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Abstract

We show that the effective diffusivity matrix D(V n) for the heat operator ∂t −

(1/2 − ∇V n∇) in a periodic potential V n =
∑n

k=0 Uk(x/Rk) obtained as
a superposition of Hölder-continuous periodic potentials Uk (of period T

d :=

R
d/Zd , d ∈ N

∗, Uk(0) = 0) decays exponentially fast with the number of scales
when the scale ratios Rk+1/Rk are bounded above and below. From this we de-
duce the anomalous slow behavior for a Brownian motion in a potential obtained
as a superposition of an infinite number of scales, dyt = dωt − ∇V ∞(yt )dt .
c© 2002 Wiley Periodicals, Inc.

1 Introduction

Homogenization in the presence of a large number of spatial scales is both very
important for applications and far from understood from a mathematical stand-
point. In the asymptotic regime where the spatial scales separate, i.e., when the
ratio between successive scales tends to infinity, multiscale homogenization is now
well understood; see, for instance, [1, 3, 6, 11, 27, 30].

Nevertheless, the case of multiscale homogenization when spatial scales are not
clearly separated, i.e., when the ratios between scales stay bounded, has been rec-
ognized as difficult and important. For instance, Avellaneda [4, p. 267] emphasizes
that “the assumption of scale separation invoked in homogenization is not adequate
for treating the most general problems of transport and diffusion in self-similar ran-
dom media.”

The potential use of multiscale homogenization estimates for applications are
numerous (see, for instance, [39] for applications to geology, or [14, 16, 32] for
applications to differential effective medium theories). The main application of
this line of ideas is perhaps to proving superdiffusivity for turbulent diffusion: see,
for instance, [4, 5, 12, 13, 18, 19, 20, 21, 22, 23, 24, 26, 29, 42, 43].

We are interested here in subdiffusivity problems. Consider the Brownian mo-
tion in a periodic potential, i.e., the diffusion process

(1.1) dyt = dωt − ∇V (yt)dt
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where V is periodic and smooth. It is a basic and simple fact of homogenization
theory that yt behaves in large times like a Brownian motion slower than the Brow-
nian motion ωt driving the equation; i.e., yε(t) = εyt/ε2 converges in law to a
Brownian motion with diffusivity matrix D(V ) < Id .

We first treat here the case where V is a periodic n-scale potential with ratios
(between successive scales) bounded uniformly on n.We introduce a new approach
that enables us to show exponential decay of the effective diffusivity matrix when
the number of spatial scales grows to infinity.

From this exponential decay we deduce the anomalous slow behavior of Brow-
nian motions in potential V , when V is a superposition of an infinite number of
scales.

We have studied this question with a particular application in mind, i.e., to prove
that one of the basic mechanisms of anomalous slow diffusion in complex media is
the existence of a large number of spatial scales, without a clear separation between
them. This phenomenon has been attested for very regular self-similar fractals (see
Barlow and Bass [9] and Osada [34] for the Sierpinski carpet; see also [25]). Our
goal is to implement rigorously the idea that the key for the subdiffusivity is a
never-ending or perpetual homogenization phenomenon over an infinite number
of scales, the point being that our model will not have any self-similarity or local
symmetry hypotheses.

Our approach naturally gives much more detailed information in dimension
one, and this is the subject of [37].

This approach will be shown in forthcoming works to also give a proof of super-
diffusive behavior for diffusion in some multiscale divergence-free fields (see [10]
for the simple case of shear flow and [36] for a general situation).

The second section contains the description of our model; the third one, the
statement of our results; and the fourth one, the proofs.

2 The Multiscale Medium

For U ∈ L∞(Td
R) (we note T

d
R := RT

d), let mU be the probability measure on
T

d defined by

(2.1) mU (dx) =
e−2U (x) dx

∫

T
d
R

e−2U (x) dx
.

The effective diffusivity D(U ) is the symmetric positive definite matrix given by

(2.2) t l D(U )l = inf
f ∈C∞(Td

R)

∫

T
d
R

|l − ∇ f (x)|2mU (dx)

for l in S
d−1 (the unit sphere of R

d). Our purpose in this work is to obtain quantita-
tive estimates for the effective diffusivity matrix of multiscale potentials V n

0 given
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by a sum of periodic functions with (geometrically) increasing periods:

(2.3) V n
0 =

n
∑

k=0

Uk

(

x
Rk

)

.

In this formula we have two important ingredients: the potentials Uk and the scale
parameters Rk . We will now describe the hypothesis we make on these two items
of our model.

2.1 Hypotheses on the Potentials Uk

We will assume that

Uk ∈ Cα(Td) ,(2.4)
Uk(0) = 0 .(2.5)

Here Cα(Td) denotes the space of α-Hölder-continuous functions on the torus T
d ,

with 0 < α ≤ 1. We will also assume that the Cα-norm of the Uk are uniformly
bounded, i.e.,

(2.6) Kα := sup
k∈N

sup
x 6=y

|Uk(x)− Uk(y)|
|x − y|α

< ∞ .

We will need the notation

(2.7) K0 := sup
k∈N

Osc(Uk)

where the oscillation of Uk is given by Osc(U ) := sup U − inf U .
We also assume that the effective diffusivity matrices of the Uk’s are uniformly

bounded. Let λmin(D(Uk)) and λmax(D(Uk)) be the smallest and largest eigenval-
ues of the effective diffusivity matrix D(Uk). We will assume that

λmin := inf
k∈N

l∈Sd−1

t l D(Uk)l > 0 ,(2.8)

λmax := sup
k∈N

l∈Sd−1

t l D(Uk)l < 1 .(2.9)

2.2 Hypotheses on the Scale Parameters Rk

Rk is a spatial scale parameter growing exponentially fast with k; more pre-
cisely, we will assume that R0 = r0 = 1 and that the ratios between scales defined
by

(2.10) rk =
Rk

Rk−1
∈ N

∗ ,

for k ≥ 1, are integers uniformly bounded away from 1 and ∞: We will define

(2.11) ρmin := inf
k∈N∗

rk and ρmax := sup
k∈N∗

rk
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FIGURE 2.1. A simple example of the multiscale potential.

and assume that

(2.12) ρmin ≥ 2 and ρmax < ∞ .

As an example, we have illustrated in Figure 2.1 the contour lines of

V 2
0 (x, y) =

2
∑

k=0

U
(

x
ρk
,

y
ρk

)

with ρ = 4 and

U (x, y) = cos
(

x + π sin(y)+ 1
)2 sin

(

π cos(x)− 2y + 2
)

cos
(

π sin(x)+ y
)

.
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3 Main Results

3.1 Quantitative Estimates of the Multiscale Effective Diffusivity
3.1.1 The Central Estimate

Our first objective is to control the minimal and maximal eigenvalues of D(V n
0 ).

More precisely, letting Id be the d ×d identity matrix, we will prove the following:

THEOREM 3.1 Under hypotheses (2.6) and (2.10) and ραmin ≥ Kα, there exists a
constant C depending only on d, α, Kα, and K0 such that for all n ≥ 1

(3.1) Ide−nε
n

∏

k=0

λmin(D(Uk)) ≤ D(V n
0 ) ≤ Idenε

n
∏

k=0

λmax(D(Uk))

where

(3.2) ε = Cρ−α/2
min .

In particular, ε tends to 0 when ρmin → ∞.

Remark 3.2. One can interpret this theorem as follows: D(V n
0 ) is bounded from

above (respectively, from below) by the product of maximal (respectively, minimal)
eigenvalues, which are the bounds given by reiterated homogenization under the
assumption of complete separation of scales (i.e., ρ → ∞) times an error term enε

created by the interaction or overlap between the different scales.

Remark 3.3. Originally the problem of estimating D(V n
0 ) arose in connection with

applied sciences, and heuristic theories such as differential effective medium theory
(DEM theory) have been developed for that purpose. This theory models a two-
phase composite by incrementally adding inclusions of one phase to a background
matrix of the other and then recomputing the new effective background material at
each increment [14, 16, 32]. Bruggeman first proposed computing the conductivity
of a two-component composite structure formed by successive substitutions [15,
17], and this has been generalized by Norris [33] to materials with more than two
phases.

More recently Avellaneda [3] gave a rigorous interpretation of the equations
obtained by DEM theories, showing this has that they are homogeneous limit equa-
tions with two very important features: complete separation of scales and “dilution
of phases.” That is to say, each “phase” Uk is present at an infinite number of
scales in a homogeneous way. Yet two different phases never interact because they
always appear at scales whose ratio is ∞. Moreover, the macroscopic influence of
each phase is totally (but nonuniformly) diluted in the infinite number of scales at
which it appears. In our context, complete separation of scales would mean that
Rk+1/Rk grows sufficiently fast to ∞, and “dilution of phases” would mean that
V n

0 =
∑n

k=0 U n
k (x/Rk) with U n

k → 0 as n → ∞. The rigorous tool used by
Avellaneda to obtain this interpretation is reiterated homogenization [11].
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A very recent work on this topic is the article by Jikov and Kozlov [27], who
worked under the assumption of “dilution of phases” and fast separation between
scales or, more precisely, under the condition that

∑∞
k=1 k(Rk/Rk+1)

2 < ∞. Jikov
and Kozlov used the classical toolbox of asymptotic expansion, plugging well-
chosen test functions into the cell problem. This method of asymptotic expansion
is simply not available in our context.

Theorem 3.1 will be proven by induction on the number of scales. The basic
step in this induction is estimate (3.4) on the effective diffusivity for a two-scale
periodic medium.

Let U, T ∈ Cα(Td). Let us define for R ∈ N
∗, SRU ∈ Cα(Td) by SRU (x) =

U (Rx). We will need to estimate D(SRU + T ), the effective diffusivity for a two-
scale medium when R is a large integer. Let us define D(U, T ), the symmetric
definite positive matrix given by

(3.3) t l D(U, T )l =

inf
f ∈C∞(Td

1 )

∫

T
d
1

t(l − ∇ f (x))D(U )(l − ∇ f (x))mT (dx) for l ∈ R
d .

THEOREM 3.4 Let R ∈ N
∗ and U, T ∈ Cα(Td). If Rα ≥ ‖T ‖α, then there exists a

constant C depending only on d, Osc(U ), ‖U‖α, and α such that

(3.4) e−εD(U, T ) ≤ D(SRU + T ) ≤ D(U, T )eε

with ε = C R−α/2.

Remark 3.5. Theorem 3.4 obviously implies that

(3.5) D(U, T ) = lim
R→∞

D(SRU + T ) ,

so that D(U, T ) should be interpreted as the effective diffusivity of the two-scale
medium for a complete separation of scales. Naturally, D(U, T ) is also computable
from an explicit cell problem; see (4.12).

Remark 3.6. The estimate given in Theorem 3.4 is stronger than needed for The-
orem 3.1. It gives a control of D(SRU + T ) in terms of D(U, T ) and not only of
the minimal and maximal eigenvalues of D(U ) and D(T ). In fact, we will only
use its Corollary 3.7 given below, which is deduced using the variational formula-
tion (3.3).

COROLLARY 3.7 Let R ∈ N
∗ and U, T ∈ Cα(Td). If Rα ≥ ‖T ‖α, then there

exists a constant C depending only on d, Osc(U ), ‖U‖α, and α such that

(3.6) λmin(D(U ))D(T )e−ε ≤ D(SRU + T ) ≤ λmax(D(U ))D(T )eε

with ε = C R−α/2.
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Remark 3.8. We mentioned that Theorem 3.1 is proven by induction. This induc-
tion differs from the one used in reiterated homogenization or DEM theories by
the fact that we homogenize on the larger scales first and add at each step a smaller
scale.

Let us introduce the following upper and lower exponential rates.

DEFINITION 3.9

λ+ = lim sup
n→∞

1
n

ln λmax(D(V n
0 )) ,(3.7)

λ− = lim inf
n→∞

1
n

ln λmin(D(V n
0 )) .(3.8)

Theorem 3.1 implies the exponential decay of D(V n
0 ) as follows:

COROLLARY 3.10 Under the hypotheses (2.6), (2.10), and ραmin ≥ Kα, one has
(with ε given by (3.2)) for n ≥ 1

Ide−nελn+1
min ≤ D(V n

0 ) ≤ Idenελn+1
max(3.9)

and

λ+ ≤ ln λmax + ε ,(3.10)

λ− ≥ ln λmin − ε .(3.11)

In particular, if λmax < 1, then there exists a constant

ρ0 =

(

1 +
Cd,K0,Kα ,α

− ln λmax

)2/α

such that, for ρmin ≥ ρ0,

(3.12) λ+ < 0 .

Thus one obtains the exponential decay of D(V n
0 ) only for a minimal separation

between scales, i.e., ρmin greater than a constant ρ0 characterized by the medium.
It is natural to wonder whether this condition is necessary and what happens below
this constant ρ0. We will partially answer that question for the simple case when
the medium V is self-similar. We will see that it is possible to find models such
that, for a certain value C of the separation parameter ρmin = C , D(V n

0 ) decays
exponentially and for ρmin = C + 1, D(V n

0 ) stays bounded away from zero. This
will be done using a link with large-deviation theory.

3.1.2 The Self-Similar Case

DEFINITION 3.11 The medium V is called self-similar if and only if ∀n, Un = U
and Rn = ρn with ρ ∈ N, ρ ≥ 2.
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DEFINITION 3.12 For U ∈ Cα(Td) and ρ ∈ N/{0, 1}, we denote by pρ(U ) the
pressure associated to the shift sρ(x) = ρx on T

d , i.e.,

(3.13) pρ(U ) = sup
µ

( ∫

Td

U (x)dµ(x)+ hρ(µ)
)

where hρ is the Komogorov-Sinai entropy related to the shift sρ . We denote

(3.14) Pρ(U ) = pρ(U )− pρ(0) = pρ(U )− d ln R .

We refer to [28, 38] for a reminder on the pressure. Let us observe that Pρ(0)
differs from the standard definition of the topological pressure by the constant
d ln ρ so that Pρ(0) = 0.

We will relate in the self-similar case the exponential rates λ+ and λ− to pres-
sures for the shift sρ and to large deviation at level 3 for i.i.d. random variables.

In the self-similar case we will write λ−(−U ), the exponential rates associated
to D(−V n

0 ). We write

(3.15) Z(U ) = −
(

Pρ(2U )+ Pρ(−2U )
)

.

THEOREM 3.13 If the medium V is self-similar, then we have the following:

(i) If d = 1, then

(3.16) λ+(U ) = λ−(U ) = Z(U ) .

(ii) If d = 2, then

(3.17) λ+(U )+ λ−(−U ) = Z(U ) .

Moreover, if there exists an isometry A of R
d such that U (Ax) = −U (x) and a

reflection B such that U (Bx) = U (x), then λ−(−U ) = λ−(U ) = λ+(U ) so that

(3.18) λ+(U ) = λ−(U ) =
Z(U )

2
.

(iii) For any d,

(3.19) Z(U ) ≤ λ−(U ) ≤ λ+(U ) ≤ 0 .

Remark 3.14. Statement (3.16) is obtained from the explicit formula for D(V n
0 ) in

d = 1; see [37].

Remark 3.15. To be able to use this theorem, it is obviously important to know
when Z(U ) is strictly negative. A well-known and useful criterion can be stated
as Z(U ) < 0 if and only if U does not belong to the closure of the vector space
spanned by cocycles, which can be shown to be equivalent to saying that

(3.20) Z(U ) < 0 ⇔ lim sup
n→∞

1
n

∥

∥

∥

∥

n−1
∑

k=0

(

U (ρk x)−

∫

Td

U (x)dx
)∥

∥

∥

∥

∞

> 0 .

We refer to [37] for the proof of the last statement.
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EXAMPLE 3.16 Let U (x) = sin(x) − sin(81x) in dimension one. In fact, (3.16)
and (3.20) show that λ+(U ) < 0 as soon as ρ ≥ 82. For ρ ≤ 81, the situation
is a bit surprising: λ+(U ) < 0 for ρ 6= 3, 9, 81. For these exceptional values
λ+(U ) = 0; in fact, D(V n

0 ) remains bounded from below by a strictly positive
constant.

This example shows that for a given potential U , even though the multiscale
effective diffusivity D(V n

0 ) decays exponentially for ρ large enough, one can find
isolated values of the scale parameter for which D(V n

0 ) remains bounded from
below.

Remark 3.17. The symmetry hypotheses given in Theorem 3.13(ii) are only used
to prove that for all n, D(V n

0 ) = D(−V n
0 ) and λmax(D(V n

0 )) = λmin(D(V n
0 )) (see

Proposition 4.9).

3.2 Subdiffusive Behavior from Homogenization
on Infinitely Many Scales

Here we consider the diffusion process given by the Brownian motion in the
potential

(3.21) V = V ∞
0 =

∞
∑

k=0

Uk

(

x
Rk

)

.

We assume in this section that the hypotheses (2.4), (2.5), (2.6), (2.8), (2.9), (2.10),
and (2.12) hold. To start with, we will assume that

(3.22) α = 1 and that the potentials Uk are uniformly C1.

In particular, V is well-defined and belongs to C 1(Rd) and ‖∇V ‖∞ < ∞.
The diffusion process associated to the potential V is well-defined by the sto-

chastic differential equation

(3.23) dyt = dωt − ∇V (yt)dt .

We will show that the multiscale structure of V can lead to an anomalous slow
behavior for the process yt . To describe this subdiffusive phenomenon, we choose
to compute the mean exit time from large balls; i.e., let

(3.24) τ(r) = inf
{

t > 0 : |yt | ≥ r
}

.

We would like to show that Ex [τ(r)] grows faster than quadratic in r when r → ∞

uniformly in x . We cannot obtain such pointwise results in dimension d > 1. (See
Section 3.2.1 for a discussion; the case d = 1 is treated in [37].) But we will start
with averaged results on those mean exit times.

The fact that the homogenization results of Section 3.1 can be of some help in
estimating the mean exit times is shown by the following lemma:
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LEMMA 3.18 For U ∈ C∞(Td
R) (R > 0) and letting E

U represent the exit times
associated to the diffusion generated by LU = 1/2 − ∇U∇, one has

E
U
x [τ(x, r)] ≤ C2

r2

λmax(D(U ))
+ Cde(9d+15)Osc(U )R2

≥ C1
r2

λmax(D(U ))
− Cde(9d+15)Osc(U )R2 .

(3.25)

Let mV,r be the probability measure on the ball B(0, r) given by

(3.26) mV,r (dx) =
e−2V (x) dx

∫

B(0,r) e−2V (x) dx
.

We will consider the mean exit time for the process started with initial distribution
mV,r , i.e.,

(3.27) EmV,r [τ(r)] =

∫

B(0,r)

Ex [τ(r)]mV,r (dx) .

THEOREM 3.19 Under the hypothesis λmax < 1 there exists C2 depending on
d, λmax, K0, Kα, and α such that if ρmin > C2, then

(3.28) lim inf
r→∞

ln EmV,r [τ(r)]
ln r

> 2 .

More precisely, there exists C3 > 0, C4 > 0, and C5 > 0 such that for r > C3,

(3.29) EmV,r [τ(r)] = r 2+ν(r)

with

0 < C4 <
ln 1

λmax

ln ρmax

(

1 −
C5

ln ρmin

)

−
1

ln r
C5

≤ ν(r) ≤
ln 1

λmin

ln ρmin

(

1 +
C5

ln ρmin

)

+
1

ln r
C5 ,

(3.30)

where C3 and C5 depend on (d, K0, Kα, α) and C4 on (λmax, ρmax).

The proof of this result relies heavily on Theorem 3.1. The idea is that
EmV,r [τ(r)] is close, when r is large, to r 2/λmax(D(V n

0 )) where n is roughly
sup{m ∈ N : Rm ≤ r} so that the exponential decay of D(V n

0 ) gives the su-
perquadratic behavior of EmV,r [τ(r)], i.e., subdiffusivity.

Remark 3.20. The differentiability hypothesis (3.22), though convenient for defin-
ing the process yt as a solution of the SDE (3.23), is, in fact, useless. The theorem
is also meaningful and true with 0 < α < 1. See Section 4.2 for an explanation.
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3.2.1 Pointwise Estimates on the Anomaly
Theorem 3.19 gives the anomalous behavior of the exit times with respect to the

invariant measure of the diffusion, and it is desirable to seek pointwise estimates
of this anomaly. The additional difficulty is in obtaining quantitative estimates
on the stability of divergence form elliptic operators under a perturbation of their
principal parts (see Conjecture 3.26). By stability we mean here the validity of
Condition 3.21 below.

For U ∈ C1(B(z, r)), let E
U represent the expectation associated to the diffu-

sions generated by LU = 1
21− ∇U∇.

CONDITION 3.21 (Stability Condition) There exists µ > 0 such that for all n ∈ N ,
all z ∈ R

d , and all r > 0,
1
µ

e−µOscB(z,r)(V ∞
n+1) inf

x∈B(z, r
2 )

E
V n

0
x [τ(B(z, r))] ≤ E V

z [τ(B(z, r))] ,(3.31)

E V
z [τ(B(z, r)) ≤ µeµOscB(z,r)(V ∞

n+1) sup
x∈B(z,r)

E
V n

0
x [τ(B(z, r))] ,(3.32)

where OscB(z,r)(U ) stands for supB(z,r) U − infB(z,r) U .

Under Condition 3.21, we can obtain sharp pointwise estimates on the mean
exit times.

THEOREM 3.22 If V satisfies Condition 3.21 on stability, then there exists a con-
stant C6 depending on (d, K0, Kα, α, µ, λmax) such that for ρmin > C6, one has for
all x ∈ R

d

(3.33) lim inf
r→∞

ln Ex [τ(B(x, r))]
ln r

> 2 .

More precisely, there exists a function σ(r) such that for r > C7 one has

(3.34) C8r2+σ(r)(1−γ ) ≤ Ex [τ(B(x, r))] ≤ C9r2+σ(r)(1+γ )

with

(3.35)
ln 1

λmax

ln ρmax

(

1 +
C3

ln ρmin

)−1

≤ σ(r) ≤
ln 1

λmin

ln ρmin

(

1 +
C4

ln ρmin

)

and γ = C5 K0/(ln ρmin) < 0.5, where the constants C3, C4, C7, C8, and C9 depend
on (d, K0, Kα, α, µ, λmax) and C5 on d.

Here τ(B(x, r)) denotes the exit time from the ball B(x, r).

Remark 3.23. In fact, σ(r) can be described rather precisely. Let

(3.36) σ(r, n) = −
ln λmax D(V n

0 )

ln r
.

Define nef(r,C1,C2) = sup{n ≥ 0 : e(n+1)C1 K0 R2
n ≤ C2r2}. Then there exists C1

and C2 depending only on d such that σ(r) in Theorem 3.22 is σ(r, nef(r,C1,C2)).
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Using the precise information of Theorem 3.22, we can estimate the tails of
probability transitions for the process yt (or the tail of the heat kernel for the oper-
ator LV ). We get a non-Gaussian upper bound similar to the (more precise) ones
proven for fractal diffusions; see [9, 25].

THEOREM 3.24 If V satisfies Condition 3.21 on stability, then for ρmin > C6,
r > 0, and

(3.37) C10r ≤ t ≤ C11r2+σ(r)(1−3γ ) ,

one has

(3.38) ln Px [|yt − x | ≥ r ] ≤ −C13
r2

t

(

t
r

)ν(t/h)

with (C17 < 0.5 ln ρmin)

(3.39) 0 <
ln 1

λmax

ln ρmax

(

1 −
C14

ln ρmin

)

≤ ν(y) ≤
ln 1

λmin

ln ρmin

(

1 −
C15

ln ρmin

)

,

where C6, C13, C14, and C15 depend on (d, K0, Kα, α, µ, λmax); C17 on d, K0; and
C10 and C11 on (d, K0, Kα, α, µ, λmax, ρmin, ρmax).

Remark 3.25. The non-Gaussian structure of (3.38) is similar to the one obtained
for diffusion processes in fractals. Indeed,

(3.40) −C
h2

t

(

t
h

)ν

= −C
(

|x − y|dw

t

)
1

dw−1

with dw ∼ 2 + ν.
Next, it has been shown in [37] that for U ∈ L∞(Td

R), ln pU (x, y, t) is roughly
−t(y − x)D−1(U )(y − x)/t for t > R|x − y| (homogenized behavior) where pU

is the heat kernel associated to LU . Next, writing nef(t/h) = supn{Rn ≤ t/h},
the number of scales that can be considered as homogenized in the estimation of
the heat kernel tail is obtained from a heuristic computation (which can be made
rigorous in dimension one, see [37]) that for C10h ≤ t ≤ C11h2+µ,

(3.41) ln P(yt ≥ h) ≤ −C
h2

tλnef(t/h)
− C

h2

t

(

t
h

)− ln λ
ln ρ

∼ −C
(

|x − y|dw

t

)
1

dw−1

with dw ∼ 2− ln λ
ln ρ . Equation (3.41) suggests that the origin of the anomalous shape

of the heat kernel for the reflected Brownian motion on the Sierpinski carpet can
be explained by a perpetual homogenization phenomenon and the formula linking
the number of effective scales and the ratio t/h.

The condition C10h ≤ t can be translated into “homogenization has started on
at least the first scale” (nef ≥ 1), and the second one t ≤ C11h2+µ into “the heat
kernel associated to L V is far from its diagonal regime.” (One can have h2/t � 1
before reaching that regime; this is explained by the slowdown of the diffusion.)
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Naturally, the weak point of Theorems 3.22 and 3.24 is that checking condi-
tion 3.21 seems difficult. But we believe that in fact this condition is always true
(we refer to [35, chap. 13]), since this condition is a consequence of the following
conjecture; see [37, prop. 2.3].

Conjecture 3.26. There exists a constant Cd depending only on the dimension of
the space such that for λ ∈ C∞(B(0, 1)) such that λ > 0 on B(0, 1) and φ,ψ ∈

C2(B(0, 1)) null on ∂B(0, 1) and both subharmonic with respect to the operator
−∇(λ∇), one has

(3.42)
∫

B(0,1)

λ(x)|∇φ(x) · ∇ψ(x)|dx ≤ Cd

∫

B(0,1)

λ(x)∇φ(x) · ∇ψ(x)dx .

It is simple to see [37] that this conjecture is true in dimension one with Cd = 3.
So proving Conjecture 3.26 would give the pointwise estimates of Theorem 3.22
and the tail estimate for the heat kernel in Theorem 3.24.

Remark 3.27. Here we have assumed that the Uk are uniformly C1, but let us ob-
serve that since Theorems 3.22 and 3.24 are robust in their dependence on α and
Kα (one can choose α < 1), one can build a process, with the assumption that the
Uk are α-Hölder-continuous, whose mean exit times and heat kernel tail satisfy the
estimates given in Theorems 3.22 and 3.24.

4 Proofs

4.1 Multiscale Homogenization with Bounded Ratios
4.1.1 Global Estimates of the Multiscale Effective Diffusivity: Theorem 3.1

The proof of Theorem 3.1 will follow from Corollary 3.7 by a simple induction.
Let n ∈ N/{0, 1}, p ∈ N, 1 ≤ p ≤ n, and assume that

Ide−(n−p)ε(ρmin)

n
∏

k=p

λmin(D(Uk)) ≤ D(V n
p )

≤ Ide(n−p)ε(ρmin)

n
∏

k=p

λmax(D(Uk)) .

(4.1)

We pass from the quantitative control on D(V n
p ) to a control on D(V n

p−1) by choos-
ing U (x) = Up−1(x), T (x) = V n

p (Rnx), and R = Rn/Rp−1 in Theorem 3.4 and
observing that ‖T ‖α/Rα ≤ (2α − 1)−1 Kα/ρ

α
min. This proves the induction and

henceforth the theorem.

4.1.2 Quantitative Multiscale-Homogenization: Upper Bound in Theorem 3.4
4.1.2.1 We will use the notation introduced in Theorem 3.4. By the variational

formula (2.2), D(U ) is continuous with respect to U in the L∞-norm; thus it is
sufficient to prove Theorem 3.4 assuming that U and T are smooth.
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First, let us prove that when homogenization takes place on two scales separated
by a ratio R, the influence of a translation of the first one with respect to the second
one on the global effective diffusivity can easily be controlled. In other words,
for y ∈ T d

1 and letting 2y represent the translation operator T (x) → 2yT (x) =

T (x + y), we obtain

LEMMA 4.1

(4.2) e−4 ‖T ‖α
Rα D(SRU + T ) ≤ D(SR2yU + T ) ≤ e4 ‖T ‖α

Rα D(SRU + T ) .

PROOF: The proof follows by observing that SRU + 2yT = 2[Ry]/R(SRU +

T ) +2yT −2[Ry]/R T where [Ry] stands for the vector with the integral parts of
(y R)i as coordinates. Thus by the variational definition of the effective diffusivity,

(4.3) D(SRU +2yT ) ≤ e4‖2y T −2[Ry]/R T ‖∞ D(2[Ry]/R(SRU + T )) ,

and (4.2) follows by observing that the effective diffusivity is invariant under a
translation of the medium: D(2[Ry]/R(SRU + T )) = D(SRU + T ). �

Next we will obtain a quantitative control on
∫

y∈Td D(SRU +2yT )dy.

LEMMA 4.2 For R > ‖T ‖α

(4.4)
∫

y∈Td

D(SRU +2y T )dy ≤ e22 ‖T ‖α
Rα

(

1+CdeCd Osc(U )
(

‖T ‖α

Rα

)1/2)

D(U, T ) .

Let us observe that the combination of Lemma 4.2 with Lemma 4.1 gives the
upper bound (3.4) in Theorem 3.4.

Let χU
l designate the solution of the cell problem associated to U . We note that

for l ∈ R
d , LU = 1/21− ∇U∇, LUχl = −l∇U , χU

l (0) = 0, and

(4.5) t l D(U )l =

∫

Td

|l − ∇χl |
2mU (dx) =

∫

Td

t(l − ∇χl) · lmU (dx) .

Let χ D(U ),T be the T
d-periodic solution of the following cell problem (which cor-

responds to a complete homogenization on the smaller scale): For l ∈ S
d−1,

(4.6) ∇
(

e−2T D(U )
(

l − ∇χ
D(U ),T
l

))

= 0 .

Write for y ∈ T
d , x → χ(x, y) the T

d-periodic solution of the cell problem
(

e2(U (Rx+y)+T (x))∇e−2(U (Rx+y)+T (x)))(l − ∇χ(x, y)) = 0 .

Let l ∈ S
d−1. Using the formula associating the effective diffusivity to the

solution of the cell problem and using that l − ∇xχl(x, y) is harmonic with respect
to L SRU+2y T , one obtains

∫

y∈Td

t l D(SR2yU + T )l dy =

∫

Td×Td

(l − ∇xχl(x, y)) · l dx dy .(4.7)
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Writing the decomposition

l =
(

Id − ∇χU
. (Rx + y)

)(

l − ∇χ
D(U ),T
l (x)

)

+ ∇χU
. (Rx + y)

(

∇χ
D(U ),T
l (x)− l

)

mU (R.x+y)+T (·)(dx)dy ,
(4.8)

we get that
∫

y∈Td

t l D(SR2yU + T )l dy = I1 − I2 ,(4.9)

with

I1 =

∫

Td×Td

(l − ∇xχl(x, y))
(

Id − ∇χU
. (Rx + y)

)

(

l − ∇χ
D(U ),T
l (x)

)

mU (R.+y)+T (·)(dx)dy
(4.10)

and

I2 =

∫

Td×Td

(l − ∇xχl(x, y))∇χU
. (Rx + y)

(

∇χ
D(U ),T
l (x)− l

)

mU (Rx+y)+T (·)(dx)dy .
(4.11)

It is easy to see that χ D(U ),T
. is a minimizer in the variational formula (3.3) as-

sociated to D(U, T ), which is the effective diffusivity corresponding to two-scale
homogenization on U and T with complete separation between the scales; i.e.,

(4.12) D(U, T ) =

∫

x∈Td

t(Id − ∇χ D(U ),T
. (x)

)

D(U )
(

Id − ∇χ D(U ),T
. (x)

)

mT (dx) .

A simple use of the Cauchy-Schwarz inequality gives an upper bound on I1,

(4.13) I1 ≤

( ∫

(x,y)∈(Td )2

|l − ∇xχl(x, y)|2mU (Rx+y)+T (x)(dx)dy
)1/2

×

( ∫

(x,y)∈(Td )2

∣

∣

(

Id−∇χU
. (Rx+y)

)(

l−∇χ
D(U ),T
l (x)

)
∣

∣

2mU (Rx+y)+T (x)(dx)dy
)1/2

.

Integrating first in y in the second term and using the formulae linking effective
diffusivities and solutions of the cell problem, we obtain

(4.14) I1 ≤

( ∫

y∈Td

t l D(SR2yU + T )l dy
)1/2

× (t l D(U, T )l)1/2e‖T ‖α/Rα .

We now estimate I2. The following lemma together with (4.9) and (4.14) gives
Lemma 4.2.



HOMOGENIZATION AND ANOMALOUS DIFFUSION 95

LEMMA 4.3

|I2| ≤

( ∫

y∈Td

t l D(SR2yU + T )l dy
)1/2

× (t l D(U, T )l)1/2

CdeCd Osc(U )e4‖T ‖α/Rα (e8‖T ‖α/Rα − 1)1/2 .

(4.15)

The proof of this lemma relies heavily on the following elliptic-type estimate.

LEMMA 4.4

(4.16) ‖χU
l ‖∞ ≤ Cd exp

(

(3d + 2)Osc(U )
)

|l| .

This lemma is a consequence of [40, theorem 5.4, chap. 5] on elliptic equations
with discontinuous coefficients (see also [41]). We give the proof of Lemma 4.4
for the sake of completeness in paragraph 4.1.2.2.

We will now prove Lemma 4.3. First we will estimate the distance between
χl(x, y) and χl(x + y/R, 0) for y ∈ [0, 1]d in the H 1-norm.

By the orthogonality property of the solution of the cell problem for y ∈ [0, 1]d ,
we have the following:

∫

x∈Td

∣

∣

∣

∣

∇xχl

(

x +
y
R
, 0

)

− ∇xχl(x, y)
∣

∣

∣

∣

2 e−2(U (Rx+y)+T (x))
∫

Td e−2(U (Rz+y)+T (z)) dz
dx dy

=

∫

x∈Td

∣

∣

∣

∣

l − ∇xχl

(

x +
y
R
, 0

)∣

∣

∣

∣

2 e−2(U (Rx+y)+T (x))
∫

Td e−2(U (Rz+y)+T (z)) dz
dx dy

− t l D(SR2yU + T )l

≤ t l D(SRU + T )le4‖T ‖α/Rα − t l D(SR2yU + T )l .

(4.17)

Thus by Lemma 4.1, for y ∈ [0, 1]d ,

(4.18)
∫

x∈Td

∣

∣

∣

∣

∇xχl

(

x +
y
R
, 0

)

− ∇xχl(x, y)
∣

∣

∣

∣

2

mU (R·x+y)+T (·)(dx)dy ≤

t l D(SR2yU + T )l
(

e8‖T ‖α/Rα − 1
)

.
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Let us introduce

(4.19) I3 =
∫

(x,y)∈Td×[0,1]d

(

l − ∇xχl

(

x +
y
R
, 0

))

∇χU
. (Rx + y)

(

∇χ
D(U ),T
l (x)− l

)

e−2(U (Rx+y)+T (x+
y
R ))

∫

Td e−2U (z) dz
∫

Td e−2T (z) dz
dx dy ;

one then has

|I2 − I3| ≤

( ∫

y∈Td

t l D(SR2yU + T )l dy
)1/2

× (t l D(U, T )l)1/2

6e4‖T ‖α/Rα+Osc(U )(e8‖T ‖α/Rα − 1
)1/2

.

(4.20)

This can be seen by using (4.18), (4.11), the Cauchy-Schwarz inequality (the com-
putation is similar to the one in (4.13)), and the Voigt-Reiss inequality (D(U ) ≥

e−2 Osc(U )), and noticing that for y ∈ [0, 1]d , |T (x + y/R)− T (x)| ≤ ‖T ‖α/Rα.

We now want to estimate I3. Noting that

∇y

(

e−2(U (Rx+y)+T (x+
y
R ))

(

l − ∇xχl

(

x +
y
R
, 0

)))

= 0 ,

∇χU
. (Rx + y) = ∇yχ

U
. (Rx + y) ,

and integrating by parts in y, one obtains

I3 =

d
∑

i=1

∫

x∈T
d

yi ∈∂ i ([0,1]d )

(

e−2T (x+
yi +ei

R )

(

l − ∇xχl

(

x +
yi + ei

R
, 0

))

− e−2T (x+
yi
R )

(

l − ∇xχl

(

x +
yi

R
, 0

)))

· eiχ
U
. (Rx + yi )

(

∇χ
D(U ),T
l (x)− l

) e−2U (Rx+yi )

∫

Td e−2U (z) dz
∫

Td e−2T (z) dz
dx dyi ,

where we have used the notation

∂ i ([0, 1]d) =
{

x ∈ [0, 1]d : xi = 0
}

.
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Let us introduce

(4.21) I4 =

d
∑

i=1

∫

x∈T
d

yi ∈∂ i ([0,1]d )

(

−∇xχl

(

x +
yi + ei

R
, 0

)

+ ∇xχl

(

x +
yi

R
, 0

))

· ei

χU
. (Rx + yi )

(

∇χ
D(U ),T
l (x)−l

)

e−2T (x+yi /R) e−2U (Rx+yi )

∫

Td e−2U (z) dz
∫

Td e−2T (z) dz
dx dyi .

It is easy to obtain

|I4 − I3| ≤ de3 Osc(U )e2‖T ‖α/Rα(e2‖T ‖α/Rα − 1
)

(t l D(SRU + T )l)1/2

‖χU
. ‖∞(

t l D(U, T )l)1/2 .
(4.22)

We will now establish the fact that although χl(x, 0) is not periodic on R−1
T

d ,
the distance (with respect to the natural H 1-norm) between the solution of the cell
problem χl(x, 0) and its translation χl(x + ek/R, 0) along the axis of the torus
R−1

T
d is small. This is due to the presence of a fast period R−1

T
d in the decom-

position V = SRU + T .

Using the standard property of the solution of the cell problem, one obtains

∫

Td

∣

∣

∣

∣

∇χl

(

x +
ek

R
, 0

)

− ∇χl(x, 0)
∣

∣

∣

∣

2

mSRU+T (dx)

=

∫

Td

∣

∣

∣

∣

l − ∇χl(x, 0)− ∇χl

(

x +
ek

R
, 0

)

+ ∇χl(x, 0)
∣

∣

∣

∣

2

mSRU+T (dx)− t l D(SRU + T )l

≤ e4 ‖T ‖α
Rα

∫

Td

∣

∣

∣

∣

l − ∇χl

(

x +
ek

R
, 0)

)
∣

∣

∣

∣

2

m2
ek
R (SRU+T )(dx)− t l D(SRU + T )l ,

(4.23)

which leads to

(4.24)
∫

Td

∣

∣

∣

∣

∇χl

(

x +
ek

R
, 0

)

− ∇χl(x, 0)
∣

∣

∣

∣

2

mSRU+T (dx) ≤

t l D(SRU + T )l
(

e4‖T ‖α/Rα − 1
)

.
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By combining this inequality with definition (4.21) of I4, we can use the Cauchy-
Schwarz inequality to prove that

(4.25) |I4| ≤

d
∑

i=1

∫

yi ∈∂ i ([0,1]d )

( ∫

x∈Td

((

− ∇xχl

(

x +
yi + ei

R
, 0

)

+ ∇xχl

(

x +
yi

R
, 0

))

.ei

)2 e−2U (Rx+yi )−2T (x+yi /R)
∫

Td e−2U (z) dz
∫

Td e−2T (z) dz
dx

)
1
2

( ∫

x∈Td

(

χU
. (Rx+yi )(∇χ

D(U ),T
l (x)−l)

)2 e−2U (Rx+yi )−2T (x+yi /R)
∫

Td e−2U (z) dz
∫

Td e−2T (z) dz
dx

)
1
2

dyi .

Combining this with (4.24), one obtains

(4.26) |I4| ≤
(

e8‖T ‖α/Rα−1
)1/2

(t l D(SRU+T )l)1/2 d‖χU
. ‖∞e3 Osc(U )(t l D(U, T )l)1/2e2‖T ‖α/Rα .

Using Lemma 4.16 to estimate ‖χU
. ‖∞ in (4.26) and combining (4.22) and (4.20),

one obtains (4.15) and Lemma 4.3, which proves the upper bound of Theorem 3.4.

4.1.2.2 The purpose of this section is to prove estimate (4.16). First we will
recall a theorem concerning elliptic equations with discontinuous coefficients by
G. Stampacchia. Its proof in a more general form can be found in [41, theorem 5.4,
chap. 5] (see also [40]).

Let us consider the operator (in the weak sense) L = ∇(A∇) defined on some
open set � ⊂ R

d (for d ≥ 3) with smooth boundary ∂�. A is a d × d matrix with
bounded coefficients in L∞(�) such that, for all ξ ∈ R

d , λ|ξ |2 ≤ tξ Aξ , and for all
i, j , |Ai j | ≤ M for some positive constant 0 < λ,M < ∞.

Let p > d ≥ 3. For 1 ≤ i ≤ d , let fi ∈ L p(�). If χ ∈ H 1
loc(�) is a local

(weak) solution of the equation

(4.27) ∇(A∇χ) = −

d
∑

i=1

∂i fi ,

then χ is in L∞(�). Moreover, if B(x0, R) ⊂ �we have the following quantitative
control:

THEOREM 4.5 The solution of (4.27) satisfies the following inequality (in the es-
sential supremum sense with �(x0, R) = � ∩ B(x0, R)):

(4.28) max
�(x0,

r
2 )

|χ | ≤ K
[{

1
Rd

∫

�(x0,R)

‖χ‖2
}1/2

+

d
∑

i=1

‖ fi‖L p(�(x0,R))
R1−d/p

λ

]

with K = Cd(M/λ)3d/2.
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The explicit dependence of the constants in M and λ have been obtained by
following the proof of G. Stampacchia [41]. We will now prove (4.16) for d ≥ 3.
(For d = 1, this estimate is trivial; for d = 2, it is sufficient to consider U (x1, x2)

as a function on T 3
1 to obtain the result.) χl satisfies

∇
(

exp(−2U )∇χl
)

= l · ∇ exp(−2U ) ;

then by Theorem 4.5, for x0 ∈ [0, 1]d ,

max
B(x0,

1
2 )

|χl | ≤ Cd exp
(

3 Osc(U )d
)

[( ∫

B(x0,1)

|χl |
2
)1/2

+ |l| exp
(

2 Osc(U )
)

]

.

Now by periodicity
∫

B(x0,1)

|χl |
2 dx ≤

∫

Td

|χl |
2 dx ,

and by the Poincaré inequality (we assume
∫

Td χl(x)dx = 0)
∫

Td

|χl |
2 dx ≤ Cd

∫

Td

|∇χl |
2 dx .

Thus
∫

B(x0,1)

|χl |
2 dx ≤ Cd exp

(

2 Osc(U )
)

∫

Td

|∇χl |
2mU (dx) ,

and since
∫

Td

|l − ∇χl |
2mU (dx) = l2 −

∫

Td

|∇χl |
2mU (dx) ,

one has
∫

Td

|∇χl |
2mU (dx) ≤ l2 ,

and the bound on ‖χl‖∞ is proven.

4.1.3 Quantitative Multiscale Homogenization: Lower Bound in Theorem 3.4
4.1.3.1 As for the upper bound, it is sufficient to prove Theorem 3.4 assum-

ing that U and T are smooth, and we will use the notation introduced in para-
graph 4.1.2.1. We will prove the following lemma:

LEMMA 4.6 If R ≥ ‖T ‖α, then for ξ ∈ S
d−1,

(4.29)
∫

Td

tξD(SRU +2yT )−1ξ dy ≤

(

1 + Cd,Osc(U ),‖U‖α,α,‖T ‖α R−α/2)tξD(U, T )−1ξ .
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This lemma with Lemma 4.1 gives the lower bound in Theorem 3.4. We now
prove Lemma 4.6. Let us introduce

P(x, y) = Id −
exp(−2(SR2yU + T ))

∫

Td exp(−2(SR2yU + T )(x))dx
(4.30)

(Id − ∇χ(x, y).)D(SR2yU + T )−1 ,

PU (x) = Id −
exp(−2U (x))

∫

Td exp(−2U (x))dx

(

Id − ∇χU (x).
)

D(U )−1 ,(4.31)

and

P D(U ),T (x) = Id −
e−2T (x)

∫

Td e−2T (x) dx
D(U )

(

Id − ∇χ D(U ),T (x).
)

D(U, T )−1 .

(4.32)

We note that P(x, y) minimizes the well-known variational formula associated to
D(SR2yU + T )−1, which is why it will play the same role for the lower bound
in Theorem 3.4, the role played by the gradient of the solution of the cell problem
∇χ(x, y). for the upper bound. More precisely, for ξ ∈ S

d−1, one obtains as in the
proof of the upper bound (by decomposing ξ here)

∫

y∈Td

tξD(SR2yU + T )−1ξ dy

=

∫

(x,y)∈(Td )2

( ∫

Td

e−2(SR2yU+T )(z) dz
)

e2(SR2yU+T )(x)tξ

t(Id − P(x, y))ξ dx dy

≤ e2‖T ‖α/Rα (I1 + I2)

(4.33)

with

(4.34) I1 =

∫

Td

e−2U (z) dz
∫

Td

e−2T (z) dz
∫

(x,y)∈(Td )2

e2(SR2yU+T )(x)tξ t(Id − P(x, y))

(

Id − PU (Rx + y)
)(

Id − P D(U ),T (x)
)

ξ dx dy

and

(4.35) I2 =

∫

Td

e−2U (z) dz
∫

Td

e−2T (z) dz
∫

(x,y)∈(Td )2

e2(SR2yU+T )(x)tξ t(Id − P(x, y))

PU (Rx + y)
(

Id − P D(U ),T (x)
)

ξ dx dy .
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As for the upper bound, using the Cauchy-Schwarz inequality for the integration
in x and y, and using

(4.36) tξD(U, T )−1ξ =
∫

(x,y)∈(Td )2

e2(SR2yU+T )(x)((Id − PU (Rx + y))(Id − P D(U ),T (x))ξ
)2 dx dy ,

one obtains that

(4.37) |I1| ≤ e‖T ‖α/Rα
( ∫

y∈Td

tξD(SR2yU + T )−1ξ dy
)1/2

(tξD(U, T )−1ξ
)1/2

.

Thus I2 will be an error term, and we will prove the following:

LEMMA 4.7

|I2| ≤

( ∫

y∈Td

tξD(SR2yU + T )−1ξ dy
)1/2

(tξD(U, T )−1ξ
)1/2

Cd,Osc(U ),‖U‖α,αe4‖T ‖α/Rα(e8‖T ‖α/Rα − 1
)1/2

.

(4.38)

Let us observe that combining the estimate (4.38) of Lemma 4.7 with (4.37)
and (4.33) proves Lemma 4.6.

We will now prove Lemma 4.7. As done in the proof of the upper bound, it is
easy to show that, with

I3 =

∫

Td

e−2U (z) dz
∫

Td

e−2T (z) dz
∫

(x,y)∈Td×[0,1]d

e2(U (Rx+y)+T (x+y/R))

tξ
t
(

Id − P
(

x +
y
R
, 0

))

PU (Rx + y)(Id − P D(U ),T (x))ξ dx dy ,

(4.39)

one has

(4.40) |I3 − I2| ≤

6eOsc(U )e4‖T ‖α/Rα(e8‖T ‖α/Rα − 1
)1/2(tξD(SRU + T )ξ

)1/2(tξD(U, T )ξ
)1/2

.

The following lemma will be proven in 4.1.3.2:

LEMMA 4.8 ∃d × d × d tensors H U
i jm such that HU

i jm = −HU
jim ∈ C∞(Td),

(4.41) PU
im =

d
∑

j=1

∂j HU
i jm and

∥

∥HU
i jm

∥

∥

∞
≤ Cd,Osc(U ),‖U‖α,α .
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Combining (4.41) with the explicit formula (4.30) for P , one obtains

(4.42) I3 =

∫

Td e−2U (z) dz
∫

Td e−2T (z)
∫

Td exp(−2(SRU + T )(z))dz
∫

(x,y)∈Td×[0,1]d

d
∑

i, j,k=1

(tξ t(Id − P D(U ),T (x))
)

i

∂k HU
i,k, j (Rx + y)

((

Id − ∇χ.(x +
y
R
)

)

D(SRU + T )−1ξ

)

j
dx dy

Thus, using the same notation as in (4.21) and integrating by parts in y, one obtains

(4.43) I3 =

∫

Td e−2U (z) dz
∫

Td e−2T (z)
∫

Td exp(−2(SRU + T )(z))dz
d

∑

i, j,k=1

∫

(x,yk )∈Td×∂k ([0,1]d )

(tξ t(Id − P D(U ),T (x))
)

i HU
i,k, j (Rx + yk)

((

∇χ.

(

x +
yk

R

)

− ∇χ.

(

x +
yk + ek

R

))

D(SRU + T )−1ξ

)

j
dx dyk ,

which, using the Cauchy-Schwarz inequality, leads to

(4.44) |I3| ≤ Cde2 Osc(U ) sup
i jk

‖HU
i,k, j‖∞

d
∑

k=1

∫

yk∈∂k ([0,1]d )

( ∫

x∈Td

(

(Id − P D(U ),T (x))ξ
)2e2(U (Rx+yk)+T (x+yk/R)) dx

)1/2

( ∫

x∈Td

((

∇χ.

(

x + yk/R
)

− ∇χ.

(

x +
yk + ek

R

))

D(SRU + T )−1ξ

)2

e−2(U (Rx+yk )+T (x+yk/R))dx
)1/2

dyk .

Using the bounds (4.41) and the equation (4.24) to control the natural H 1-
distance between the solution of the cell problem χ.(x + yk/R) and its translation
by ek/R, one obtains

|I3| ≤
(

ξD(SRU + T )−1ξ
)1/2(tξD(U, T )−1ξ

)1/2

Cd,Osc(U ),‖U‖α,αe4‖T ‖α/Rα(e4‖T ‖α/Rα − 1
)1/2

.
(4.45)

Combining (4.45) and (4.40), one obtains (4.38), which proves Lemma 4.38.
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4.1.3.2 In this paragraph we prove Lemma 4.8. Since PU
.,m is a divergence-free

vector with mean 0 with respect to Lebesgue measure for each m ∈ {1, 2, . . . , d},
by [27, prop. 4.1] there exist skew-symmetric T

d-periodic smooth matrices
HU

i j1, HU
i j2, . . . , HU

i jd (HU
i jm = −HU

jim) such that for all m

(4.46) PU
im =

d
∑

j=1

∂j HU
i jm .

Moreover, writing

(4.47) PU
.m =

∑

k 6=0

pk
.me2iπ(k.x) ,

the Fourier series expansion of PU , one has (see [27, prop. 4.1])

(4.48) HU
njm =

1
2iπ

∑

k 6=0

pk
nmkj − pk

jmkn

k2
e2iπ(k.x) .

Let us observe that

(4.49) HU
njm = B j

nm − Bn
jm

where B j
nm are the smooth T

d-periodic solutions of 1B j
nm = ∂j PU

nm . By Theo-
rem 4.5 [40, theorem 5.4, chap. 5], if Bnm is chosen so that

∫

Td Bnm(x)dx = 0,
then ‖B j

nm‖∞ ≤ Cd‖PU
nm‖∞. Now using theorem 1.1 of [31], it is easy to obtain

that ‖∇χU
l ‖∞ ≤ Cd,Osc(U ),‖U‖α,α; combining this with (4.31), one obtains

(4.50)
∥

∥B j
nm

∥

∥

∞
≤ Cd,Osc(U ),‖U‖α,α ,

which leads to (4.41) by equation (4.49).

4.1.4 Explicit Formulae of Effective Diffusivities from Level-3 Large Devia-
tions; Proof of Theorem 3.13

Equation (3.19) follows from the Voigt-Reiss inequality: For U ∈ L∞(Td),

(4.51) D(U ) ≥ Id

( ∫

Td

e2U (x)
∫

Td

e−2U (x)
)−1

,

and the fact that, if U ∈ Cα(Td), then by Varadhan’s lemma and the level-3 large
deviation associated to the shift sρ ,

(4.52) lim
n→∞

1
n

ln
( ∫

Td

e
∑n−1

k=0 U (sk
ρ x) dx

)

= Pρ(U ) .

We refer to [37] for a more detailed proof of this statement.
In higher dimensions, when the medium is self-similar, one can use the criterion

(3.20) associated with the equation (3.19) to characterize ratios for which D(V n
0 )
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does not converge to 0 at an exponential rate. Equation (3.17), i.e., the extension
of the result (3.16) to dimension 2, is done by observing the following proposition:

PROPOSITION 4.9 For d = 2 one has
λmax(D(U ))λmin(D(−U )) = λmin(D(U ))λmax(D(−U ))

=
1

∫

T d
1

exp(2U )dx
∫

T d
1

exp(−2U )dx
,

(4.53)

from which one deduces that if D(U ) = D(−U ), then

(4.54) λmin(D(U ))λmax(D(U )) =

( ∫

T d
1

exp(2U )dx
∫

T d
1

exp(−2U )dx
)−1

.

Let us observe that the assumption D(U ) = D(−U ) is satisfied if, for instance,
−Un(x) = Un(−x) or −Un(x) = Un(Ax) where A is an isometry of R

d . The
existence of a reflection B such that U (Bx) = U (x) ensures that λmin(D(U )) =

λmax(D(U )). Thus these symmetry hypotheses combined with (3.17) ensure the
validity of (3.18).

It would be interesting to extend (3.17) of Theorem 3.13 to more general cases
and higher dimensions. Indeed, Proposition 4.9 is deduced from Proposition 4.10
below, which establishes a strong geometrical link between cohomology and ho-
mogenization.

Let Fsol = {p ∈ (c∞(T d
1 ))

d : div(p) = 0 and
∫

T d
1

p dx = 0} and Q(U ) be the
positive definite symmetric matrix associated to the following variational problem.
For l ∈ S

d ,

(4.55) t l Q(U )l = inf
p∈Fsol

∫

T d
1

|l − p|2 exp(2U )dx
∫

T d
1

exp(2U )dx
.

Write in increasing order λ(D(U ))i and decreasing order λ(Q(U ))i , the eigenval-
ues of D(U ) and Q(U ), respectively.

PROPOSITION 4.10 For all i ∈ {1, 2, . . . , d}

(4.56) λ(D(U ))iλ(Q(U ))i =
1

∫

T d
1

exp(2U )dx
∫

T d
1

exp(−2U )dx
.

Now we will introduce a geometric interpretation of homogenization that will
allow us to prove Proposition 4.9 and equation (3.17) of Theorem 3.13. Let U ∈

C∞(Td). It is easy to obtain the following orthogonal decomposition:

(4.57) H = (L2(mU ))
d = Hpot ⊕ Hsol ,

where Hpot and Hsol are the closures (with respect to the intrinsic norm ‖ · ‖H ) of
the sets of Cpot and Csol, the sets of smooth, T

d-periodic, potential and solenoidal
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vector fields, i.e., with C = (C∞(Td))d ,

Cpot =
{

ξ ∈ C : ∃ f ∈ C∞(Td) with ξ = ∇ f
}

,(4.58)

Csol =
{

ξ ∈ C : ∃p ∈ C with div(p) = 0(4.59)

and ξ = p exp(2U )
∫

Td e−2U (x) dx
}

.

Thus H is a real Hilbert space equipped with the scalar product

(ξ, ν)H =

∫

Td

ξ(x) · ν(x)mU (dx) ,

and by the variational formulation (2.2), for l ∈ R
d , t l D(U )l is the norm in H of

the orthogonal projection of l on Hsol, and l = ∇χl + exp(2U )pl is the orthogonal
decomposition of l. Writing dist(l, Hpot), the distance of l from Hpot in the intrinsic
norm ‖ · ‖H , let us observe that by the variational formulation (2.2) we have

(4.60)
√

t l D(U )l = dist(l, Hpot) .

Now by duality for all ξ ∈ H ,

(4.61) dist(ξ, Hpot) = sup
δ∈Csol

(δ, ξ)H

‖δ‖H
,

from which we deduce the following variational formula for the effective diffusiv-
ity by choosing ξ = l ∈ R

d :

(4.62) t l D(U )l = sup
p∈C

div(p)=0

(
∫

Td l · p dx)2
∫

Td p2 exp(2U )dx
∫

Td exp(−2U )dx
.

Note that (4.62) gives back Voigt-Reiss’s inequality by choosing p = l.
Let Q(U ) be the positive definite, symmetric matrix given by the variational

formula (4.55). Then the following proposition is a direct consequence of equation
(4.62).

PROPOSITION 4.11 For all l ∈ S
d−1,

(4.63) t l D(U )l =
1

∫

Td exp(2U )dx
∫

Td exp(−2U )dx
sup
ξ∈Sd−1

(l · ξ)2

tξQ(U )ξ
.

Choosing an orthonormal basis diagonalizing Q(U ), it is an easy exercise to use
this proposition to establish a one-to-one correspondence between the eigenvalues
of Q(U ) and D(U ) to obtain Proposition 4.10.

In dimension two, the Poincaré duality establishes a simple correspondence
between Q(U ) and D(−U ).

PROPOSITION 4.12 For d = 2, one has

(4.64) Q(U ) = tP D(−U )P ,
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where P stands for the rotation matrix

(4.65) P =

(

0 −1
1 0

)

.

Indeed, by the Poincaré duality, one has Fsol = {P∇ f : f ∈ C∞(Td)}, and
Proposition 4.12 follows from the definition of Q(U ). Proposition 4.9 is then
a direct consequence of Proposition 4.12, and one deduces from (4.53) that if
D(U ) = D(−U ), then

(4.66) λmax(D(U ))λmin(D(U )) =

( ∫

Td

exp(2U )dx
∫

Td

exp(−2U )dx
)

Id ,

which leads to (3.17) of Theorem 3.13 by [37, theorem 3.1].

4.2 Subdiffusive Behavior from Homogenization
on Infinitely Many Scales

4.2.1 Anomalous Behavior of the Exit Times: Theorems 3.19 and 3.22
4.2.1.1 In this subsection we will prove the asymptotic anomalous behavior

of the mean exit times Ex [τ(0, r)], defined as weak solutions of L V f = −1 with
Dirichlet conditions on ∂B(0, r). Here Un ∈ C1(Td); nevertheless, we will assume
first that those functions are smooth and prove quantitative anomalous estimates
on Ex [τ(0, r)] depending only on the values of D(V n

0 ), K0, and Kα. Then, using
standard estimates on the Green functions associated to divergence form elliptic
operators (see, for instance, [41]), it is easy to check that the exit times Ex [τ(0, r)]
are continuous with respect to a perturbation of V in the L∞(B(0, r))-norm. Using
the density of smooth functions on B(0, r) in the set of bounded functions, we will
then deduce that our estimates are valid for Un ∈ Cα(Td).

Thus we can see the exit times as those associated to the solution of (3.23) and
take advantage of the Ito formula.

The central lemma of the proof is Lemma 3.18, which will be proven in para-
graph 4.2.1.2.

Letting mr
U (dx) = e−2U (x) dx(

∫

B(0,r) e−2U (x) dx)−1, we will prove in para-
graph 4.2.1.3 that for P ∈ C∞(B(0, r),

∫

B(0,r)

E
U+P
x [τ(0, r)]mr

U+P(dx)

≤ e2 OscB(0,r)(P)
∫

B(0,r)

E
U
x [τ(0, r)]mr

U+P(dx)

≥ e−2 OscB(0,r)(P)
∫

B(0,r)

E
U
x [τ(B(0, r))]mr

U+P(dx) .

(4.67)
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We give here the outline of the proof (see [37] for d = 1). A perpetual homoge-
nization process takes place over the infinite number of scales 0, 1, . . . , n, . . . , and
the idea is still to distinguish, when one tries to estimate (3.29), the smaller scales
that have already been homogenized (0, 1, . . . , nef, called effective scales), the big-
ger scales that have not had a visible influence on the diffusion (ndri, . . . ,∞, called
drift scales because they will be replaced by a constant drift in the proof), and some
intermediate scales that manifest the particular geometric structure of their associ-
ated potentials in the behavior of the diffusion (nef + 1, . . . , ndri − 1 = nef + nper,
called perturbation scales because they will enter in the proof as a perturbation of
the homogenization process over the smaller scales).

We will now use (3.25) and (4.67) to prove Theorem 3.19. For that purpose, we
will first fix the number of scales that one can consider as homogenized (we write
“ef” for effective)

(4.68) nef(r) = sup
{

n ≥ 0 : e(n+1)(9d+15)K0 R2
n ≤

C1

8Cdr2

}

< ∞ ,

where C1 and Cd are the constants appearing in the left term of (3.25). Next we
fix the number of scales that will enter in the computation as a perturbation of the
homogenization process (we write “per” for perturbation)

(4.69) nper(r) = inf
{

n ≥ 0 : Rn+1 ≥ r
}

− nef(r) .

For r > Cd,K0,ρmax , nef(r) and nper(r) are well defined. Let us choose U = V nef(r)
0

and P = V ∞
nef(r)+1 in (4.67); we will bound from above OscB(0,r)(V ∞

nef(r)+1) by

Osc
(

V nef(r)+nper(r)
nef(r)+1

)

+
∥

∥V ∞
nef(r)+nper(r)+1

∥

∥

α
rα .

For the lower bound of (4.67), when x ∈ B(0, r/2), we will bound E
U
x [τ(0, r)]

from below by E
U
x [τ(x, r/2)], and for the upper bound when x ∈ B(0, r), we will

bound it from above by E
U
x [τ(x, 2r)]. Then using (3.25) to control those exit times,

one obtains
∫

B(0,r)

E
V
x [τ(B(0, r))]m B(0,r)

V (dx)

≤ CdeCKα,α+8nper(r)K0
r2

λmax(D(V 0,nef(r)))

≥ Cde−CKα,α−8nper(r)K0
r2

λmax(D(V 0,nef(r)))
.

(4.70)

Theorem 3.19 follows directly from the last inequalities by using the estimates
(3.9) on D(V n

0 ) and (2.11) on Rn and observing that

(4.71) nper(r) ≤ inf
{

m ≥ 0 :
Rm+nef(r)+1

Rnef(r)+1
≥ Cde(nef(r)+2)(9d+15)K0/2

}

.
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The proof of Theorem 3.22 follows similar lines, the stability result (4.67) being
replaced by Condition 3.21 on stability.

4.2.1.2 It is sufficient to prove (3.25) for x = 0.
For l ∈ S

d−1, let χl be the T
d
R-periodic solution of the cell problem associated

to LU with χl(0) = 0.
Let φl represent the T

d
R-periodic solution of the ergodicity problem LUφl =

|l − ∇χl |
2 − t l D(U )l with φl(0) = 0, and let Fl(x) = l · x − χl(x) and ψl(x) =

F2
l (x)− φl(x). Observe that since LU F2

l = |l − ∇χl |
2, it follows that

(4.72) LUψl = t l D(U )l .

The following inequality will be used to show that
∑d

i=1 ψei behaves like |x |2:

(4.73) C1|x |2 −C2
(

‖χ.‖
2
∞ +‖φ.‖∞

)

≤

d
∑

i=1

ψei (x) ≤ C3
(

|x |2 +‖χ.‖
2
∞ +‖φ.‖∞

)

.

Using Theorem 4.5 [40, theorem 5.4, chap. 5] to control Fl and ψl over one period
(observing that LU Fl = 0 and LUψl = −1) and using χl = l · x − Fl and φl =

F2
l − ψl , one easily obtains that ‖φ.‖∞ ≤ Cde(9d+13)Osc(U )R2. Combining this

estimate with (4.16), one obtains

(4.74) ‖χ.‖
2
∞ + ‖φ.‖∞ ≤ Cde(9d+13)Osc(U )R2 .

Since V has been assumed to be smooth (in a first step), we can use the Ito formula
to obtain

(4.75) ψl(yt) =

∫ t

0
∇ψl(ys)dωs + t l D(U )lt .

Now, with ei being an orthonormal basis of R
d , write Mt the local martingale

as

(4.76) Mt =

d
∑

i=1

ψei (yt)− tr(D(U ))t .

Define

τ ′(0, r) = inf
{

t ≥ 0 :

∣

∣

∣

∣

d
∑

i=1

ψei (yt)

∣

∣

∣

∣

= r
}

.

According to inequality (4.73), one has

τ ′
(

0,C1r2 − C2(‖χ.‖
2
∞ + ‖φ.‖∞)

)

≤ τ(0, r)

≤ τ ′
(

0,C3(r2 + ‖χ.‖
2
∞ + ‖φ.‖∞)

)

.
(4.77)

Since Mt∧τ ′(0,r) is uniformly integrable (easy to prove by using inequalities (4.77)),
one obtains

(4.78) E[τ ′(0, r)] =
r

tr(D(U ))
.
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Thus, by using inequality (4.74) and the Voigt-Reiss inequality D(U ) ≥ e−2 Osc(U ),
one obtains (3.25).

4.2.1.3 The proof of the weak stability result (4.67) is based on the following
obvious lemma that describes the monotonicity of Green functions as quadratic
forms.

LEMMA 4.13 Let� be a smooth, bounded, open subset of R
d . Assume that M and

Q are symmetric, smooth, coercive matrices on �. Assume M ≤ λQ with λ > 0;

then for all f ∈ C0(�), indicating by G Q the Green functions of −∇Q∇ with
Dirichlet condition on ∂�,

(4.79)
∫

�

G Q(x, y) f (y) f (x)dx dy ≤ λ

∫

�

G M(x, y) f (y) f (x)dx dy .

PROOF: Let f ∈ C0(�). Let ψM and ψQ be the solutions of −∇M∇ψM = f
and −∇Q∇ψQ = f with Dirichlet conditions on ∂�. Observe that ψM and ψQ

are the unique minimizers of IM(h, f ) and IQ(h, f ) with

(4.80) IM(h, f ) =
1
2

∫

�

t∇hM∇h dx −

∫

�

h(x) f (x)dx

and IM(ψM , f ) = − 1
2

∫

�
ψM(x) f (x)dx . Observe that since M ≤ λQ,

(4.81) IM(h, f ) ≤ λIQ

(

h,
f
λ

)

,

and the minimum of the right member in equation (4.81) is reached at ψQ/λ. It
follows that

∫

�
ψQ(x) f (x) ≤ λ

∫

�
ψM(x) f (x), which proves the lemma. �

Then, (4.67) follows directly from this lemma by choosing Q = e−2(U+P) and
M = e−2U , and observing that E

U
x [τ(0, r)] = 2

∫

B(0,r) Ge−2U Id (x, y)e−2U (y) dy.

4.2.2 Anomalous Heat Kernel Tail: Theorem 3.24
4.2.2.1 From the pointwise anomaly of the hitting times of Theorem 3.22, one

can deduce the anomalous heat kernel tail by adapting a strategy used by M. T. Bar-
low and R. Bass for the Sierpinski carpet. This strategy is described in detail in the
proof of [7, theorem 3.11], so we will give only the main lines of its adaptation.

We will estimate Px [τ(x, r) < t] and use Px [|yt | > r ] ≤ Px [τ(x, r) < t] to
obtain Theorem 3.24.

Using the notation from Theorem 3.22 and M := (d, K0, Kα, α, µ, λmax), we
will show in paragraph 4.2.2.2 that for r > C(M, ρmax), one has

(4.82) Px [τ(x, r) ≤ t] ≤
t

r2+σ(r)(1+γ )C19(M)
+ 1 − C20(M)r−2γ σ(r) .

Now we will use [7, lemma 3.14] given below (this is also [8, lemma 1.1]).
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LEMMA 4.14 Let ξ1, ξ2, . . . , ξn, V be nonnegative random variables such that V ≥
∑n

i=1 ξi . Suppose that for some p ∈ (0, 1), a > 0, and t > 0,

P
(

ξi ≤ t : σ(ξ1, ξ2, . . . , ξi−1)
)

≤ p + at ;

then

ln P(V ≤ t) ≤ 2
(

ant
p

)1/2

− n ln
1
p
.

Let n ≥ 1 and g = r/n. Define the stopping times Si , i ≥ 0, by S0 = 0 and

Si+1 = inf
{

t ≥ Si : |yt − ySi | ≥ g
}

.

Let ξi = Si − Si−1 for i ≥ 1. Let Ft be the filtration of yt , and let Gi = FSi . Then
it follows from equation (4.82) that for r/n > C(M, ρmax),

Px [ξi+1 ≤ t |(G)i ] = PySi
[τ(ySi , g) ≤ t]

≤ C21(M)
t

g2+σ(r)(1+γ )
+ 1 − C20(M)g−2σ(r)γ .

(4.83)

Since |ySi − ySi+1 | = g, it follows that Px |x − ySn | ≤ r . Thus

Sn =

n
∑

i=1

ξi ≤ τ(x, r) ,

and by Lemma 4.14 with

a = C21(M)
(

n
r

)2+σ(r)(1+γ )

, p = 1 − C20(M)
(

n
r

)2σ(r)γ

,

one obtains

(4.84) ln Px [τ(x, r) ≤ t] ≤ 2
(

ntC21(
n
r )

2+σ(r)(1+γ )

1 − C20(
n
r )

2σ(r)γ

)1/2

− n ln
1

1 − C20(
n
r )

2σ(r)γ
.

Minimizing the right term in (4.84) over n under the constraint (4.83) and the
assumptions (3.37) and ρmin > C6,M , one obtains Theorem 3.24.

4.2.2.2 Equation (4.82) is an adaptation of [7, lemma 3.16]. Observe that

Ex [τ(x, r)] ≤ t + Ex
[

1(τ (x, r) > t)Eyt [τ(x, r)− t]
]

≤ t + Px [1(τ (x, r) > t)] sup
y∈B(x,r)

Ey[τ(x, r)] .

Using ∀y ∈ B(x, r), Py a.s. τ(x, r) ≤ τ(y, 2r), one has by Theorem 3.22 for
r > C(M, ρmax)

C33(M)r2+σ(r)(1−γ ) ≤ Ex [τ(x, r)] ≤ t + Px [τ(x, r) > t]C34(M)r2+σ(r)(1+γ ) ,

which leads to (4.82).
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