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Abstract: In this paper we analyze the transport of passive tracers by deterministic
stationary incompressible flows which can be decomposed over an infinite number of
spatial scales without separation between them. It appears that a low order dynamical
system related to local Peclet numbers can be extracted from these flows and it controls
their transport properties. Its analysis shows that these flows are strongly self-averaging
and super-diffusive: the delay τ(r) for any finite number of passive tracers initially close
to separate till a distance r is almost surely anomalously fast (τ(r) ∼ r2−ν , with ν > 0).
This strong self-averaging property is such that the dissipative power of the flow com-
pensates its convective power at every scale. However as the circulation increases in the
eddies the transport behavior of the flow may (discontinuously) bifurcate and become
ruled by deterministic chaos: the self-averaging property collapses and advection dom-
inates dissipation. When the flow is anisotropic a new formula describing turbulent
conductivity is identified.

1. Introduction

In this paper we study the passive transport in R
d (d ≥ 2) of a scalar T by a divergence

free steady vector field v characterized by the following partial differential equation
(κ > 0 being the molecular conductivity):

∂tT + v∇T = κ�T (1)

We will assume v to be given by an infinite (or large) number of spatial scales without any
assumption of self-similarity [Ave96]. It will be shown that one can extract from the flow
a low order dynamical system related to local Peclet tensors which controls the transport
properties of the flow. Based on the analysis of this dynamical system we will show that
the transport is almost surely super-diffusive, that is to say, the time of separation of
any finite number of passive tracers driven by the same flow and independent thermal
noise behave like r2−ν with ν > 0. Similar programs of investigations have shown that
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the mean squared displacement of a single particle is anomalously fast when averaged
with respect to space, time and the randomness of the flow ([Pit97, KO02, Fan02]). The
point here is to show that the transport is strongly self-averaging: the diffusive proper-
ties are anomalously fast (before being averaged with respect to the thermal noise, or
a probability law of the flow), moreover the pair separation is also anomalously fast.
The fast behavior of the transport of a single particle can be created by long distance
correlations in the structure of the velocity field but this is not sufficient to produce fast
pair separation. In this paper non-asymptotic estimates will be given, showing that the
transport is controlled by a never-ending averaging phenomenon ([Owh01a, Owh01b,
BO02a, BO02b]). The analysis of the low order dynamical system allows to obtain a
formula linking the minimal and maximal eigenvalues of the turbulent eddy diffusivity.
It will be shown that the transport properties depend only on the power law in v and not
on its particular geometry (which is not a priori obvious since we consider a quenched
model). However, depending on the geometrical characteristics of the eddies at each
scale, as the flow rate is increased in these eddies we observe that the super-diffusive
behavior may bifurcate towards a Chaotic transport: the multi-scale averaging picture
collapses and the flow becomes highly unstable, sensitive to the characteristics of the
microstructure and dominated by convective terms.

2. The Model

We want to analyze the properties of the solutions of the following stochastic differential
equation which is the Lagrangian formulation of the passive transport equation (1):

dyt =
√

2κdωt + ∇.�(yt ) dt. (2)

Here κ > 0 is the molecular conductivity of the flow, ωt a standard Brownian Motion on
R
d related to the thermal noise, � is a skew-symmetric matrix on R

d called the stream
matrix of the flow and ∇.� its divergence. Thus ∇.� is the divergence free drift defined
by (∇.�)i = ∑d

j=1 ∂j�ij . We assume that � is given by an infinite sum of periodic
stream matrices with (geometrically) increasing periods and increasing amplitude,

� =
∞∑

k=0

γkE
k

(
x

Rk

)

. (3)

In the formula (3) we have three important ingredients: the stream matrices Ek (also
called eddies), the scale parameters Rk and the amplitude parameters γk (the stream
matrices Ek are dimensionless and the parameters γk have the dimension of a conduc-
tivity). We will now describe the hypothesis we make on these three items of the model.
Let us write T d := R

d/Zd the torus of dimension d and side one and for α ∈ [0, 1],
Sα(T d) the space of d × d skew-symmetric matrices on T d with α-Holder continuous
coefficients and ‖.‖α the norm associated to that space. For E ∈ Sα(T d),

‖E‖α := sup
i,j∈{1,... ,d}

sup
x �=y

|Eij (x)− Eij (y)|/|x − y|α. (4)

I Hypotheses on the stream matrices Ek .
There exists 0 < α ≤ 1 such that for all k ∈ N,

Ek ∈ Sα(Td). (5)
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The Sα-norm of the Ek are uniformly bounded, i.e.

Kα := sup
k∈N

‖Ek‖α < ∞. (6)

Moreover for all k,

Ek(0) = 0. (7)

Observe that the S0-norms of the Ek are uniformly bounded and we will write

K0 := sup
k∈N

sup
i,j∈{1,... ,d}

‖Ek‖0. (8)

II Hypotheses on the scale parameters Rk .
Rk is a spatial scale parameter growing exponentially fast with k; more precisely
we will assume that R0 = r0 = 1 and that the ratios between scales defined by

rk = Rk/Rk−1 ∈ R
∗ (9)

for k ≥ 1, are reals uniformly bounded away from 1 and ∞: we will denote by

ρmin := inf
k∈N∗ rk and ρmax := sup

k∈N∗
rk, (10)

and assume that

ρmin ≥ 2 and ρmax < ∞. (11)

III Hypotheses on the flow rates γk .
γk is an amplitude parameter (related to the local rate of the flow) growing expo-
nentially fast with the scale k; more precisely we will assume that γ0 = 1 and that
their ratios γk/γk−1 for k ≥ 1, are positive reals uniformly bounded away from 1
and ∞: we will denote by

γmin := inf
k∈N∗(γk/γk−1) and γmax := sup

k∈N∗
(γk/γk−1), (12)

and assume that

γmin > 1 and γmax < ραmin. (13)

Remark 2.1. The uniform α-Holder continuity of the stream matrices Ek is sufficient to
obtain a well defined α-Holder continuous stream matrix �, however � is not differen-
tiable in general. In this case the stochastic differential equation (2) is formal. For the
simplicity of the presentation and to start with, when referring to the SDE (2) we will
assume that

α = 1 and that the stream matrices Ek are uniformly C1. (14)

It follows from the Hypothesis I, II and III that � is a well defined uniformly C1 skew-
symmetric matrix on R

d , thus the Stochastic Differential Equation 2 is well defined and
admits a unique solution.

The differentiability hypothesis (14) though convenient in order to define the process
yt is in fact useless, the theorems are also meaningful and true for 0 < α < 1 (since
they will refer to the diffusion associated to the weakly defined operator ∇.(κ + �)∇).
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Fig. 1. A simple example of the multiscale flow

Remark 2.2. Observe that the power law of the flow in this paper is not Kolmogorov.
Indeed if v(l) is the velocity of the eddies of size l and E(k) the kinetic energy distribution
in the Fourier modes then with the Kolmogorov law one should have

v(l) ∼ l
1
3 and E(k) ∼ k− 5

3 .

In our Model we have

v(l) ∼ l
ln γ
ln ρ −1 E(k) ∼ k

1−2 ln γ
ln ρ .

Thus to be consistent with a Kolmogorov spectrum one should have γ = ρ
4
3 ; this case

will be analyzed in a forthcoming paper.

As an example, we have illustrated in Fig. 1 the contour lines of a two scale flow with
stream function h2

0(x, y) = ∑2
k=0 γ

kh( x
ρk
,
y

ρk
) , with ρ = 3, γ = 1.1 and h(x, y) =

2 sin(2πx + 3 cos(2πy − 3 sin(2πx + 1))) sin(2πy + 3 cos(2πx − 3 sin(2πy + 1))).

3. A Reminder on the Eddy Conductivity

We write Md,sym the space of d× d symmetric elliptic constant matrices and SL∞(TdR)

the space of skew-symmetric matrices with coefficients in L∞(TdR) (TdR := RT
d stands

for the torus of dimension d and sideR). For a ∈ Md,sym andE a skew symmetric matrix
with bounded coefficients the heat kernel associated to the passive transport operator
∇.(a + E)∇ (defined in a weak sense) is Gaussian by Aronson estimates [Nor97]. We
will now assume E to be periodic: E ∈ SL∞(TdR). In this case the process associated
to the operator L = ∇.(a + E)∇ exhibits self-averaging properties and we will note
σsym(a, E) the effective conductivity associated to the homogenization of that operator
[BLP78, JKO91]. Writing p(t, x, y) the heat kernel associated to L, it is well known
that σsym(a, E) is a d × d elliptic symmetric matrix satisfying, for all x, l ∈ R

d ,

|l|2σsym(a,E)
= 1

2
lim
t→∞ t

−1
∫

Rd
p(t, x, y)(y.l)2 dy. (15)
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We have used the notation |l|2a := t lal. If zt is the process generated by L, then as ε ↓ 0,
εzt/ε2 converges in law to a Brownian motion with covariance matrix D(a,E) called
effective diffusivity and proportional to the effective conductivity,

D(a,E) = 2σsym(a, E). (16)

Let us recall that σsym(a, E) is given by the following variational formula ([Nor97]
Lemma 3.1): for ξ ∈ R

d ,

|ξ |2
σ−1

sym(a,E)
= inf
(f,H)∈C∞(TdR)×S(TdR)

R−d
∫

T
d
R

|ξ − ∇.H + (a + E)∇f |2
a−1 dx, (17)

where we have written S(TdR) the space of skew symmetric matrices with coefficients
in C∞(TdR).

The symmetric tensor σsym(a, E) is also called eddy conductivity: after averaging
the information on particular geometry of the eddies associated to E is lost and the con-
ductivity of the flow is replaced by an increased conductivity σsym(a, E). Let us define
for P ∈ SL∞(Td) and ρ ∈ R

∗, SρP ∈ SL∞(Td1
ρ

) by

SρP (x) := P(ρx). (18)

It is important to note that the effective conductivity is invariant by scaling, i.e.
σsym(a, SρP ) = σsym(a, P ); thus we can assume for simplicity that R = 1 and E ∈
SL∞(Td). WhenE is smooth σsym(a, E) is given [BLP78] by solving the following cell
problem:

∇.(a + E)(l − ∇χa,El ) = 0, (19)

where l ∈ R
d , χa,El ∈ C∞(Td) and

∫
Td
χ
a,E
l (x) dx = 0. Write Fa,El = l.x − χ

a,E
l (x),

observe that Fa,El is linear in l, thus we will write Fa,E the vector field (F a,E)i := F
a,E
ei

and ∇Fa,E the matrix (∇Fa,E)ij := ∂iF
a,E
ej . The eddy conductivity is then given by

σsym(a, E) =
∫

Td

t∇Fa,E(x)a∇Fa,E(x) dx. (20)

Let us recall that the matrix σ(a,E) defined by

σ(a,E) :=
∫

Td
(a + E(x))∇Fa,E(x) dx (21)

is called the flow effective conductivity [FP94] and is also given by the following vari-
ational formula [Nor97]: for ξ, l ∈ R

d ,

|ξ − σ(a,E)l|2
σ−1
sym(a,E)

:= inf
(f,H)∈C∞(Td )×S(Td )

∫

Td
|ξ − ∇.H − (a + E)(l − ∇f )|2

a−1 dx. (22)

It is easy to check that σsym(a, E) is the symmetric part of σ(a,E) which implies the
following variational formulation for the eddy conductivity:

|l|2σsym
= inf
ξ⊥l,(f,H)∈C∞(Td )×S(Td )

∫

Td
|ξ − ∇.H − (a + E)(l − ∇f )|2

a−1 dx, (23)

where we have written ξ ⊥ l is the subspace of ξ ∈ R
d orthogonal to the vector l:

ξ.l = 0.
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4. Main Results

4.1. Averaging with two scales. Let a ∈ Md,sym, P ∈ SL∞(Td) and K ∈ Sα(Td). We
will prove in Subsect. 5.1 the following estimate of σsym(a, SRP + K), the effective
conductivity for a two-scale medium whenR is an integer (and SR is the scaling operator
(18)).

Theorem 4.1. There exists a function f : R
2 → R

+ increasing in each of its arguments
such that for a ∈ Md,sym, R ∈ N

∗, P ∈ SL∞(Td) and K ∈ Sα(Td),
(1 + ε (R))−4 σsym

(
σsym(a, P ),K

) ≤ σsym(a, SRP +K)

≤ σsym
(
σsym(a, P ),K

)
(1 + ε(R))4, (24)

with ε(R) =
( ‖K‖α
Rαλmin(a)

) 1
2
f

(
d,

‖a + P ‖∞
λmin(a)

)
. (25)

Remark 4.2. Theorem 4.1 implies obviously that

σsym
(
σsym(a, P ),K

) = lim
R→∞

σsym(a, SRP +K). (26)

Thus σsym
(
σsym(a, P ),K

)
should be interpreted as the effective conductivity of the

two-scale flow with a complete separation of scales. So we will also write it σsym(a, S∞
P+K). Naturally σsym

(
σsym(a, P ),K

)
is also computable from an explicit cell problem

(see (20)).

Averaging versus chaotic coupling. Equation (24) basically says that when ε(R) is
small, the mixing length of the smaller scale P(Rx) is smaller than the scale at which
the fluctuations of the larger scale K(x) start to be felt. Now it is very important to
observe that as λmin(a) ↓ 0, ε(R) explode towards infinity and this collapse of the
two-scale averaging is not an artefact, it is easy to see that the estimate (25) is sharp.
What happens is a transition from averaging to a chaotic coupling between the two
scales. More precisely as λmin(a) ↓ 0, the mixing length of the smaller scale explode
well above the visibility length of the larger scale, the two scales are no longer separated
in the averaging and their particular geometry can no longer be ignored (collapse of the
averaging paradigm). Moreover writing for y ∈ [0, 1]d ,�y the translation operator act-
ing on functions f of R

d by �yf (x) = f (x + y), observe that in the limit of complete
separation between scales the two-scale averaging is invariant with respect to a relative
translation of one scale with respect to another:

lim
R→∞

σsym(a, SR�yP +K) = lim
R→∞

σsym(a, SRP +K). (27)

But the limit λmin(a) ↓ 0 is singular and this invariance by translation is lost: for l ∈ R
d ,

(
t lσsym(a, SR�yP +K)l − t lσsym(a, SRP +K)l

)(
t lσsym(a, SRP +K)l

)−1
(28)

may explode towards infinity. Indeed it is easy to see that for any R ∈ N
∗, there exist

P,K ∈ S1(Td) with ‖P ‖1 ≤ Cd , ‖K1‖ ≤ Cd such that there exists y ∈ [0, 1]d and
l ∈ R

d with

lim
ζ↓0

(
t lσsym(ζ Id, SR�yP +K)l

)(
t lσsym(a, SRP +K)l

)−1 = ∞. (29)
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(a) (b)

Fig. 2a,b. Two scales flow. (a) Stream lines of SRP and K; (b) Stream lines of SR�yP and K

We have illustrated this symmetry breaking in Fig. 2 representing a two scale flow. In
Fig. 2(a) the larger eddies are surrounded by a non-void region where the flow is null and
asymptotic behavior of the effective conductivity at vanishing molecular conductivity is
given by

σsym(ζ Id, SRP +K) ∼ C1ζ Id . (30)

In Fig. 2(b) we have operated a small translation of the smaller scale with respect to the
larger one. The result of this relative translation is the percolation of stream lines of the
flow: a particle driven by the flow can go to infinity by following them. It follows after
this small perturbation that asymptotic behavior of the effective conductivity of the two
scale flow at vanishing molecular conductivity is given by (31).

σsym(ζ Id, SR�yP +K) ∼ C2ζ
1
2 Id . (31)

We call this sensibility with respect to the relative translation �y , chaotic coupling
between scales. The asymptotic (31) can be understood from a boundary layer analysis
(see [Chi79] and [FP94]).

4.2. Multiscale eddy conductivity and the renormalization core. Let us write

�0,n =
n∑

k=0

γkE
k

(
x

Rk

)

. (32)

For this subsection we will use the following hypothesis

IV. Hypothesis on the ratios between scales: For all k ∈ N, rk ∈ N
∗.

Our objective is to obtain quantitative estimates the multi-scale eddy viscosities(
σ(�0,n)

)
n∈N

; observe that under the hypothesis IV, �0,n is periodic, thus its effec-
tive conductivity is well defined by Eq. (17) (that is its only utility, we will not need this
hypothesis to prove super-diffusion). These estimates (Theorem 4.4) will be proven by
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induction on the number of scales. The basic step in this induction is the estimate (24)
on the effective conductivity for a two scale periodic medium. We will need to introduce
a dynamical system called the renormalization core which will play a central role in the
transport properties of the stochastic differential equation (2).

Definition 4.3. We propose to call “renormalization core” the dynamical system (An)n∈N

of d × d symmetric strictly elliptic matrices defined by

A0 = κ

γ0
Id and An+1 = γn

γn+1
σsym(A

n,En). (33)

For B a d × d symmetric coercive matrix let us define the function g(B) by

g(B) :=
(

Kα

λmin(B)(1 − γmax/ρ
α
min)

) 1
2

f
(
d, (λmax(B)+K0)/λmin(B)

)
, (34)

where f is the function appearing in Theorem 4.1.

We will prove the following theorem in Subsect. 5.2.

Theorem 4.4. Under Hypotheses I, II, III and IV for all n ∈ N
∗,

γn+1A
n+1

n∏

p=1

(1 + εp)
−4 ≤ σsym(κId, �

0,n) ≤ γn+1A
n+1

n∏

p=1

(1 + εp)
4 (35)

with

εp =
( γp

γp−1rαp

) 1
2
g(Ap−1), (36)

An being the renormalization core (33).

Observe that γn+1A
n+1 is the estimate given by reiterated homogenization under the

assumption of complete separation between scales, i.e. ρmin → ∞ and the error term∏n
p=1(1+ εp)4 controlled by the renormalization coreAk which reflects the interaction

between the scales k and k + 1. As λmin(Ak) ↓ 0 one passes from a separation of the
scales k and k + 1 to a chaotic coupling between these two scales. Moreover it is easy
to obtain from Theorem 4.4 that

lim
r1,... ,rn−2→∞ σsym(κId, �

0,n) = γn−1σsym(A
n−1, SrnE

n−1 + γn

γn−1
En). (37)

Assume that the multi-scale averaging scenario holds and ρmin < ∞. In that scenario,
σsym(κId, �

0,n) can be approximated by its limit at asymptotic separation between
scales. We obtain a contradiction if lim infn→∞ λmin(A

n) = 0 from (37) and the col-
lapse of the two-scale averaging scenario given in Subsect. 4.1 and Fig. 2. In other
words if lim infn→∞ λmin(A

n) = 0, then the self-averaging property of the flow col-
lapses towards a chaotic coupling between all the scales which is characterized by the
breaking of the invariance by relative translation between the scales.
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4.2.1. What is the renormalization core? First observe that it is a dimensionless tensor.
At the limit of infinite separation between scales the eddy conductivity created by the
scales 0, . . . , n−1 is limρmin→∞ σsym(κId, �

0,n−1). The typical scale length associated
to the scale n is Rn and the velocity of the flow at this scale is of the order of γnR−1

n (we
assume K1 to be of order one). Thus at the scale n one can define a local renormalized
Peclet tensor Pen by:

Pen := Rn × γn

Rn
× (

lim
ρmin→∞ σsym(κId, �

0,n−1)
)−1

. (38)

But at the limit of complete separation between scales (An)−1 is equal to the ratio
between the convective strength γn of the scale n and the local turbulent conductivity at
the scale n− 1:

(An)−1 = lim
ρmin→∞ γn

(
σsym(κId, �

0,n−1)
)−1

. (39)

It follows that

(An)−1 = Pen. (40)

Thus one can interpret the renormalization core as the inverse of the Peclet tensor of the
flow at the scale n assuming that all the smaller scales have been completely averaged.

Definition 4.5. We call the "local renormalized Peclet tensor" (Pen)n∈N the inverse of
the renormalization core

Pen = (An)−1. (41)

4.2.2. Pathologies of the renormalization core.

Definition 4.6. We call stability of the renormalization core (33) the sequence

λ−
n := inf

0≤p≤n
λmin(A

p). (42)

We write

λ−
∞ := lim

n→∞ λ
−
n and λ− := lim inf

n→∞ λmin(A
n). (43)

The renormalization core is said to be stable if and only if λ− > 0.

Definition 4.7. We call anisotropic distortion of the renormalization core (33) the
sequence

µn = sup
0≤p≤n

(
λmax(A

p)/λmin(A
p)

)
. (44)

We write

µ∞ := lim
n→∞µn and µ := lim sup

n→∞
(
λmax(A

n)/λmin(A
n)

)
. (45)

The renormalization core (33) is said to have unbounded (bounded) anisotropic distor-
tion if and only if µ = ∞ (µ < ∞).
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Definition 4.8. We call ubiety of the renormalization core (33) the sequence

λ+
n := sup

0≤p≤n
λmax(A

p). (46)

We write

λ+
∞ := lim

n→∞ λ
+
n and λ+ := lim sup

n→∞
λmax(A

n). (47)

The renormalization core is said to be vanishing if and only if λ+ = 0.

Definition 4.9. The renormalization core (33) is said to be bounded if and only if
λ+ < ∞.

The renormalization core is gifted with remarkable properties which will be ana-
lyzed in detail in Subsect. 4.4. Before proceeding to super-diffusion we will give a first
theorem stressing the role of the stability of the renormalization core, that is to say the
fact that the local renormalized Peclet tensor stays bounded away from infinity. Indeed,
it follows from Theorem 4.4 that the averaging paradigm for our model is valid if the
renormalization core is stable, and has bounded anisotropic distortion. We may naturally
wonder whether the fact that the local renormalized Peclet tensor stays bounded away
from infinity is sufficient; the answer is positive as shown by the following theorem
which will be proven in Subsect. 5.3.

Theorem 4.10. Writing C = CdK
2
0 (1 − 1/γmin)

−1 we have

1. If the renormalization core is not bounded (λ+ = ∞) then it is not stable (λ− = 0)
2. If the renormalization core is stable (λ− > 0) then it is bounded and

λ+ ≤ C

λ− . (48)

3. The renormalization core has unbounded anisotropic distortion (µ = ∞) if and only
if it is not stable (λ− = 0)

4. If the renormalization core is stable (λ− > 0) then it has bounded anisotropic distor-
tion (µ < ∞) and

µ ≤ C

(λ−)2
. (49)

Combining Theorem 4.10 and 4.4 we obtain that if the renormalization core is stable
then the local turbulent eddy conductivity diverges towards infinity like γn indepen-
dently of the geometry of the eddies (if it is not stable the behavior of the local turbulent
eddy conductivity depends on the geometry of the eddies). More precisely we have the
following theorem.

Theorem 4.11. Under Hypotheses I, II, III and IV, if the renormalization core is stable
then there exists C such that for ραmin > Cγmax one has

lim sup
n→∞

ln
(
λmax

(
σsym(κId, �

0,n)
))

ln γn
≤ 1 + ε (50)
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and

lim inf
n→∞

ln
(
λmin

(
σsym(κId, �

0,n)
))

ln γn
≥ 1 − ε (51)

with ε := 0.5
(
Cγmax/(ρmin)

) 1
2 < 0.5 and C := Kαh(d,K0/λ

−), h being a finite
increasing positive function in each of its arguments.

Remark 4.12. For a real flow, call σ(r) the local turbulent diffusivity of the flow at the
scale r and v(r) the magnitude of the vector velocity field at that scale. Then the key
relation implying that the distortions created at the scale r are dissipated by the mixing
power of the smaller scales is the relation

σ(r) ∼ rv(r). (52)

This relation is at the core of the Kolmogorov (K41) analysis and the analysis of fully
developed turbulence by Landau-Lifschitz [LL84]. The result given in Theorem 4.11 cor-
responds to the relation (52) obtained and used from a heuristic point of view (dimension
analysis) by physicists.

4.3. Super-diffusion.

Anomalous fast exit times. We write τ(r) the exit time of the process yt (2) from the
ball B(0, r). We write Ex the expectation associated to the process yt started from the
point x. We write Vol

(
B(0, r)

)
the Lebesgue measure of B(0, r). We define n(r) as the

number of (smaller) scales which will be considered as averaged at the scale r ,

n(r) := sup{p ∈ N : Rp ≤ r}. (53)

Let mr be the Lebesgue probability measure on the ball B(0, r) defined by

mr(dx) := dx
∫
B(0,r) dx

1B(0,r). (54)

We will consider the mean exit time for the process started with initial distribution mr ,
i.e.

Emr

[
τ(r)

] = 1

Vol
(
B(0, r)

)

∫

B(0,r)
Ex

[
τ(r)

]
dx. (55)

We will prove in Subsect. 5.4 the following theorem.

Theorem 4.13. Under Hypotheses I, II, and III with α = 1, if the renormalization core
is stable (λ− > 0) then there exists a constant Q such that for ρmin > Qγmax one has

lim sup
r→∞

1

ln r
ln

(
Emr

[
τ(r)

])
< 2. (56)

More precisely for r > R1 one has

Emr

[
τ(r)

] = r2−ν(r) (57)



564 H. Owhadi

with

ν(r) = ln γn(r)
ln r

(
1 + ε(r)

) + C(r)

ln r
, (58)

and |C(r)| ≤ C(d,K0, γmax)+ | ln λ−∞|,

|ε(r)| < 0.5

(
Qγmax

ρmin

) 1
2

≤ 0.5, (59)

and there exists a finite increasing positive function in each of its arguments F such that

Q := 1

(ln γmin)2
F

(

d,
(1 +K0)

2(1 − 1/γmin)
−1 + κ

λ−∞

)

(1 +K1). (60)

Remark 4.14. Equation (58) shows that the anomalous constant is directly related to the
number of effective scales. Observe that

ν(r) ≤ ln γmax

ln ρmin

(
1 + 0.5

(Qγmax

ρmin

) 1
2
)

+ C(d,K0, γmax)

ln r
(61)

and

ν(r) ≥ ln γmin

ln ρmax

(
1 − 0.5

(Qγmax

ρmin

) 1
2
)

− C(d,K0, γmax)

ln r
(62)

and ν(r) > 0.4(ln γmin/ ln ρmax) for r large enough.The anomalous parameter ν(r) is not
a constant because the model is not self-similar; in a self similar case (γmin = γmax = γ

and ρmin = ρmax = ρ) one would have at a logarithmic approximation

E[τ(r)] ∼ r2−ν with ν ∼ ln γ

ln ρ
.

The error terms in ν(r) are explained by the interaction between the scales which are
sensitive to the particular geometry of the eddies. We recall that we consider a quenched
model and it is not a priori obvious that the transport should depend only on the power
law in velocity field and not on its particular geometry.

Sufficient (and necessary) conditions for the stability of the renormalization core
(λ− > 0) will be given in Subsect. 4.4; we refer to Theorems 4.25, 4.26 and 4.30. In
particular if d = 2 and if for all k, Ek = E, where E corresponds to the cellular flow
(E12(x, y) := sin(2πx) cos(2πy)) then the renormalization core is stable (λ− > 0).
We have illustrated the contour lines of the superposition of 4 scales of cellular flows in
Fig. 3.

Fig. 3. Superposition of cellular flows
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There exists an important literature on the fast transport phenomenon in turbulence ad-
dressed (from both the heuristic and rigorous point of view) by using the tools of homoge-
nization or renormalization; we refer to [KS79,AM90,AM87, FGL+91, GLPP92, GZ92,
Zha92, GK98, IK91, Gau98, Ave96, Bha99, FK01, BO02b, CP01, AC02] and this pan-
orama is far from being complete; we refer to [MK99] and [Woy00] for a survey. For
non-exactly solvable models (non-shear flows) asymptotic fast scaling in the transport
behavior have been obtained in the framework of spectral averaging in turbulence.Along
this axis L. Piterbarg has obtained [Pit97] fast asymptotic scaling after averaging the
transport with respect to the law of the velocity field and the thermal noise and rescaling
with respect to space and time. More recently S. Olla and T. Komorowski [KO02] have
observed the asymptotic anomalously fast behavior of the mean squared displacement
averaged with respect to the thermal noise, the law of the velocity field and time. A.
Fannjiang [Fan02] has studied a model where the law of separation of two particles is
postulated to be the transport law of a single one as studied in [KO02] and [Pit97].

Fast mixing. In order to show that the phenomenon presented in Theorem 4.13 is
super-diffusion and not mere convection, we must compute the rate at which parti-
cles do separate and show that this rate follows the same fast behavior. More precisely
we will consider (yt , zt ) ∈ R

d × R
d , where yt is the solution of (2) and zt follows the

following stochastic differential equation:

dzt =
√

2κdω̄t + ∇.�(zt ) dt, (63)

where ω̄t is a standard Brownian motion independent ofωt . Thus yt and zt can be seen as
two particles transported by the same drift but with independent identically distributed
noise. Let us write B(0, r, l) the following subset of R

d × R
d :

B(0, r, l) := {
(y, z) ∈ R

d × R
d : |y − z| < r and y2 + z2 < l2

}
. (64)

We write Ey,z

[
τ(r, l)

]
the expectation of the exit time of the diffusion (yt , zt ) from

B(0, r, l) with (y0, z0) = (y, z). Let mr,l be the Lebesgue probability measure on the
set B(0, r, l) defined by

mr,l(dy dz) := dy dz
∫
(y,z)∈B(0,r,l) dy dz

1B(0,r,l). (65)

We will consider the mean exit time for the process (yt , zt ) started with initial distribution
mr,l , i.e.

Emr,l

[
τ(r, l)

] = 1

Vol
(
B(0, r, l)

)

∫

B(0,r,l)
Ey,z

[
τ(r, l)

]
dx. (66)

We have the following theorem proven in Subsect. 5.4.

Theorem 4.15. Under Hypotheses I, II, and III with α = 1, if the renormalization core
is stable then there exists a constant Q such that for ρmin > Qγmax one has

lim sup
r→∞

lim
l→∞

1

ln r
ln

(
Emr,l

[
τ(r, l)

])
< 2. (67)

More precisely for r > R1 one has

lim
l→∞

Emr,l

[
τ(r, l)

] = r2−ν(r), (68)

where ν(r) is given by (58) and Q by (60).
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Remark 4.16. It is easy to extend this theorem to any finite number of particles driven
by the same flow but independent thermal noise.

Strong self-averaging property. A trivial consequence of Theorem 4.13 and 4.15 is the
fact that fast mixing is an almost sure event. More precisely, let us writeH(r) andH(r, l)
the events

H(r) :=
{
τ(r) ≤ r2−δ

}
and H(r, l) :=

{
τ(r, l) ≤ r2−δ

}

with δ = 0.9 ln γmin/ ln ρmax. Observe that δ > 0 and we have the following theorem

Theorem 4.17. Under Hypotheses I, II and III with α = 1, if the renormalization core
is stable then there exists a constant Q such that for ρmin > Qγmax one has

lim
r→∞ Pmr

[
H(r)

] = 1 and lim
r→∞ lim

l→∞
Pmr,l

[
H(r, l)

] = 1. (69)

In this theorem Q is given by (60), by slightly modifying the constants.

4.4. Diagnosis of renormalization core’s pathologies. With Subsect. 4.3 we have seen
that our model is super-diffusive if the renormalization core is stable. With this subsec-
tion we will give necessary and sufficient conditions for the stability of the renormal-
ization core by analyzing in detail its dynamic. The results given here will be proven in
Subsect. 5.3.

Diffusive properties of the eddies at vanishing molecular conductivity. We will need the
following functions V and W describing the effective behavior of the eddies Ek of the
renormalization core at vanishing molecular conductivity. ForE ∈ SL∞(Td) and ζ > 0
we write

V (ζ,E) := λmin
(
σsym(ζ Id, E)

)

ζ
. (70)

Observe that by the variational formulation (17) one has

1/V (ζ, E) = sup
ξ∈Sd−1

inf
(f,H)∈C∞(Td )×S(Td )

∫

Td
|ξ − ∇.H + E∇f |2 dx

+ ζ 2
∫

Td
|∇f (x)|2 dx, (71)

where we have written S
d−1 the unit sphere of R

d centered on 0. Observe that if for
ξ ∈ S

d−1, ∇.E.ξ �≡ 0 one has ∀ζ > 0 V (ζ,E) > 1. Moreover V is continuous and
decreasing in ζ . Let us define

Definition 4.18.

V (ζ ) := inf
n∈N

V (ζ,En), (72)

V (0) := lim
ζ↓0

V (ζ ). (73)
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Observe that V (ζ ) is a decreasing function in ζ thus the limit (73) is well defined
and belongs to [1,∞]. We define for x ∈ (

1, V (0)
)
, the inverse function V −1 as

V −1(x) := sup{y > 0 : V (y) > x}. (74)

Observe that if V (0) > 1, V −1(x) is a decreasing function of x in
(
1, V (0)

)
.

Similarly we introduce

W(ζ,E) := λmax
(
σsym(ζ Id, E)

)

ζ
. (75)

Observe that by the variational formulation (23) one has

W(ζ,E) = 1 + sup
l∈Sd−1

inf
ξ⊥l,(f,H)∈C∞(Td )×S(Td )

ζ−2
∫

Td
|ξ − ∇.H − E(l − ∇f )|2 dx

+
∫

Td
|∇f |2 dx. (76)

Observe that if for l ∈ S
d−1, ∇.E.l �≡ 0 one has ∀ζ > 0 W(ζ,E) > 1. Moreover W is

continuous and decreasing in ζ . Let us define

Definition 4.19.

W(ζ) := sup
n∈N

W(ζ,En), (77)

W(0) := lim
ζ↓0

W(ζ). (78)

Observe that W(ζ) is a decreasing function in ζ , thus the limit (78) is well defined
and belongs to [1,∞].

We recall that for E ∈ SL∞(Td) and ζ > 0, one has

1 ≤ V (ζ,E) ≤ 1 + Cdζ
−2λmin

( ∫

Td

tE(x)E(x) dx
)

(79)

and

1 ≤ W(ζ,E) ≤ 1 + Cdζ
−2λmax

( ∫

Td

tE(x)E(x) dx
)
. (80)

Moreover the behavior of V (ζ,E) and W(ζ,E) at vanishing molecular conductivity
(as ζ ↓ 0) and their connections with the stream lines of the eddies has been widely
studied in the literature (we refer to [IK91, FP94] and the references therein). Thus it
has been obtained [FP94] that for any β ∈ [− 1

2 , 0] there exist E ∈ SL∞(Td) such that
V (ζ,E) = W(ζ,E) and as ζ ↓ 0,

V (ζ,E)) ∼ c∗ζ β, (81)

where c∗ can be calculated explicitly in several cases. A particular example with
V (ζ,E)) ∼ −c∗ ln ζ is also given in [FP94]. For anisotropic cases, for any δ ∈ [0, 1/2)
there exist E ∈ SL∞(Td) such that [FP94]

W(ζ,E) ∼ c∗1ζ
3δ−2 V (ζ,E) ∼ c∗2ζ

−δ. (82)
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The stability of the renormalization core and its anisotropy. Theorem 4.20 shows that
the anisotropy of the local turbulent conductivity is one of the causes of the instability
of the renormalization core. It is natural to wonder whether the converse is true; the
answer is positive at low flow rate as shown by the following theorem and corollary.

Theorem 4.20. If the renormalization core has bounded anisotropic distortion (µ < ∞)
then
1. if γmax < V (0) then the renormalization core is stable (λ− > 0). Moreover if the

monotony of V is strict then

λ− ≥ µ− 1
2
V −1(γmax)

γmax
. (83)

2. If W(0) < ∞ then the renormalization core is bounded from above and

λ+ ≤ µ
1
2CdK0(γmin − 1)−

1
2
(
1 +W(0)

)
. (84)

Corollary 4.21. If γmax < V (0) and the renormalization core is not stable (λ− = 0)
then it has unbounded anisotropic distortion (µ = ∞).

Definition 4.22. The flow is said to be isotropic if for all ζ > 0, k ∈ N, σsym(ζ Id, E
k)

is a multiple of the identity matrix.

Definition 4.23. The renormalization core is said to be isotropic if for all k, Ak is a
multiple of the identity matrix. We then write Ak = λ(Ak)Id .

Observe that if the flow is isotropic then so is the renormalization core, µ = 1 and
from Theorem 4.20 we obtain the following corollary.

Corollary 4.24. If the flow is isotropic then the renormalization core is stable for
γmax < V (0).

Combining Theorem 4.20 and 4.10 we obtain that for γmax < V (0) the renormaliza-
tion core is not stable if and only if it has unbounded anisotropic distortion. Moreover
we have the following theorem

Theorem 4.25. If the renormalization core has bounded anisotropic distortion, the
monotony of V is strict, γmax < V (0) then the renormalization core is stable (λ− > 0)
and

C1 ≤ λ−λ+ ≤ C2, (85)

with C1 = (
V −1(γmax)/γmax

)2
and C2 = CdK

2
0 (1 − 1/γmin)

−1.

We believe that Eq. (85) could be at the origin of the isotropy of turbulence at small
scales. Let us observe that if V (0) = ∞ then the stability of the renormalization core is
equivalent to the fact that it has bounded anisotropic distortion. It is easy to build from
Theorem 4.25 and the analysis of V (ζ,E) given above, examples of flows with stable
renormalization core and thus a strongly-super-diffusive behavior. In particular we have
the following theorem

Theorem 4.26. If V (0) = ∞ and the renormalization core is isotropic then under
hypotheses I, II and III with α = 1 the flow is strongly super-diffusive for
ρmin > 11Qγmax (where Q is given by (60)) and Theorems 4.13, 4.15 and 4.17 are
valid (with λ− > 0).

Observe that if d = 2 and if for all k, Ek = E, where E corresponds to the cellular
flow (E12(x, y) := sin(2πx) cos(2πy)), then V (0) = ∞ ([FP94]) and the renormaliza-
tion core is stable (λ− > 0).
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Viscosity implosion. It is easy to obtain that if there exists δ > 0 such that for all k
the drift ∇.Ek is null on [0, 1]d \ [δ, 1 − δ]d then W(0) < ∞. Moreover we have the
following theorem.

Theorem 4.27. If γmin > W(0) then the renormalization core is vanishing with expo-
nential rate and

lim sup
n→∞

ln
(
λmax(A

n)
)

n
≤ ln

(
W(0)

γmin

)

. (86)

It follows from Theorem 4.27 the renormalization core can be isotropic and not stable
at the same time. Now it is natural to wonder whether a renormalization core (and thus
the transport properties of the flow) may undergo a brutal alteration.

Definition 4.28. We call viscosity implosion the bifurcation from a stable renormaliza-
tion core to a vanishing renormalization core.

We will now analyze this phenomenon.

Definition 4.29. The flow is said to be self-similar if and only if γmax = γmin = γ ,
ρmax = ρmin = ρ and for all k, Ek = E0 = E.

Let us recall that a real turbulent flow has a non self-similar multi-scale structure, we
refer to [DC97]. Observe that if the flow is self-similar then V (ζ ) = W(ζ). In this case
we will write

γc := V (0). (87)

Theorem 4.30. Assume the flow to be self-similar and isotropic.

1. If γ < γc then the renormalization core is stable (λ− > 0) and

lim
n→∞A

n = ζ0Id, (88)

where ζ0 is the unique solution of V (ζ0) = γ .
2. If γ = γc and (V (0)−V (x))x−p admits a non-null limit as x ↓ 0 with p > 0 then the

renormalization core is vanishing with polynomial rate (in particular λ+ = λ− = 0):

lim
n→∞

ln λ(An)

ln n
= − 1

p
. (89)

3. If γ > γc then the renormalization core is vanishing with exponential rate (in partic-
ular λ+ = λ− = 0)

lim
n→∞

1

n
ln λ(An) = ln

(γc

γ

)
. (90)

It follows from Eq. (88) that if the flow is self-similar and the renormalization core
isotropic and E non-constant then V (0) > 1 and for 1 < γ < V (0) the flow is strongly
super-diffusive and Theorems 4.13, 4.15 and 4.17 are valid (with λ− > 0).

The viscosity implosion of the renormalization core implies that the strong self-aver-
aging property of the flow collapses towards a chaotic coupling between the scales. Let
us give a particular example to illustrate what we mean by such bifurcation. The flow
is assumed to be self-similar and isotropic and the stream lines of the eddy E over a
period [0, 1]3 are given in Fig. 4(a). Since there exists δ > 0 such that the drift ∇.E is
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(a) (b) (c)

Fig. 4a–c. Viscosity implosion. (a) An implosive eddy geometry; (b) Stable renormalization core;
(c) Vanishing renormalization core

null on [0, 1]d \ [δ, 1 − δ]d we have γc < ∞ with the eddy illustrated in Fig. 4(a)Now
imagine that one puts a drop of dye in such a flow and observe its transport at very large
spatial scale. We have illustrated in Fig. 4 a metaphorical illustration of what one could
see; it would be interesting to run numerical simulations to analyze the behavior of a
drop of dye at the transition between a stable and vanishing renormalization core. For
γ < γc dye is transported by strong super-diffusion, and the density of its colorant in the
flow is homogeneous (Fig. 4(b)). Moreover in the domain (0, γc) an increase of the flow
rate γ in the eddies is compensated by an increase of the diffusive (dissipative) power
of the smaller eddies. The picture undergoes a brutal transformation at γ ≥ γc; in this
domain an increase of γ results in the growth of the advective power of the eddies but
their diffusive power remains bounded and can no longer compensate convection. The
diffusive power of the smaller scales becomes dominated by the convective power of the
eddy at the observation scale (Fig. 4(c)). The drop dye is then transported by advection
and presents high density gradients.

Variational formulae for γc. Assume the flow to be self-similar and isotropic. Thus from
Eq. (71) it is easy to obtain that

γ−1
c = inf

(f,H)∈C∞(Td )×S(Td )

∫

Td
|ξ − divH + E∇f |2 dx; (91)

from Eq. (76) it is also easy to obtain that for any unit vector l in R
d ,

γc = 1 + lim
ζ↓0

inf
ξ⊥l,(f,H)∈C∞(Td )×S(Td )

ζ−2
∫

Td
|ξ − divH − E(l − ∇f )|2 dx

+
∫

Td
|∇f |2 dx. (92)

WriteG the set of f ∈ H 1(Td) such that there exists ξ, l ∈ R
d andH a skew symmetric

matrix with coefficients in H 1(Td) with ξ ⊥ l and

ξ − divH − E(l − ∇f ) = 0. (93)
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Then if G = ∅ it is easy to obtain from (92) that γc = ∞. If G �= ∅ then one has

γc = 1 + inf
f∈G

∫

Td
|∇f |2 dx. (94)

Equation (93) is degenerate, thus it is not easy to prove a solution for that equation in a
general case and actually most of the time it has no solution which means that γc = ∞. It
would be interesting to obtain non-trivial criteria ensuring the existence of a solution for
(93). The most trivial example of a stream matrix E such that γc < ∞ is the following
one. Take d = 2 andE a skew symmetric matrix withE1,2 = h,where h over the period
[0, 1]2 is equal to

h(x1, x2) = sin(2πx1) sin(2πx2)g
(

4
(
(x1 − 0.5)2 + (x2 − 0.5)2

))
, (95)

where g is any smooth function on [0,1] such that g = 1 on [0, 1/3] and g = 0 on
[2/3, 1]. Then it is easy to check that 1 < γc < ∞ and estimate it from the variational
formulae given above. For instance write G′ the set of smooth T

d periodic function f
such that ∇f = e2 on {x : (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 1/6}, then it is easy to check
that

γc ≤ 1 + inf
f∈G′

∫

Td
|∇f |2 dx. (96)

The renormalization core with a finite number of scales. The results given above were
related to the asymptotic behavior of the renormalization core. When the flow has only
a finite number of scales we will give below quantitative estimates controlling the ren-
ormalization core.

Theorem 4.31. The ubiety of the renormalization core is bounded from above by the
inverse of its stability. Writing C = CdK

2
0 (1 − 1/γmin)

−1 we have

λ+
n ≤ κ + C

λ−
n−1

and µn ≤ κ

λ−
n

+ C

(λ−
n )

2
.

Theorem 4.32. We have

λ−
n ≥ min

(
λmin(κ), (µn)

− 1
2
V −1(γmax)

γmax

)
. (97)

Theorem 4.33. We have for n ∈ N,

λ+
n ≤ max

(
λmax(κ), CdK0µ

1
2
n (γmin − 1)−

1
2

)(
1 +W(0)

)
. (98)

In particular, observe that if γmax < ∞ and λ− = 0 then the stability of the renor-
malization core should decrease according to the following relation ln λ−

n ∼ −0.5 lnµn
and its ubiety should increase like ln λ+

n ∼ 0.5 lnµn.
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5. Proofs

5.1. Averaging with two scales: Proof of Theorem 4.1. There are two strategies to prove
Theorem 4.1; the first one is based on the relative translation method introduced in
[Owh01a] and the variational formulations of the effective conductivity; this is the strat-
egy used in [BO02a]. The second one is new and based only on the relative transla-
tion method. Although the first strategy in the case considered here would give (the
proof is rather long) a sharper estimate of the error term: (1 + ε(R))2 with ε(R) =

‖K‖α
Rαλmin(a)

f (d,
‖a+P ‖∞
λmin(a)

) instead of (24), we have preferred to write here the second one
for its simplicity and the fact that it allows to obtain a lower and an upper bound at once
without the need of any variational formulation. Let us now give this new alternative
strategy.

By the variational formulation (23) the effective conductivity σsym(a, SRP +K) is
continuous inL∞(Td) norm with respect to the stream matrices P andK and by density
it is sufficient to prove the estimate (24) assuming that P and K are smooth and belong
to S(Td).

First we will prove the following proposition where we have used the notation intro-
duced in Sect. 3 (we write E := SRP +K).

Proposition 5.1. Let l ∈ R
d , l �= 0,

[(
t lσsym(a, SRP +K)l

) 1
2 −

(
t lσsym

(
σsym(a, P ),K

)
l
) 1

2
]2

≤ J1 + J2 + J3 + J4

(99)

with

J1 =
∫

(x,y)∈Td×[− 1
2 ,

1
2 ]d

∇Fa,El (x + y

R
)
(
a − E(x + y

R
)
)∇χa,P (Rx + y)

∇Fσsym(a,P ),K

l (x) dx dy, (100)

J2 = −
∫

Td×[− 1
2 ,

1
2 ]d

∇Fa,El (x + y

R
)
(
(a + P(Rx + y))∇Fa,P (Rx + y)

−σsym(a, P )
)∇Fσsym(a,P ),K

l (x) dx dy, (101)

J3 = −
∫

Td×[− 1
2 ,

1
2 ]d

∇Fa,El (x + y

R
)
(
K(x + y

R
)−K(x)

)∇Fa,P (Rx + y)

∇Fσsym(a,P ),K

l (x) dx dy, (102)

J4 =
∫

Td×[− 1
2 ,

1
2 ]d

∇Fa,El (x + y

R
)K(x)∇χa,P (Rx + y)∇Fσsym(a,P ),K

l (x) dx dy.

(103)
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Proof. Let us write

I =
∫

(x,y)∈Td×[− 1
2 ,

1
2 ]d

∇Fa,El (x + y

R
)a∇Fa,P (Rx + y)∇Fσsym(a,P ),K

l (x) dx dy.

(104)

Using the Cauchy-Schwartz inequality and formula (20) one obtains that

I ≤
(
t lσsym(a, SRP +K)l

) 1
2
(
t lσsym

(
σsym(a, P ),K

)
l
) 1

2
. (105)

Now, writing E = SRP +K observe that

I = (I1 + I2)/2 (106)

with

I1 =
∫

(x,y)∈Td×[− 1
2 ,

1
2 ]d

∇Fa,El

(
x + y

R

)(
a + E

(
x + y

R

))
∇Fa,P (Rx + y)

×∇Fσsym(a,P ),K

l (x) dx dy

and

I2 =
∫

(x,y)∈Td×[− 1
2 ,

1
2 ]d

∇Fa,El

(
x + y

R

)(
a − E

(
x + y

R

))
∇Fa,P (Rx + y)

×∇Fσsym(a,P ),K

l (x) dx dy.

Using
∫

(x,y)∈Td×[− 1
2 ,

1
2 ]d

∇Fa,El

(
x + y

R

)(
a − E

(
x + y

R

))
l = t lσsym(a, SRP +K)l

and the fact that ∇Fa,El (x + y
R
)
(
a − E(x + y

R
)
)

is a divergence free vector field one
obtains that

I2 = tlσsym(a, SRP +K)l − J1

with J1 given by (100). Moreover

I1 = G0 − J2 − J3 − J4 (107)

with

G0 =
∫

(x,y)∈Td×[− 1
2 ,

1
2 ]d

∇Fa,El

(
x + y

R

)(
σsym(a, P )+K(x)

)
∇Fσsym(a,P ),K

l (x) dx dy

= t lσsym
(
σsym(a, P ),K

)
l,

(108)

where we have used in the last equality the fact that
(
σsym(a, P )+K(x)

)∇Fσsym(a,P ),K

l (x)

is divergence free. And J2, J3, J4 are given by (101), (102) and (103). Thus combining
(105) and (106) we have obtained (99), which proves the proposition. ��
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Now we will show that J1, J2, J3 and J4 act as error terms in the homogeniza-
tion process. Using div

(
(a + E)∇Fa,El

) = 0 and observing that, ∇χa,P (Rx + y) =
∇yχa,P (Rx + y) and integrating by parts in y one obtains (writing ∂i([− 1

2 ,
1
2 ]d) =

{x ∈ [− 1
2 ,

1
2 ]d : xi = − 1

2 })
J1 = G1 +G2 (109)

with (writing (ei)1≤i≤d the orthonormal basis of R
d compatible with the axis of period-

icity of T
d )

G1 =
d∑

i=1

∫

(x,yi )∈Td×∂i ([− 1
2 ,

1
2 ]d )

t
(∇Fa,El (x + (yi + ei)/R)− ∇Fa,El (x + yi/R)

)

×(a − P(Rx + yi)).eiχ
a,P (Rx + yi)∇Fσsym(a,P ),K

l (x) dx dyi (110)

G2 = −
d∑

i=1

∫

(x,yi )∈Td×∂i ([− 1
2 ,

1
2 ]d )

(
t∇Fa,El (x + (yi + ei)/R)K(x + (yi + ei)/R)

− t∇Fa,El (x + yi/R)K(x + yi/R)
)
.eiχ

a,P (Rx + yi)∇Fσsym(a,P ),K

l (x) dx dyi,

(111)

Now we will need the following lemma which says that the solution of the two-scale
cell problem keeps in its structure a signature of the fast period.

Lemma 5.2. For i ∈ {1, . . . d} one has
∫

x∈Td
|∇Fa,El (x + ei/R)− ∇Fa,El (x)|2a ≤ |l|2σ(a,E)Cd

( ‖K‖α
Rαλmin(a)

)2
. (112)

Proof. Observe that

∇.(a + E(x))∇(
F
a,E
l (x + ei/R)− F

a,E
l (x)

)

= ∇.
((
K(x)−K(x + ei/R)

)∇Fa,El (x + ei/R)
)
. (113)

It follows that
∫

x∈Td
|∇Fa,El (x + ei/R)− ∇Fa,El (x)|2a =

∫

x∈Td

(∇Fa,El (x + ei/R)− ∇Fa,El (x)
)

(
K(x)−K(x + ei/R)

)∇Fa,El (x + ei/R),

(114)

thus using Cauchy-Schwartz inequality one obtains
∫

x∈Td
|∇Fa,El (x + ei/R)− ∇Fa,El (x)|2a

≤
∫

x∈Td

∣
∣
∣(K(x)−K(x + ei/R))∇Fa,E(x + ei/R)

∣
∣
∣
2

a−1
, (115)

and Eq. 112 follows easily. ��
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It follows from Lemma 5.2 Eq. 110 and Cauchy-Schwartz inequality that

G1 ≤ Cd
‖K‖α

Rαλmin(a)
‖χa,P ‖∞

‖a − P ‖∞
λmin(a)

(
t lσsym(a, SRP +K)l

) 1
2

×
(
t lσsym

(
σsym(a, P ),K

)
l
) 1

2
. (116)

Now we will use the following lemma which is a consequence of Stampacchia estimates
[Sta66, Sta65] for elliptic operators with discontinuous coefficients (see [Owh01a],
Appendix B, Theorem B.1.1) (we recall that χa,P is uniquely defined by the cell problem
and

∫
Td
χa,P (x) dx = 0).

Lemma 5.3.

‖χa,P ‖∞ ≤ Cd

(‖a + P ‖∞
λmin(a)

)3d+2
. (117)

Thus one obtains from (117) and (116) that

G1 ≤ Cd
‖K‖α

Rαλmin(a)

(‖a + P ‖∞
λmin(a)

)3d+3(
t lσsym(a, SRP +K)l

) 1
2
(
t lσsym

×(
σsym(a, P ),K

)
l
) 1

2
(118)

similarly, observing that divy
(
K(x)∇Fa,El (x + y

R
)
) = 0 and integrating by part in y in

Eq. (103) one obtains

J4 =
d∑

i=1

∫

(x,yi )∈Td×∂i ([− 1
2 ,

1
2 ]d )

(
t∇Fa,El (x+(yi+ei)/R)−t∇Fa,El (x+yi/R))K(x).ei

χa,P (Rx + yi)∇Fσsym(a,P ),K

l (x) dx dyi.

(119)

Adding Eq. (111) to Eq. (119) we obtain

J4 +G2

=
d∑

i=1

∫

(x,yi )∈Td×∂i ([− 1
2 ,

1
2 ]d )

t∇Fa,El (x+(yi+ei)/R)
(
K(x)−K(x+(yi+ei)/R)

)
.ei

× χa,P (Rx + yi)∇Fσsym(a,P ),K

l (x) dx dyi

+
d∑

i=1

∫

(x,yi )∈Td×∂i ([− 1
2 ,

1
2 ]d )

t∇Fa,El (x + yi/R)
(
K(x + yi/R)−K(x)

)
.ei

× χa,P (Rx + yi)∇Fσsym(a,P ),K

l (x) dx dyi,

(120)

and by Cauchy Schwartz inequality and Lemma 117 one obtains that

J4 +G2 ≤ Cd
‖K‖α

Rαλmin(a)

(‖a + P ‖∞
λmin(a)

)3d+3(
t lσsym(a, SRP +K)l

) 1
2

×
(
t lσsym

(
σsym(a, P ),K

)
l
) 1

2
. (121)
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Moreover from Eq. (102) and Cauchy Schwartz inequality one easily obtains

J3 ≤ Cd
‖K‖α

Rαλmin(a)

(
t lσsym(a, SRP +K)l

) 1
2
(
t lσsym

(
σsym(a, P ),K

)
l
) 1

2
. (122)

Now we will need the following lemma

Lemma 5.4. If V ∈ (C∞(Td))d is such that divV = 0 and
∫
Td
V (x)dx = 0

then for p > d, there exists a skew symmetric T
d -periodic matrix M such that

‖M‖∞ ≤ Cd,p‖V ‖Lp(Td ) and V = ∇.M .

Proof. From the proof of Lemma 4.7 of [BO02a] one obtains that there exists a T
d -peri-

odic smooth skew-symmetric matrix M such that

Vi =
d∑

j=1

Mij (123)

and M is given by

Mij = B
j
i − Bij , (124)

where Bij are the smooth T
d periodic solutions of

�Bij = ∂iVj (125)

with 0 mean Lebesgue measure. Using Theorem 5.4 of [Sta66] one obtains that for
p > d

‖Bij‖∞ ≤ Cd,p‖Vj‖Lp(Td ) (126)

which proves the lemma.

Let us now prove the following lemma.

Lemma 5.5.

((
a + P(Rx + y)

)∇Fa,P (Rx + y)− σ(P )
)

kj
=

d∑

i=1

∂iM
P
kij (Rx + y), (127)

where MP is a T
d periodic d × d × d tensor such that MP

ikj = −MP
kij and

‖MP ‖∞ ≤ Cd,‖a+P ‖∞/λmin(a)‖a + P ‖∞. (128)

Proof. From Lemma 5.4 one obtains that for p > d ,

‖MP ‖∞ ≤ Cd,p‖
(
a + P(.))∇Fa,P (.)− σ(P )

)‖Lp(Td ). (129)

Using Meyers argument [Mey63] one obtains that there existsp(‖a+E‖∞/λmin(a)) > d

such that

‖∇χa,P (.)‖Lp(Td ) ≤ Cd,‖a+P ‖∞/λmin(a), (130)

which implies Eq. (128). ��
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Using Eq. (127) and integrating by part in y in (101) one obtains

J2 = −
d∑

i,j,k=1

∫

(x,yi )∈Td×∂i ([− 1
2 ,

1
2 ]d )

(
t∇Fa,El (x+(yi+ei)/R)−t∇Fa,El (x+yi/R)).ek

MP
kij (Rx + yi)ej .∇Fσsym(a,P ),K

l (x) dx dyi. (131)

Combining this with (128) and (112) one obtains from Cauchy-Schwartz inequality that

J2 ≤Cd,‖a+P ‖∞/λmin(a)

‖K‖α
Rαλmin(a)

(
t lσsym(a, SRP+K)l

) 1
2
(
t lσsym

(
σsym(a, P ),K

)
l
) 1

2
.

(132)

In conclusion we have obtained from Eq. (99), (109), (118), (121), (122) and (132)
that
[(

t lσsym(a, SRP +K)l
) 1

2 −
(
t lσsym

(
σsym(a, P ),K

)
l
) 1

2
]2

≤ Cd,‖a+P ‖∞/λmin(a)

‖K‖α
Rαλmin(a)

(
t lσsym(a, SRP +K)l

) 1
2
(
t lσsym

(
σsym(a, P ),K

)
l
) 1

2
.

(133)

Now we will use the following lemma whose proof is trivial

Lemma 5.6. If (X − Y )2 ≤ δXY then X/Y ≤ (1 + 8
√
δ)2.

And the estimate (24) is a simple consequence of (133) and Lemma 5.6 which proves
the theorem.

5.2. Averaging with n scales: Proof of Theorem 4.4. The proof of Theorem 4.4 is based
on Theorem 4.1 and a reverse induction. It is important to note that contrary to reiter-
ated homogenization, here the larger scales are homogenized first; this reversion in the
inductive process is essential to obtain sharp estimates. Observe that by the variational
formula 17 one has for γ > 0, B ∈ Md,sym and K ∈ SL∞(Td),

σsym(B, γK) = γ σsym(
B

γ
,K). (134)

From this we deduce that for p ∈ {0, . . . , n− 1},

σsym

(
σsym(B,E

p),
1

γp
�p+1,n

)
= γp+1

γp
σsym

( γp

γp+1
σsym(B,E

p),
1

γp+1
�p+1,n

)
.

(135)

Combining this with Theorem 4.1 one obtains that for p ∈ {0, . . . , n− 1},

σsym

(
B,

1

γp
�p,n

)
≤ γp+1

γp
σsym

( γp

γp+1
σsym(B,E

p),
1

γp+1
�p+1,n

)
(1 + εp+1(B))

4,

(136)
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σsym

(
B,

1

γp
�p,n

)
≥ γp+1

γp
σsym

( γp

γp+1
σsym(B,E

p),
1

γp+1
�p+1,n

)
(1 + εp+1(B))

−4

(137)

with

εp(B) =
( γpKα

γp−1rαpλmin(B)(1 − γmax/ρ
α
min)

) 1
2
f

(
(d, (λmax(B)+K0)/λmin(B))

)
.

(138)

Then one obtains by a simple induction that

γn+1A
n+1

n−1∏

p=0

(1 + εp+1(A
p))−4 ≤ σsym(a, �

0,n) ≤ γn+1A
n+1

n−1∏

p=0

(1 + εp+1(A
p))4,

(139)

where Ak , is the renormalization coreization sequence given in Definition 4.3 which
proves Theorem 4.4.

5.3. Diagnosis of renormalization core’s pathologies: Proofs. Let a ∈ Md,sym and
E ∈ SL∞(Td); it is well known ([AM91]) and a simple consequence of (17) and (23)
that

a ≤ σsym(a, E) ≤ a +
∫

Td

tE(x)a−1E(x) dx. (140)

Then the following proposition follows from (33), (140) and a simple induction on the
number of scales.

Proposition 5.7. For all n ∈ N,

γ−1
n Id ≤ An ≤ (κ/γn)Id +

n−1∑

p=0

(γp/γn)

∫

T d1

tEp(x)(Ap)−1Ep(x) dx. (141)

Theorems 4.20 and 4.31 are straightforward consequences of Proposition 5.7. We
will need the following proposition giving isotropic estimates on anisotropic viscosities.

Proposition 5.8. For a ∈ Md,sym and E ∈ SL∞(Td), one has for all l ∈ (Rd)∗,

(λmax(a)

λmin(a)

)− 1
2 ≤

t lσsym(a, E)l

t lσsym

((
λmax(a)λmin(a)

) 1
2 Id, E

)
l

≤
(λmax(a)

λmin(a)

) 1
2
. (142)

Proof. By the variational formula 17 one has for ξ ∈ R
d ,

|ξ |2
σ−1

sym(a,E)
= inf

(f,H)∈C∞(Td )×S(Td )

∫

Td
|ξ − ∇.H + E∇f |2

a−1 dx +
∫

Td
|∇f (x)|2a dx

≤ (
λmax(a)/λmin(a)

) 1
2 inf
(f,H)∈C∞(Td )×S(Td )

(
λmax(a)λmin(a)

)− 1
2

∫

Td
|ξ − ∇.H + E∇f |2 dx + (

λmax(a)λmin(a)
) 1

2

∫

Td
|∇f (x)|2 dx.

(143)
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It follows that

σsym(a, E) ≥ (
λmax(a)/λmin(a)

)− 1
2 σsym

((
λmax(a)λmin(a)

) 1
2 Id, E

)
. (144)

Similarly from the variational formula 23 one obtains that for l ∈ R
d ,

|l|2σsym
= inf

ξ⊥l,(f,H)∈C∞(Td )×S(Td )

∫

Td
|ξ − ∇.H − E(l − ∇f )|2

a−1 dx

+
∫

Td
|l − ∇f |2a dx

≤ (
λmax(a)/λmin(a)

) 1
2 inf
ξ⊥l,(f,H)∈C∞(Td )×S(Td )

(
λmax(a)λmin(a)

)− 1
2

∫

Td
|ξ − ∇.H − E(l − ∇f )|2 dx + (

λmax(a)λmin(a)
) 1

2

∫

Td
|l − ∇f |2a dx, (145)

which leads us to

σsym(a, E) ≤ (
λmax(a)/λmin(a)

) 1
2 σsym

((
λmax(a)λmin(a)

) 1
2 Id, E

)
. (146)

��
A direct consequence of Proposition 5.8 is the following corollary which controls

the minimal and maximal enhancement of the conductivity in the flow associated to the

stream matrixE by the geometric mean
(
λmax(a)λmin(a)

) 1
2 of the maximal and minimal

eigenvalues of a.

Corollary 5.9.

λmin
(
σsym(a, E)

)

λmin(a)
≥
λmin

(

σsym

((
λmax(a)λmin(a)

) 1
2 Id, E

))

(
λmax(a)λmin(a)

) 1
2

, (147)

λmax
(
σsym(a, E)

)

λmax(a)
≤
λmax

(

σsym

((
λmax(a)λmin(a)

) 1
2 Id, E

))

(
λmax(a)λmin(a)

) 1
2

. (148)

It is then a simple consequence of Corollary 5.9 that

Proposition 5.10.

λmin(σsym(a, E))

λmin(a)
≥ V

((
λmin(a)λmax(a)

) 1
2 , E

)
(149)

and

λmax(σsym(a, E))

λmax(a)
≤ W

((
λmin(a)λmax(a)

) 1
2 , E

)
. (150)
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From Proposition 5.10 one obtains that for n ∈ N,

λmin(A
n+1)

λmin(An)
≥ γn

γn+1
V

((
λmin(A

n)λmax(A
n)

) 1
2 , En

)
. (151)

It follows from Eq. (151) and the monotony of V that

λmin(A
n+1)

λmin(An)
≥ 1

γmax
V

(
λmin(A

n)(
λmax(A

n)

λmin(An)
)

1
2
)

(152)

it follows from (152) that λmin(A
n) is increasing if it belongs to(

0, ( λmax(A
n)

λmin(An)
)−

1
2V −1(γmax)

)
; which implies Eq. (83) of Theorem 4.20 and Eq. (97) of

Theorem 4.32. Now, observe that from the variational formulation (76) one obtains that

W(ζ,E) ≤ 1 + ζ−2λmax

( ∫

Td

tE(x)E(x)dx
)
. (153)

It follows from Proposition 5.10 that

λmax(σsym(a, E))

λmax(a)
≤ 1 + CdK

2
0

(
λmin(a)λmax(a)

)−1
. (154)

Thus one obtains for all n ∈ N,

λmax(A
n+1)

λmax(An)
≤ γ−1

min

(
1 + CdK

2
0
λmax(A

n)

λmin(An)

(
λmax(A

n)
)−2

)
. (155)

It follows from (155) that λmax(A
n) is decreasing if it belongs to((

CdK
2
0
λmax(A

n)
λmin(An)

(γmin − 1)−1
) 1

2 ,∞
)

; which implies Eq. (84) of Theorem 4.20 and

Eq. (98) of Theorem 4.33.
Now observe that by Proposition 5.10 one has

λmax(A
n+1)

λmax(An)
≤ 1

γmin
W

(
λmin(A

n)(
λmax(A

n)

λmin(An)
)

1
2
)
, (156)

which proves Theorem 4.27 since W is decreasing.
Now if the flow is self-similar and isotropic, Theorem 4.30 is a simple consequence of
the following recursive relation:

λ(An+1)

λ(An)
= 1

γ
V

(
λ(An)

)
. (157)
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5.4. Super diffusion: Proofs.

5.4.1. A variational formula for the exit times. Let � be a smooth subset of R
d , we

write for a ∈ Md,sym and E a skew symmetric matrix with coefficients in L∞(�̄),

ψa,E = Ex[τa,E(�)], (158)

the expectation of the exit time from � of the diffusion associated to the generator
∇.(a + E)∇ started from x. Observe that ψa,E can be defined as the weak solution of
the following equation with null Dirichlet boundary condition on ∂�,

∇.
((
a + E(x)

)∇ψa,E(x)
)

= −1. (159)

We will need the following variational formulation for the mean exit times.

Theorem 5.11.
∫

�

Ex[τa,E(�)] dx

= sup
f∈C∞

0 (�),H∈S(�̄)

[
2

∫

�

f (x)dx −
∫

�

|∇f |2adx −
∫

�

|∇.H + E∇f |2
a−1dx

]
,

(160)

where the minimization (160) is done over smooth functions f on �, null on ∂� and
smooth skew symmetric matricesH on �̄. From Theorem 5.11 we deduce the following
corollary

Corollary 5.12.
∫

�

Ex[τa+λId ,0(�)] dx ≤
∫

�

Ex[τa,E(�)] dx ≤
∫

�

Ex[τa,0(�)] dx (161)

with

λ := sup
x∈�

λmax
(
tE(x)a−1E(x)

)
. (162)

Let us now prove Theorem 5.11. By density we can first assume E to be smooth. Our
purpose is to show that

∫

�

Ex[τa,E(�)] dx

= −2 inf
f∈C∞

0 (�),H∈S(�̄)

[1

2

∫

�

|∇.H + (a − E)∇f |2
a−1dx −

∫

�

f (x)dx
]
. (163)

By considering variations around the minimum one obtains that

∇.H0 + (a − E)∇f0 = a∇ψ(x) (164)

with ψ = 0 on ∂� and

∇.(a + E)∇ψ(x) = −1. (165)
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From which one obtains that ψ(x) = Ex[τE(�)] and f0(x) =(
Ex[τE(�)] + Ex[τ−E(�)]

)
/2. Thus at the minimum

− inf
H,f

[1

2

∫

�

|∇.H + (a − E)∇f |2
a−1dx −

∫

�

f (x)dx
]

= −
[1

2

∫

�

t∇f0(a + E)∇ψdx −
∫

�

f0(x)dx
]

= −1/2
∫

�

f0(x)dx, (166)

since
∫

�

t∇f0(a + E)∇ψ(x)dx =
∫

�

|a∇ψ(x)|2
a−1dx (167)

but also
∫

�

|a∇ψ(x)|2
a−1dx =

∫

�

t∇ψ(x)(a + E)∇ψ(x)dx =
∫

�

ψ(x)dx (168)

which leads to the result, which can be written as (160).

5.4.2. Averaging with two scales the exit times. We will use the notation of Subsect. 5.4.1
and assume that

E = P(Rx)+K(x), (169)

where x ∈ �,R ∈ [2,∞), P belongs to SL∞(Td) andK is a Lipschitz-continuous skew
symmetric matrix on R

d (α = 1). Our purpose is to obtain sharp quantitative estimates
on the mean exit time.

∫

�

ψa,E(x) dx. (170)

It follows from Theorem 5.11 that the mean exit time (170) is continuous in L∞ norm
with respect to E, thus we can by density assume E,P and K to be smooth and ψa,E

shall be a strong solution of (159).

To estimate (170) we will need to introduce a relative translation with respect to the
fast scale associated to the medium E, i.e. we introduce for x, y ∈ �× [0, 1]d , E(x, y)
as

E(x, y) := P(Rx + y)+K(x). (171)

We will write for y ∈ [0, 1]d , ψa,E(x, y) the strong solution of the following equation
with null Dirichlet boundary condition on ∂�,

∇x
((
a + E(x, y)

)∇xψa,E(x, y)
)

= −1. (172)

Let us define

J : = −
∫

x∈�,y∈[0,1]d

t∇ψa,E(x, y)((a + P(Rx + y))∇Fa,P (Rx + y)− σ(a, P )
)

×∇ψσsym(a,P ),K(x) dx dy +
∫

x∈�,y∈[0,1]d

t∇ψa,E(x, y)(a − P(Rx + y)
)

×∇χa,P (Rx + y)∇ψσsym(a,P ),K(x) dx dy. (173)

Now we will show that J controls the multi-scale homogenization associated toψ(x, y)
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Proposition 5.13. One has
((

∫

x∈�,y∈[0,1]d
ψa,E(x, y) dx dy

) 1
2 − (

∫

x∈�
ψσsym(a,P ),K(x) dx

) 1
2
)2 ≤ J. (174)

Proof. Let us write

I =
∫

x∈�,y∈[0,1]d

t∇ψa,E(x, y)a∇Fa,P (Rx + y)∇ψσsym(a,P ),K(x) dx dy. (175)

Observing that
∫

x∈�,y∈[0,1]d

t∇ψa,E(x, y)a∇ψa,E dx dy

=
∫

x∈�,y∈[0,1]d

t∇ψa,E(x, y)(a + E(x, y)
)∇ψa,E dx dy

=
∫

x∈�,y∈[0,1]d
ψa,E(x, y) dx dy (176)

and
∫

x∈�,y∈[0,1]d

t∇ψσsym(a,P ),K(x)t∇Fa,P (Rx + y)a∇Fa,P (Rx + y)

×∇ψσsym(a,P ),K(x) dx dy =
∫

x∈�
ψσsym(a,P ),K(x) dx, (177)

one obtains by Cauchy-Schwartz inequality from (175) that

I ≤
( ∫

x∈�,y∈[0,1]d
ψa,E(x, y) dx dy

∫

x∈�
ψσsym(a,P ),K(x) dx

) 1
2
. (178)

Now let us polarize I as

I = (
I1 + I2

)
/2 (179)

with

I1 =
∫

x∈�,y∈[0,1]d

t∇ψa,E(x, y)(a−E(x, y))∇Fa,P (Rx+y)∇ψσsym(a,P ),K(x) dx dy

(180)

and

I2 =
∫

x∈�,y∈[0,1]d

t∇ψa,E(x, y)(a + E(x, y)
)∇Fa,P (Rx + y)

∇ψσsym(a,P ),K(x) dx dy. (181)

Using ∇.(a + E(x + y/R)
)∇ψa,E(x, y) = −1 one obtains that

I1 =
∫

x∈�
ψσsym(a,P ),K(x) dx −

∫

x∈�,y∈[0,1]d

t∇ψa,E(x, y)(a − E(x, y)
)

×∇χa,P (Rx + y)∇ψσsym(a,P ),K(x) dx dy. (182)
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Moreover

I2 =
∫

x∈�,y∈[0,1]d

t∇ψa,E(x, y)(σ(a, P )+K(x)
)∇ψσsym(a,P ),K(x) dx dy

+
∫

x∈�,y∈[0,1]d

t∇ψa,E(x, y)((a + P(Rx + y))∇Fa,P (Rx + y)− σ(a, P )
)

∇ψσsym(a,P ),K(x) dx dy

−
∫

x∈�,y∈[0,1]d

t∇ψa,E(x, y)K(x)∇χa,P (Rx + y)∇ψσsym(a,P ),K(x) dx dy,

(183)

and observing that
∫

x∈�,y∈[0,1]d

t∇ψa,E(x, y)(σ(a, P )+K(x)
)∇ψσsym(a,P ),K(x) dx dy

=
∫

x∈�,y∈[0,1]d
ψa,E(x, y) dx dy, (184)

one obtains from the combination of (179), (182) and (183) that

2I =
∫

x∈�,y∈[0,1]d
ψa,E(x, y) dx dy +

∫

x∈�
ψσsym(a,P ),K(x) dx − J (185)

with J given by Eq. (173). Next one easily obtains (174) from (185) and (178). ��
We will now show that J acts as an error term. We will need the following lemmas.

Lemma 5.14. Let σ be a positive definite symmetric constant matrix. There exists a
constant Cd depending only on the dimension d such that for any function f ∈ C2

0 (�)

one has

d∑

i,j=1

∫

�

(
∂i∂jf (x)

)2
dx ≤ Cd

(
λmin(σ )

)−2
∫

�

(∇σ∇f (x))2
dx. (186)

Proof. When � = R
d and f ∈ C∞

0 (R
2), the inequality (186) is standard, we refer to

Theorem 1.7 of [Sim72]. When� is a bounded open subset of R
d with smooth boundary

the proof follows trivially from the density of C∞
0 (R

2) in C2
0 (�). ��

We write T (�) the set of smooth d-dimensional vector field on �̄, ξ ∈ (
C∞(�̄)

)d

such that

∀z ∈ ∂�, ξ(z).n(z) = 1, (187)

where ∂� is the boundary of � and n(z) the exterior orthonormal vector at the point z
of the boundary. For � a bounded open subset of R

d with smooth boundary we write
�(�) the following isoperimetric constant associated to �:

�(�) := inf
ξ∈T (�)

max
(‖ξ‖∞, ‖∇ξ‖∞

)
. (188)
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Lemma 5.15. We have
∫

z∈∂�,y∈[0,1]d

(
t∇ψa,E(z, y)a∇ψσsym(a,P ),K(z)

)
dz dy ≤ Cd,‖a+P ‖∞/λmin(a)�(�)

(
(
1 + ‖K‖1

λmin(a)

)(
∫

x∈�,y∈[0,1]d
ψa,E(x, y) dx dy

∫

x∈�
ψσsym(a,P ),K(x) dx

) 1
2

+
( Vol(�)

λmin(a)

) 1
2
( ∫

x∈�
ψσsym(a,P ),K(x) dx +

∫

x∈�,y∈[0,1]d
ψa,E(x, y) dx dy

) 1
2
)

.

(189)

Proof. Let f and v be a smooth function and a smooth vector field on �̄ we will use the
following Green formula:

∫

�

f (x) div v(x) dx = −
∫

�

∇f (x)v(x) dx +
∫

∂�

f (z)
(
v(z).n(z)

)
dz, (190)

where dz is the measure surface at the boundary. Let ξ ∈ T (�). Let us write

G =
d∑

i,j,k=1

∫

x∈�,y∈[0,1]d
∂iψ

a,E(x, y)

× (
a − P(Rx + y)

)
ij
∂j ξk(x)∂kψ

σsym(a,P ),K(x) dx dy. (191)

Applying formula (190) to Eq. (191) with ∇f = ∇ξk(x) we obtain that

G = G1 +G2 +G3 (192)

with (using the skew symmetry of Pij in ij )

G1 = −
d∑

i,j,k=1

∫

x∈�,y∈[0,1]d
∂j

((
a + P(Rx + y)

)
ji
∂iψ

a,E(x, y)
)

×ξk(x)∂kψσsym(a,P ),K(x) dx dy, (193)

G2 = −
d∑

i,j,k=1

∫

x∈�,y∈[0,1]d
∂iψ

a,E(x, y)
(
a − P(Rx + y)

)
ij
ξk(x)

∂j ∂kψ
σsym(a,P ),K(x) dx dy,

(194)

G3 =
d∑

i,j,k=1

∫

z∈∂�,y∈[0,1]d
∂iψ

a,E(z, y)
(
a − P(Rz+ y)

)
ij
ξk(z)

× nj (z)∂kψ
σsym(a,P ),K(z) dz dy,

(195)

where nj are the coordinates of the exterior orthonormal vector n(z). Using the fact that
∇ψa,E(z, y) and ∇ψσsym(a,P ),K(z) are parallel to n(z) at the boundary of � and both
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heading towards the opposite direction of n, we obtain that (using the skew symmetry
of Pij in ij )

G3 =
∫

z∈∂�,y∈[0,1]d

(
t∇ψa,E(z, y)a∇ψσsym(a,P ),K(z)

)(
ξ(z).n(z)

)
dz dy. (196)

Thus by Eq. (187),

G3 =
∫

z∈∂�,y∈[0,1]d

(
t∇ψa,E(z, y)a∇ψσsym(a,P ),K(z)

)
dz dy. (197)

Now, by Cauchy-Schwartz inequality we obtain from (191)

|G| ≤ Cd‖a + P ‖∞(λmin(a))
−1‖∇ξ‖∞

( ∫

x∈�,y∈[0,1]d
ψa,E(x, y) dx dy

∫

x∈�
ψσsym(a,P ),K(x) dx

) 1
2
. (198)

Using Cauchy-Schwartz inequality and ∇.(a + P(Rx + y))∇ψa,E(x, y) = −1 −
∇.K(x)∇ψa,E(x, y) we obtain from Eq. (193) that

|G1| ≤Cd
(
λmin(σsym(a, P ))

)− 1
2 ‖ξ‖∞

(
∫

x∈�
ψσsym(a,P ),K(x) dx

) 1
2

(
Vol(�)+ ‖K‖2

1(λmin(a))
−1

∫

x∈�,y∈[0,1]d
ψa,E(x, y) dx dy

) 1
2
.

(199)

Using Cauchy-Schwartz inequality, Lemma 5.14 and ∇.σsym(a, P )∇ψσsym(a,P ),K(x) =
−1 − ∇.K(x)∇ψσsym(a,P ),K(x), we obtain from Eq. (194) that

|G2| ≤ Cd‖a + P ‖∞(λmin(a))
− 1

2
(
λmin(σsym(a, P ))

)−1‖ξ‖∞

×(
∫

x∈�,y∈[0,1]d
ψa,E(x, y) dx dy

) 1
2

×
(

Vol(�)+ ‖K‖2
1

(
λmin(σsym(a, P ))

)−1
∫

x∈�
ψσsym(a,P ),K(x) dx

) 1
2
. (200)

Combining (192), (197), (198), (199) and (200) we obtain that
∫

z∈∂�,y∈[0,1]d

(
t∇ψa,E(z, y)a∇ψσsym(a,P ),K(z)

)
dz dy

≤ Cd,‖a+P ‖∞/λmin(a)(1 + ‖K‖1

λmin(a)
)

(‖ξ‖∞ + ‖∇ξ‖∞
)(

∫

x∈�,y∈[0,1]d
ψa,E(x, y) dx dy

∫

x∈�
ψσsym(a,P ),K(x) dx

) 1
2

+Cd,‖a+P ‖∞/λmin(a)‖ξ‖∞
( Vol(�)

λmin(a)

) 1
2

( ∫

x∈�
ψσsym(a,P ),K(x) dx +

∫

x∈�,y∈[0,1]d
ψa,E(x, y) dx dy

) 1
2
, (201)

which proves the lemma by optimization on the vector field ξ . ��
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Proposition 5.16. We have

|J | ≤ R−1Cd,‖a+P ‖∞/λmin(a)(�(�)+ 1)
(

(
1 + ‖K‖1

λmin(a)

)(
∫

x∈�,y∈[0,1]d
ψa,E(x, y) dx dy

∫

x∈�
ψσsym(a,P ),K(x) dx

) 1
2

+
( Vol(�)

λmin(a)

) 1
2
((

∫

x∈�
ψσsym(a,P ),K(x) dx

) 1
2

+(
∫

x∈�,y∈[0,1]d
ψa,E(x, y) dx dy

) 1
2
))

. (202)

Proof. Using formulae (173) and (127) one obtains that

J =
d∑

i,j,k=1

∫

x∈�,y∈[0,1]d
∂iψ

a,E(x, y)Bi,j,k(x, y)∂kψ
σsym(a,P ),K(x) dx dy (203)

with

Bi,j,k(x, y) = −∂jMP
ijk(Rx + y)+ (

a − P(Rx + y)
)
ij
∂jχ

a,P
k (Rx + y). (204)

Applying formula (190) to Eq. (203) first with div ξ = ∑d
j=1 −∂jMP

ijk(Rx + y), next

with ∇f = ∇χa,Pk (Rx + y), we obtain that

J = J1 + J2 + J3 (205)

with (using the skew symmetry of MP
ijk in ij )

J1 = −R−1
d∑

i,j,k=1

∫

x∈�,y∈[0,1]d
∂j

(
a + P(Rx + y)

)
ji
∂iψ

a,E(x, y)
)

×χa,Pk (Rx + y)∂kψ
σsym(a,P ),K(x) dx dy, (206)

J2 = R−1
d∑

i,j,k=1

∫

x∈�,y∈[0,1]d
∂iψ

a,E(x, y)

×
(
MP
ijk(Rx + y)− (

a − P(Rx + y)
)
ij
χ
a,P
k (Rx + y)

)

∂j ∂kψ
σsym(a,P ),K(x) dx dy, (207)

J3 = R−1
d∑

i,j,k=1

∫

z∈∂�,y∈[0,1]d
∂iψ

a,E(z, y)

×
(
−MP

ijk(Rz+ y)+ (
a − P(Rz+ y)

)
ij
χ
a,P
k (Rz+ y)

)

nj (z)∂kψ
σsym(a,P ),K(z) dz dy. (208)
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Using the fact that ∇ψa,E(z, y) and ∇ψσsym(a,P ),K(z) are parallel ton(z) at the boundary
of � and both heading towards the opposite direction of n, we obtain that (using the
skew symmetry of MP

ijk and Pij in ij )

J3 =R−1
∫

z∈∂�,y∈[0,1]d

(
t∇ψa,E(z, y)a∇ψσsym(a,P ),K(z)

)(
χa,P. (Rz+ y).n(z)

)
dz dy.

(209)

Thus by Lemma 5.15 and Eq. (117)

|J3| ≤R−1‖χa,P. ‖∞
∫

z∈∂�,y∈[0,1]d

(
t∇ψa,E(z, y)a∇ψσsym(a,P ),K(z)

)
dz dy

≤R−1Cd,‖a+P ‖∞/λmin(a)�(�)
(

(
1 + ‖K‖1

λmin(a)

)(
∫

x∈�,y∈[0,1]d
ψa,E(x, y) dx dy

∫

x∈�
ψσsym(a,P ),K(x) dx

) 1
2

+
( Vol(�)

λmin(a)

) 1
2
( ∫

x∈�
ψσsym(a,P ),K(x) dx+

∫

x∈�,y∈[0,1]d
ψa,E(x, y) dx dy

) 1
2
)

.

(210)

Using Cauchy-Schwartz inequality and ∇.(a + P(Rx + y))∇ψa,E(x, y) = −1 −
∇.K(x)∇ψa,E(x, y) we obtain from Eq. (206) and (117) that

|J1| ≤ Cd,‖a+P ‖∞/λmin(a)R
−1(

∫

x∈�
ψσsym(a,P ),K(x) dx

) 1
2

(( Vol(�)

λmin(a)

) 1
2

+ ‖K‖1

λmin(a)

( ∫

x∈�,y∈[0,1]d
ψa,E(x, y) dx dy

) 1
2
)

. (211)

Using Cauchy-Schwartz inequality, Lemma 5.14 and ∇.σsym(a, P )∇ψσsym(a,P ),K(x) =
−1 − ∇.K(x)∇ψσsym(a,P ),K(x), we obtain from Eq. (207), (117) and (128) that

|J2| ≤ CdR
−1Cd,‖a+P ‖∞/λmin(a)

(
∫

x∈�,y∈[0,1]d
ψa,E(x, y) dx dy

) 1
2

(( Vol(�)

λmin(a)

) 1
2

+ ‖K‖1

λmin(a)

( ∫

x∈�
ψσsym(a,P ),K(x) dx

) 1
2
)

. (212)

Proposition (5.16) is then a straightforward combination of (205), (210), (211) and (212).

We will now need the following lemma whose proof is trivial algebra

Lemma 5.17. Assume X, Y, δ, η > 0 and

(X − Y )2 ≤ δXY + η(X + Y ), (213)

then

X
1
2 ≤ Y

1
2 (1 +

√
δ)+ √

η (214)

and

X
1
2 ≥ (

Y
1
2 − √

η
)
(1 +

√
δ)−1. (215)
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Proof. The upper root of Eq. (213) is X0 = Y (1 + δ
2 ) + η

2 +
√
�

2 with � = Y 2δ(δ +
4)+ Yη(8 + 2δ)+ η2. Then by applying the Minkowski inequality to

√
� we obtain

X ≤ Y (1 +
√
δ)2 + 2

√
Y

√
η(1 +

√
δ)+ η (216)

which leads to (214). Equation (215) is then obtained by the symmetry of (213) in X
and Y . ��

Combining Proposition 5.13 and 5.16 with Lemma 5.17 we obtain Theorem 5.18:

Theorem 5.18. There exists a finite function h : (R+)2 → R
+ increasing in each argu-

ment such that the following inequalities are valid:

X ≤ Y (1 + δ)+ η and X ≥ (
Y − η

)
(1 + δ)−1 (217)

with

X :=
( 1

Vol(�)

∫

x∈�,y∈[0,1]d
ψa,E(x, y) dx dy

) 1
4
, (218)

Y :=
( 1

Vol(�)

∫

x∈�
ψσsym(a,P ),K(x) dx

) 1
4
, (219)

δ := R− 1
2 h

(
d,

1 + ‖a + P ‖∞
λmin(a)

)
(�(�)+ 1)

1
2

(
1 + ‖K‖1

) 1
2
, (220)

and

η := R− 1
2 h

(
d,

1 + ‖a + P ‖∞
λmin(a)

)
(�(�)+ 1)

1
2 . (221)

5.4.3. Effect of relative translation on averaging. For � a bounded open subset of R
d

with smooth boundary and E a skew symmetric matrix with smooth coefficients in
L∞
loc(R

d) and a ∈ Md,sym, let ψa,E� (x) be the solution of ∇.(a + E)∇ψa,E� = −1 in
�. For y ∈ [0, 1]d let us introduce the operator θy such that for any function f on R

d ,
θyf (x) = f (x + y). Using the notation (172), let us observe that for y ∈ [0, 1]d ,

ψ
a,θy/R(SRP )+K
� (x) = ψ�(x, y). (222)

Lemma 5.19. For y ∈ R
d one has

∫

x∈�
|∇ψa,θy/R(SRP+K)

� (x)− ∇ψ�(x, y)|2a ≤ Cd

( ‖K‖1

Rλmin(a)

)2
∫

x∈�
ψ
a,E
� (x, y) dx.

(223)
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Proof. Observe that

∇.(a + E(x + y/R))∇(
ψ
a,θy/R(SRP+K)
� (x)− ψ

a,E
� (x, y)

)

= ∇.
((
K(x + y/R)−K(x)

)∇ψa,E� (x, y)
)
. (224)

It follows that
∫

x∈�
|∇ψa,θy/R(SRP+K)

� (x)− ∇ψa,E� (x, y)|2a
=

∫

x∈�

(∇ψa,θy/R(SRP+K)
� (x)− ∇ψa,E� (x, y)

)(
K(x + y/R)−K(x)

)∇ψa,E� (x, y),

(225)

thus by Cauchy-Schwartz inequality
∫

x∈�
|∇ψa,θy/R(SRP+K)

� (x)− ∇ψa,E� (x, y)|2a

≤
∫

x∈�

∣
∣
∣(K(x + y/R)−K(x))∇ψa,E� (x, y)

∣
∣
∣
2

a−1
, (226)

and Eq. (223) follows easily. ��
Now we will need the following lemma

Lemma 5.20. For y ∈ [0, 1]d ,
∫

x∈�
ψ
a,θy/R(SRP+K)
� (x) dx ≤

∫

x∈�
ψ�(x, y) dx

(
1 + Cd

‖K‖1

Rλmin(a)

)2 (227)

and
∫

x∈�
ψ
a,θy/R(SRP+K)
� (x) dx ≥

∫

x∈�
ψ�(x, y) dx

(
1 + Cd

‖K‖1

Rλmin(a)

)−2
. (228)

Proof. Combining the identity
∫

x∈�
ψ
a,θy/R(SRP+K)
� (x) dx =

∫

x∈�
|∇ψa,θy/R(SRP+K)

� (x)|2a dx (229)

with Minkowski inequality we obtain that

( ∫

x∈�
ψ
a,θy/R(SRP+K)
� (x) dx

) 1
2 ≤

( ∫

x∈�
|∇ψa,E� (x, y)|2a dx

) 1
2

+
( ∫

x∈�
|∇ψa,θy/R(SRP+K)

� (x)− ∇ψ�(x, y)|2a
) 1

2
,

(230)

and Eq. (227) follows from Lemma 5.19. The proof of inequality (228) is similar. ��
We write

X(�, a,E) := (
Vol(�)

)−1
∫

x∈�
ψ
a,E
� (x) dx. (231)

For y ∈ R
d we write θy� := {x + y : x ∈ �}. From Lemma 5.20 we obtain the

following proposition
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Proposition 5.21.

X(θ y
R
�, a, SRP +K) ≤ X(�, a, θ y

R
(SRP )+K)

(
1 + Cd

‖K‖1

Rλmin(a)

)2 (232)

and

X(θ y
R
�, a, SRP +K) ≥ X(�, a, θ y

R
(SRP )+K)

(
1 + Cd

‖K‖1

Rλmin(a)

)−2
. (233)

5.4.4. Reverse iteration to obtain supper-diffusion. It is easy to obtain from Theorem
(5.11), that for any γ > 0,

X(�, a, γE) = γ−1X(�, γ−1a,E). (234)

Moreover for R > 0, writing SR� := {x ∈ R
d : R−1x ∈ �} it is easy to obtain by

scaling that

X(SR�, a,E) = R2X(�, a, SRE). (235)

Let us write for 0 ≤ p ≤ n− 1,

Z(p,B) :=
(∫

(yp,... ,yn−1)∈[0,1]d×(n−p)
X

(
SRn

n−1∏

k=p
θ ykRk

Rn

�,B,
1

γp
�p,∞

)
dyp . . . dyn−1

) 1
4
.

(236)

We will need the following proposition

Proposition 5.22. There exists a finite increasing function F : (R+)2 → R
+ such that

for

ρmin > γmaxQn

(
1 + Rn

(
Z(n,An)

)2

)
(237)

one has

Z(0, A0) ≥ 0.5
(R2

n

γn

) 1
4 Z

(
n,An

)

R
1
2
n

(
1 +

(Qnγmax

ρmin

) 1
2
)−n

(238)

and

Z(0, A0) ≤ 2
(R2

n

γn

) 1
4 Z

(
n,An

)

R
1
2
n

(
1 +

(Qnγmax

ρmin

) 1
2
)n

(239)

with

Qn := F
(
d,

1 +K0

λ−
n

+ µn
)
(�(�)+ 1)(1 +K1), (240)

where λ−
n is the stability of the renormalization core (An)n∈N and µn its anisotropic

distortion.
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Proof. From Proposition 5.21 and Eq. (235) we obtain that

Z(p,B) ≤
( ∫

(yp,... ,yn−1)∈[0,1]d×(n−p)
X

( n−1∏

k=p+1

θ ykRk
Rn

�,B, S Rn
Rp

θypE
p

+ 1

γp
SRn�

p+1,∞
)
dyp . . . dyn−1

) 1
4
R

1
2
n

(
1 + Cd

‖ 1
γp
SRn�

p+1,∞‖1Rp

Rnλmin(B)

) 1
2

(241)

and

Z(p,B) ≥
( ∫

(yp,... ,yn−1)∈[0,1]d×(n−p)
X

( n−1∏

k=p+1

θ ykRk
Rn

�,B, S Rn
Rp

θypE
p

+ 1

γp
SRn�

p+1,∞
)
dyp . . . dyn−1

) 1
4
R

1
2
n

(
1 + Cd

‖ 1
γp
SRn�

p+1,∞‖1Rp

Rnλmin(B)

)− 1
2
.

(242)

Now let us observe that

‖SRn
1

γp
�p+1,∞‖1 ≤ K1

Rn

Rp+1

∞∑

k=p+1

(γk/γp)(Rp+1/Rk)

≤ K1
Rn

Rp+1

γp+1

γp
(1 − γmax/ρmin)

−1.

(243)

Combining (241) and (242) with Theorem 5.18 (with R = Rn/Rp, P = Ep,
K = SRn�

p+1,∞/γp) and (234) one obtains that

Z(p,B) ≤
( γp

γp+1

) 1
4
Z

(
p + 1,

γp

γp+1
σsym(B,E

p)
)(

1 + δp(B)
) + ηp(B) (244)

and

Z(p,B) ≥
(( γp

γp+1

) 1
4Z

(
p + 1,

γp

γp+1
σsym(B,E

p)
) − ηp(B)

)(
1 + δp(B)

)−1
(245)

with

δp(B) := ( Rp

Rp+1

γp+1

γp

) 1
2 h

(
d,

1 + λmax(B)+K0

λmin(B)

)
(�(�)+ 1)

1
2 (1 +K1)

1
2

×(1 − γmax/ρmin)
−1 (246)

and

ηp(B) := R
1
2
p h

(
d,

1 + λmax(B)+K0

λmin(B)

)
(�(�)+ 1)

1
2 (1 − γmax/ρmin)

− 1
2 , (247)
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where, in (246) we have used the inequality (243) and we have integrated the error terms
involving B appearing in (241) and (242) in the function h and used the assumption
K1γmax ≤ ρmin. Then one obtains from (244) by a simple induction that for n ≥ 2,

Z(0, A0) ≤
(γ0

γn

) 1
4
Z

(
n,An

) n−1∏

k=0

(
1 + δk(Ak)

)

+
n−2∑

p=0

ηp+1(A
p+1)

( γ0

γp+1

) 1
4

p∏

k=0

(
1 + δk(Ak)

)

+ η0(A0). (248)

Similarly one obtains from (245) by a simple induction that for n ≥ 2,

Z(0, A0) ≥
(γ0

γn

) 1
4
Z

(
n,An

) n−1∏

k=0

(
1 + δk(Ak)

)−1

−
n−2∑

p=0

ηp+1(A
p+1)

( γ0

γp+1

) 1
4

p∏

k=0

(
1 + δk(Ak)

)−1

−η0(A0)
(
1 + δ0(A0)

)−1
, (249)

where
(
Ak

)
k∈N

, is the renormalization core (33). Now combining (249) and (235) we
obtain that

Z(0, A0) ≥
(R2

n

γn

) 1
4 Z

(
n,An

)

R
1
2
n

n−1∏

k=0

(
1 +

( γk+1

rk+1γk

) 1
2
δ(Ak)

)−1

−
n−2∑

p=0

R
1
2
p+1δ(A

p+1)
( γ0

γp+1

) 1
4

p∏

k=0

(
1 +

( γk+1

rk+1γk

) 1
2
δ(Ak)

)−1

−δ(A0)
(
1 + δ(A0)

)−1 (250)

with

δ(B) := h
(
d,

1 + λmax(B)+K0

λmin(B)

)
(�(�)+ 1)

1
2 (1 +K1)

1
2 (1 − γmax/ρmin)

−1.

(251)

Thus

Z(0, A0) ≥ (1 − ζi)
(R2

n

γn

) 1
4 Z

(
n,An

)

R
1
2
n

n−1∏

k=0

(
1 +

( γk+1

rk+1γk

) 1
2
δ(Ak)

)−1
(252)

with

ζi ≤ R
1
2
n

Z
(
n,An

)

( n−2∑

p=0

(R2
p+1γn

R2
nγp+1

) 1
4
δ(Ap+1)

n−1∏

k=p+1

(
1 +

( γk+1

rk+1γk

) 1
2
δ(Ak)

)

+
( γn

R2
n

) 1
4
n−1∏

k=0

(
1 +

( γk+1

rk+1γk

) 1
2
δ(Ak)

))

. (253)
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Thus writing

Wn := h
(
d,

1 +K0

λ−
n

+ µn

)
(�(�)+ 1)

1
2 (1 +K1)

1
2 (1 − γmax/ρmin)

−1, (254)

we obtain from (253) under the assumption ρ2
min > γmax(16 +W 2

n ) that

ζi ≤ R
1
2
n

Z
(
n,An

)4Wn

(γmax

ρ2
min

) 1
4
. (255)

Thus for

ρmin > γ
1
2

max64
(

1 +Wn

(
1 + R

1
2
n

Z
(
n,An

)
))2

, (256)

ζi < 0.5 and ζi acts as an error term in the inequality (252). Then combining (252),
(256) and (254) we obtain the control (238). Moreover, we obtain from (235) and (248)
that

Z(0, A0) ≤
(
R2
n

γ0

γn

) 1
4 Z

(
n,An

)

R
1
2
n

n−1∏

k=0

(
1 +

( γk+1

rk+1γk

) 1
2
δ(Ak)

)

+
n−2∑

p=0

R
1
2
p+1δ(A

p+1)
( γ0

γp+1

) 1
4

p∏

k=0

(
1 +

( γk+1

rk+1γk

) 1
2
δ(Ak)

)
+ δ(A0).

(257)

From this point the proof of Eq. (239) is similar to the one of Eq. (238) ��
We will need the following lemma

Lemma 5.23. We have

Z(n,An) ≤ R
1
2
n

(
X(�,An, 0)

) 1
4 (258)

and

Z(n,An) ≥ R
1
2
n

(
X(�, Id, 0)

) 1
4
(
λmax(A

n)
)− 1

4

×
(

1 + γ−2
n sup

x∈SRn�
λmax

(
t�n,∞(x)�n,∞(x)

))− 1
4
. (259)

Proof. Equations (258) and (259) are an easy application of Theorem 5.11, Corollary
5.12 and Eq. (235). ��

For r > 0 we write T [r]� the set of x ∈ R
d such that there exists y ∈ � with

|x − y| ≤ r
√
d. We write T [−r]� the set of x ∈ � such that there exists y �∈ � with

|x − y| > r
√
d. From Eq. (236), using

∏n−1
k=0 θ ykRk

Rn

� ⊂ T [(ρmin − 1)−1]� we obtain

that

X
(
SRnT [(ρmin − 1)−1]�,A0, �

0,∞) ≥ (
Z(0, A0)

) 1
4 . (260)



Averaging Versus Chaos in Turbulent Transport? 595

Similarly we obtain that

X
(
SRnT [−(ρmin − 1)−1]�,A0, �

0,∞) ≤ (
Z(0, A0)

) 1
4 . (261)

We will need the following proposition

Proposition 5.24. There exists a finite increasing function F : (R+)2 → R
+ such that

for

ρmin > γmaxQn and r > R1 (262)

one has

X
(
B(0, r), A0, �

0,∞) ≥ Cd,K0

γ 2
max

r2

γnλmax(An)

(
1 +

(Qnγmax

ρmin

) 1
2
)−4n

(263)

and

X
(
B(0, r), A0, �

0,∞) ≤ r2

γnλmax(An)

(
1 +

(Qnγmax

ρmin

) 1
2
)4n

(264)

with

n = sup{p ∈ N : Rp ≤ r}, (265)

Qn := F
(
d,

1 +K0

λ−
n

+ µn

)
(1 +K1), (266)

where λ−
n is the stability of the renormalization core (An)n∈N and µn its anisotropic

distortion.

Proof. Taking � := B
(
0, (r/Rn) − √

d(ρmin − 1)−1
)

in Eq. (260) we obtain from
Eq. (238) of Proposition 5.22 and (259) that

X
(
B(0, r), A0, �

0,∞) ≥(0.5)4 R2
n

γnλmax(An)
X

(
B(0, r/Rn), Id, 0

)(
1 +

(Qnγmax

ρmin

) 1
2
)−4n

×
(

1 + γ−2
n sup

x∈B(0,r)
λmax

(
t�n,∞(x)�n,∞(x)

))−1
,

(267)

which leads to (263) by (262), incorporating the new constants in Qn (observing that
for r ≥ 1,�(B(0, r)) is uniformly bounded away from infinity by a constant depending
only on the dimension) and using

sup
x∈B(0,r)

γ−2
n λmax

(
t�n,∞(x)�n,∞(x)

) ≤ Cd

(
K0 + γmax

(
1 − γmax

ρmin

)−1 r

Rn+1

)2
.

(268)

The proof of (264) follows similarly by taking � := B
(
0, (r/Rn) + √

d(ρmin − 1)−1
)

in Eq. (261) and using Eq. (239) of Proposition 5.22 and (258).
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Let us write

n(r) := sup{p ∈ N : Rp ≤ r}. (269)

From Proposition (5.24) we easily deduce the following theorem

Theorem 5.25. There exists a finite increasing functionF : (R+)2 → R
+ and a function

|C(r)| ≤ C(d,K0, γmax) such that for

ρmin

γmax
> Q(r) and r > R1 (270)

one has

1

Vol
(
B(0, r)

)

∫

B(0,r)
Ex

[
τ(r)

]
dx = r2−ν(r)

λmax(An(r))
(271)

with

ν(r) = ln γn(r)
ln r

(
1 + ε(r)

) + C(r)

ln r
(272)

and

|ε(r)| ≤
(Q(r)γmax

ρmin

) 1
2

(273)

with

Q(r) := 1

(ln γmin)2
F

(
d,

1 +K0

λ−
n(r)

+ µn(r)

)
(1 +K1). (274)

Then Theorem 4.13 is a simplified version of Theorem 5.25 (using Theorem 4.31).
Now we will show that the anomalous fast behavior of the exit times from B(0, r)
is a super-diffusive phenomenon and not a convective phenomenon. We will consider
Emr,l

[
τ(r, l)

]
defined by Eq. (66). The following theorem implies Theorem 4.15.

Theorem 5.26. There exists a finite increasing function F : (R+)2 → R
+ such that for

ρmin > γmax10Q(r) and r > R1 (275)

one has

lim
l→∞

(
Vol

(
B(0, r, l)

))−1
∫

(y,z)∈B(0,r,l)
Ey,z

[
τ
(
B(0, r, l)

)] = r2−ν(r)

λmax(An(r))
(276)

where ν(r) is given by (272) and Q(r) by (274).

Proof. Let us observe that

B(0, r, l) ⊂ B̂(0, r, l) and B̂(0, r, l) ⊂ B(0, r, l + r). (277)

Thus, it is sufficient to control exit times from B̂(0, r, l) in order to prove Theorem 5.26.
Now let us observe that the diffusion (yt , zt ) is associated to the following generator L
acting on f ∈ C∞

0 (R
d × R

d ):

Lf (y, z) := ∇y.(κId + �(y)− �(z))∇y + ∇z.(κId + �(z)− �(y))∇z. (278)
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Thus one can apply Proposition 5.22 with� = B̂(0, r, l). Let us observe that the renor-
malization core associated to (yt , zt ) is

(
Ak 0
0 Ak

)

. (279)

Moreover it is easy to observe that�
(
B̂(0, r, l)

)
is bounded uniformly away from infinity

on r ≤ l and that

‖�n,∞(y)− �n,∞(z)‖ ≤ Cd

∞∑

k=n
CdK1γkR

−1
k |y − z|. (280)

From this point the proof of Theorem 5.26 is trivially similar to the one of Theorem
5.25. ��

Super-diffusion as a common event. Let us write G(r) as the set of points of B(0, r)
such that if yt starts from those points, its exit time from B(0, r) is anomalously fast
with probability asymptotically close to one. We also writeG(r, l) as the set of points of
B(0, r, l) such that if (yt , zt ) starts for those points, their separation time is anomalously
fast with probability asymptotically close to one. More precisely let us write

δ(r) = ln γn(r)
ln r

(
1 − 3C(r)

) − Cd,K0,γmax

ln r
(281)

with

C(r) =
(Q(r)γmax

ρmin

) 1
2
, (282)

where Q(r) is given by (274). Let us write

ε2(r) = exp
( − ln γn(r)C(r)

)
. (283)

We will consider

G(r) :=
{
x ∈ B(0, r) : Px

[
τ(r) ≤ r2−δ(r)

λmax(An(r))

]
≥ 1 − ε2(r)

}

and

G(r, l) :=
{
(y, z) ∈ B(0, r, l) : Py,z

[
τ
(
B(0, r, l)

) ≤ r2−δ(r)

λmax(An(r))

]
≥ 1 − ε2(r)

}
.

Let us writemr,mr,l the Lebesgue probability measure defined onB(0, r) andB(0, r, l)
by

mr(G(r)) :=
∫
G(r)

dx
∫
B(0,r) dx

, (284)

mr,l(G(r, l)) :=
∫
(y,z)∈G(r,l) dy dz∫
(y,z)∈B(0,r,l) dy dz

. (285)

A trivial consequence of Theorems 5.25 and 5.26 is the following theorem.
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Theorem 5.27. There exists a finite increasing function F : (R+)2 → R
+ such that for

ρmin > 10γmaxQ(r) and r > R1, (286)

mr(G(r)) ≥ 1 − ε2(r), (287)

mr,l(G(r, l)) ≥ 1 − ε2(r). (288)

Theorem 4.17 is a particular case of Theorem 5.27.
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coefficients discontinus. Ann. Inst. Fourier (Grenoble), 15(1), 189–258 (1965)

[Sta66] Stampacchia, G.: Equations elliptiques du second ordre à coefficients discontinus. Montréal
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