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Abstract: This paper is concerned with the asymptotic behavior solutions of stochastic
differential equationgy; = dw; — VI'(y,)dt, yo = 0 andd = 2. T is a 2x 2 skew-
symmetric matrix associated to a shear flow characterized by an infinite number of spatial
scalesI'1p = —I'21 = h(x1), with h(x1) = Y72 5 yah" (x1/R,), Whereh” are smooth
functions of period 14" (0) = 0, y, and R, grow exponentially fast witlm. We can

show thaty, has an anomalous fast behavitif|(y,|2] ~ 1tV with v > 0) and obtain
guantitative estimates on the anomaly using and developing the tools of homogenization.

Contents

1. Introduction . . . . . . . . . . . 281
2. TheModel. . . . ... . 283
3. MainResults. . . . .. .. . 284
4. ProofsUnderHypothesisl . . . .. ... ... ... ... ....... 288
5. ProofsUnder Hypothesis2 . . . ... ... ... ............ 295

1. Introduction

Turbulent incompressible flows are characterized by multiple scales of mixing length
and convection rolls. It is heuristically known and expected that a diffusive transport
in such media will be super-diffusive. The first known observation of this anomaly is
attributed to Richardson [27] who analyzed available experimental data on diffusion in
air, varying on about 12 orders of magnitude. On that basis, he empirically conjectured
that the diffusion coefficienD,, in turbulent air depends on the scale lengtbf the
measurement. The Richardson law,

Dy o 2.3 (1)
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was related to Kolmogorov—Obukhov turbulence spectruns, A%, by Batchelor [4].
The super-diffusive law of the root-mean-square relative displacentenof advected
particles

() o (Dyyt)? o 12 )

was derived by Obukhov [22] from a dimensional analysis similar to the one that led
Kolmogorov [18] to the\.3 velocity spectrum.

More recently physicists and mathematicians have started to investigate the super-
diffusive phenomenon (from both heuristic and rigorous points of view) by using the
tools of homogenization or renormalization; we refer to M. Avellaneda and A. Majda
[3,2], J. Glimm et al. [12,13,15], J. Glimm and Q. Zhang [16], Q. Zhang [28], M.B.
Isichenko and J. Kalda [17], G. Gaudron [14].

It is now well known that homogenization over a periodic or ergodic divergence free
drift has the property to enhance the diffusion [10,11, 19]. Itis also expected that several
spatial scales of eddies should give rise to anomalous diffusion between proper time
scales outside the homogenization regime or when the bigger scale has not yet been
homogenized. We refer to M. Avellaneda [1]; A. Fannjiang [8]; Rabi Bhattacharya [6]
(see also [7] by Bhattacharya, Denker and Goswami); A. Fannjiang and T. Komorowski
[9], and this panorama is certainly not complete.

The purpose of this paper is to implement rigorously on a shear flow model the idea
that the key to anomalous fast diffusion in turbulent flows is an unfinished homogeniza-
tion process over a large number of scales of eddies without a sharp separation between
them. We will assume that the ratios between the spatial scales are bounded. The un-
derlying phenomenon is similar to the one related to anomalous slow diffusion from
perpetual homogenization on an infinite number of scales of gradient drifts [25,5], the
main difference lies in the asymptotic behavior of the multi-scale effective diffusivities
D (n) associated with spatial scales, i.e)(n) diverge towardso or converge towards
0 with exponential rate depending on the nature of the scales: eddies or obstacles.

Note that the shear-layer model is exactly solvable ([3,14]). When the geometrically
divergent scales are recast into the Fourier setting with a power-law spectrum, super-
diffusivity has already been proven in the limit> oco. Our purpose in this paper is to
show that never-ending homogenization can be used as a tool to obtain a quantitative
control on the anomaly for finite times, not just an asymptotic result and without any
self-similarity assumption. Moreover it will be shown that the mean-squared displace-
ment]E[ytz] of the diffusion in the shear flow behaves likgn(z))t (see (24)). In this
formula, n(¢) has a logarithmic growth and corresponds to the number of scales that
can be considered as homogenized at tingasting into light the role of never-ending
homogenization in the anomalous fast behavior of a diffusion process in a shear-flow
model. Moreover it will be shown in [26] that the strategy associated to never-ending
homogenization can be extended to higher dimensions (and non shear flow models of
turbulence). We would like to refer the reader to an interesting and related recent preprint
by S. Ollaand T. Komorowski [29] on “the superdiffusive behavior of passive tracer with
a Gaussian drift”.



Super-Diffusivity in a Shear Flow Model from Perpetual Homogenization 283

2. The Model

Let us consider in dimension two a Brownian motion with a drift given by the divergence
of a shear flow stream matrix, i.e. the solution of the stochastic differential equation:

dy; =dw, — VI'(y)dt, yo =0, 3
wherel is a skew-symmetric Z 2 shear flow matrix,

roso = (0 "5Y): @

The function(x1, x2) — h(x1) is given by a sum of infinitely many periodic functions
with (geometrically) increasing periods

B = >y (%) (5)
n=0 "

whereh,, are smooth functions of period 1. We will assume that
ha(0) = 0. (6)

We will normalize the functions,, by the choosing their variance equal to one:

1 1
Var(hy) = / (I () — / i (0)dy)2dx = 1. @)
0 0

R, andy, grow exponentially fast with, i.e.

n

Ri=[]r. (8)
k=0
wherer, are integers;o = 1,
omin= Inf r, >2 and pmax= SuUpr, < oo. (9)
neN* neN*
We chooseqg = 1 and
Ymin = INf (Vug1/vn) > 1 and  ymax = SUR(Vnt1/Vn) < 0. (10)
neN neN

Itis assumed that the first derivate of the potentiglaire uniformly bounded. (Ogk)
stands for sup — inf k)

Ko = supOsdh,) < oo, K1 = sup|lh), |l < 00. (11
neN neN

In this paper we shall distinguish two hypotheses

Hypothesis 1.

Pmin > Ymax- (12)



284 G. Ben Arous, H. Owhadi

Hypothesis 2.
prin > Vit (13)
Forall n € N,
R.(0) =0 (14)
and
K2 = supl|dhy [l < 00, (15)
neN

Let us observe that under Hypotheses 1, (6), (9), (10) andi(is1a well defined”?
function onR¢ and

Ih(x)] < K1lx[(1 = ymax/pmin) L 10/ (0)] < K1(1 = ymax/pmin) *.  (16)

Thus under Hypothesis T is a well defined Lipschitz stream matrix and the solution

of the stochastic differential equation (3) exists; is unigque up to sets of measure 0 with

respect to the Wiener measure and is a strong Markov continuous Feller process.
Under Hypothesis 2, (6), (9), (10) and (1I)js no more Lipschitz continuous bt

is still a well definedC? function onR? and

|h(x)] < K21x12(1 — ymax/p2in) "+ 1 (X)] < K2(1 — ymax/p2in) Hxl.  (17)

3. Main Results

3.1. Under Hypothesis 1. Our objective is to show that the solution (3) is abnormally
fast and the asymptotic sub-diffusivity will be characterized as an anomalous behavior
of the variance at time, i.e.IEo[y,z] ~ 11V ast — oo. More precisely there exists a
constanioo(Vimin, Ymax, Ko, K1) and a timeo(Vimin, Ymax, R1, Ko, K1) such that

Theorem 1.1f p,,;, > po and y, isa solution of (3) then for ¢ > 1,

Eollyr.e2*] = 1@ (18)
with
IN Ymi C In C
e - s s T 2 (19)
In Pmax +|nm Int In Pmin +|nym—ax Int

where the constants C1 and C> depend on pmin, ¥min,» Ymax. Pmax. Ko, K1-

We remark that ifymax = ¥min = ¥ andpmax = pmin = p thenv(@) ~Iny/In p.

The key of the fast asymptotic behavior of the variance of the solution of (3) is the
geometric rate of divergence towargsof the multi-scale effective matrices associated
to a finite number of scales. More precisely, kop € N, £ < p we will write

p
HAP = Z Ynhn(x/Ry) (20)
n=k
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andr'*? the skew-symmetric matrix given mﬁ";g (x1, x2) = H*P(x1). Let D(I'%7) be
the effective diffusivity associated to homogenization of the periodic opefaioy =
1/2A — V%PV, Then itis easy to see that

1 0
0.py —
D(I™P) = (o D(Fo,p)zz) (21)
and it will be shown that
Theorem 2. For
-1
€= 4K1(pmin()/min - 1)) <1, (22)
P P
1+4(1-€) Y yZF < DI <1+4(1+6) ) ¥2 (23)
k=0 k=0

The super-diffusive behavior can be explained and controlled by a perpetual homoge-

nization process taking place over the infinite number of scales Or, ... . The idea

of the proof of Theorem 1 is to distinguish, when one tries to estimate (18), the smaller

scales which have already been homogenized.(Q n. called effective scales), the

bigger scales which have not had a visible influence on the diffusigp ( . . , co called

drift scales because they will be replaced by a constant drift in the proof) and some in-

termediate scales that manifest their particular shapes in the behavior of the diffusion

(nef +1,... ,nari —1=n.s +np called perturbation scales because they will enter

in the proof as a perturbation of the homogenization process over the smaller scales).
The number of effective scales is fixed by the mean squared displacemgmt; of

Writing n.¢ () = inf{n : t < R?} one proves that

E[(y;.2)?] ~ D(I%"er Oy, (24)

Assume for instancR, = p" andy, = y" thenn.s () ~Int/(2Inp) and

Iny
El(y;.e2)?] ~ X5

We remark that the quantitative control is sharper than the one associated to a perpetual
homogenization on a gradient drift [25]; this is explained by the fact that the number of
perturbation scales is limited to only one scale with a divergence free drift. Nevertheless
the main difficulty is to control the influence of this intermediate scale and the core of
that control is based on the following mixing stochastic inequality (we \m}‘fge: RT?

the torus of dimensiod and sideR).

Proposition 1.Let R > 0and f,G e (H(T%))2 such that f, f(y)dy = 0 and
J3G(y)dy =0,letr > 0ands > 0,

t
-1
E[G®) /0 00S o) ds]| <11l 2o 1G] 2ty 2 (25)
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3.2. Physical interpretation. We want to emphasize that to obtain a super-diffusive be-
havior of the solution of (3) of the shapﬁ{y,z] ~ 1V with v > 0 it is necessary to
assume the exponential rate of growth of the parameigrthis has a clear meaning
when the flow is compared on a heuristic point of view to a real turbulent flow.

First, note that our model starts with the dissipation scale and expresses the inertial
range of scales as geometrically divergent. Next, the paramgtgrs| ./ R, represents
the amplitude of the pulsations of the eddies of gtzelt is a well known characteristic
of turbulence ([20] p. 129) that the amplitude of the pulsations increase with the scale,
since for all scale$h), ||« < K1 one should have lim, /R, — oo to reflect thatimage.
In our model, it is sufficient to assume the exponential rate of divergenggtofobtain
a super-diffusive behavior.

Let us also notice on a heuristic point of view (our model is not isotropic and does
not depend on the time) that the energy dissipated per unit time and unit volume in the
eddies of scale is of order of

Vnz 2 26
€n X —4K2 ( )
Rn

So saying that the energy is dissipated mainly in the small eddies is equivalent to saying
thaty,,/R,% — O0asn — oo orif R, = p" andy, = p*", this equivalent to say that
a < 2, which is included in Hypothesis 2.
The Kolmogorov—Obukhov law is equivalent to say thiat< oo, for alln 4},(0) = 0
and

4
Yn X R;, (27)

orif R, = p" andy, = p*", this is equivalent to say that = %’ corresponding to the
Kolmogorov spectrum, which violates the hypothesi® 1z y but not Hypothesis 2

(p > y%) which will be addressed below.

Overlapping ratios. The super-diffusive behavior in Theorem 1 requires a minimal
separation between scales, iogin > 0o and this condition is necessary. Assume for
instancer, = p" andy, = y", thenifh,(x1) = g(x1) — y?g(a?x1) (with g € C1(T?)
whereT? is the torusR /Z anda € N*) itis easy to see that for = a, I' is bounded and
v, has a normal behavior by Norris’s Aronson type estimates [21]. Thus, as for a gradient
drift [25], it is easy to see for simple examples that whes pg the solution of (3) may
have a normal or a super-diffusive behavior depending on the valp@iod the shapes
of h, and ratios of normal behavior may be surrounded by ratios of anomalous behavior.
This phenomenon is created by a strong overlap between spatial ratios between scales.
Thus the hypothesis (12) is necessary not only to ensure that one has a well defined
C! stream matrix™ but also that its associated diffusion may show an anomalous fast
behavior. Indeed with,, (x) = sin(2rx) — 3siN6rx), ¥, = p, = 3" one hagh|le <
oo, which leads to a normal behavior gf
The caseomin < ymax Will be addressed with Hypothesis 2. Let us observe that to

investigate this case we had to add further information on the higher derivafetof
ensure thak is well defined’,(0) = 0, |1/ ||« < K2 under the constraiimin > ¥2ax

(which includes the Kolmogorov case= p%3).
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3.3. Under Hypothesis2. In this subsection we will give theorems putting into evidence
the anomalous fast behavior of the solutions of (3) under Hypothesis 2 which includes
the Kolmogorov spectrum.

Theorem 3.Under Hypothesis (2), if there exists a constant z > 2 such that ymin > z
then there exists a constant Co depending on z, Ko, K2 such that if

pr?ninyn:a:llx > Co (28)
then there exist constants C1 > 0 depending on z, C2 > 0 depending on z, Ko,

K2, Ymax, C3 > 0on z, Kg and C4 > 0 on z, Ko, pmax Such that if y, is a solution
of (3)and ¢ > Cg, then

C11v2,) < E[Ore2?] < Caty?, (29)

and
Cat™ 0 < E[(yr.e2)?] < Cot ™ (30)

with
p(t) :=sugn € N : 16(1+ K&)(1— (yimin — DY) °R2 < 1} (31)

and
v(®) =Ny / INRy). (32)

Remark. It is important to note that Eq. (29) emphasizes the role of never-ending ho-
mogenization in the fast behavior of the diffusion and its proof is also based on the
separation of the infinite number of scales into smaller ones which act through their
effective properties, larger ones which will be bounded by a constant drift and an in-
termediate one that one has to control. Equation (30) gives quantitative control of the
anomaly without any self-similarity assumptiar(y) is not a constant if the multi-scale
velocity distribution associated to (3) is not self-similar but one has

In Vmin/ N pmax < v(t) <In J/max/ IN pmin. (33)

Definition 1. The Sochastic Differential Equation (3) is said to have a self-similar
velocity distribution if and only if

Pmin = Pmax = P (34)
and
Ymin = Ymax = - (35)
Then we will write
a=Iny/Inp. (36)

From Theorem 3 one easily deduces the following theorem.
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Theorem 4. Assume that the SDE (3) has a self-similar velocity distribution with 0 <
a < 2. Under Hypothesis (2), there exists a constant Co depending on «, Ko, K2 such
that if

o> Co (37)

then there exist constants C; > 0 depending on Ko, p, C2 > 00on Ko, K2, p, @ and C3
on Ko such that if y, isa solution of (3) and ¢ > Cs, then

C1t' < E[(yr.e2)?] < Cat™te, (38)

Remark. Observe that all the velocity distribution® « < 2 is covered by Theorem 4.
The condition (37) is still needed to avoid overlapping ratios and cocycles.

It is important to note that even if Theorem 3 allows to cover a larger spectrum
of velocity distribution than Theorem 1, its proof is based on the regularity of the drift
associated to the diffusiokt < co0). Whereasin Theorem 1, the driftVI" associated to
the stochastic differential equation (3) can be non-Holder-continuous (only the regularity
of I is needed to prove an anomalous fast behavior).

3.4. Remark. Fast separation between scales. When ymin > 1 andymax < oo, the
feature that distinguishes a strong anomalous behavior from a weak one is the rate at
which spatial scales do separate. Indeed one can follow the proof of Theorem 1, changing
the conditionpmax < 00 iNto R, = Ry_1[p™ /Ru—1] (p, @ > 1) andymax = ¥min = ¥

to obtain

Theorem 5.For t > tg9(y2, R2, Ko, K1),

CutyPD < Eol|y.e2/?] < CatyP?, (39)

with  B(t) = 22Inp)~=(n¢)s, (40)
where the constants C; and C, depend on p, y, o, K1.

And ase | 1the behavior of the solution of (3) pass from weakly anomalous to strongly
anomalous.

4. Proofs Under Hypothesis 1

4.1. Notations and proof of Theorem 2. In this subsection we will prove Theorem 2
using the explicit formula of the effective diffusivity. We will first introduce the basic
notations that will also be used to prove Theorem 1..Lbe smoo'[rirl2 periodic 2x 2
skew-symmetric matrix such th&t>(x1, x2) = j(x1) and consider the periodic operator
Ly =1/2A — VJV. We callx; the solution of the cell problem associated g, i.e.
the le periodic solution ofL ; (x; — I.x) = 0 with x;(0) = 0. One easily obtains that

X1 1
n D) =2 [ iy = [ as) (41)
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The solution of the cell problem allows to compute the effective diffusivity(J)! =
Jr2 Il = Vxi(x)|?dx that leads to
1 0
D) = (o 1+ 4Var(j)>’ (42)
For aR periodic functionf we will write
R R )
Var(r) = 1/& [ “(r = [ rodyar. (43)
Using the notation (20), from Eq. (42) we obtain (21) with
D(T%P)y 5 =1+ 4Var(HP). (44)
Now we will prove by induction orp that (fore given by (22))
P P
A—e)Y yZ<VarH’) < (A+e) Y y2 (45)

k=0 k=0

Then Eq. (23) of theorem will follow by (44). Equation (45) is trivially true joe= 0.
From the explicit formula off” we will show in paragraph 4.1 that

| Var(H?) — Var(H?™Y) — yZ| < 2y, K1r, b/ Var(HP-1). (46)
Assuming (45) is true at the rankone obtains
; 4 A
War(H?) < @+ €2 ypa( Y /vpi0)?)
k=0 (47)
1
< (1402 ypsalymin — D7

and it is easy to see that the condition (22) implies that 2K1 (1 + €)2 (pmin(ymin —
1))~%; combining this with (46) and (47) one obtains that

|Var(HP™) — Var(H?) — y2,4| < ey?4 (48)

which proves the induction and henceforth the theorem.
4.1.1. From the equation

1 1 1
Var(H?) = /0 ((HPYRpx) — /0 HP YRy ) dy) +yp(hp(x) — /O hy(0)dy)) dx

one obtains
| Var(HP) — Var(H?~Y) — y2| < 2y,|E| (49)
with
E = Cov(Sg, H" ™, ),
where Cov stands for the covariance: CAvw) = fol(f(x) - fol FOdy)(g(x) —

folg(y)dy)dx andSg, is the scaling operatdfy f (x) = f(Rx).
We will use the following mixing lemma whose proof is an easy exercise

289
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Lemma 1.Let (g, f) € (Cl(Td)2 and R € N* then
[ swserwdx = [ goar [ sooas] < digir [ Irlix. 60
T T T{ T

By Lemma 1 and the Cauchy—Schwartz inequality,

VhpllewRp—1 [ K
E| < ””L;“’“ /O Sk, HP () ldx < == JNar(Hr D). (51)
p p

Combining this with (49) one obtains (46).

4.2. Anomalous mean squared displacement: Theorem 1.

4.2.1. Anomalous behavior from perpetual homogenization. Let y, be the solution of
(3). Define

nep(1) =inf{n € N : t < RZ (a1 /vu+ 0?2 3K 2(1 — Ymax/pmin)?). (52)

ner (t) will be the number of effective scales that one can condideogenized in the
estimation of the mean squared displacement at the tinhedeed, we will show in
Subsect. 4.2.2 that f@iin > C1. k1, ymin, ymax &NA? > C2, ko ymin,y1, R, ONE has

(1/4)”/,124(1),1 = E[(yz~62)2] = C3,K1,yminy,if.(t)+1l« (53)

Combining this with the bounds (9) and (10) Bpandy,, one easily obtains Theorem 1.

4.2.2. Digtinction between effectiveand drift scales. Proof of Eg. (53). By the Ito for-
mula one has

t
Vi.e2 = wy.e2 + / 01h(wg.e1) ds. (54)
0
And by the independence af.e; from w;.e1 one obtains

E[(yr.e2)?] = 1 + IEI[( /0 t Blh(a)s.el)ds)z]. (55)

Thus for allp € N*, usingh = H? + HP*1> one easily obtains (writingl? = H%?)

E[(y.e2)?] = 1 + %E[( /O t 81HP(a)S.el)ds)2] —E|( /0 t 811-117+1,°°(a)s.e1)ds)2]

<o 22[( [ttt oenas) |+ 22[( [ ot <onenas) ]
(56)
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Now we will bound the larger scalegg H?*+1-> as drift scales, i.e. bound them by a
constant drift using a1 H 7+l < K1(yp+1/Rp+1) (1~ Ymax/omin)

E[(yl.ez)z] >t + %E[(/O[ 81Hl’(cos.e1)dS)2] - (RPH(QK_N;I:“J;/pmm))z

<t+ ZE[( /Ot Bal(a)S.el)ds)z] + 2<Rp+1(;-K—l)J//Ir’n+aj</Pmin)>2.

(57)

Write I, = E[(fot ale’(ws.el)ds)z]. Since H? is periodic, forz large enough/,,

should behave likey 2. Nevertheless since the ratios between the scales are bounded, to
control the asymptotic lower bound of the mean squared displacement in (57) we will
need a quantitative control @f, that is sharp enough to show that the influence of the
effective scales is not destroyed by the larger ones. This control is based on stochastic
mixing inequalities and it will be shown in Subsect. 4.2.3 thapfgh > 8K1/(¥min—21)

one has

I, <123(y? 1 (1= 1/ymin) "% + KoK1yp-1(¥p/7p) (L — 1/ymin) %)
+12K{(y?/R%) + /168y, 1y, Ry 1K5(1 — 1/ymin) ™t (58)
+60KE(1 — 1/ymin) “¥p-1¥p(R2/rp) + 16K3y2 1 R%_;

and
2 -1
Iy >typ—1(yp-1— 16K1Vp/rp) - \/;68Vp—1VpRp—lK0(1 = 1/¥min)
R (59)
— B0KG(L — 1/ymin) ~'yp-1vp— — 8KGy; 1Ry 1 (1= 1/ymin) 2.
p

Choosingp = n.(¢) given by (52) one obtains (53) from (58), (59) and (57) by straight-
forward computation under the assumpti@in > Cxy k1. ymaxymin: 0

4.2.3. Influence of the intermediatescale on the effectivescales: Proof of the inequal-

ities (59) and (58). In this subsection we will prove the inequalities (59) and (58) by
distinguishing the scalp as a perturbation scale, i.e. controlling its influence on the
homogenization process over the scales. 0, p — 1. More precisely, writing); the
Brownian motionw;,.e; one has

Iy = 1pa+E[( /0 "oy Hpvl’(bx)ds)z] +21, (60)

with

J, = E[( /O l 81H”’1’(bs)ds>< /0 l 81H1’_1(bs)ds)]. (61)

We will then control (60) by boundingy H?:? by a constant drift to obtain

E[(/Ot 81H”"’(bs)ds>2] < ?k2y2/R2, (62)
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In Subsect. 4.2.4 we will control the homogenization process over the scales @ —1
and use our estimates @anI"%7~1) to obtain that foromin > 8K1/(¥min — 1),
Ip-1 < ty5 1201 = 1/ymin) + RS _1y7_116K5(1— 1/ymin)?, (63)
Iy1 > ty) 12(1 = 1/ymin)® — R5_1y7 18KG(1— 1/ymin)>. (64)

In Subsect. 4.2.5 we will bound, is an error term by mixing stochastic inequalities to
obtain

1Jpl < ¥p-17p(L— 1/ymin)—1(¢2Rp_134K§ +(t/rp)8K1+ Rir;lsoKé). (65)

Combining (60), (62), (63), (64) and (65) one obtains (58) and (58).

4.2.4. Control of the homogenization process over the effective scales: Proof of Egs.
(63) and (64). Writing for m < p,

R
Kk™P = 1/Rp/ ! H™?(y)dy (66)
0
and«? = «%” one obtains by the Ito formula

t by t
/ NHP Nbyds =2 | (HP"Hy) — P Hdy — 2 f (HP(by) — k") db;.
0 0 0

(67)
Using the periodicity of?:;
‘ fox (HPY(y) — Kp_l)dy‘ < Rp-1Koyp-1(1 — 1/ymin) " ~. (68)
Now we will show that foromin > 8K1/(Ymin — 1) andp € N*,
E[ /0 t(HP(bS) — kP2 ds] < (1= 1/ymin) " 2(ry 25+ R3y24K§) (69)

> ty52 — RoyZ4K5(1 — 1/ymin) %

Combining (67), (68) and (69) one obtains (63) and (64) by straightforward computation.
The proof of (69) is based on standard homogenization theory: writing

flo) = f " (HP () — ?)? — Var(HP)x. (70)
0

X Rp
and g =2( [ forav-c/my [ ray). (11)
0 0
One obtains by the Ito formula
t
E[f (HP(bs) — kP)? ds] = Var(H?)t + E[g(b)]. (72)
0

Using the periodicity of, one hag|glloc < 4K3yZR2(1— 1/ymin) 2. Combining this
with the estimate (45) on Vak ”) one obtains (69) from (72).0
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4.2.5. Control of the influence of the perturbationscale: Proof of Eq. (65). From
Egs. (61), (67),

| /0 (H?7) = k" Y)dy| = Ry-17p-1Ko(L = 1/ymin) ™ (73)

and

by

t t
/ 0 HP P (wg.e1)ds = 2 (HPP(y) — kP P)dy — 2/ (HPP(bs) — kP P)dbsy.
0 0 0
(74)

One obtains by using straightforward computation (using the Cauchy—Schwartz inequal-
ity) that

1ol <27p-1¥p Rp—1KEQL — 1/ymin) V1 + 41J, 2| + 217, 3 (75)
with
t
Ipz =E[ [ (1700 7B b) - k) ds (76)
0
and
t by
Jp3 = ]E[f alﬂpfl(bs)ds/ (HPP(y) — Kp’p)dy]. (77)
0 0

We will show in Subsect. 4.2.6 that the ratipallows a stochastic separation between
the scales0... , p — 1 andp reflected by the following inequality:

|Jp.2] < vp-1¥pKo(X — 1/ymin) " *(8KoRp—1v/1 + 2tK1/7p). (78)

Using Proposition 1 (that we will prove Subsect. 4.2.7) wittw) = f(j‘(HP’P(y) —
kPP)dy, r =rpand f(r,x) = HP1(x) — kP~ that

[ 7p.3| < vp-1vpREr, "IBKG(L — 1/ymin) . (79)
Combining (75), (78) and (79) one obtains (6551

4.2.6. Sochastic separation between scales: Proof of Eq. (78). Writing for x € R,
glx) = /0 (HPX(y) — kPY(HPP(y) — &) dy, (80)
one obtains by Ito formula
bs
281 [ g )yl = Jpz (81)

Using the functional mixing Lemma 1 one obtains easily that

1g()| < 2Koyp-1(1 — 1/ymin) " (4yp KoRp—1 + |X|K1(yp/1p)). (82)
Combining this with (81) one obtains (78)O
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4.2.7. Sochastic mixing: Proof of Proposition 1. By the scaling law of the Brownian
motion

t 72
E[G(b,/R)/O (1/R)31f (rbs/R) ds] = R]E[G(bﬁ)fo’e alf(rbs)ds]
and it is sufficient to prove the proposition assumitg= 1. Let us write
t
I= E[G(b[)/ 81f(rbs)ds]. (83)
0

We will prove Proposition 1 by expanding (83) on the the Fourier decompositiofis of
andG (written f; andGy) and controlling trigonometric functions,

f) =) fee*?m (84)
keZ
Write fork, m € Z,
t .
Jem =/ E[/hr2ebe (im2ehi] g (85)
0

By straightforward computation
t 2
Jom = / e—(Zn)ZWJ’T"')s—(zn)Z’"—ZZ(r—s)
0

2
R
—(2m)c -
= e 2

86)
@m)2(%2 4 krm) (

(in last fraction of the above equation, if the denominator is equal to 0, we consider it as
a limit to obtain the exact valug.
Now

I= )" Jnmik2rfiGpn. (87)
k,meZ?

Thus sincefo = Go = 0, by the Cauchy—Schwartz inequality

1
21
UEDD |fk|(Z(2n)2m2|Gm|2) JE. (88)
keZ* meZ
with
2
1 /1 — e~ @02 tkrmyt\ 2
Jk = Z _2( k2€2 ) o=@t (89)
ez (55~ + krm)(27)?

Using (1 — e~™*)/x < 3¢ for x > 0 and the fact that the minimum &fr/2 + km is
reached fomg ~ kr/2, we obtain

eSS e*<2n>2m2r2<% +2) %(lemz)z)

mez* mez*
54/r2.

(90)
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Observing that| G’ ||L2(T1) (21)2Y ez, m?|Gn|? one obtains from (88) and (90)
111 < 16 | p2ery /1) Y 1 fil, (91)
keZ*

which, using the Cauchy—Schwartz inequality leads to

1] < Gl 2ery) 1 £ 2072y 2/ 7 (92)

5. Proofs Under Hypothesis 2

In this section we will prove Theorem 3 under Hypothesis 2. Observe that it is sufficient
to prove Eq. (29) under Hypothesis 2, (28) and (31).

We will use the same notations as in Sect. 4. Let us observe that from Eq. 55 one
obtains

E[(yr.e2)?] = 1 + E[X?(b, 0,1)] + E[Y?(b, 0,1)] + 2E[X (b,0,))Y (b, 0,1)] (93)

with for p € N andb; = w;.e1,
X(b,0,1) = /0 t L HOP (by) ds (94)
and
Y(b,0,1) = /0 l L HPTL(by) ds. (95)

We will prove in Subsect. 5.1 the following lemma (which is the core of the proof
of Theorem 3) which gives quantitative control on decorrelation between the drifts
associated with the small scales and those associated to the larger ones.

Lemma 2. For t > R2,
[ELX (b, 0, )Y (b, 0, ]| <(r*R5, 1R, 2, + 8tR,) R, 21 Rpyp¥pia

12K0K2(1 - Vmin) (1 - VmaX/pr%\in)il'

Now by standard homogenization as has been done in Subsect. 4.2.4 it is easy to prove
that

(96)

1

E[X (b,0,1)%] < (R3+ )y28KE(1— ymin) ™ 97)

and

1

E[X (b, 0,1)%] > 2t Var(H?) — 8R3y2K5(1— i)™ (98)

Now we will give in Lemma 3 (proven in Subsect. 5.2) the exponential rate of divergence
of Var(H?).
Lemma 3. For ymin > 2 one has

-2

V2(L = (min — D™Y? < Var(H?) = y2(1 = i) (99)
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The proof of Lemma 3 is different from that of Theorem 2 and is based on the domination
of the influence of the biggest scale over the smaller ones (which is ensuygéhby 2,
which is also necessary in the casgn > ymax to avoid cocycles).

Combining (99) with (98) one obtains that

1

E[X (b, 0.1)?] = 2ty2(1 — (ymin — DY) — 8R2y2K3(L — ymid) ™ (100)

Now let us observe that from (93) and the Cauchy—Schwartz inequality one obtains

E[(yr.e2)?] <t + 2E[X?(b,0,1)] + 2E[Y?(b, 0, 1)]

) (101)
> 1+ E[X*(b,0,1)] — 2|E[X (b,0,1)Y (b, 0, 1)]|.
Combining (100), (97), (96), (101) and boundiBfy2(», 0, )] by
E[Y2(b,0,1)] < 197HP 1|2 *E[b?]
(102)

2
_4 —1\— _
= V2R (KL = vi) ™M@ = Ymaw/ o) )

one obtains that for > R[%, Ymin > 2 andp?2, . > ymax that

2
El(v-2)?] = 32(R2 + 0y2KE +8y2,10°R, % (KoL — yman/ 0By ) (103)
and
—1)\2
El(yr.e2)2] = 20y2(1 — (vmin — D) — 16R%y2K$

— (r¥2R5 +1R;f2 + 8;Rp)R;flprpyp+148K0K2(1 — Ymax/P2in) L.
(104)

It follows (104) and (103) that for
16(L+ K§) (L — (rmin — DY) °R2 <1

< 16(1 + K§)(l — (Ymin — 1)‘1)_2R§+1~

(105)
One has
ElOr-¢2?1 2 172((L = Omin = D7) = Ymaxpmipd00KoK2(1 — ymax/ i) ™

X (L+ (1 + Ko)ppin (ymin = D (ymin — 27))
(106)
and

El(yr-¢2)?] <ty2(1+ Kd)

X (1 + 205Q/r$1ax(1 — (Ymin — 1)71)74K§(1 - VmaX/:Or%in)iz)’
(107)

which proves Eq. (29) under Hypothesis 2, (28) and (31) and thus Theorem 3.
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5.1. Proof of Lemma 2. Let us introduceZ a random variable idependent framand
taking its values ii0, R, ] uniformly with respect to the Lebesgue measure. First, let us
observe that by the periodicity @7,

E[X( + Z,0,0)Y(b,0,1)] = 0. (108)

Next, define
t=inf{s >0: |by+Z| =00r|bs + Z| = R,}.

Now we will decompos& (b + Z, 0, ¢) andY (b, 0, t) as follows:
Xb+2,0)=X0b+2,0,0)+Xb+Z,1,1), (109)
Y(b,0,t) =Y(b,0,7) +Y(b, 1,1). (110)

Let ' be a BM independent frorh and Z with the same law as. Combining the
decompositions (109) and (110) with the strong Markov property and the periodicity of
H? one obtains that
E[X(b+Z,0,0)Y(,0,0)]=E[X(b+Z,0, T At)Y(b,0, T A1)]
+ ]E[X(b/v 05 (t - t)-‘r)Y(b/ + b‘L’v Oa (t - T)"r)]
+EXWb+Z,0,t AY (b, T AL, 1)]
+EXObO+Z,tAt, )Y (D,0, T A1),
(111)

where we have used
E[X®,0,t —1))Y® +b:,0,t =) )] =E[XB+Z, 1t At,)Y (b, T AL, 1]

Using a similar decomposition f&[X (b, 0, 1)Y (b, O, ¢)] and subtracting (111) com-
bined with (108) one obtains that

E[X(,0,0)Y(b,0,0)] =11+ I2+ I3+ 14+ Is + Is + I7. (112)
with

L=E[X®,0,(¢t-0))(Y®,0,(—1)1) —Y® +b:,0,(t—1)1))], (113)
L=E[X(®, -4, 0@, -1, 0)], (114)
I3=-E[X(b+Z,0,T ADY(,0,T AD)], (115)
I4=—-E[X(b+Z,0, T AD)Y (b, T AL, D], (116)
Is=—-E[X(b+Z, T At,0)Y(b,0, T AD)], (117)
Ie=E[X®,0,¢t—1)Y®, (t — D)4, 1] (118)

I =E[Y®,0,(t — ) )X®, (¢t — )4, D). (119)
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We shall use standard homogenization techniques to estimate the influence of the ef-
fective scales in those terms. Let us observe that by the Ito formula one has a.s. for all
t >0,

t
X(b.0.1) = x (b)) 2 f (HP(b) — ) db, (120)
0
with (using the notation introduced in (66))
X
xP(x) = 2/ HP(y)dy — x2«?. (121)
0

Next we will control the larger scales by bounding the growth of their drift. Indeed using
the uniform control on the second derivate of the functibhsé Hypothesis 2 one has

10f HP P oo < Kaypya R, 21 (1= Ymax/ pinin) - (122)

Using the Cauchy—Schwartz inequality in (114), (120) and (122) one obtains that

1 1
12l = (E[X (.0, ¢ = %)) * (B[ &', ¢t = 0. 0)?])

NI

1
< (1= V) " (AKBVERE + 4KEy2) 7 |02 oo (B[] 222])
Thus for
t > R%,
f (123)

|12l < N1y, p+1 R R, 2112K0K2(1 — Yit) (L — ymax/piin) ™% (124)
Similarly using (120) one obtains that
113] < vpYp 1Ry R, 2112KoK2(1 = youn) (1 — ymax/Piuin) - (125)

To estimatel, we use the conditional independence

ls=—E[Ln<E[X(b+Z,0,7 AD|t AE[Y (b, T At 0]z A1]]
(126)
— E[LnmiE[X (b + Z,0,7 At AtE[Y (b, 7 AL D7 A1]].

SinceY (b, t,t) = 0 the second term in (126) is null. Moreover conditionally on the
eventr < t, bzx; + Z with equal chances/2 is equal to 0 oR,, so using (120) one
obtains that oft At < 1}, E[X (b + Z,0,7 At)|t At] = 0, which leads to

I, =0. (227)
Similarly, using conditional independence (120) and (122) one easily obtains
Il < yp¥p+1Ry R, 2112K0K2(1 = yoin) ™ (1 = Ymax/ Ofnin) (128)

Il < V1ypyp+1RIR,2112K0K (1 — yin) (1 = Yimax/ pin) ™ (129)
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To estimatel7 let us observe that from (120) and the spectral gap associated to the
Laplacian on the torus (which is equivalent to the Poincaré inequality, see [23]) one has

EIX®, (¢t — )4, Dt — ]| < [xP (b)) — xP (by—r),)
—R2/2-1)+ “1-1 (130)
<12 " Ko(1 = Yin) Ve Rp-

Thus using conditional independence and distinguishing the events:/2 (whose
probability is bounded using the spectral gap) and /2 , one obtains

_tR-2 _ 1a— _
17 < 1327 K0 Ay yp 1116R, R 2K 0K 2(1 — yiin) (1 — Ymax/ pinin)
< ¥p¥p+116R) R, 2 KoK2(1 — yin) ™ (1 — Ymax/ piain) ™

To estimate; we will distinguish the scalg + 1 as an intermediate scale. First observe
that

(131)

Y(',0,(t —1)p) =Y(b' +b:,0,(t = 1)3) = 2pp41J1+2)2 (132)
with
t—1)+ ) )
Jp = / (LHPT22°(B)) — 9 HP T2 (b, + by))ds (133)
0
and
t—1)+ , ,
J1= A (81hp+1(bs) — 31h[,+1(bs + bf)) ds. (134)
Using|b;| < R, and (122), one obtains that for- R,
]E[X(b’, 0, (r— T)+)J2]}
< 1¥2Rpyp¥p+1R, 252K0K2(L = i) (L — ymax/pin) " (135)
Now using the Ito formula one has
by bygy, +br
J1 = /0 hpy1(x)dx — /b/ hpr1(x)dx
=+ (136)
t=7)+ / / /
- /(; (hp+1(b5) - hp+1(bs + br))dbs

Thus observing thatr, b,) has the same law &$, —b,) one obtains that

E[X(b’, 0, (t — z)+)11]

by
—E[X (5 0.0 = 01) [ (hysa) = hpia() 23]

W +be (137)
+E[X(b’,o, (t—r)+)/ S
b/

(t—7)+

(hps100) = hprae = b)) /2dx ]

(t—1)+
— EI:X(b/, 0, (— T>+)/é (hp+1(b§) — hp+1(b; + br))dbé].
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It follows from (137) that for > R,

[E[X®,0,(t = 1)4)ypr11]| (138)
< 6K0thR,2;Vp+1R;f1K2(1 - Vn:i%\)_l(l - VmaX/pf%i”)_l'

Thus from (138) and (135) we deduce that

_ _ _1\-1 -1
1] = (tg/sziz + tRl’Rp-iz-l) RpYpyp+112KoK2(1 = voin) (L = ymax/0fin) -

(139)

Combining (139), (124), (125), (127), (128), (129), (131) and (96) we have obtained
that fors > R3, Eq. (96) is valid.

5.2. Proof of Lemma 3. Observe that (using the notation introduced in (66))
RP
Var(H”) = Var(H"™%) + y2 + 2R, * [ (HP 72 (x) — k%P7 (hp(x) — kPP).
0
(140)

It follows by the Cauchy—Schwartz inequality and the normalization condition (7) that

Var(HP 1) + y,f + 2y, Var(HP*l)% > Var(H?)
> Var(H?™1) + )/5 -2y Var(H”_l)%,

from which we deduce
Var(HP)? < Yo+ Var(HP~1y2 (141)
and
Var(HP)? > Vp — Var(H?~1)3. (142)
From (141) one obtains by induction that
Var(H?)? < y,(1— yub) (143)
Combining (142) with (143) one obtains that
Var(H”)? > y, (1= (ymin — DY), (144)

and observe that £ (ymin — 1)~ > 0 for ymin > 2.
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