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EXTREME POINTS OF
A BALL ABOUT A MEASURE WITH FINITE SUPPORT∗

HOUMAN OWHADI† AND CLINT SCOVEL‡

Abstract. We show that, for the space of Borel probability measures on a Borel subset of a Polish
metric space, the extreme points of the Prokhorov, Monge–Wasserstein and Kantorovich metric balls
about a measure whose support has at most n points, consist of measures whose supports have at most
n+2 points. Moreover, we use the Strassen and Kantorovich–Rubinstein duality theorems to develop
representations of supersets of the extreme points based on linear programming, and then develop these
representations towards the goal of their efficient computation.
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1. Introduction
In a recent work by Wozabal [20], a framework for optimization under ambiguity is

developed –including a discussion of the history of the subject and the current literature.
See also Dupačová [9] and the recent work by Esfahani and Kuhn [10], which expands
Wozabal’s approach to develop convex reductions for an important class of objective
functions. We quote from the abstract: “Though the true distribution is unknown,
existence of a reference measure P enables the construction of non-parametric ambiguity
sets as Kantorovich balls around P . The original stochastic optimization problems are
robustified by a worst case approach with respect to these ambiguity sets.” Fundamental
to the development of this framework, Wozabal [20, Cor. 1] asserts that, when the
domain is a compact metric space, the extreme points of a Kantorovich ball about a
measure whose support has at most n points consist of measures whose supports have
at most n+3 points. The purpose of this paper is to extend and sharpen this result;
extending the domain from a compact metric space to a Borel subset of a Polish metric
space, and improving the bound on the number of Dirac masses from n+3 to n+2.
In addition, we provide similar results for the Prokhorov metric and for the Monge–
Wasserstein distances. This increase in generality from a compact metric space to a
Borel subset of a Polish space has two nontrivial components. The first is that it replaces
compactness with separability. That is, since a compact metric space is complete, it
amounts to a generalization from compact complete metric spaces to separable complete
metric spaces. The second is that it replaces completeness with measurability. That is,
it eliminates the completeness requirement and substitutes it with the requirement that
it be a Borel subset of separable complete metric space. For example, these results now
apply to the case of probability measures on the (noncompact) open interval (0,1).

To outline how they are obtained, recall Rogosinski’s lemma [13] that, on an ar-
bitrary measurable space, the n moments corresponding to the expected values of n
integrable functions with respect to a probability measure can be achieved by a convex
sum of n+1 Dirac masses. Moreover, recall that an exposed point of a convex set in a
locally convex space is a point which is the unique maximizer of some continuous affine
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function, and Straszewicz theorem [15], that the exposed points of a finite dimensional
compact convex set is dense in its extreme points. Wozabal uses the Kantorovich–
Rubinstein theorem combined with Rogosinski’s lemma [13] to characterize the exposed
points of the Kantorovich ball about a measure whose support has at most n points to
be a measure with support at most n+3 points. The fact that one obtains n+3 Dirac
masses comes from the fact that Kantorovich–Rubinstein theorem introduces one func-
tion, the notion of an exposed point another, and the central measure having support
of size n introduces n more functions, leading to a total of n+2 continuous functions
on the set of probability measures on X×X, so that Rogosinski’s lemma implies that
the exposed points are convex sums of (n+2)+1 =n+3 Dirac masses. Then, Cho-
quet’s [5, Sec. 17, pg. 99] extension of Straszewicz’ theorem [15] to compact metrizable
subsets of locally convex space along with the fact that the set of probability measures
equipped with the weak topology is compact and metrizable when the domain is, is used
to show that these exposed points are dense in the extreme points. A limiting argument
showing that the weak limit of a convex sum of n+3 Dirac masses is a convex sum of
n+3 Dirac masses establishes the assertion.

In our approach, we use Dudley’s [8, Thm. 11.8.2] version of the Kantorovich–
Rubinstein theorem for tight measures on separable metric spaces, and characterize the
extreme points of the space of measures corresponding to the Kantorovich–Rubinstein
duality using results of Winkler [18, 19], previously applied in [12] to the reduction of
optimization problems on non-compact spaces of tight probability measures arising in
uncertainty quantification. Since, by Suslin’s theorem, a Borel subset of a Polish space
is Suslin and since all probability measures on Suslin spaces are tight, these results
allow the extension of many results regarding the extreme points of sets of probability
measures from compact metric domains and continuous moment functions to Borel
subsets of Polish metric spaces and measurable moment functions. Then a fundamental
result that is implicit in the results of Winkler [18, 19] is proven in Theorem 2.2; that
a weakly closed convex set of probability measures on a Borel subset of a Polish metric
space has an extreme point. This result combined with Lemma A.2, giving sufficient
conditions that the affine image of the extreme points of a set cover the extreme points
of the affine image of that set, shows that the image of these extreme points in the
dual cover the extreme points of the Kantorovich ball. This latter approach has the
advantage that it does not pass through the intermediate stage of exposed points, so does
not add an additional function, and does not require a generalization of Straszewicz’
theorem [15] to non-compact sets, although it does suggest that such a generalization
may exist for weakly closed convex sets of tight measures.

To establish our main result, Theorem 2.1, we develop a more general and expres-
sive result in Theorem 2.3, which not only produces a similar result for the Monge–
Wasserstein metric, but its Corollary 3.1 shows how the duality results of Kantorovich–
Rubinstein and Strassen, combined with the results of Winkler [19] on the extreme points
of moment constraints, facilitate a Monge–Wasserstein linear programming representa-
tion of supersets of the extreme points which can be used for convex maximization over
the Kantorovich or Prokhorov ball about a measure whose support has at most n points.
A stronger application of Winkler [19, Thm. 2.1] is then used to more fully develop these
representations in Section 3 towards the goal of their efficient computation. Finally, in
Section 4 we consider when the central measure is an empirical measure.

2. Main results

For a metric space (X,d), the Prokhorov metric dPr on the space M(X) of Borel
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probability measures is defined by

dPr(µ1,µ2) := inf
{
ε :µ1(A)≤µ2(Aε)+ε, A∈B(X)

}
, µ1,µ2∈M(X), (2.1)

where

Aε :={x′∈X :d(x,x′)<ε for some x∈A}.

According to Dudley [8, Thm. 11.3.3], when X is separable the Prokhorov metric
metrizes weak convergence. Note that this definition produces the same metric if we
were to use the “closed” inflated sets Aε :={x′∈X :d(x,x′)≤ ε for somex∈A} instead.
On the other hand, the Kantorovich distance dK on the space M(X) of Borel proba-
bility measures on a separable metric space X is defined as follows (see Vershik [16] for
a historical review): Let

‖f‖L := sup
x1 6=x2

|f(x1)−f(x2)|
d(x1,x2)

denote the Lipschitz norm of a real valued function onX. Then the Kantorovich distance
is defined by

dK(µ1,µ2) := sup
‖f‖L≤1

∫
fd(µ1−µ2). (2.2)

According to the remark after [8, Lem. 11.8.3], dK is an extended metric on M(X).
Let ∆n(X)⊂M(X) denote the set of probability measures whose supports have at
most n points, and let ext(A) denote the set of extreme points of a set A. We can
now state our result for the Prokhorov metric and Kantorovich extended metric. For
either of these (d̂ :=dK or d̂ :=dPr, respectively), for µ∈M(X) we define Bε(µn) :=

{µ′∈M(X) : d̂(µ′,µ)≤ ε}.

Theorem 2.1. Let X be a Borel subset of a Polish metric space and consider the
space M(X) of Borel probability measures equipped with the Prokhorov metric or the
Kantorovich extended metric. For n∈N, ε>0 and µn∈∆n(X), consider the ball Bε(µn)
about the measure µn. Then

ext
(
Bε(µn)

)
⊂∆n+2(X).

Our path to Theorem 2.1 requires the development of more useful results which we
now describe. At the heart of the matter is a result of Winkler regarding the existence
of extreme points of closed convex sets of probability measures that is implicit in the
results of Winkler [18, 19]. Since this result is more modest than Winkler’s goal of
developing integral representations, the proof we present appears somewhat simpler, in
particular it is different in that it does not utilize Lusin’s theorem.

Theorem 2.2 (Winkler). Let X be a Borel subset of a Polish metric space and
consider the set M(X) of probability measures equipped with the weak topology. Then
every nontrivial closed convex subset of M(X) has an extreme point.

Winkler’s Theorem 2.2 is fundamental in the proof of our second main result, The-
orem 2.3, regarding the extreme points of the Monge–Wasserstein distance. This result
combined with the duality results of Strassen and Kantorovich–Rubinstein are then used
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to establish Theorem 2.1. Moreover, in Section 3, Corollary 3.1 to Theorem 2.3 estab-
lishes the main results to be used towards the computation of supersets of the extreme
points ext

(
Bε(µn)

)
, useful for convex maximization, in particular linear programming,

over the ball Bε(µ).
For any two probability measures µ1,µ2∈M(X), let M(µ1,µ2)⊂M(X×X) denote

those probability measures with marginals µ1 and µ2. Then for a non-negative lower
semicontinuous real-valued cost function c :X×X→R, the Monge–Wasserstein distance
dW on M(X) is defined by

dW (µ1,µ2) := inf
ν∈M(µ1,µ2)

∫
c(x,x′)dν(x,x′).

Let P1 :M(X×X)→M(X) denote the marginal map corresponding to the first com-
ponent and P2 the marginal map with respect to the second component.

Theorem 2.3. Let X be a Borel subset of a Polish metric space and c :X×X→R
a non-negative real-valued lower semicontinuous function. For n∈N, ε>0, and µn∈
∆n(X), consider the subset

Γµn,ε :={ν ∈M(X×X) :P1ν=µn,

∫
c(x,x′)dν(x,x′)≤ ε}.

Then

ext(Γµn,ε)⊂∆n+2(X×X)

and

P2

(
ext(Γµn,ε)

)
⊃ ext

(
P2(Γµn,ε)

)
.

In particular, we have

ext
(
P2(Γµn,ε)

)
⊂∆n+2(X).

3. Computation of supersets
Now we show how the duality results of Strassen and Kantorovich–Rubinstein com-

bined with Theorem 2.3 can be used in the computation of supersets of the extreme
points of Bε(µn). To begin we introduce some terminology. We say that a set B is a
superset for Bε(µn) if

ext
(
Bε(µn)

)
⊂B ⊂ Bε(µn). (3.1)

For any function F which achieves its maximum at the extreme points, that is

max
µ∈Bε(µn)

F (µ) = max
µ∈ext(Bε(µn))

F (µ),

it follows that

max
µ∈Bε(µn)

F (µ) = max
µ∈B

F (µ)

for any superset B for Bε(µn). Consequently, efficiently constructed supersets facilitate
the efficient solution to optimization problems over Bε(µn). To fix terms, we restrict
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our attention to the Prokhorov case, the Kantorovich case being essentially the same.
For fixed ε>0 and µn∈∆n, let us consider the Prokhorov ball Bε(µn). Then it is clear
that, since ext

(
Bε(µn)

)
⊂Bε(µn), we obtain from Theorem 2.1 that

ext
(
Bε(µn)

)
⊂Bε(µn)∩∆n+2(X).

Moreover, since ext
(
Bε(µn)

)
⊂∂Bε(µn), where ∂Bε(µn) :={µ∈M(X) :dPr(µ,µn) = ε}

is the sphere, we also conclude that

ext
(
Bε(µn)

)
⊂∂Bε(µn)∩∆n+2(X).

However, these supersets may be difficult to compute, so we look to Theorem 2.3 for sets
generated by linear programming. To that end, write {d>ε} for the subset of elements
(x,y)∈X×X such that d(x,y)>ε, and consider the subset Γµn,ε⊂M(X×X) defined
in the proof of Theorem 2.1 by

Γµn,ε :=
{
ν ∈M(X×X) :ν{d>ε}≤ ε, P1ν=µn

}
.

The proof of Theorem 2.1 used Strassen’s theorem to assert in (B.8) that

P2

(
Γµn,ε

)
=Bε(µn).

Then Theorem 2.3 implies

ext(Γµn,ε)⊂∆n+2(X×X) (3.2)

and the string of inequalities

ext
(
Bε(µn)

)
= ext

(
P2(Γµn,ε)

)
⊂P2

(
ext(Γµn,ε)

)
⊂∆n+2(X).

Consequently, we obtain the following.

Corollary 3.1. Consider the situation of Theorem 2.1 and the set Γµn,ε defined
in Theorem 2.3 by c :=d in the Kantorovich case and c :=1d>ε in the Prokhorov case.
Then we have

ext
(
Bε(µn)

)
⊂ P2

(
ext(Γµn,ε)

)
⊂ Bε(µn)∩∆n+2(X)

ext
(
Bε(µn)

)
⊂P2

(
Γµn,ε∩∆n+2(X×X)

)
⊂ Bε(µn)∩∆n+2(X).

The statement of Corollary 3.1 captures the mechanism by which we obtain the im-
provement from n+3 to n+2 Dirac masses in the description of the extreme points in
Theorem 2.1. Indeed, since the set Γµn,ε is a set of measures subject to n+1 constraints,
its extreme points are a convex combination of n+2 Dirac masses on the product space
X×X. Then the fact that the extreme points of Bε(µn) consists of the convex combi-
nation of n+2 Dirac masses follows from the fact that Corollary 3.1 implies that the
projection onto the second component of these extreme points covers all the extreme
points of Bε(µn), and the fact that projection of Dirac masses on X×X are Dirac
masses on X.

Corollary 3.1 also says that both

P2

(
Γµn,ε∩∆n+2(X×X)

)
and P2

(
ext(Γµn,ε)

)
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are supersets for Bε(µn). Although the latter is smaller in that

P2

(
ext(Γµn,ε)

)
⊂P2

(
Γµn,ε∩∆n+2(X×X)

)
,

the computation of the former is useful in the computation of the latter, so we consider
the computation of both.

3.1. Computing Γµn,ε∩∆n+2(X×X). Since, by Equation (3.2), both
ext(Γµn,ε) and Γµn,ε∩∆n+2(X×X) are subsets of P−1

1 µn∩∆n+2(X×X), it will be
convenient to compute P−1

1 µn∩∆n+2(X×X) first. Let us proceed inductively, and
assume that µn∈∆n(X) but is not in ∆n−1(X). Then µn :=

∑n
i=1βiδyi with βi>0,yi∈

X,i= 1,. ..,n,
∑n
i=1βi= 1, and yi 6=yj ,i 6= j. Fixing this y= (yi) and (βi), we now define

some subsets of M(X×X). For x∈Xm,n≤m≤n+2, denote

δy,x :=

n∑
k=1

βkδyk,xk ,

and let

Π0 :=
{
δy,xx∈Xn

}
. (3.3)

For i= 1,. ..,n and x∈Xn+1, define

Πi(x) := δy,x+
{
γ(δyi,xn+1

−δyi,xi), 0<γ<βi
}

(3.4)

and

Πi :={Πi(x),x∈Xn+1}. (3.5)

Moreover, for x∈Xn+2 and for i<j, define

Πi,j(x) := δy,x+
{
γi(δyi,xn+1−δyi,xi)+γj(δyj ,xn+2−δyj ,xj ),0<γi<βi,0<γj<βj

}
(3.6)

while for i= j, define

Πi,i(x) := δy,x+
{
γ1(δyi,xn+1−δyi,xi)+γ2(δyi,xn+2−δyi,xi), γ1>0,γ2>0,γ1 +γ2<βi

}
(3.7)

and then, for i≤ j, again take the union

Πi,j :={Πi,j(x),x∈Xn+2}. (3.8)

Lemma 3.1. In terms of the sets defined in Equations (3.3), (3.5), and (3.8), we have

P−1
1 µn∩∆n+2(X×X) = Π0∪nk=1 Πk∪i≤jΠi,j .

Using Lemma 3.1, we can now obtain an almost explicit representation of Γµn,ε∩
∆n+2(X×X), almost in the sense that it will amount to an explicitly represented set
subject to the constraint of a single explicitly computable function. To that end, let us
combine the definitions (3.3), (3.5), and (3.8) of Π0, Πi, and Πi,j into one symbol with
the introduction of a multi-index ı that can take the values ı= 0, ı= i for i∈{1,n}, or
ı= (i,j) with i≤ j. Then, in this notation Πı(x) will denote Π0(x) and imply x∈Xn
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when ı= 0, it will denote Πi(x) and imply x∈Xn+1 when ı= i, and denote Πi,j(x) and
imply x∈Xn+2 when ı= (i,j).

Since, in general, for ν :=
∑m
k=1αkδxk,x′k we have

ν{d>ε}=

m∑
k=1

αk1d(xk,x′k)>ε, (3.9)

it follows that the function ν 7→ν{d>ε} restricted to ∆n+2(X×X) is explicitly com-
putable. Then, since

Γµn,ε∩∆n+2(X×X) =P−1
1 µn∩∆n+2(X×X)∩

{
ν ∈M(X×X) :ν{d>ε}≤ ε

}
, (3.10)

if we incorporate the constraint ν{d>ε}≤ ε by defining

Π̄ı(x) := Πı(x)∩
{
ν ∈M(X×X) :ν{d>ε}≤ ε

}
, (3.11)

along with their unions Π̄ı over Xn, Xn+1, and Xn+2, respectively, then, from the
distributive law of set theory, Lemma 3.1, and Equation (3.10), we conclude that

Γµn,ε∩∆n+2(X×X) =Π̄0∪nk=1 Π̄k∪i≤j Π̄i,j . (3.12)

3.2. Computing ext(Γµn,ε). To compute ext(Γµn,ε) we use a stronger version
of the characterization of the extreme points found in Winkler [19, Thm. 2.1] than
we used in Theorem 2.3, along with the computation of P−1

1 µn∩∆n+2(X×X) from
Lemma 3.1. To that end, consider the constraint functions fi :=1yi×X ,i= 1,. ..,n (where
1yi×X(a,b) = 1 if a=yi and 1yi×X(a,b) = 0 if a 6=yi) and fn+1 :=1d>ε. Then Winkler’s
[19, Thm. 2.1] assertion

ext(Γµn,ε)⊂
{
ν ∈Γµn,ε :ν=

m∑
i=1

αiδxi,x′i ,1≤m≤n+2,αi>0,xi,x
′
i∈X,i= 1,. ..,m,

the vectors
(
f1(xi,x

′
i),. ..,fn+1(xi,x

′
i),1
)
, i= 1,. ..,m are linearly independent

}
amounts to

ext(Γµn,ε)⊂
{
ν ∈Γµn,ε :ν=

m∑
i=1

αiδxi,x′i ,1≤m≤n+2,αi>0,xi,x
′
i∈X,i= 1,. ..,m,

(3.13)

the vectors
(
1y1(xi),. ..,1yn(xi),1d(xi,x′i)>ε

,1
)
, i= 1,. ..,m are linearly independent

}
.

Since Theorem 2.3 asserts that ext(Γµn,ε)⊂∆n+2(X×X), it follows that we can
replace Γµn,ε by Γµn,ε∩∆n+2(X×X) in the right-hand side of Equation (3.13). Having
done so, let us define

Θ̄ :=
{
ν ∈Γµn,ε∩∆n+2(X×X) :ν=

m∑
i=1

αiδxi,x′i ,1≤m≤n+2,αi>0,xi,x
′
i∈X,i= 1,. ..,m,

the vectors
(
1y1(xi),. ..,1yn(xi),1d(xi,x′i)>ε

,1
)
, i= 1,. ..,m are linearly independent

}
.

(3.14)
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to be the right-hand side of Equation (3.13). Then we have

ext(Γµn,ε)⊂ Θ̄⊂Γµn,ε

and therefore Θ̄ is a superset for Γµn,ε. To compute it, for i∈{1,. ..,n}, let us define

Λi :={x∈Xn+1 :1d(yi,xn+1)>ε 6=1d(yi,xi)>ε}. (3.15)

and for i<j define

Λi,j :={x∈Xn+2 :1d(yi,xn+1)>ε 6=1d(yi,xi)>ε,1d(yj ,xn+2)>ε 6=1d(yj ,xj)>ε}. (3.16)

Lemma 3.2. With Λi defined in Equation (3.15), Λi,j defined in Equation (3.16), and
Π̄0, Π̄i, and Π̄i,j defined in Equation (3.11), we have

Θ̄ =Π̄0∪nk=1 (Π̄i∩Λi)∪i<j (Π̄i,j ∩Λi,j).

Remark 3.1. For a reference measure µ :=
∑n
k=1βkδyk , it is interesting to note that

the condition that a measure

δy,x+
{
γ(δyi,xn+1

−δyi,xi) , 0<γ<βi
}

is a member of Πi∩Λi amounts to the splitting off of the mass βi on the Dirac situated at
yi into the convex sum of two Dirac masses, one situated at (yi,xi) and one at (yi,xn+1),
such that, between xi and xn+1, one is inside the ball of radius ε about yi and the other
is outside it. Moreover, to be a member of Πi,j with i<j amounts to two such splits.

3.3. Equivalence classes determined by the adjacency matrix. For
x∈Xm,n≤m≤n+2, let its adjacency matrix A(x) be defined by

Ai,j(x) :=1d(yi,xj)>ε, i= 1,. ..,n, j= 1,. ..,m.

Commensurate with our introduction of the multi-index ı, we use the expression A(x)
to mean the n×m adjacency matrix when x∈Xm, for any m=n,n+1,n+2. Since,
by Lemma 3.2, Θ̄ =Π̄0∪nk=1 Π̄k∪i≤j Π̄i,j and the latter are determined by conditions
Λi,i= 1,. ..,n, Λi,j for i<j, and ν{(z,z′)∈X×X :d(z,z′)>ε}≤ ε, all of which, by the
the evaluation (3.9), only depend on the values of the adjacency matrix, we obtain the
following lemma. It asserts that, for any point in Π̄0, Π̄i or Π̄i,j , if the second compo-
nents x of the Dirac masses are changed to x′ with the same adjacency matrix, then the
resulting sum of Dirac masses remains in Π̄0, Π̄i or Π̄i,j respectively. Consequently, it
will be useful in the efficient exploration of the set Θ̄.

Lemma 3.3. For n≤m≤n+2, x∈Xm, z∈Xm and α∈Rm, consider µ(x) :=∑m
k=1αkδzk,xk . If µ(x)∈ Π̄ı(x), then for all x′ such that A(x′) =A(x), we have

µ(x′)∈ Π̄ı(x
′).

4. Extreme points of a ball about an empirical measure
Empirical measures take the form µn= 1

n

∑n
i=1 δyi , with yi∈X,i= 1,. ..,n. When all

the points yi are unique, we can define βi :=
1
n ,i= 1,. ..,n in the expressions of Section

3, when the points have duplicates things will be more complicated. In the unique case,
the definitions (3.3), (3.4), (3.6), and (3.7) of Π0, Πi(x), and Πi,j(x) take on a more
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symmetrical form, and since the case when the central measure is an empirical measure
is an important application, we spell them out. To begin with, we have

δy,x=
1

n

n∑
k=1

δyk,xk .

Moreover, the evaluation of the constraint ν(d>ε)≤ ε also takes a simpler form, so that
constrained sets Π̄0, Π̄i(x), and Π̄i,j(x) appear as follows:

Π̄0 =
{
δy,x, x∈Xn

}
subject to the constraint

1

n

n∑
k=1

1d(yk,xk)>ε≤ ε,

while for i∈{1,. ..,n} we have

Π̄i(x) = δy,x+
1

n

{
γ(δyi,xn+1

−δyi,xi), 0<γ<1
}

subject to the constraint

1

n

n∑
k=1

1d(yk,xk)>ε+γ(1d(yi,xn+1)>ε−1d(yi,xi)>ε)≤ ε,

and for i<j we have

Π̄i,j(x) = δy,x+
1

n

{
γi(δyi,xn+1

−δyi,xi)+γj(δyj ,xn+2
−δyj ,xj ),0<γi<1,0<γj<1

}
subject to the constraint

1

n

n∑
k=1

1d(yk,xk)>ε+γi(1d(yi,xn+1)>ε−1d(yi,xi)>ε)+γj(1d(yj ,xn+2)>ε−1d(yj ,xj)>ε)≤ ε,

and for i= j we have

Π̄i,i(x) = δy,x+
{
γ1(δyi,xn+1−δyi,xi)+γ2(δyi,xn+2−δyi,xi), γ1>0,γ2>0,γ1 +γ2<1

}
subject to the constraint

1

n

n∑
k=1

1d(yk,xk)>ε+γ1(1d(yi,xn+1)>ε−1d(yi,xi)>ε)+γ2(1d(yi,xn+2)>ε−1d(yi,xi)>ε)≤ ε.
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Appendix A.

A.1. Extreme subsets. We begin by establishing a fundamental identity
regarding the extreme subsets of extreme subsets1 of an affine space. Since this ter-
minology varies in the literature, we fix it now. Following [2, Def. 7.61], we say that
a set E is an extreme subset of a subset A⊂L of a real linear space L if E⊂A and
θx+(1−θ)y∈E with x,y∈A, θ∈ (0,1) implies that x,y∈E. Note that this definition
does not require convexity. An extreme point of A is an extreme subset of A consisting of
a single point. We say that a set F is a face of a subset A⊂L of a real linear space L if it
is a convex extreme subset of A. The following lemma implies that Simon [14, Prop. 8.6]
is valid without assuming compactness or convexity.

Lemma A.1. Let A be a subset of a real linear space L and let E be an extreme subset
of A. Then B is an extreme subset of E if and only if B⊂E and it is an extreme subset
of A. In particular,

ext(E) =E∩ext(A).

Proof. The proof is identical to that of [14, Prop. 8.6], but we reproduce it here so
that the reader can confirm that it is valid without compactness or convexity assump-
tions. First suppose that B⊂E and B is an extreme subset of A. Then, by definition,
if θx+(1−θ)y∈B, with x,y∈A, θ∈ (0,1), then x,y∈B. Since E⊂A, it follows that
if we have θx+(1−θ)y∈B, with x,y∈E,θ∈ (0,1), that x,y∈B. Consequently, since
B⊂E, B is an extreme subset of E. Now assume that B is an extreme subset of E.
Then, if we have θx+(1−θ)y∈B, with x,y∈A,θ∈ (0,1), the fact that B⊂E and E is
an extreme subset of A implies that x,y∈E. Then, since B is an extreme subset of E,
it follows that x,y∈B. Since clearly B⊂A, we conclude that B is an extreme subset of
A.

A.2. Affine images of extreme points. Here we establish a fundamental
result for affine transformations and extreme points of, possibly non-convex, subsets.

Lemma A.2. Let L and L′ be real linear spaces and K⊂L a subset. Suppose
that G :K→L′ is the restriction of an affine transformation G :L→L′ to K such that
ext(G−1(k′)) 6=∅ for all k′∈ ext(G(K)). Then G(ext(K))⊃ ext(G(K)).

Proof. Let k′∈ ext(G(K)) and consider any point k∈G−1(k′). Then if k=θk1 +
(1−θ)k2, with k1,k2∈K, θ∈ (0,1), then k′=G(k) =G(θk1 +(1−θ)k2) =θG(k1)+(1−
θ)G(k2), so that, since k′ is an extreme point, it follows that G(k1) =G(k2) =G(k).
That is, G−1(k′) is an extreme subset of K. Therefore, Lemma A.1 implies that

ext
(
G−1(k′)

)
=G−1(k′)∩ext(K),

so that any extreme point of G−1(k′) is an extreme point of K. Since, by assumption,
G−1(k′) has an extreme point, it follows that any such extreme point is an extreme
point of K. Since the image under G of any such point is k′, and k′∈ ext(G(K)) was
arbitrary, the assertion follows.

1 The repetition here is not a typo.
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A.3. Integrals of extended real-valued lower semicontinuous functions.
Here we formulate a generalization to extended real-valued functions of [2, Thm. 15.5],
that the integral of a bounded lower semicontinuous function forms a lower semicontin-
uous function in the weak topology.

Lemma A.3. Let (X,d) be a metric space and f :X→ R̄+ a non-negative lower
semicontinuous extended real-valued function. For µ∈M(X) define

∫
fdµ to be the

integral if f is µ-integrable and ∞ if it is not. Then the function F :M(X)→ R̄ defined
by F (µ) :=

∫
fdµ is lower semicontinuous in the weak topology.

Proof. We follow Aliprantis and Border [2, Thm. 15.5]. First let us clip the
function f at the level s by fs(x) := min(f(x),s),x∈X. Then, since for all c we have {x :
fs(x)≤ c}={x :f(x)≤ c} for s>c and {x :fs(x)≤ c}={x :f(x)≤s} for s≤ c, it follows
that fs is a real-valued semicontinuous function. Consequently, by [2, Thm. 3.13] for
each s, fs is the increasing pointwise limit of a sequence fsn of Lipschitz continuous
functions. By further clipping from below at 0, sending fsn 7→max(fsn,0) we obtain that
we can assume that for each s, fs is the increasing pointwise limit of a sequence fsn
of non-negative bounded continuous functions. Therefore, setting s :=n and defining
fn :=fnn , we conclude that f is the increasing pointwise limit of a sequence fn of bounded
continuous nonnegative real-valued functions.

Now let µα be a net such that µα→µ in the weak topology and let us utilize the
integration theory for extended real-valued functions as found in Ash [3, Sec. 1]. Then
it follows that ∫

fndµα
α−→
∫
fndµ (A.1)

and ∫
fndµα≤

∫
fdµα (A.2)

so that we conclude that ∫
fndµ≤ liminf

α

∫
fdµα,

for each n. Therefore, from the monotone convergence theorem for extended valued
functions (see e.g. Ash [3, 1.6.2]) we have∫

fdµ= lim
n→∞

∫
fndµ

and we conclude that ∫
fdµ= lim

n→∞

∫
fndµ≤ liminf

α

∫
fdµα,

so that the assertion follows from the alternative characterization of lower semicontin-
uous extended real-valued functions [2, Lem. 2.42].
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Appendix B.

B.1. Proof of Theorem 2.2. We follow the proof of the main result in [18],
simplifying it according to our more modest goal. Let t denote the topology of X. Since
X is a Borel subset of a Polish space, it follows that it is Suslin and, therefore, all
finite Borel measures on (X,t) are tight. Let C⊂M(X) be a nontrivial closed convex
subset and consider µ∗∈C. Since µ∗ is tight, using a recursive argument, we obtain a
sequence Kn⊂X,n∈N of disjoint compact subsets such that if we define X1 :=∪n∈NKn

we have µ∗(X1) = 1. Let the relative topology of the subspace X1⊂X be denoted by
t0 and introduce a finer topology t1⊃ t0 defined by A∈ t1 if, for every n∈N, we have
A∩Kn=Bn∩Kn for some Bn∈ t. It follows that Kn∈ t1 for all n∈N, so that (X1,t1) is
locally compact. Moreover, since (X1,t0) is metric, it is Hausdorff, and since t1 is finer
than t0 it follows that (X1,t1) is Hausdorff. Let us show that (X1,t1) is also completely
regular. To that end, recall (see e.g. Willard [17, Thm. 14.12]) that a space is completely
regular if and only if its topology is the initial topology corresponding to the bounded
continuous functions. Since (X1,t0) is metric it is completely regular. Consequently
the topology t1 amounts to the initial topology corresponding to the addition of the set
of indicator functions 1Kn ,n∈N to the collection of continuous functions on (X1,t0).
Therefore, (X1,t1) is also completely regular. Since (X,t) is Suslin it is second countable
and therefore (X1,t0) is second countable. Since a base for the topology t1 can be
constructed by taking a base for (X1,t0) and taking all intersections with the sets
Kn,n∈N, it follows that (X1,t1) is second countable. Consequently, all the spaces
(X,t), (X1,t0), and (X1,t1) are second countable.

Now observe that for A∈ t1 we have A=∪n∈NA∩Kn and for each n, we have
A∩Kn=Bn∩Kn for some Bn∈ t. Since both Bn and Kn are in B(t) it follows that
the intersection is also and therefore also the countable union A=∪n∈NA∩Kn. That is,
A∈B(t) and since A⊂X1 it follows that A∈B(t0). Since t1 is finer than t0, we conclude
that

B(t0) =B(t1)

and therefore

M(X1,t0) =M(X1,t1) (B.1)

as sets.
Since (X1,t1) is locally compact and Hausdorff, we consider the Alexandroff one-

point compactification (X2,t2) of (X1,t1). Since (X1,t1) is second countable, it fol-
lows (see e.g. [2, Thm. 3.44]) that the compactification (X2,t2) is metrizable. Con-
sequently, (X2,t2) is a compact metrizable Hausdorff space, and so it follows (see
e.g. [2, Thm. 15.11]) that M(X2,t2) is compact and metrizable. Moreover, since by
e.g. [2, Lem. 3.26 & Thm. 3.28], all compact metrizable spaces are separable and there-
fore second countable, it follows that M(X2,t2) is second countable.

Define

MX1
(X,t) ={µ∈M(X,t) :µ(X1) = 1}

MX1(X2,t2) ={µ∈M(X2,t2) :µ(X1) = 1}

where X1⊂X2 is the subset identification corresponding to the compactification. Since
both M(X,t) and M(X2,t2) are second countable, it follows that the subspaces
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MX1(X,t) andMX1(X2,t2) are second countable. Since (X2,t2) is compact and Haus-
dorff it follows from [17, Thm. 17.10 & Cor. 15.7] that (X2,t2) is completely regular.
Consequently, if we let

i0 : (X1,t0)→ (X,t)

i1 : (X1,t1)→ (X2,t2)

denote the two subset injections, then since both (X1,t0) and (X2,t2) are completely
regular, Bourbaki [4, Prop. 8, Sec. 5.3] implies that the pushforward maps

i0∗ :M(X1,t0)→MX1
(X,t),

i1∗ :M(X1,t1)→MX1
(X2,t2),

are homeomorphisms, because of the identity (B.1) it is natural to define

ι :MX1(X,t)→MX1(X2,t2)

by

ι := i1∗(i
0
∗)
−1.

Although each component i0∗ and i1∗ of ι is a homeomorphism, since we haveM(X1,t0) =
M(X1,t1) only as sets, ι may not be a homeomorphism. However, since t1 is finer than
t0 it follows that the identity map ί :M(X1,t1)→M(X1,t0) is continuous, and if we
more properly write

ι := i1∗(ί)
−1(i0∗)

−1

as a composition of three maps on topological spaces, it follows from the continuity of
ί and the fact that i0∗ and i1∗ are homeomorphisms that

ι is a closed map. (B.2)

Now define

C0 :=C∩MX1
(X,t)

C2 := ιC0

and

C̄2 := the closure ofC2 inM(X2,t2).

Since ι is affine it follows that C2 is convex. Moreover, since C0 is relatively closed in
MX1(X,t) and by Equation (B.2) ι is a closed map, it follows that C2 = ιC0 is relatively
closed inMX1(X2,t2). Consequently, there exists a closed set Ć2⊂M(X2,t2) such that
C2 = Ć2∩MX1

(X2,t2). Since it follows that Ć2⊃C2 we obtain

C2⊂ C̄2⊂ Ć2

and therefore

C2 =C2∩MX1
(X2,t2)

⊂ C̄2∩MX1
(X2,t2)
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⊂ Ć2∩MX1(X2,t2)

=C2

so that we conclude that

C2 = C̄2∩MX1
(X2,t2). (B.3)

It is easy to show that bothMX1
(X,t)⊂M(X,t) andMX1

(X2,t2)⊂M(X2,t2) are
extreme subsets. Therefore, it follows from Lemma A.2 that

ext(C0) = ext(C)∩MX1(X,t) (B.4)

and

ext(C2) = ext(C̄2)∩MX1
(X2,t2). (B.5)

Since ι is a composition of affine bijections, it is an affine bijection, so that we have

ext(C2) = ιext(C0).

Finally, observe that µ∗, selected at the beginning of the proof, satisfies µ∗∈
MX1

(X,t). Therefore, it follows that C0 and therefore C2 := ιC0 and C̄2 are not empty.
Consequently, since C̄2⊂M(X2,t2) is closed and M(X2,t2) compact it follows that
C̄2 is compact, and since M(X2,t2) is locally convex and metrizable, it follows from
Choquet’s theorem for metrizable compact convex sets, see Alfsen [1, Cor. I.4.9], that
each element µ∈ C̄2 has an integral representation over the boundary ext(C̄2). That
is, ext(C̄2) 6=∅ is measurable, and for µ∈ C̄2 there exists a probability measure p on
ext(C̄2) such that, for all continuous functions f on C̄2, we have

µ(f) =

∫
ext(C̄2)

ν(f)dp(ν),

where µ(f) and ν(f) denote the integrals
∫
fdµ and

∫
fdν.

Consider the open subset X1⊂X2. Since X1 is a metric space, it follows (see
e.g. [2, Cor. 3.14]) that the indicator function 1X1

is the increasing pointwise limit of
a sequence of continuous functions fn,n∈N with values in [0,1]. Since C̄2 is a subset
of a metrizable second countable space, it too is metrizable and second countable, and
therefore it follows from [2, Lem. 3.4] that it is separable. Consequently, [2, Thm. 15.13]
implies that the function ν 7→ν(f) is measurable for all bounded measurable functions
f . Therefore, by the monotone convergence theorem [3, Thm. 1.6.2] applied three times:
to the left hand side, to the integrand of the right-hand side, and to the integral on the
right-hand side, we conclude that

µ(X1) =

∫
ext(C̄2)

ν(X1)dp(ν). (B.6)

Since C2⊂ C̄2, it follows that µ∈C2 has a representing measure p such that integral
formula (B.6) holds. Since µ∈C2, the equality µ(X1) = 1 implies that ν(X1) = 1 p-
almost everywhere. In particular, there exists a ν ∈ C̄2 such that ν(X1) = 1. That is,
ext(C̄2)∩MX1

(X2,t2) 6=∅. Since by Equation (B.5) ext(C2) = ext(C̄2)∩MX1
(X2,t2)

it follows that ext(C2) 6=∅. Furthermore, the relation ιext(C0) = ext(C2) implies that
ext(C0) 6=∅, and the relation ext(C0) = ext(C)∩MX1(X,t) implies that ext(C) 6=∅,
which is the assertion of the theorem.
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B.2. Proof of Theorem 2.3. It is straightforward to show that X×X is a
Borel subset of the Polish metric space determined by the product of the ambient Polish
metric spaces. Therefore, Suslin’s theorem (see e.g. Kechris [11, Thm. 14.2]) implies
that both X and X×X are Suslin, and therefore by Dellacherie and Meyer [6, III.69],
it follows that all probability measures in both M(X) and M(X×X) are tight. This
tightness facilitates both the existence of extreme points for convex sets of measures,
useful in obtaining the assertion, and the duality theorems of Strassen and Kantorovich–
Rubinstein used in the proof of Theorem 2.1.

Lemma A.3 implies that {ν ∈M(X×X) :
∫
c(x,x′)dν(x,x′)≤ ε} is closed and convex

in the weak topology. Moreover, by Aliprantis and Border [2, Thm. 15.14] the marginal
maps P1 and P2 are continuous in the weak topologies. Since singletons in M(X) are
closed, for µ∈M(X), it follows that {ν ∈M(X×X) :P1ν=µn}, {ν ∈M(X×X) :P2ν=
µ} are also closed and convex, and therefore Γµn,ε∩P−1

2 µ is closed and convex in the
weak topology. Since Γµn,ε∩P−1

2 µ is nonemtpy, Winkler’s theorem 2.2 implies that it
possesses an extreme point. Therefore Lemma A.2 implies that

P2(ext(Γµn,ε))⊃ ext
(
P2(Γµn,ε)

)
,

establishing the second assertion.
For the first, let us describe ext(Γµn,ε). To that end, write µn=

∑n
i=1αiδxi with

αi≥0,xi∈X,i= 1,. ..,n and
∑n
i=1αi= 1. Then consider the n+1 constraint functions

c and 1{xi}×X ,i= 1,. ..,n to define Γµn,ε as inequality/equality constraints defined by
integrals of measurable functions onM(X×X). Then [12, Thm. 4.1, Rmk. 4.2] (derived
from Winkler [19, Thm. 2.1], which is a consequence of Dubins [7]) implies that

ext(Γµn,ε)⊂∆n+2(X×X),

establishing the first assertion. The third assertion follows by combining the first two
and P2

(
∆n+2(X×X)

)
= ∆n+2(X).

B.3. Proof of Theorem 2.1. Since X is a Borel subset in a Polish metric
space, Suslin’s theorem, see e.g. Kechris [11, Thm. 14.2], implies that X is Suslin, and
therefore by Dellacherie and Meyer [6, III.69], it follows that all probability measures
in M(X) are tight.

Let us first begin with the Prokhorov case. We use the Prokhorov metric onM(X×
X). Consider the subset Γµn,ε⊂M(X×X) defined by

Γµn,ε :=
{
ν ∈M(X×X) :ν{d>ε}≤ ε, P1ν=µn

}
.

For any ν ∈Γµn,ε, for µ′ :=P2ν it follows that P1ν=µn, P2ν=µ′ and ν{d>ε}≤ ε, so
that by the Prokhorov-Ky Fan inequality [8, Thm. 11.3.5] it follows that dPr(µ

′,µn)≤ ε,
that is µ′∈Bε(µn), so that we conclude that

P2(Γµn,ε)⊂Bε(µn). (B.7)

To obtain the reverse inequality, let us first note that the inf in the definition
(2.1) of the Prokhorov metric can be replaced by a min. To see this, observe that
for fixed A∈B(X), that the parametrized family of open sets Aε,ε>0 is increasing.
Consequently, if εn ↓ ε′, then for any µ∈M(X), we have µ(Aεn)↓µ(Aε

′
), so that, for

fixed A∈B(X) and µ1,µ2∈M(X), the interval {ε :µ1(A)≤µ2(Aε)+ε} is closed. It
follows that the intersection of these closed intervals {ε :µ1(A)≤µ2(Aε)+ε, A∈B(X)}
over all A∈B(X) is closed. Therefore the infimum in the definition (2.1) is attained.
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Now consider µ∈Bε(µn) and define ε∗ :=dPr(µn,µ). Then by the previous remark
we have

µ(A)≤µn(Aε
∗
)+ε∗, A∈B(X)

and the inequality ε∗≤ ε implies that

µ(A)≤µn(Aε)+ε, A∈B(X).

Moreover, if we denote d(x,A) := infy∈Ad(x,y) then it is easy to see that Aε={x∈X :
d(x,A)<ε} and defining Aε] ={x∈X :d(x,A)≤ ε} we obtain that

µ(A)≤µn(Aε])+ε, A∈B(X).

Then, since both µ and µn are tight, Dudley’s [8, Thm. 11.6.2] extension of Strassen’s
theorem to tight measures on separable metric spaces implies that there exists a prob-
ability measure ν ∈M(X×X) such that P1ν=µn, P2ν=µ, and ν{d>ε}≤ ε, that is,
there exists a ν ∈Γµn,ε such that P2ν=µ, so that we obtain

P2

(
Γµn,ε

)
⊃Bε(µn)

and, so by Equation (B.7), conclude that

P2

(
Γµn,ε

)
=Bε(µn). (B.8)

Since the metric d is a continuous function, it follows that the set {(x,x′)∈X×X :
d(x,x′)>ε} is open and therefore the indicator function 1d>ε is lower semicontinuous.
Therefore, we can apply Theorem 2.3 to obtain

ext
(
Bε(µn)

)
= ext

(
P2(Γµn,ε)

)
⊂∆n+2(X)

establishing the assertion.
Now let us consider the Kantorovich case. To that end, letM1(X)⊂M(X) denote

those Borel probability measures µ such that
∫
d(x′,x)dµ(x)<∞ for some x′∈X, and

consider the Monge–Wasserstein distance dW on M1(X) defined by

dW (µ1,µ2) := inf
ν∈M(µ1,µ2)

∫
d(x,x′)dν(x,x′).

Then the Kantorovich–Rubinstein theorem [8, Thm. 11.8.2] states that for all µ1,µ2∈
M1(X) we have

dK(µ1,µ2) =dW (µ1,µ2),

and, if µ1 and µ2 are tight, that there is a measure inM(X×X) at which the infimum
in the definition of dW is attained.

Define Γµn,ε⊂M(X×X) by

Γµn,ε :=
{
ν ∈M(X×X) :

∫
d(x,x′)dν(x,x′)≤ ε, P1ν=µn

}
,

and for ν ∈Γµn,ε, consider µ :=P2ν. Then, for y∈X, we have∫
d(y,x′)dµ(x′) =

∫
d(y,x′)dν(x,x′)
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≤
∫ (

d(y,x)+d(x,x′)
)
dν(x,x′)

=

∫
d(y,x)dν(x,x′)+

∫
d(x,x′)dν(x,x′)

=

∫
d(y,x)dµn(x)+

∫
d(x,x′)dν(x,x′)

≤
∫
d(y,x)dµn(x)+ε,

and, since µn is a finite convex sum of Dirac masses, it follows that
∫
d(y,x′)dµ(x′)<∞,

that is, P2ν ∈M1(X), so that we conclude that

P2(Γµn,ε)⊂M1(X).

Since all measures in M1(X) are tight, the Kantorovich–Rubinstein theorem then
implies that

P2(Γµn,ε) =Bε(µn)

in the same way that the Strassen theorem implied it in Equation (B.8) for the Prokhorov
metric. Moreover, since d is a metric, it is non-negative, real-valued and continuous,
so it follows that it is a non-negative semicontinuous real-valued function. As in the
Prokhorov case, Theorem 2.3 then yields the assertion.

B.4. Proof of Lemma 3.1. Since an element ν ∈∆n+2(X×X) may have
support smaller than n+2, we represent it by ν=

∑m
i=1αiδxi,x′i , αi>0,xi,x

′
i∈X,i=

1,. ..,m,
∑m
i=1αi= 1, for m≤n+2, where we also require (xi,x

′
i) 6= (xj ,x

′
j),i 6= j. Such an

element ν ∈∆n+2(X×X) is a member of P−1
1 µn∩∆n+2(X×X) if and only if P1ν=µn.

Therefore, we conclude that ν ∈P−1
1 µn∩∆n+2(X×X) if and only if

m∑
j=1

αjδxj =

n∑
i=1

βiδyi .

Since βi>0,i= 1,. ..,n and αj>0,j= 1,. ..,m it follows that

{xj ,j= 1,. ..,m}={yi,i= 1,. ..,n}.

In particular, m must satisfy n≤m≤n+2. Moreover, the three possible cases
m=n,n+1,n+2 appear as follows: when m=n, there is a relabeling of the indices
of (xj ,x

′
j),j= 1,. ..,n so that xi=yi,αi=βi,i= 1,. ..,n. When m=n+1, there is a

j1∈{1,. ..,n} and a relabeling so that xi=yi,i= 1,. ..,n and xn+1 =yj1 . Then we
also have αi=βi,i 6= j1 and αj1 +αn+1 =βj1 . When m=n+2, then there is a re-
labeling so that xi=yi,i= 1,. ..,n and either 1) there is a j1∈{1,. ..,n} such that
xn+1 =xx+2 =yj1 and αi=βi,i 6= j1 and αj1 +αn+1 +αn+2 =βj1 or 2) there are two
distinct values j1,j2∈{1,. ..,n} such that xn+1 =yj1 , xn+2 =yj2 , αi=βi,i 6= j1 i 6= j2,
αj1 +αn+1 =βj1 , and αj2 +αn+2 =βj2 . It is clear the m=n case amounts to the state-
ment ν ∈Π0 defined in Equation (3.3). Let us now show that the m=n+1 and m=n+2
cases amount to the statements ν ∈Πi for some i and ν ∈Πi,j for some i≤ j defined in
Equation (3.5) and Equation (3.8), respectively, establishing the assertion.

To that end, for the m=n+1 case, the above assertion states that there is an
i∈{1,. ..,n} and an x∈Xn+1 such that

ν=
∑

k 6=i,k∈{1,n}

βkδyk,xk +αiδyi,xi +αn+1δyi,xn+1
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with αi+αn+1 =βi. Since∑
k 6=i,k∈{1,n}

βkδyk,xk +αiδyi,xi +αn+1δyi,xn+1 = δy,x+(αi−βi)δyi,xi +αn+1δyi,xn+1

= δy,x+αn+1(δyi,xn+1−δyi,xi),

by the identification γ :=αn+1, we conclude that ν ∈Πi defined in Equation (3.5). The
proof in the m=n+2 case is essentially the same.

B.5. Proof of Lemma 3.2. Let us define

Θ :=
{
ν ∈P−1

1 µn∩∆n+2(X×X) :ν=

m∑
i=1

αiδxi,x′i ,1≤m≤n+2,αi>0,xi,x
′
i∈X,i= 1,. ..,m,

the vectors
(
1y1(xi),. ..,1yn(xi),1d(xi,x′i)>ε

,1
)
, i= 1,. ..,m are linearly independent

}
.

(B.9)

Then the identity

Γµn,ε=P−1
1 µn∩

{
ν ∈M(X×X) :ν{d>ε}≤ ε

}
implies that

Θ̄ = Θ∩
{
ν ∈M(X×X) :ν{d>ε}≤ ε

}
. (B.10)

As in Section 3.1, let us compute Θ̄ by first computing Θ and then using the identity
(B.10). To that end, observe that the definition (B.9) of Θ implies that the support
points (xi,x

′
i),i= 1,. ..,m contain no duplicates so that we can apply Lemma 3.1 which

implies that we can constrain the values of m in the definition of Θ to n≤m≤n+2.
Moreover, Θ is defined in terms of P−1

1 µn∩∆n+2(X×X), and by Lemma 3.1 we have
P−1

1 µn∩∆n+2(X×X) = Π0∪nk=1 Πk∪i≤jΠi,j . Consequently, using the multi-index ı
introduced above in Equation (3.11), it is natural to define

Θı := Θ∩Πı

and observe that

Θ = Θ0∪nk=1 Θk∪i≤jΘi,j .

First consider Θ0. Since the definition of Π0 implies that {xj ,j= 1,. ..,n} must be
a permutation of {yi,i= 1,. ..,n}, it follows that the linear independence condition of
Equation (B.9) is satisfied in this case. That is,

Θ0 = Π0. (B.11)

Now consider Πi for i∈{1,. ..,n}. Then the definition (3.5) of Πi implies that, upon
relabeling, the linear independence of the set

(
1y1(xi),. ..,1yn(xi),1d(xi,x′i)>ε

,1
)
,i=

1,. ..,n+1 amounts to the linear independence of the set(
In×n,zn,In

)
together with (

0,. ..,1i,. ..,0,1d(yi,x′n+1)>ε,1
)
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where zn has components 1d(yi,x′i)>ε
,i= 1,. ..,n, In×n is the identity matrix, In is the

vector of 1s, and 1i indicates a 1 in the ith position. Because the first row has the
identity matrix, this set of vectors is linearly independent if and only if(

0,. ..,1i,. ..,0, 1d(yi,x′i)>ε
,1
)

(
0,. ..,1i,. ..,0,1d(yi,x′n+1)>ε,1

)
is linearly independent, which is equivalent to the assertion that x′∈Λi defined in Equa-
tion (3.15). Consequently, we obtain

Θi= Πi∩Λi. (B.12)

For Θi,j with i≤ j, let us first show that Θi,i=∅. To that end, let x′∈Xn+2 and
consider ν ∈Πi,i(x

′). Then using the same reasoning as above, it follows that the linear
independence condition is equivalent to the linear independence of the three vectors(

0,. ..,1i,. ..,0, 1d(yi,x′i)>ε
,1
)

(
0,. ..,1i,. ..,0,1d(yi,x′n+1)>ε,1

)
(

0,. ..,1i,. ..,0,1d(yi,x′n+2)>ε,1
)
.

Since the last row is identically 1, the independence of this set is not possible regardless
of the values of 1d(yi,x′i)>ε

,1d(yi,x′n+1)>ε and 1d(yi,x′n+2)>ε. Therefore,

Θi,i=∅, i= 1,. ..,n. (B.13)

So let us consider Θi,j with i<j. Then, upon relabeling, the linear independence of the
set
(
1y1(xi),. ..,1yn(xi),1d(xi,x′i)>ε

,1
)
,i= 1,. ..,n+2 amounts to the linear independence

of the set (
In×n,zn,In

)
together with (

0,. ..,1i,. ..,0,. ..,0,1d(yi,x′n+1)>ε,1
)

(
0,. ..,0,. ..,1j ,. ..,0,1d(yj ,x′n+2)>ε,1

)
.

Because the first row has the identity matrix, this set of vectors is linearly independent
if and only if both (

0,. ..,1i,. ..,0, 1d(yi,x′i)>ε
,1
)

(
0,. ..,1i,. ..,0,1d(yi,x′n+1)>ε,1

)
and (

0,. ..,1j ,. ..,0, 1d(yj ,x′j)>ε
,1
)

(
0,. ..,1j ,. ..,0,1d(yj ,x′n+2)>ε,1

)
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are linearly independent. Then, as in the Θi case above, the linear independence of
these two sets is equivalent to requiring that x′∈Λi,j defined in Equation (3.16). That
is, we have

Θi,j = Πi,j ∩Λi,j . (B.14)

Therefore, we have established that

Θ = Π0∪nk=1 (Πi∩Λi)∪i<j (Πi,j ∩Λi,j),

and the assertion then easily follows.
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