0.1307 | 0.1659 | 0.1725 |

TABLE 3.6. Example 3. random Fourier modes, fine mesh error.

[Method [ L' [ 22 [ L= ]| H' |
FEM_y | 1.62 ] 1.66 [ 1.56 [ 1.4
FEM £ | 1.38[1.27 [ 1.23| L.I8
MBFEM | 1.38 | 1.40 [ 1.27 | 1.08
FVM 053 | .14 1.26 | 1.03
LFEM | 151 | 1.53 | 1.62 | 1.46

TABLE 3.7. Coarse-mesh approximation convergence rate.

‘Methnd L! L2 | L™ ‘ H' ‘
FEM_y | 1.74] 1.61 [ 1.23 [ 0.89
FEM_£ |1.57|1.47|123]091
MBFEM | 1.54 | 1.52 | 1.21 | 0.96
FVM 0.75 | 1.16 | 1.22 [ 0.58 |
'LFEM | 152154 [1.42]1.10

TABLE 3.8. Fine-mesh approximation convergence rate.

(a) a.

FIGURE 3.10. Example 4, random fractal.
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(a) Condition number. (b) Coarse-mesh L' error.

FIGURE 3.11. Example 4, random fractal error plots.

[ Coarse mesh error | FEM_y | FEM_§ [ MBFEM | FVM | LFEM |
L 0.0024 0.0075 0.0231 0.0073 0.0519
2F 0.0025 | 0.0085 | 0.0241 | 0.0100 | 0.0606
= 0.0094 0.0399 0.0920 0.0398 0.1694
“HT 0.0161 0.0718 0.1553 0.0493 0.3107

TABLE 3.9. Example 4, random fractal, coarse mesh error.

[ Fine mesh error || FEM_y | FEM_¢ | MBFEM | FVM LFEM
L! 0.0108 | 0.0147 | 0.0245 | 0.0142 [ 0.0765

LT 0.0155 | 0.0198 | 0.0280 | 0.0173 | 0.0812
L™ 0.0662 | 0.0802 | 0.0919 | 0.0720 | 0.1694
“HT 0.1015 | 0.1231 | 0.1838 | 0.1433 | 0.2642

TABLE 3.10. Example 4, random fractal, fine mesh error.

the previous approximations with respect to F on a fine resolution. Figure 3.13(a)
gives the condition number of the stiffness matrix associated to the upscaled oper-
ator versus — log, h (logarithm of the resolution). Figure 3.13(b) gives the relative
L -distance between u and its approximation on the coarse mesh in log scale ver-
sus — log, h. Observe that the methods based on a global change of metric do
converge, but when that numerical homogenization is done by computing only lo-
cal coarse parameters (in averaging or finite element techniques), then convergence
is not guaranteed without further assumptions on a (see the curve of LFEM).

3.1 Numerical Experiments with Splines

We have seen that if o is stable, then o F~! belongs to W>?(Q) with p > 2. It
is thus natural to expect a better accuracy by using C'-continuous elements in the
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FIGURE 3.12. Example 5, percolation.
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FIGURE 3.13. Example 5. percolation error plots.

' Coarse mesh error '|| FEM_y | FEM_¢ |MBFEM| FVM | LFEM |

! LT 0.0034 | 0.0253 [ 0.0485 [ 0.0167 | 0.2848
LT ‘ 0.0041 | 0.0265 | 0.0523 | 0.0189 | 0.2851
‘ Fia 0.0163 | 0.0813 | 0.0643 | 0.0499 | 0.3018
“H" | 00343 | 0.0843 | 0.1070 | 0.0713 | 0.3740

TABLE 3.11. Example 5. percolation. coarse mesh error.

method described in Section 1.2 instead of piecewise linear elements. This increase
in accuracy has already been observed in [2] when F is obtained as the solution of
a local cell problem. In our case (the harmonic coordinates are computed globally)
we also observe a sharp increase in the accuracy of the finite element method of
Section 1.2 by using splines for the elements ;.

We refer to [24, 49] for methods using C' finite elements. One possibility is the
weighted extended B-splines (WEB) method developed by K. Hollig in [48, 49]:
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| Fine mesh error || FEM_y | FEM_£ [MBFEM [ FVM [ LFEM |
L' 0.0115 | 0.0265 | 0.0585 | 0.0216 | 0.3024
Bz 0.0152 | 0.0268 | 0.0628 | 0.0229 | 0.3015
L® 0.0500 | 0.0527 | 0.0940 | 0.0497 | 03135
HT 0.1000 | 0.1712 | 0.1954 | 0.1343 | 0.3964

TABLE 3.12. Example 5, percolation. fine mesh error.

these elements are C*-continuous. They are obtained from tensor products of one-
dimensional elements. The Dirichlet boundary condition is satisfied using a smooth
weight function @ such that @ = 0 at the boundary. The condition number of the
stiffness matrix is bounded from above by O(h~?) (we have the same optimal
bound on a Galerkin system with piecewise linear elements).

We have considered two challenging multiscale media for our numerical exper-
iments: random Fourier modes and percolation. For the simplicity of the imple-
mentation, a square domain has been considered, and a weighted spline basis is
used instead of the WEB spline basis. For a square domain [—1. 1] x [—1, 1], the
weight is @ = (1 — x?)(1 — y?). Two methods have been compared:

e the Galerkin scheme using the finite elements ¥, = ¢; o F, where g;
are the piecewise linear nodal basis elements of Section 1.2, denoted by
FEM_llb‘hn, and

e the Galerkin scheme using the finite element {; = ¢; o F, where ¢, are
weighted cubic B-spline basis elements, denoted by FEM_ v/,

The error obtained with the FEM_y,, method is much smaller than that ob-
tained with the FEM_;, method, as shown in Figures 3.14 and 3.15.
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FIGURE 3.15. Example 5, percolation at criticality.

| Coarse mesh error

FEM_v;, | FEM_¥y, |

LI

0.0437 0.0046
0.0426 0.0052
0.0614 0.0096
0.0746 0.0227

TABLE 3.13. Example 3, random Fourier modes, coarse mesh error.

[ Fine mesh error || FEM_yii | FEM_¥5p
LT 0.0546 0.0077
Z 0.0529 | 0.0096
L= 0.0920 | 0.0289
THY 02109 | 0.0547

TABLE 3.14. Example 3, random Fourier modes, fine mesh error.
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[ Coarse mesh error || FEM_yi, | FEM_yr |

LT 0.0393 0.0080
LT 0.0379 0.0098
L® 0.0622 0.0309
H' 0.0731 0.0404

TABLE 3.15. Example 5, percolation, coarse mesh error.

| Fine mesh error || FEM_v, | FEM_, |
L! 0.0470 | 0.0099
LT 0.0464 | 0.0130
75 0.1174 0.0554
“HT 0.2030 0.0838

TABLE 3.16. Example 5, percolation, fine mesh error.
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