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Abstract: This paper is concerned with the asymptotic behavior solutions of stochastic
differential equationsdyt = dωt − ∇�(yt )dt , y0 = 0 andd = 2. � is a 2× 2 skew-
symmetric matrix associated to a shear flow characterized by an infinite number of spatial
scales�12 = −�21 = h(x1), with h(x1) = ∑∞

n=0 γnh
n(x1/Rn), wherehn are smooth

functions of period 1,hn(0) = 0, γn andRn grow exponentially fast withn. We can
show thatyt has an anomalous fast behavior (E[|yt |2] ∼ t1+ν with ν > 0) and obtain
quantitative estimates on the anomaly using and developing the tools of homogenization.
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1. Introduction

Turbulent incompressible flows are characterized by multiple scales of mixing length
and convection rolls. It is heuristically known and expected that a diffusive transport
in such media will be super-diffusive. The first known observation of this anomaly is
attributed to Richardson [27] who analyzed available experimental data on diffusion in
air, varying on about 12 orders of magnitude. On that basis, he empirically conjectured
that the diffusion coefficientDλ in turbulent air depends on the scale lengthλ of the
measurement. The Richardson law,

Dλ ∝ λ
4
3 (1)
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was related to Kolmogorov–Obukhov turbulence spectrum,v ∝ λ
1
3 , by Batchelor [4].

The super-diffusive law of the root-mean-square relative displacementλ(t) of advected
particles

λ(t) ∝ (Dλ(t)t)
1
2 ∝ t

3
2 (2)

was derived by Obukhov [22] from a dimensional analysis similar to the one that led

Kolmogorov [18] to theλ
1
3 velocity spectrum.

More recently physicists and mathematicians have started to investigate the super-
diffusive phenomenon (from both heuristic and rigorous points of view) by using the
tools of homogenization or renormalization; we refer to M. Avellaneda and A. Majda
[3,2], J. Glimm et al. [12,13,15], J. Glimm and Q. Zhang [16], Q. Zhang [28], M.B.
Isichenko and J. Kalda [17], G. Gaudron [14].

It is now well known that homogenization over a periodic or ergodic divergence free
drift has the property to enhance the diffusion [10,11,19]. It is also expected that several
spatial scales of eddies should give rise to anomalous diffusion between proper time
scales outside the homogenization regime or when the bigger scale has not yet been
homogenized. We refer to M. Avellaneda [1]; A. Fannjiang [8]; Rabi Bhattacharya [6]
(see also [7] by Bhattacharya, Denker and Goswami); A. Fannjiang and T. Komorowski
[9], and this panorama is certainly not complete.

The purpose of this paper is to implement rigorously on a shear flow model the idea
that the key to anomalous fast diffusion in turbulent flows is an unfinished homogeniza-
tion process over a large number of scales of eddies without a sharp separation between
them. We will assume that the ratios between the spatial scales are bounded. The un-
derlying phenomenon is similar to the one related to anomalous slow diffusion from
perpetual homogenization on an infinite number of scales of gradient drifts [25,5], the
main difference lies in the asymptotic behavior of the multi-scale effective diffusivities
D(n) associated withn spatial scales, i.e.D(n) diverge towards∞ or converge towards
0 with exponential rate depending on the nature of the scales: eddies or obstacles.

Note that the shear-layer model is exactly solvable ([3,14]). When the geometrically
divergent scales are recast into the Fourier setting with a power-law spectrum, super-
diffusivity has already been proven in the limitt → ∞. Our purpose in this paper is to
show that never-ending homogenization can be used as a tool to obtain a quantitative
control on the anomaly for finite times, not just an asymptotic result and without any
self-similarity assumption. Moreover it will be shown that the mean-squared displace-
mentE[y2

t ] of the diffusion in the shear flow behaves likeD(n(t))t (see (24)). In this
formula,n(t) has a logarithmic growth and corresponds to the number of scales that
can be considered as homogenized at timet , casting into light the role of never-ending
homogenization in the anomalous fast behavior of a diffusion process in a shear-flow
model. Moreover it will be shown in [26] that the strategy associated to never-ending
homogenization can be extended to higher dimensions (and non shear flow models of
turbulence). We would like to refer the reader to an interesting and related recent preprint
by S. Olla and T. Komorowski [29] on “the superdiffusive behavior of passive tracer with
a Gaussian drift”.
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2. The Model

Let us consider in dimension two a Brownian motion with a drift given by the divergence
of a shear flow stream matrix, i.e. the solution of the stochastic differential equation:

dyt = dωt − ∇�(yt )dt, y0 = 0, (3)

where� is a skew-symmetric 2× 2 shear flow matrix,

�(x1, x2) =
(

0 h(x1)

−h(x1) 0

)
. (4)

The function(x1, x2) → h(x1) is given by a sum of infinitely many periodic functions
with (geometrically) increasing periods

h(x1) =
∞∑
n=0

γnhn

( x1

Rn

)
, (5)

wherehn are smooth functions of period 1. We will assume that

hn(0) = 0. (6)

We will normalize the functionshn by the choosing their variance equal to one:

Var(hn) =
∫ 1

0
(hn(x)−

∫ 1

0
hn(y)dy)

2dx = 1. (7)

Rn andγn grow exponentially fast withn, i.e.

Rn =
n∏

k=0

rk, (8)

wherern are integers,r0 = 1,

ρmin = inf
n∈N∗ rn ≥ 2 and ρmax = sup

n∈N∗
rn < ∞. (9)

We chooseγ0 = 1 and

γmin = inf
n∈N

(γn+1/γn) > 1 and γmax = sup
n∈N

(γn+1/γn) < ∞. (10)

It is assumed that the first derivate of the potentialshn are uniformly bounded. (Osc(h)
stands for suph− inf h)

K0 = sup
n∈N

Osc(hn) < ∞, K1 = sup
n∈N

‖h′
n‖∞ < ∞. (11)

In this paper we shall distinguish two hypotheses

Hypothesis 1.

ρmin > γmax. (12)
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Hypothesis 2.

ρmin > γ 1/2
max. (13)

For all n ∈ N,

h′
n(0) = 0 (14)

and

K2 = sup
n∈N

‖∂2
1hn‖∞ < ∞. (15)

Let us observe that under Hypotheses 1, (6), (9), (10) and (11)h is a well definedC1

function onR
d and

|h(x)| ≤ K1|x|(1 − γmax/ρmin)
−1 |h′(x)| ≤ K1(1 − γmax/ρmin)

−1. (16)

Thus under Hypothesis 1,� is a well defined Lipschitz stream matrix and the solution
of the stochastic differential equation (3) exists; is unique up to sets of measure 0 with
respect to the Wiener measure and is a strong Markov continuous Feller process.

Under Hypothesis 2, (6), (9), (10) and (11),� is no more Lipschitz continuous buth
is still a well definedC2 function onR

d and

|h(x)| ≤ K2|x|2(1 − γmax/ρ
2
min)

−1 |h′(x)| ≤ K2(1 − γmax/ρ
2
min)

−1|x|. (17)

3. Main Results

3.1. Under Hypothesis 1. Our objective is to show that the solution (3) is abnormally
fast and the asymptotic sub-diffusivity will be characterized as an anomalous behavior
of the variance at timet , i.e. E0[y2

t ] ∼ t1+ν ast → ∞. More precisely there exists a
constantρ0(γmin, γmax,K0,K1) and a timet0(γmin, γmax, R1,K0,K1) such that

Theorem 1. If ρmin > ρ0 and yt is a solution of (3) then for t > t0,

E0[|yt .e2|2] = t1+ν(t) (18)

with

ln γmin

ln ρmax + ln γmax
γmin

− C1

ln t
≤ ν(t) ≤ ln γmax

ln ρmin + ln γmin
γmax

+ C2

ln t
, (19)

where the constants C1 and C2 depend on ρmin, γmin, γmax, ρmax,K0,K1.

We remark that ifγmax = γmin = γ andρmax = ρmin = ρ thenν(t) ∼ ln γ / ln ρ.
The key of the fast asymptotic behavior of the variance of the solution of (3) is the
geometric rate of divergence towards∞ of the multi-scale effective matrices associated
to a finite number of scales. More precisely, fork, p ∈ N, k ≤ p we will write

Hk,p =
p∑
n=k

γnhn(x/Rn) (20)
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and�k,p the skew-symmetric matrix given by�k,p1,2 (x1, x2) = Hk,p(x1). LetD(�0,p) be
the effective diffusivity associated to homogenization of the periodic operatorL�0,p =
1/2#− ∇�0,p∇. Then it is easy to see that

D(�0,p) =
(

1 0
0 D(�0,p)22

)
(21)

and it will be shown that

Theorem 2.For

ε = 4K1
(
ρmin(γmin − 1)

)−1
< 1, (22)

1 + 4(1 − ε)

p∑
k=0

γ 2
k ≤ D(�0,p)22 ≤ 1 + 4(1 + ε)

p∑
k=0

γ 2
k . (23)

The super-diffusive behavior can be explained and controlled by a perpetual homoge-
nization process taking place over the infinite number of scales 0, . . . , n, . . . . The idea
of the proof of Theorem 1 is to distinguish, when one tries to estimate (18), the smaller
scales which have already been homogenized (0, . . . , nef called effective scales), the
bigger scales which have not had a visible influence on the diffusion (ndri, . . . ,∞ called
drift scales because they will be replaced by a constant drift in the proof) and some in-
termediate scales that manifest their particular shapes in the behavior of the diffusion
(nef + 1, . . . , ndri − 1 = nef + nper called perturbation scales because they will enter
in the proof as a perturbation of the homogenization process over the smaller scales).

The number of effective scales is fixed by the mean squared displacement ofyt .e1.
Writing nef (t) = inf {n : t ≤ R2

n} one proves that

E[(yt .e2)
2] ∼ D(�0,nef (t))t. (24)

Assume for instanceRn = ρn andγn = γ n thennef (t) ∼ ln t/(2 lnρ) and

E[(yt .e2)
2] ∼ t

1+ ln γ
ln ρ .

We remark that the quantitative control is sharper than the one associated to a perpetual
homogenization on a gradient drift [25]; this is explained by the fact that the number of
perturbation scales is limited to only one scale with a divergence free drift. Nevertheless
the main difficulty is to control the influence of this intermediate scale and the core of
that control is based on the following mixing stochastic inequality (we writeT

d
R = RT

d

the torus of dimensiond and sideR).

Proposition 1. Let R > 0 and f,G ∈ (H 1(T1
R))

2 such that
∫ 1

0 f (y)dy = 0 and∫ 1
0 G(y)dy = 0, let r > 0 and t > 0,

∣∣∣E[
G(bt )

∫ t

0
∂1f (rbs) ds

]∣∣∣ ≤ ‖f ‖L2(T1
R)

‖G′‖L2(T1
R)

2r−1. (25)
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3.2. Physical interpretation. We want to emphasize that to obtain a super-diffusive be-
havior of the solution of (3) of the shapeE[y2

t ] ∼ t1+ν with ν > 0 it is necessary to
assume the exponential rate of growth of the parametersγn; this has a clear meaning
when the flow is compared on a heuristic point of view to a real turbulent flow.

First, note that our model starts with the dissipation scale and expresses the inertial
range of scales as geometrically divergent. Next, the parametersγn‖h′

n‖∞/Rn represents
the amplitude of the pulsations of the eddies of sizeRn. It is a well known characteristic
of turbulence ([20] p. 129) that the amplitude of the pulsations increase with the scale,
since for all scales‖h′

n‖∞ ≤ K1 one should have limγn/Rn → ∞ to reflect that image.
In our model, it is sufficient to assume the exponential rate of divergence ofγn to obtain
a super-diffusive behavior.

Let us also notice on a heuristic point of view (our model is not isotropic and does
not depend on the time) that the energy dissipated per unit time and unit volume in the
eddies of scalen is of order of

εn ∝ γ 2
n

R4
n

K2
2 . (26)

So saying that the energy is dissipated mainly in the small eddies is equivalent to saying
thatγn/R2

n → 0 asn → ∞ or if Rn = ρn andγn = ραn, this equivalent to say that
α < 2, which is included in Hypothesis 2.

The Kolmogorov–Obukhov law is equivalent to say thatK2 < ∞, for alln h′
n(0) = 0

and

γn ∝ R
4
3
n , (27)

or if Rn = ρn andγn = ραn, this is equivalent to say thatα = 4
3 corresponding to the

Kolmogorov spectrum, which violates the hypothesis 1,ρ > γ but not Hypothesis 2

(ρ > γ
1
2 ) which will be addressed below.

Overlapping ratios. The super-diffusive behavior in Theorem 1 requires a minimal
separation between scales, i.e.ρmin > ρ0 and this condition is necessary. Assume for
instanceRn = ρn andγn = γ n, then ifhn(x1) = g(x1)−γ pg(apx1) (with g ∈ C1(T1)

whereT
1 is the torusR/Z anda ∈ N

∗) it is easy to see that forρ = a,� is bounded and
yt has a normal behavior by Norris’sAronson type estimates [21]. Thus, as for a gradient
drift [25], it is easy to see for simple examples that whenρ ≤ ρ0 the solution of (3) may
have a normal or a super-diffusive behavior depending on the value ofρ and the shapes
of hn and ratios of normal behavior may be surrounded by ratios of anomalous behavior.
This phenomenon is created by a strong overlap between spatial ratios between scales.

Thus the hypothesis (12) is necessary not only to ensure that one has a well defined
C1 stream matrix� but also that its associated diffusion may show an anomalous fast
behavior. Indeed withhn(x) = sin(2πx)− 3 sin(6πx), γn = ρn = 3n one has‖h‖∞ <

∞, which leads to a normal behavior ofyt .
The caseρmin ≤ γmax will be addressed with Hypothesis 2. Let us observe that to

investigate this case we had to add further information on the higher derivate ofh′
n to

ensure thath is well defined:h′
n(0) = 0,‖h′′

n‖∞ ≤ K2 under the constraintρmin > γ 2
max

(which includes the Kolmogorov caseγ = ρ4/3).



Super-Diffusivity in a Shear Flow Model from Perpetual Homogenization 287

3.3. Under Hypothesis 2. In this subsection we will give theorems putting into evidence
the anomalous fast behavior of the solutions of (3) under Hypothesis 2 which includes
the Kolmogorov spectrum.

Theorem 3.Under Hypothesis (2), if there exists a constant z > 2 such that γmin ≥ z

then there exists a constant C0 depending on z,K0,K2 such that if

ρ2
minγ

−1
max > C0 (28)

then there exist constants C1 > 0 depending on z, C2 > 0 depending on z,K0,

K2, γmax, C3 > 0 on z,K0 and C4 > 0 on z,K0, ρmax such that if yt is a solution
of (3) and t ≥ C3, then

C1tγ
2
p(t) ≤ E

[
(yt .e2)

2] ≤ C2tγ
2
p(t) (29)

and

C4t
1+ν(t) ≤ E

[
(yt .e2)

2] ≤ C2t
1+ν(t) (30)

with

p(t) := sup{n ∈ N : 16(1 +K2
0)

(
1 − (γmin − 1)−1)−2

R2
n < t} (31)

and

ν(t) := ln γp(t)
/

lnRp(t). (32)

Remark. It is important to note that Eq. (29) emphasizes the role of never-ending ho-
mogenization in the fast behavior of the diffusion and its proof is also based on the
separation of the infinite number of scales into smaller ones which act through their
effective properties, larger ones which will be bounded by a constant drift and an in-
termediate one that one has to control. Equation (30) gives quantitative control of the
anomaly without any self-similarity assumption;ν(t) is not a constant if the multi-scale
velocity distribution associated to (3) is not self-similar but one has

ln γmin
/

ln ρmax ≤ ν(t) ≤ ln γmax
/

ln ρmin. (33)

Definition 1. The Stochastic Differential Equation (3) is said to have a self-similar
velocity distribution if and only if

ρmin = ρmax = ρ (34)

and

γmin = γmax = γ. (35)

Then we will write

α = ln γ / ln ρ. (36)

From Theorem 3 one easily deduces the following theorem.
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Theorem 4.Assume that the SDE (3) has a self-similar velocity distribution with 0 <

α < 2. Under Hypothesis (2), there exists a constant C0 depending on α,K0,K2 such
that if

ρ > C0 (37)

then there exist constants C1 > 0 depending on K0, ρ, C2 > 0 on K0,K2, ρ, α and C3
on K0 such that if yt is a solution of (3) and t ≥ C3, then

C1t
1+α ≤ E

[
(yt .e2)

2] ≤ C2t
1+α. (38)

Remark. Observe that all the velocity distribution 0< α < 2 is covered by Theorem 4.
The condition (37) is still needed to avoid overlapping ratios and cocycles.

It is important to note that even if Theorem 3 allows to cover a larger spectrum
of velocity distribution than Theorem 1, its proof is based on the regularity of the drift
associated to the diffusion (K2 < ∞).Whereas inTheorem 1, the drift−∇� associated to
the stochastic differential equation (3) can be non-Holder-continuous (only the regularity
of � is needed to prove an anomalous fast behavior).

3.4. Remark. Fast separation between scales. When γmin > 1 andγmax < ∞, the
feature that distinguishes a strong anomalous behavior from a weak one is the rate at
which spatial scales do separate. Indeed one can follow the proof of Theorem 1, changing
the conditionρmax < ∞ intoRn = Rn−1[ρnα/Rn−1] (ρ, α > 1) andγmax = γmin = γ

to obtain

Theorem 5.For t > t0(γ2, R2,K0,K1),

C1tγ
β(t) ≤ E0[|yt .e2|2] ≤ C2tγ

β(t), (39)

with β(t) = 2(2 lnρ)−
1
α (ln t)

1
α , (40)

where the constants C1 and C2 depend on ρ, γ, α,K1.

And asα ↓ 1 the behavior of the solution of (3) pass from weakly anomalous to strongly
anomalous.

4. Proofs Under Hypothesis 1

4.1. Notations and proof of Theorem 2. In this subsection we will prove Theorem 2
using the explicit formula of the effective diffusivity. We will first introduce the basic
notations that will also be used to prove Theorem 1. LetJ be smoothT 2

1 periodic 2× 2
skew-symmetric matrix such thatJ12(x1, x2) = j (x1)and consider the periodic operator
LJ = 1/2# − ∇J∇. We callχl the solution of the cell problem associated toLJ , i.e.
theT 2

1 periodic solution ofLJ (χl − l.x) = 0 with χl(0) = 0. One easily obtains that

χl(x1, x2) = −2l2
[ ∫ x1

0
j (y)dy − x1

∫ 1

0
j (y)dy

]
. (41)
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The solution of the cell problem allows to compute the effective diffusivityt lD(J )l =∫
T 2

1
|l − ∇χl(x)|2dx that leads to

D(J ) =
(

1 0
0 1+ 4 Var(j)

)
. (42)

For aR periodic functionf we will write

Var(f ) = 1/R
∫ R

0
(f (x)−

∫ R

0
f (y)dy)2dx. (43)

Using the notation (20), from Eq. (42) we obtain (21) with

D(�0,p)2,2 = 1 + 4 Var(Hp). (44)

Now we will prove by induction onp that (forε given by (22))

(1 − ε)

p∑
k=0

γ 2
k ≤ Var(Hp) ≤ (1 + ε)

p∑
k=0

γ 2
k . (45)

Then Eq. (23) of theorem will follow by (44). Equation (45) is trivially true forp = 0.
From the explicit formula ofHp we will show in paragraph 4.1 that

∣∣ Var(Hp)− Var(Hp−1)− γ 2
p

∣∣ ≤ 2γpK1r
−1
p

√
Var(Hp−1). (46)

Assuming (45) is true at the rankp one obtains

√
Var(Hp) ≤ (1 + ε)

1
2γp+1

( p∑
k=0

(γk/γp+1)
2
) 1

2

≤ (1 + ε)
1
2γp+1(γmin − 1)−1,

(47)

and it is easy to see that the condition (22) implies thatε ≥ 2K1(1 + ε)
1
2 (ρmin(γmin −

1))−1; combining this with (46) and (47) one obtains that∣∣ Var(Hp+1)− Var(Hp)− γ 2
p+1

∣∣ ≤ εγ 2
p+1 (48)

which proves the induction and henceforth the theorem.

4.1.1. From the equation

Var(Hp) =
∫ 1

0

(
(Hp−1(Rpx)−

∫ 1

0
Hp−1(Rpy)dy)+γp(hp(x)−

∫ 1

0
hp(y)dy)

)2
dx

one obtains ∣∣ Var(Hp)− Var(Hp−1)− γ 2
p

∣∣ ≤ 2γp|E| (49)

with
E = Cov(SRpH

p−1, hp),

where Cov stands for the covariance: Cov(f, g) = ∫ 1
0 (f (x) − ∫ 1

0 f (y)dy)(g(x) −∫ 1
0 g(y)dy)dx andSR is the scaling operatorSRf (x) = f (Rx).

We will use the following mixing lemma whose proof is an easy exercise
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Lemma 1. Let (g, f ) ∈ (
C1(T d

)2
and R ∈ N

∗ then

∣∣∣
∫
T d1

g(x)SRf (x)dx −
∫
T d1

g(x)dx

∫
T d1

f (x)dx

∣∣∣ ≤ (‖g′‖∞/R)
∫
T d1

∣∣f ∣∣dx. (50)

By Lemma 1 and the Cauchy–Schwartz inequality,

|E| ≤ ‖∇hp‖∞Rp−1

Rp

∫ 1

0
|SRpHp−1(x)|dx ≤ K1

rp

√
Var(Hp−1). (51)

Combining this with (49) one obtains (46).

4.2. Anomalous mean squared displacement: Theorem 1.

4.2.1. Anomalous behavior from perpetual homogenization. Let yt be the solution of
(3). Define

nef (t) = inf {n ∈ N : t ≤ R2
n+1(γn−1/γn+1)

22−3K−2
1 (1 − γmax/ρmin)

2}. (52)

nef (t) will be the number of effective scales that one can considerhomogenized in the
estimation of the mean squared displacement at the timet . Indeed, we will show in
Subsect. 4.2.2 that forρmin > C1,K1,γmin,γmax andt > C2,K0,γmin,γ1,R1 one has

(1/4)tγ 2
nef (t)−1 ≤ E

[
(yt .e2)

2] ≤ C3,K1,γminγ
2
nef (t)+1t. (53)

Combining this with the bounds (9) and (10) onRn andγn one easily obtains Theorem 1.

4.2.2. Distinction between effectiveand drift scales. Proof of Eq. (53). By the Ito for-
mula one has

yt .e2 = ωt .e2 +
∫ t

0
∂1h(ωs.e1) ds. (54)

And by the independence ofωt .e2 fromωt .e1 one obtains

E
[
(yt .e2)

2] = t + E

[( ∫ t

0
∂1h(ωs.e1)ds

)2]
. (55)

Thus for allp ∈ N
∗, usingh = Hp +Hp+1,∞ one easily obtains (writingHp= H 0,p)

E
[
(yt .e2)

2] ≥ t + 1

2
E

[( ∫ t

0
∂1H

p(ωs.e1)ds
)2] − E

[( ∫ t

0
∂1H

p+1,∞(ωs.e1)ds
)2]

≤ t + 2E

[( ∫ t

0
∂1H

p(ωs.e1)ds
)2] + 2E

[( ∫ t

0
∂1H

p+1,∞(ωs.e1)ds
)2]

.

(56)
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Now we will bound the larger scales∂1H
p+1,∞ as drift scales, i.e. bound them by a

constant drift using‖∂1H
p+1,∞‖∞ ≤ K1

(
γp+1/Rp+1)(1 − γmax/ρmin

)−1,

E
[
(yt .e2)

2] ≥ t + 1

2
E

[( ∫ t

0
∂1H

p(ωs.e1)ds
)2] −

( tK1γp+1

Rp+1(1 − γmax/ρmin)

)2

≤ t + 2E

[( ∫ t

0
∂1H

p(ωs.e1)ds
)2] + 2

( tK1γp+1

Rp+1(1 − γmax/ρmin)

)2
.

(57)

Write Ip = E

[( ∫ t
0 ∂1H

p(ωs.e1)ds
)2

]
. SinceHp is periodic, fort large enough,Ip

should behave liketγ 2
p . Nevertheless since the ratios between the scales are bounded, to

control the asymptotic lower bound of the mean squared displacement in (57) we will
need a quantitative control ofIp that is sharp enough to show that the influence of the
effective scales is not destroyed by the larger ones. This control is based on stochastic
mixing inequalities and it will be shown in Subsect. 4.2.3 that forρmin > 8K1/(γmin−1)
one has

Ip ≤ t23
(
γ 2
p−1(1 − 1/γmin)

−2 +K0K1γp−1(γp/rp)(1 − 1/γmin)
−1)

+ t2K2
1(γ

2
p/R

2
p)+ √

t68γp−1γpRp−1K
2
0(1 − 1/γmin)

−1

+ 60K2
0(1 − 1/γmin)

−1γp−1γp(R
2
p/rp)+ 16K2

0γ
2
p−1R

2
p−1

(58)

and

Ip ≥ tγp−1(γp−1 − 16K1γp/rp)− √
t68γp−1γpRp−1K

2
0(1 − 1/γmin)

−1

− 60K2
0(1 − 1/γmin)

−1γp−1γp
R2
p

rp
− 8K2

0γ
2
p−1R

2
p−1(1 − 1/γmin)

−2.
(59)

Choosingp = nef (t) given by (52) one obtains (53) from (58), (59) and (57) by straight-
forward computation under the assumptionρmin > CK0,K1,γmax,γmin. ��

4.2.3. Influence of the intermediatescale on the effectivescales: Proof of the inequal-
ities (59) and (58). In this subsection we will prove the inequalities (59) and (58) by
distinguishing the scalep as a perturbation scale, i.e. controlling its influence on the
homogenization process over the scales 0, . . . , p − 1. More precisely, writingbt the
Brownian motionωt .e1 one has

Ip = Ip−1 + E

[( ∫ t

0
∂1H

p,p(bs)ds
)2] + 2Jp (60)

with

Jp = E

[( ∫ t

0
∂1H

p,p(bs)ds
)( ∫ t

0
∂1H

p−1(bs)ds
)]
. (61)

We will then control (60) by bounding∂1H
p,p by a constant drift to obtain

E

[( ∫ t

0
∂1H

p,p(bs)ds
)2] ≤ t2K2

1γ
2
p/R

2
p. (62)
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In Subsect. 4.2.4 we will control the homogenization process over the scales 0, . . . , p−1
and use our estimates onD(�0,p−1) to obtain that forρmin > 8K1/(γmin − 1),

Ip−1 ≤ tγ 2
p−120(1 − 1/γmin)

2 + R2
p−1γ

2
p−116K2

0(1 − 1/γmin)
2, (63)

Ip−1 ≥ tγ 2
p−12(1 − 1/γmin)

2 − R2
p−1γ

2
p−18K2

0(1 − 1/γmin)
2. (64)

In Subsect. 4.2.5 we will boundJp is an error term by mixing stochastic inequalities to
obtain

|Jp| ≤ γp−1γp(1 − 1/γmin)
−1

(√
tRp−134K2

0 + (t/rp)8K1 + R2
pr

−1
p 30K2

0

)
. (65)

Combining (60), (62), (63), (64) and (65) one obtains (58) and (59).��

4.2.4. Control of the homogenization process over the effectivescales: Proof of Eqs.
(63) and (64). Writing for m ≤ p,

κm,p = 1/Rp

∫ Rp

0
Hm,p(y)dy (66)

andκp = κ0,p one obtains by the Ito formula
∫ t

0
∂1H

p−1(bs)ds = 2
∫ bt

0
(Hp−1(y)− κp−1)dy − 2

∫ t

0
(Hp−1(bs)− κp−1)dbs.

(67)

Using the periodicity ofHp:
∣∣∣
∫ x

0

(
Hp−1(y)− κp−1)dy∣∣∣ ≤ Rp−1K0γp−1(1 − 1/γmin)

−1. (68)

Now we will show that forρmin > 8K1/(γmin − 1) andp ∈ N
∗,

E[
∫ t

0
(Hp(bs)− κp)2 ds] ≤ (1 − 1/γmin)

−2(tγ 2
p5 + R2

pγ
2
p4K2

0

)

≥ tγ 2
p2 − R2

pγ
2
p4K2

0(1 − 1/γmin)
−2.

(69)

Combining (67), (68) and (69) one obtains (63) and (64) by straightforward computation.
The proof of (69) is based on standard homogenization theory: writing

f (x) =
∫ x

0

(
Hp(y)− κp

)2 − Var(Hp)x, (70)

and g(x) = 2
( ∫ x

0
f (y) dy − (x/Rp)

∫ Rp

0
f (y) dy

)
. (71)

One obtains by the Ito formula

E[
∫ t

0
(Hp(bs)− κp)2 ds] = Var(Hp)t + E[g(bt )]. (72)

Using the periodicity ofg, one has‖g‖∞ ≤ 4K2
0γ

2
pR

2
p(1− 1/γmin)

−2. Combining this
with the estimate (45) on Var(Hp) one obtains (69) from (72).��
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4.2.5. Control of the influence of the perturbationscale: Proof of Eq. (65). From
Eqs. (61), (67),

∣∣∣
∫ x

0

(
Hp−1(y)− κp−1)dy∣∣∣ ≤ Rp−1γp−1K0(1 − 1/γmin)

−1 (73)

and∫ t

0
∂1H

p,p(ωs.e1)ds = 2
∫ bt

0
(Hp,p(y)− κp,p)dy − 2

∫ t

0
(Hp,p(bs)− κp,p) dbs.

(74)

One obtains by using straightforward computation (using the Cauchy–Schwartz inequal-
ity) that

|Jp| ≤2γp−1γpRp−1K
2
0(1 − 1/γmin)

−1√t + 4|Jp,2| + 2|Jp,3| (75)

with

Jp,2 = E

[ ∫ t

0
(Hp−1(bs)− κp−1)(Hp,p(bs)− κp,p) ds

]
(76)

and

Jp,3 = E

[ ∫ t

0
∂1H

p−1(bs)ds

∫ bt

0
(Hp,p(y)− κp,p)dy

]
. (77)

We will show in Subsect. 4.2.6 that the ratiorp allows a stochastic separation between
the scales 0, . . . , p − 1 andp reflected by the following inequality:∣∣Jp,2∣∣ ≤ γp−1γpK0(1 − 1/γmin)

−1(8K0Rp−1
√
t + 2tK1/rp

)
. (78)

Using Proposition 1 (that we will prove Subsect. 4.2.7) withG(x) = ∫ x
0 (H

p,p(y) −
κp,p)dy, r = rp andf (rpx) = Hp−1(x)− kp−1 that

∣∣Jp,3∣∣ ≤ γp−1γpR
2
pr

−1
p 15K2

0(1 − 1/γmin)
−1. (79)

Combining (75), (78) and (79) one obtains (65).��

4.2.6. Stochastic separation between scales: Proof of Eq. (78). Writing for x ∈ R,

g(x) =
∫ x

0
(Hp−1(y)− κp−1)(Hp,p(y)− κp) dy, (80)

one obtains by Ito formula

2E[
∫ bs

0
g(y)dy] = Jp,2. (81)

Using the functional mixing Lemma 1 one obtains easily that

|g(x)| ≤ 2K0γp−1(1 − 1/γmin)
−1(4γpK0Rp−1 + |x|K1(γp/rp)

)
. (82)

Combining this with (81) one obtains (78).��
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4.2.7. Stochastic mixing: Proof of Proposition 1. By the scaling law of the Brownian
motion

E

[
G(bt/R)

∫ t

0
(1/R)∂1f (rbs/R) ds

]
= RE

[
G(b t

R2
)

∫ t

R2

0
∂1f (rbs) ds

]

and it is sufficient to prove the proposition assumingR = 1. Let us write

I = E

[
G(bt )

∫ t

0
∂1f (rbs) ds

]
. (83)

We will prove Proposition 1 by expanding (83) on the the Fourier decompositions off

andG (writtenfk andGk) and controlling trigonometric functions,

f (x) =
∑
k∈Z

fke
ik2πx. (84)

Write for k,m ∈ Z,

Jk,m =
∫ t

0
E

[
eikr2πbs eim2πbt

]
ds. (85)

By straightforward computation

Jk,m =
∫ t

0
e−(2π)2

(kr+m)2
2 s−(2π)2 m2

2 (t−s)

= e−(2π)2
m2
2 t 1 − e−(2π)2(

(kr)2
2 +krm)t

(2π)2( (kr)
2

2 + krm)
(86)

(in last fraction of the above equation, if the denominator is equal to 0, we consider it as
a limit to obtain the exact valuet).

Now

I =
∑

k,m∈Z2

Jkmik2πfkGm. (87)

Thus sincef0 = G0 = 0, by the Cauchy–Schwartz inequality

|I | ≤
∑
k∈Z∗

|fk|
( ∑
m∈Z

(2π)2m2|Gm|2
) 1

2

J
1
2
k . (88)

with

Jk =
∑
m∈Z∗

1

m2

(
1 − e−(2π)2(

(kr)2
2 +krm)t

( k
2r2

2 + krm)(2π)2

)2

e−(2π)2m2t . (89)

Using (1 − e−tx)/x ≤ 3t for x > 0 and the fact that the minimum ofk2r/2 + km is
reached form0 ∼ kr/2, we obtain

Jk ≤
∑
m∈Z∗

e−(2π)2m2t2
( 4t

k2r2 + 2
∑
m∈Z∗

1

m2

( 1

krm(2π)2

)2)

≤4/r2.

(90)
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Observing that‖G′‖2
L2(T1)

= (2π)2
∑

m∈Z
m2|Gm|2 one obtains from (88) and (90)

|I | ≤ ‖G′‖L2(T1)(2/r)
∑
k∈Z∗

|fk|, (91)

which, using the Cauchy–Schwartz inequality leads to

|I | ≤ ‖G′‖L2(T1)‖f ‖L2(T1)2/r. (92)

��

5. Proofs Under Hypothesis 2

In this section we will prove Theorem 3 under Hypothesis 2. Observe that it is sufficient
to prove Eq. (29) under Hypothesis 2, (28) and (31).

We will use the same notations as in Sect. 4. Let us observe that from Eq. 55 one
obtains

E
[
(yt .e2)

2] = t + E
[
X2(b,0, t)

] + E
[
Y 2(b,0, t)

] + 2E
[
X(b,0, t)Y (b,0, t)

]
(93)

with for p ∈ N andbs = ωs.e1,

X(b,0, t) =
∫ t

0
∂1H

0,p(bs) ds (94)

and

Y (b,0, t) =
∫ t

0
∂1H

p+1,∞(bs) ds. (95)

We will prove in Subsect. 5.1 the following lemma (which is the core of the proof
of Theorem 3) which gives quantitative control on decorrelation between the drifts
associated with the small scales and those associated to the larger ones.

Lemma 2. For t > R2
p,

∣∣E[X(b,0, t)Y (b,0, t)]∣∣ ≤(
t3/2R2

p+1R
−2
p+2 + 8tRp

)
R−2
p+1Rpγpγp+1

12K0K2
(
1 − γ−1

min

)−1(1 − γmax/ρ
2
min

)−1
.

(96)

Now by standard homogenization as has been done in Subsect. 4.2.4 it is easy to prove
that

E[X(b,0, t)2] ≤ (R2
p + t)γ 2

p8K2
0

(
1 − γ−1

min

)−1 (97)

and

E[X(b,0, t)2] ≥ 2t Var(Hp)− 8R2
pγ

2
pK

2
0

(
1 − γ−1

min

)−1
. (98)

Now we will give in Lemma 3 (proven in Subsect. 5.2) the exponential rate of divergence
of Var(Hp).

Lemma 3. For γmin > 2 one has

γ 2
p

(
1 − (γmin − 1)−1)2 ≤ Var(Hp) ≤ γ 2

p

(
1 − γ−1

min

)−2
. (99)
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The proof of Lemma 3 is different from that of Theorem 2 and is based on the domination
of the influence of the biggest scale over the smaller ones (which is ensured byγmin > 2,
which is also necessary in the caseρmin > γmax to avoid cocycles).

Combining (99) with (98) one obtains that

E[X(b,0, t)2] ≥ 2tγ 2
p

(
1 − (γmin − 1)−1)2 − 8R2

pγ
2
pK

2
0

(
1 − γ−1

min

)−1
. (100)

Now let us observe that from (93) and the Cauchy–Schwartz inequality one obtains

E
[
(yt .e2)

2] ≤ t + 2E
[
X2(b,0, t)

] + 2E
[
Y 2(b,0, t)

]
≥ t + E

[
X2(b,0, t)

] − 2
∣∣E[X(b,0, t)Y (b,0, t)]∣∣. (101)

Combining (100), (97), (96), (101) and boundingE
[
Y 2(b,0, t)

]
by

E
[
Y 2(b,0, t)

] ≤ ‖∂2
1H

p+1,∞‖2∞t2E[b2
t ]

≤ γ 2
p+1t

3R−4
p+1

(
K2(1 − γ−1

min)
−1(1 − γmax/ρ

2
min)

−1
)2
,

(102)

one obtains that fort > R2
p, γmin > 2 andρ2

min > γmax that

E[(yt .e2)
2] ≤ 32(R2

p + t)γ 2
pK

2
0 + 8γ 2

p+1t
3R−4

p+1

(
K2(1 − γmax/ρ

2
min)

−1
)2

(103)

and

E[(yt .e2)
2] ≥ 2tγ 2

p

(
1 − (γmin − 1)−1)2 − 16R2

pγ
2
pK

2
0

− (
t3/2R2

p+1R
−2
p+2 + 8tRp

)
R−2
p+1Rpγpγp+148K0K2(1 − γmax/ρ

2
min)

−1.

(104)

It follows (104) and (103) that for

16(1 +K2
0)

(
1 − (γmin − 1)−1)−2

R2
p < t

≤ 16(1 +K2
0)

(
1 − (γmin − 1)−1)−2

R2
p+1.

(105)

One has

E[(yt .e2)
2] ≥ tγ 2

p

((
1 − (γmin − 1)−1)2 − γmaxρ

−2
min400K0K2(1 − γmax/ρ

2
min)

−1

× (
1 + (1 +K0)ρ

−1
min(γmin − 1)(γmin − 2)−1))

(106)

and

E[(yt .e2)
2] ≤ tγ 2

p(1 +K2
0)

×
(
1 + 2050γ 2

max

(
1 − (γmin − 1)−1)−4

K2
2(1 − γmax/ρ

2
min)

−2
)
,

(107)

which proves Eq. (29) under Hypothesis 2, (28) and (31) and thus Theorem 3.
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5.1. Proof of Lemma 2. Let us introduceZ a random variable idependent frombs and
taking its values in[0, Rp] uniformly with respect to the Lebesgue measure. First, let us
observe that by the periodicity ofHp,

E[X(b + Z,0, t)Y (b,0, t)] = 0. (108)

Next, define

τ = inf {s > 0 : |bs + Z| = 0 or |bs + Z| = Rp}.
Now we will decomposeX(b + Z,0, t) andY (b,0, t) as follows:

X(b + Z,0, t) = X(b + Z,0, τ )+X(b + Z, τ, t), (109)

Y (b,0, t) = Y (b,0, τ )+ Y (b, τ, t). (110)

Let b′ be a BM independent fromb andZ with the same law asb. Combining the
decompositions (109) and (110) with the strong Markov property and the periodicity of
Hp one obtains that

E[X(b + Z,0, t)Y (b,0, t)] = E[X(b + Z,0, τ ∧ t)Y (b,0, τ ∧ t)]
+ E[X(b′,0, (t − τ)+)Y (b′ + bτ ,0, (t − τ)+)]
+ E[X(b + Z,0, τ ∧ t)Y (b, τ ∧ t, t)]
+ E[X(b + Z, τ ∧ t, t)Y (b,0, τ ∧ t)],

(111)

where we have used

E[X(b′,0, (t − τ)+)Y (b′ + bτ ,0, (t − τ)+)] = E[X(b + Z, τ ∧ t, t)Y (b, τ ∧ t, t)].
Using a similar decomposition forE[X(b,0, t)Y (b,0, t)] and subtracting (111) com-
bined with (108) one obtains that

E[X(b,0, t)Y (b,0, t)] = I1 + I2 + I3 + I4 + I5 + I6 + I7. (112)

with

I1 = E
[
X(b′,0, (t − τ)+)

(
Y (b′,0, (t − τ)+)− Y (b′ + bτ ,0, (t − τ)+)

)]
, (113)

I2 = E
[
X(b′, (t − τ)+, t)

(
Y (b′, (t − τ)+, t)

]
, (114)

I3 = −E
[
X(b + Z,0, τ ∧ t)Y (b,0, τ ∧ t)

]
, (115)

I4 = −E
[
X(b + Z,0, τ ∧ t)Y (b, τ ∧ t, t)

]
, (116)

I5 = −E
[
X(b + Z, τ ∧ t, t)Y (b,0, τ ∧ t)

]
, (117)

I6 = E
[
X(b′,0, (t − τ)+)Y (b′, (t − τ)+, t)

]
, (118)

I7 = E
[
Y (b′,0, (t − τ)+)X(b′, (t − τ)+, t)

]
. (119)
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We shall use standard homogenization techniques to estimate the influence of the ef-
fective scales in those terms. Let us observe that by the Ito formula one has a.s. for all
t > 0,

X(b,0, t) = χp(bt )− 2
∫ t

0

(
Hp(bs)− κp

)
dbs (120)

with (using the notation introduced in (66))

χp(x) = 2
∫ x

0
Hp(y)dy − x2κp. (121)

Next we will control the larger scales by bounding the growth of their drift. Indeed using
the uniform control on the second derivate of the functionshn in Hypothesis 2 one has

‖∂2
1H

p+1,∞‖∞ ≤ K2γp+1R
−2
p+1(1 − γmax/ρ

2
min)

−1. (122)

Using the Cauchy–Schwartz inequality in (114), (120) and (122) one obtains that

|I2| ≤
(
E

[
X(b′,0, (t − τ)+)2

]) 1
2
(
E

[
(Y (b′, (t − τ)+, t))2

]) 1
2

≤ (1 − γ−1
min)

−1(4K2
0γ

2
pR

2
p + 4K2

0γ
2
p t

) 1
2 ‖∂2

1H
p+1,∞‖∞

(
E

[|b′
t |2τ2]) 1

2
.

Thus for

t > R2
p, (123)

|I2| ≤ √
tγpγp+1R

3
pR

−2
p+112K0K2(1 − γ−1

min)
−1(1 − γmax/ρ

2
min)

−1. (124)

Similarly using (120) one obtains that

|I3| ≤ γpγp+1R
4
pR

−2
p+112K0K2(1 − γ−1

min)
−1(1 − γmax/ρ

2
min)

−1. (125)

To estimateI4 we use the conditional independence

I4 = − E

[
1τ∧t<tE

[
X(b + Z,0, τ ∧ t)

∣∣τ ∧ t
]
E

[
Y (b, τ ∧ t, t)

∣∣τ ∧ t
]]

− E

[
1τ∧t=tE

[
X(b + Z,0, τ ∧ t)

∣∣τ ∧ t
]
E

[
Y (b, τ ∧ t, t)

∣∣τ ∧ t
]]
.

(126)

SinceY (b, t, t) = 0 the second term in (126) is null. Moreover conditionally on the
eventτ < t , bτ∧t + Z with equal chances 1/2 is equal to 0 orRp, so using (120) one
obtains that on{τ ∧ t < t}, E

[
X(b + Z,0, τ ∧ t)

∣∣τ ∧ t
] = 0, which leads to

I4 = 0. (127)

Similarly, using conditional independence (120) and (122) one easily obtains

|I5| ≤ γpγp+1R
4
pR

−2
p+112K0K2(1 − γ−1

min)
−1(1 − γmax/ρ

2
min)

−1, (128)

|I6| ≤ √
tγpγp+1R

3
pR

−2
p+112K0K2(1 − γ−1

min)
−1(1 − γmax/ρ

2
min)

−1. (129)
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To estimateI7 let us observe that from (120) and the spectral gap associated to the
Laplacian on the torus (which is equivalent to the Poincaré inequality, see [23]) one has

|E[X(b′, (t − τ)+, t)|t − τ ]| ≤ |χp(bt )− χp(b(t−τ)+)|
≤ 12e−R

−2
p /2(t−τ)+K0(1 − γ−1

min)
−1γpRp.

(130)

Thus using conditional independence and distinguishing the eventsτ > t/2 (whose
probability is bounded using the spectral gap) andτ ≤ t/2 , one obtains

|I7| ≤ t3/2e−tR
−2
p /4γpγp+116RpR

−2
p K0K2(1 − γ−1

min)
−1(1 − γmax/ρ

2
min)

−1

≤ γpγp+116R4
pR

−2
p K0K2(1 − γ−1

min)
−1(1 − γmax/ρ

2
min)

−1.
(131)

To estimateI1 we will distinguish the scalep+1 as an intermediate scale. First observe
that

Y (b′,0, (t − τ)+)− Y (b′ + bτ ,0, (t − τ)+) = 2γp+1J1 + 2J2 (132)

with

J2 =
∫ (t−τ)+

0

(
∂1H

p+2,∞(b′
s)− ∂1H

p+2,∞(b′
s + bτ )

)
ds (133)

and

J1 =
∫ (t−τ)+

0

(
∂1hp+1(b

′
s)− ∂1hp+1(b

′
s + bτ )

)
ds. (134)

Using|bτ | ≤ Rp and (122), one obtains that fort > Rp,∣∣E[
X(b′,0, (t − τ)+)J2

]∣∣
≤ t3/2Rpγpγp+1R

−2
p+22K0K2(1 − γ−1

min)
−1(1 − γmax/ρ

2
min)

−1. (135)

Now using the Ito formula one has

J1 =
∫ bτ

0
hp+1(x)dx −

∫ b′
(t−τ)++bτ

b′
(t−τ)+

hp+1(x)dx

−
∫ (t−τ)+

0

(
hp+1(b

′
s)− hp+1(b

′
s + bτ )

)
db′

s

(136)

Thus observing that(τ, bτ ) has the same law as(τ,−bτ ) one obtains that

E

[
X(b′,0, (t − τ)+)J1

]

= E

[
X(b′,0, (t − τ)+)

∫ bτ

0

(
hp+1(x)− hp+1(−x)

)
/2dx

]

+ E

[
X(b′,0, (t − τ)+)

∫ b′
(t−τ)++bτ

b′
(t−τ)+

(
hp+1(x)− hp+1(x − bτ )

)
/2dx

]

− E

[
X(b′,0, (t − τ)+)

∫ (t−τ)+

0

(
hp+1(b

′
s)− hp+1(b

′
s + bτ )

)
db′

s

]
.

(137)
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It follows from (137) that fort > Rp,

∣∣E[
X(b′,0, (t − τ)+)γp+1J1

]∣∣
≤ 6K0γptR

2
pγp+1R

−2
p+1K2

(
1 − γ−1

min

)−1(1 − γmax/ρ
2
min

)−1
.

(138)

Thus from (138) and (135) we deduce that

|I1| ≤ (
t3/2R−2

p+2 + tRpR
−2
p+1

)
Rpγpγp+112K0K2

(
1 − γ−1

min

)−1(1 − γmax/ρ
2
min

)−1
.

(139)

Combining (139), (124), (125), (127), (128), (129), (131) and (96) we have obtained
that fort > R2

p, Eq. (96) is valid.

5.2. Proof of Lemma 3. Observe that (using the notation introduced in (66))

Var(Hp) = Var(Hp−1)+ γ 2
p + 2R−1

p

∫ Rp

0

(
Hp−1(x)− κ0,p−1)(hp(x)− κp,p

)
.

(140)

It follows by the Cauchy–Schwartz inequality and the normalization condition (7) that

Var(Hp−1)+ γ 2
p + 2γp Var(Hp−1)

1
2 ≥ Var(Hp)

≥ Var(Hp−1)+ γ 2
p − 2γp Var(Hp−1)

1
2 ,

from which we deduce

Var(Hp)
1
2 ≤ γp + Var(Hp−1)

1
2 (141)

and

Var(Hp)
1
2 ≥ γp − Var(Hp−1)

1
2 . (142)

From (141) one obtains by induction that

Var(Hp)
1
2 ≤ γp(1 − γ−1

min)
−1. (143)

Combining (142) with (143) one obtains that

Var(Hp)
1
2 ≥ γp

(
1 − (γmin − 1)−1), (144)

and observe that 1− (γmin − 1)−1 > 0 for γmin > 2.
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