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a b s t r a c t

In this paper, we consider numerical homogenization of acoustic wave equations with heterogeneous
coefficients, namely, when the bulk modulus and the density of the medium are only bounded. We show
that under a Cordes type condition the second order derivatives of the solution with respect to harmonic
coordinates are L2 (instead H�1 with respect to Euclidean coordinates) and the solution itself is in
L1ð0; T;H2ðXÞÞ (instead of L1ð0; T;H1ðXÞÞ with respect to Euclidean coordinates). Then, we propose an
implicit time stepping method to solve the resulted linear system on coarse spatial scales, and present
error estimates of the method. It follows that by pre-computing the associated harmonic coordinates,
it is possible to numerically homogenize the wave equation without assumptions of scale separation
or ergodicity.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction sity and u the unknown pressure. The velocity c and acoustic
Let X be a bounded and convex domain of class C2 of R2. Let
T > 0. Consider the following acoustic wave equation

K�1ðxÞo2
t u ¼ div ðq�1ðxÞruðx; tÞÞ þ g in X� ð0; TÞ:

uðx; tÞ ¼ 0 for ðx; tÞ 2 oX� ð0; TÞ:
uðx; tÞ ¼ uðx; 0Þ for ðx; tÞ 2 X� ft ¼ 0g:
otuðx; tÞ ¼ utðx;0Þ for ðx; tÞ 2 X� ft ¼ 0g:

8>>><
>>>:

ð1:1Þ

Write XT :¼ X� ð0; TÞ and a :¼ q�1. We assume a is a uniformly
elliptic 2� 2 symmetric matrix on X whose entries are bounded
and measurable. There exists 0 < amin 6 amax, such that 8n 2 R2,
jnj ¼ 1, amin 6

tnaðxÞn 6 amax, 8x 2 X. K is a scalar such that
Kmin 6 K 6 Kmax. g 2 L2ðXTÞ.

Eq. (1.1) can be used to model wave propagation in heteroge-
neous media. It is important in many applications such as geophys-
ics, seismology, and electromagnetics [6,9,31,33]. In geophysical
and seismic prospecting, K stands for the bulk modulus, q the den-
ll rights reserved.
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impedance r are given by c ¼
ffiffiffiffiffiffiffiffiffi
K=q

p
and r ¼

ffiffiffiffiffiffiffi
Kq

p
.

Wave propagation in heterogeneous media involves many dif-
ferent spatial scales. Even with modern state-of-the-art supercom-
puters, a direct simulation of the highly heterogeneous media is
often difficult if not impossible. That is why we want to use mul-
ti-scale methods to solve (1.1) on the coarse spatial scales. More
precisely, we want to know how to transfer information from fine
scales to coarse scales, and how to use the information obtained to
solve the coarse scale problem with much fewer degrees of free-
dom. We often refer this procedure as numerical homogenization
or numerical upscaling.

The idea of using oscillating test functions in relation to
homogenization can be backtracked to the work of Murat and Tar-
tar on homogenization and H-convergence, in particular we refer
to [27,32] (recall also that the framework of H-convergence is inde-
pendent from ergodicity or scale separation assumptions). The
implementation and practical application of oscillating test func-
tions in finite element based numerical homogenization have been
called multi-scale finite element methods (MsFEM) and have been
studied by numerous authors [3,7,13,16,21]. On the other hand,
numerical schemes have been developed to solve the acoustic
wave equation with discontinuous coefficients, for example in [9]
by nonconforming finite element method and in [6] by domain
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decomposition. Recently, numerical homogenization or numerical
upscaling methods such as [33] are proposed for wave equation
with heterogeneous coefficients.

The finite element method in this paper is closer in spirit to the
work of Hou and Wu [21] and Allaire and Brizzi [3]. It is based on a
technique first introduced in [29] for elliptic equations and ex-
tended in [28] to parabolic equations characterised by a continuum
of scales in space and time. The main difference lies in the fact that,
instead of solving a local cell problem to get a basis function as in
MsFEM (Multi-scale finite element method) or to calculate effec-
tive media property as in upscaling method [15], we use a global
change of coordinates. The global change of coordinates allows to
avoid the so called cell resonance problem and obtain a scheme
converging in situations where the medium has no separation be-
tween scales. This makes our method amenable to problems with
strongly non-local medias, such as high conductivity channels.

We use a composition rule to construct the finite element space.
I. Babuška et al. introduced the so called ‘‘change of variable” tech-
nique [7] in the general setting of partition of unity method (PUM)
with p-version of finite elements. Through this change of variable,
the original problem is mapped into a new one which can be better
approximated. Allaire and Brizzi [3] introduced the composition
rule in the multi-scale finite element formulation, and have ob-
served that a multi-scale finite element method with higher order
Lagrange polynomials has a higher accuracy.

The main difference with parabolic equations [28] lies in the
fact that with hyperbolic equations, energy is conserved and after
homogenization there is no hope of recovering the energy (or
information) lying in the highest frequencies. However when the
medium is highly heterogeneous the eigenfunctions associated to
the highest frequencies are localized, thus energy is mainly trans-
ported by the lowest frequencies. That is why, when one is only
interested in the large scale transport of energy it is natural to
approximate the solutions of (1.1) by the solutions of an homoge-
nized operator. For localization of waves in heterogeneous media,
we refer to [4,24,30].

This paper is organized as follows. In the next section, we pres-
ent the formulation of the mathematical problem and numerical
methods, and also show main results. In Section 3, we will give
the detailed proof and explanation of the results in Section 2. In
Section 4, we present several numerical examples and conclusions.
2. Main results

In general, the approximation power of finite element method is
subject to the best approximation for an exact solution with re-
spect to the finite element space. Therefore, we require smooth-
ness of the solution to prove convergence theorems. That is one
of the reasons why standard methods are not applicable for prob-
lems with heterogeneous media. For example, in (1.1), we only
have u 2 L1ð0; T;H1ðXÞÞ, and we can not gain anything if we
approximate the solution with usual C0 or C1 finite element basis.
However, as in [29], we can find harmonic coordinates which the
solution of the wave equation is smoothly dependent on, which
is the so-called compensation phenomena.
2.1. Compensation phenomena

We will focus on space dimension n ¼ 2. The extension to high-
er dimension is straightforward conditioned on the stability of r.
Let F :¼ ðF1; F2Þ be the harmonic coordinates satisfying

divarF ¼ 0 in X;

FðxÞ ¼ x on oX:

�
ð2:1Þ
Let r :¼ trFarF and

lr :¼ esssupx2X
kmaxðrðxÞÞ
kminðrðxÞÞ

� �
: ð2:2Þ

Condition 2.1. r satisfies Cordes type condition if: lr <1 and
ðTrace½r�Þ�1 2 L1ðXÞ.

Remark 2.1. If F is a quasiregular mapping, i.e., the dilation quo-
tient (the ratio of maximal to minimal singular values of the Jacobi
matrix) is bounded, Cordes type Condition 2.1 is satisfied [2]. An
invertible quasiregular mapping is called quasiconformal. In [2]
and references therein, invertibility of F is proved for a 2 L1ðXÞ.
Some sufficient conditions for F being quasiconformal were also
given, for example, detðaÞ is locally Hölder continuous. Unfortu-
nately, a counterexample with checkerboard structure was pro-
posed, and it can be shown that lr is unbounded at the
intersecting point, which is known in mechanics as stress concen-
tration. However, we will show that as a solution technique, the
numerical methods proposed in this paper also works for the cases
with stress concentration.

Let L2ð0; T; H1
0ðXÞÞ be the Sobolev space associated to the norm

kvk2
L2ð0;T;H1

0ðXÞÞ
:¼
Z T

0
kvð�; tÞk2

H1
0ðXÞ

dt: ð2:3Þ

Also, we define the norm of the space L1ð0; T;H2ðXÞÞ by

kvkL1ð0;T;H2ðXÞÞ ¼ esssup06t6T

Z
X

X
i;j

ðoiojvðx; tÞÞ2 dx

 !1
2

: ð2:4Þ

We require the right hand side g, initial value uðx; 0Þ and utðx;0Þ to
be smooth enough, which is a reasonable assumption in many
applications. For example, we can made the following assumptions:

Assumption 2.1. Assume that the g satisfies otg 2 L2ðXTÞ, g 2 L1

ð0; T; L2ðXÞÞ, initial data uðx;0Þ and otuðx;0Þ satisfy otuðx;0Þ 2 H1ðXÞ
and raðxÞruðx;0Þ 2 L2ðXÞ or equivalently o2

t uðx;0Þ 2 L2ðXÞ.

We have the following compensation theorem:

Theorem 2.1. Suppose that Cordes Condition 2.1 and Assumption 2.1
hold, then u � F�1 2 L1ð0; T;H2ðXÞÞ and

ku � F�1kL1ð0;T;H2ðXÞÞ 6 CðkgkL1ð0;T;L2ðXÞÞ þ kotgkL2ðXT Þ

þ kotuðx;0ÞkH1ðXÞ þ ko
2
t uðx; 0ÞkL2ðXÞÞ: ð2:5Þ

The constant C can be written as

C ¼ Cðn;X;Kmin;Kmax; amin; amaxÞlrkðTrace½r�Þ�1kL1ðXÞ: ð2:6Þ

Remark 2.2. We have gained one more order of integrability in the
harmonic coordinates since in general u 2 L1ð0; T;H1ðXÞÞ. The con-
dition g 2 L2ðXTÞ is sufficient to obtain Theorem 2.1 and the follow-
ing theorems. For the sake of clarity we have preferred to restrict
ourselves to g 2 L1ð0; T; L2ðXÞÞ.
2.2. Numerical homogenization in space

Suppose we have a quasiuniform mesh. Let Xh be a finite dimen-
sional subspace of H1

0ðXÞ \W1;1ðXÞ with the following approxima-
tion properties: There exists a constant CX such that

� Interpolation property, i.e., for all f 2 H2ðXÞ \ H1
0ðXÞ

inf
v2Xh
kf � vkH1

0ðXÞ
6 CXhkfkH2ðXÞ: ð2:7Þ

� Inverse Sobolev inequality, i.e., for all v 2 Xh

kvkH2ðXÞ 6 CXh�1kvkH1
0ðXÞ

ð2:8Þ
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and

kvkH1
0ðXÞ
6 CXh�1kvkL2ðXÞ: ð2:9Þ

These properties are known to be satisfied when Xh is a C1 finite
element space. One possibility is to use weighted extended B-
splines (WEB) method developed by Höllig in [19,20], these ele-
ments are in general C1-continuous. They are obtained from tensor
products of one dimensional B-spline elements. The homogeneous
Dirichlet boundary condition is satisfied by multiplying the basis
functions with a smooth weight function x which satisfies x ¼ 0
at the boundary.

Write the solution space Vh as

Vh :¼ fu � FðxÞ : u 2 Xhg: ð2:10Þ

Remark 2.3. We prove all the following theoretical results using
exact F, however, in the numerical implementations, we have to
compute a discrete solution Fh0 on a fine mesh of size h0 to
approximate F. We always assume that h0 � h, namely, h0 is the
size of fine mesh and h is the size of coarse mesh. In [3], Allaire and
Brizzi proved the convergence of multi-scale finite element
method with respect to the discrete map Fh0 in the periodic case
using asymptotic expansion, as well as some regularity assump-
tions requiring the mappings F and Fh0 smooth enough. However, in
the general case, neither the tool of asymptotic expansion nor
smoothness assumption is available, which makes a complete
justification more difficult. Some discussions and further sugges-
tions for similar problems in the context of variational mesh
generation can be found in [18]. Another problem is, although F is
guaranteed to be invertible, Fh0 is not. Fortunately, this can be
relieved if F is solved by piecewise linear finite element and the
mesh only has non-obtuse-angled triangles [17].

We use the following notation:

a½v;w� :¼
Z

X

trvðx; tÞaðxÞrwðx; tÞdx: ð2:11Þ

For v 2 H1
0ðXÞ write Rh;0v the Ritz–Galerkin projection of v on Vh

with respect to the bilinear operator a½�; ��, i.e., the unique element
of Vh such that for all w 2 Vh,

a½w; v�Rh;0v� ¼ 0: ð2:12Þ

Define Yh
T the subspace of L2ð0; T; H1

0ðXÞÞ as

Yh
T :¼ fv 2 L2ð0; T; H1

0ðXÞÞ : vðx; tÞ 2 Vh; 8t 2 ½0; T�g: ð2:13Þ

Write uh the solution in Yh
T of the following system of ordinary dif-

ferential equations:

ðK�1wðxÞ; o2
t uhÞL2ðXÞ þ a½wðxÞ; uh�

¼ ðwðxÞ; gÞL2ðXÞ 8t 2 ð0; TÞ and w 2 Vh;

uhðx;0Þ ¼ Rh;0uðx;0Þ;
otuhðx;0Þ ¼ Rh;0otuðx;0Þ:

8>>>><
>>>>:

ð2:14Þ

The following theorem shows the error estimate of the semi-dis-
crete solution. We need more smoothness on the forcing term g
and the initial data than Assumption 2.1 to guarantee the OðhÞ con-
vergence of the scheme (2.14). On the other hand, we can see that
even if g and all the initial data are smooth, with general conductiv-
ity matrix aðxÞ, we can merely expect u 2 L1ð0; T;H1ðXÞÞ instead of
the improved regularity L1ð0; T;H2ðXÞÞ in the harmonic coordi-
nates, and the convergence rates will deteriorate for the conven-
tional finite elements.

Assumption 2.2. Assume that the forcing term g satisfies
o2

t g 2 L2ðXTÞ, otg 2 L1ð0; T; L2ðXÞÞ, initial value uðx;0Þ and otuðx;0Þ
satisfy o2

t uðx;0Þ 2 H1ðXÞ and raðxÞrotuðx;0Þ 2 L2ðXÞ or equiva-
lently o3

t uðx;0Þ 2 L2ðXÞ.
From now on we will always suppose without explicitly men-
tioning that Assumption 2.2 is satisfied in the discussion of numer-
ical homogenization method.

Theorem 2.2. Suppose that Cordes Condition 2.1 and Assumption 2.2
hold, we have

kotðu� uhÞð�; TÞkL2ðXÞ þ kðu� uhÞð�; TÞkH1
0ðXÞ

6 ChðkotgkL1ð0;T;L2ðXÞÞ þ ko
2
t gkL2ðXT Þ þ ko

2
t uðx; 0ÞkH1ðXÞ

þ ko3
t uðx;0ÞkL2ðXÞÞ: ð2:15Þ

The constant C depends on CX, n, X, lr, Kmin, Kmax, amin, amax, and
kðTrace½r�Þ�1kL1ðXÞ.

Remark 2.4. In the numerical implementation, the real solution
space is Vh;h0 :¼ fu � Fh0 ðxÞ u 2 Xhg. Let uh;h0 be the solution of
(2.14) with the solution space Vh replaced by Vh;h0 . The error analy-
sis for u� uh;h0 can be made separately for two parts, u� uh and uh�
uh;h0 . We can use a perturbation argument to estimate uh � uh;h0 .
Suppose that ku � F �u � Fh0 k ! 0 as h0 ! 0, the norm k � k can be
taken as, for example, L1 norm. In view of the inequality ku � F�
u � Fh0 k 6 sup jDujkF � Fh0 k, it is equivalent to kF � Fh0 k ! 0 as
h0 ! 0 for fixed coarse space Xh. Now the ODE system correspond-
ing to uh;h0 is a perturbation of the ODE system corresponding to uh,
uh � uh;h0 can be controlled by a Gronwall inequality [10]. Note
this is just a sketch and a complete proof will be done elsewhere.
2.3. Numerical homogenization in time and space

Let M 2 N, ðtn ¼ n T
M Þ06n6M is a discretization of ½0; T�. ðuiÞ is a C1

basis of Xh. Write trial space Zh
T the subspace of Yh

T such that

Zh
T ¼ w 2 Yh

T : wðx; tÞ ¼
X

i

ciðtÞuiðFðxÞÞ; ciðtÞ
(

�are linear on ðtn; tnþ1� and continuous on ½0; T�
)
: ð2:16Þ

Let test space Uh
T be the subspace of Yh

T such that

Uh
T ¼ w 2 Yh

T : wðx; tÞ ¼
X

i

diuiðFðxÞÞ; di are constant on ½0; T�
( )

:

ð2:17Þ

Write vh the solution in Zh
T of the following system of implicit weak

formulation: for n 2 f0; . . . ;M � 1g and w 2 Uh
T

ðK�1w; otvhÞðtnþ1Þ � ðK�1w; otvhÞðtnÞ

¼
Z tnþ1

tn

ðK�1
otw; otvhÞdt �

Z tnþ1

tn

a½w; vh�dt þ
Z tnþ1

tn

ðw; gÞdt:

ð2:18Þ

In Eq. (2.18), otvhðtÞ stands for lim�#0ðvhðtÞ � vhðt � �ÞÞ=�. Once we
know the values of vh and otvh at tn, (2.18) is a linear system for
the unknown coefficients of otvhðtnþ1Þ in Vh. By continuity of vh in
time, we can obtain vhðtnþ1Þ by

vhðtnþ1Þ ¼ otvhðtnþ1Þðtnþ1 � tnÞ þ vhðtnÞ: ð2:19Þ

The following Theorem 2.3 shows the stability of the implicit
scheme (2.18):

Theorem 2.3. Suppose that Cordes Condition 2.1 and Assumption 2.2
hold, we have

kotvhð�;TÞkL2ðXÞ þ kvhð�;TÞkH1
0ðXÞ

6 CðkgkL2ðXT Þ þ kotuðx;0ÞkL2ðXÞ þ kuðx;0ÞkH1ðXÞÞþChðkotgkL1ð0;T;L2ðXÞÞ

þ ko2
t gkL2ðXT Þ þ ko

2
t uðx;0ÞkH1ðXÞ þ ko

3
t uðx;0ÞkL2ðXÞÞ: ð2:20Þ
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The constant C depends on amin, amax, Kmin, Kmax, and T.

The following Theorem 2.4 gives us the error estimate for the
scheme (2.18).

Theorem 2.4. Suppose that Cordes Condition 2.1 and Assumption 2.2
hold, we have

kðotuh � otvhÞð�; TÞkL2ðXÞ þ kðuh � vhÞð�; TÞkH1ðXÞ

6 CDtð1þ h�1ÞðkotgkL1ð0;T;L2ðXÞÞ þ ko
2
t gkL2ðXT Þ

þ ko2
t uðx;0ÞkH1ðXÞ þ ko

3
t uðx; 0ÞkL2ðXÞÞ: ð2:21Þ

The constant C depends on CX, T, amin, amax, Kmin, Kmax, lr, and
kðTrace½r�Þ�1kL1ðXÞ.
3. Proofs

The proofs are organized into three subsections corresponding
to the three subsections of Section 2.

3.1. Compensation phenomena: proof of Theorem 2.1

Lemma 3.1. We have

ko2
t uk2

L2ðXÞðTÞþ a½otu�ðTÞ6 C T;
Kmax

Kmin
;Kmax

� �

� a½otu�ð0Þþ ko2
t uðx;0Þk2

L2ðXÞ þ kotgk2
L2ðXT Þ

� �
:

ð3:1Þ

Proof. In case a is smooth, differentiating (1.1) with respect to t,
we have

K�1
o3

t u�warotu ¼ otg: ð3:2Þ

multiplying by o2
t u, and integrating over X, we obtain that

1
2

d
dt

K�
1
2o2

t u
��� ���2

L2ðXÞ
þ 1

2
d
dt

a½otu� ¼ ðotg; o
2
t uÞL2ðXÞ: ð3:3Þ

Integrating the latter equation with respect to t and using Cauchy–
Schwartz inequality we obtain that

K�
1
2o2

t u
��� ���2

L2ðXÞ
ðTÞ þ a½otu�ðTÞ 6 K�

1
2o2

t u
��� ���2

L2ðXÞ
ð0Þ þ a½otu�ð0Þ

þ kotgkL2ðXT Þko
2
t ukL2ðXT Þ: ð3:4Þ

Consider the following differential inequality, suppose that A is con-
stant, BðtÞ > 0 and non-decrease, XðtÞ > 0 and XðtÞ is continuous
with respect to t

XðtÞ 6 Aþ BðtÞ
Z t

0
XðsÞds

� �1
2

: ð3:5Þ

Write YðtÞ ¼ sups2½0;t�XðsÞ, one has

XðtÞ 6 Aþ BðtÞt1
2ðYðtÞÞ

1
2 6 Aþ tðBðtÞÞ2 þ YðtÞ

2
: ð3:6Þ

Take the supremum of both sides over t 2 ½0; T�, we have

YðTÞ 6 2Aþ TðBðTÞÞ2: ð3:7Þ

It follows that

ko2
t uk2

L2ðXÞðTÞ þ a½otu�ðTÞ 6 C T;
Kmax

Kmin
;Kmax

� �
ða½otu�ð0Þ

þ ko2
t uk2

L2ðXÞð0Þ þ kotgk2
L2ðXT ÞÞ: ð3:8Þ

In the case where a is non-smooth we use Galerkin approximations
of u in (1.1) and then pass to limit. This technique is standard and
we refer to [14, Section 7.3.2.c] for a reminder. h
Lemma 3.2

kotuk2
L2ðXÞðTÞ þ a½u�ðTÞ 6 C T;

Kmax

Kmin
;Kmax

� �
ða½u�ð0Þ

þ kotuk2
L2ðXÞð0Þ þ kgk

2
L2ðXT ÞÞ: ð3:9Þ

Proof. Multiplying (1.1) by otu, and integrating over X, we obtain
that

1
2

d
dt

K�
1
2otu

��� ���2

L2ðXÞ
þ 1

2
d
dt

a½u� ¼ ðg; otuÞL2ðXÞ: ð3:10Þ

The remaining part of the proof is similar to the proof of Lemma
3.1. h

We now need a variation of Campanato’s result [12] on non-diver-
gence form elliptic operators. For a symmetric matrix M, let us write

mM :¼ TraceðMÞ
TraceðtMMÞ : ð3:11Þ

Consider the following Dirichlet problem:

LMv ¼ f ð3:12Þ

with LM :¼
P2

i;j¼1MijðxÞoioj and homogeneous Dirichlet boundary
condition. The following Theorem 3.1 is an adaptation of Theorem
1.2.1 of [25]. They are proved in [25] under the assumption that
M is bounded and elliptic. It can be proved that the conditions
lM <1 and mM <1 are sufficient for the validity of the theorem,
we refer to [28,29] for that proof.

Theorem 3.1. Assume that lM <1, mM 2 L1ðXÞ and X is convex. If
f 2 L2ðXÞ the Dirichlet problem (3.12) has a unique solution satisfying

kvkH2ðXÞ 6 ClMkmMfkL2ðXÞ: ð3:13Þ

Remark 3.1. The theorem can be extended to dimension n > 2
under the general Cordes condition [25].

Let us now prove the compensation result in Theorem 2.1.
Choose

M :¼ r
jdetðrFÞj

1
2
� F�1: ð3:14Þ

Recall that r :¼ trFarF. (3.14) is well defined since lM ¼ lr and

kmMk2
L1ðXÞ 6

C
kminðaÞ

kðTrace½r�Þ�1k2
L1ðXÞ: ð3:15Þ

Fix t 2 ½0; T�. Choose

f :¼ ðK
�1

o2
t u� gÞ

jdetðrFÞj
1
2
� F�1: ð3:16Þ

By the change of variable y ¼ FðxÞ, one obtains that

kfkL2ðXÞ 6 2K�1
minko

2
t ukL2ðXÞ þ 2kgkL2ðXÞ: ð3:17Þ

Using the notation ~KðyÞ :¼ KðF�1ðyÞÞ, ~gðy; tÞ :¼ gðF�1ðyÞ; tÞ, and
~uðy; tÞ :¼ uðF�1ðyÞ; tÞ, it follows from Theorem 3.1 that there exists
a unique v 2 H2ðXÞ such thatX

i;j

ðrðF�1ðyÞÞÞi;joiojvðy; tÞ ¼ ~K�1ðyÞo2
t
~uðy; tÞ � ~gðy; tÞ ð3:18Þ

and

kvkH2ðXÞ 6 ClMkmMkL1ðXÞðK
�1
minko

2
t ukL2ðXÞ þ kgkL2ðXÞÞ: ð3:19Þ

By y ¼ FðxÞ and the identity divarF ¼ 0 we deduce that (3.18) can
be written as

div ðarðv � FÞÞ ¼ K�1
o2

t u� g: ð3:20Þ
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If o2
t u 2 L2ðXÞ and gð�; tÞ 2 L2ðXÞwe can use the uniqueness property

for the solution of the following divergence form elliptic equation
(with homogeneous Dirichlet boundary condition):

div ðaruÞ ¼ K�1
o2

t u� g ð3:21Þ

to obtain that v � F ¼ u. Thus, we have proven Theorem 2.1.

3.2. Numerical homogenization in space: proof of Theorem 2.2

In the following sections we will prove the convergence of
semidiscrete and fully discrete numerical homogenization formu-
lation (2.14) and (2.18).

We have the following lemmas which are the discrete analogs
of Lemmas 3.1 and 3.4.

Lemma 3.3. We have

ko2
t uhk2

L2ðXÞðTÞ þ a½otuh�ðTÞ 6 C T;
Kmax

Kmin
;Kmax

� �
ða½otuh�ð0Þ

þ ko2
t uhðx; 0Þk2

L2ðXÞ þ kotgk2
L2ðXT ÞÞ:

ð3:22Þ

Lemma 3.4

kotuhk2
L2ðXÞðTÞ þ a½uh�ðTÞ 6 C T;

Kmax

Kmin
;Kmax

� �
ða½uh�ð0Þ

þ kotuhk2
L2ðXÞð0Þ þ kgk

2
L2ðXÞT

Þ: ð3:23Þ

Write Rh the projection operator mapping L2ð0; T; H1
0ðXÞÞ onto

Yh
T , such that for all v 2 Yh

T :
AT ½v;u�Rhu� ¼ 0 ð3:24Þ

let q :¼ u�Rhu and h :¼ Rhu� uh, where uh is the solution of
(2.14).

For fixed t 2 ½0; T� and v 2 H1
0ðXÞ, we write Rh;tvð�; tÞ the solution

ofZ
X

trwaðxÞrðv�Rh;tvðx; tÞÞdx ¼ 0 for all w 2 Vh: ð3:25Þ

It is obvious that Rhuð�; tÞ ¼ Rh;tuð�; tÞ. For example, we can choose a
series of test functions in (3.24) which is separable in space and
time, vðx; tÞ ¼ TðtÞXðxÞ, TðtÞ is smooth in t and has dðtÞ function as
its weak limit.

We need the following lemma:

Lemma 3.5. For v 2 H1
0ðXÞ we have

ða½v�Rh;tv�Þ
1
2 6 Cha

1
2
maxl

1
4
rk~vkH2ðXÞ: ð3:26Þ

Proof. Using the change of coordinates y ¼ FðxÞ we obtain that
(write ~v :¼ v � F�1)

a½v� ¼ Q ½~v� ð3:27Þ

with

Q½w� :¼
Z

X

trwðyÞQðyÞrwðyÞdy ð3:28Þ

and

QðyÞ :¼ r
detðrFÞ � F�1: ð3:29Þ

Using the definition of Rhv we derive that

Q½~v�Rhv � F�1� ¼ inf
u2Xh

Q½~v�u�: ð3:30Þ

By interpolation property (2.7) it follows,
Q½~v�Rhv � F�1� 6 kmaxðQÞC2
Xh2k~vk2

H2ðXÞ; ð3:31Þ

where kmaxðQÞ is the supremum of eigenvalues of Q over X.
It is easy to obtain that

kmaxðQÞ 6 Camaxl
1
2
r ð3:32Þ

which finishes the proof. h

We will use Lemmas 3.5–3.9 to obtain the approximation prop-
erty of the projection operator Rh.

With the improved Assumption 2.2, differentiate (1.1) with re-
spect to t, and follow the proof of Theorem 2.1, we have

Lemma 3.6. otðu � F�1Þ 2 L1ð0; T;H2ðXÞÞ and

kotðu � F�1ÞkL1ð0;T;H2ðXÞÞ 6 CðkotgkL1ð0;T;L2ðXÞÞ þ ko
2
t gkL2ðXT Þ

þ ko3
t uðx;0ÞkL2ðXÞ þ ko

2
t uðx;0ÞkH1ðXÞÞ:

ð3:33Þ

The constant C is the one given in Theorem 2.1.

Apply Lemma 3.5 to otu, we have

Lemma 3.7

ðAT ½otq�Þ
1
2 6 ChðkotgkL1ð0;T;L2ðXÞÞ þ ko

2
t gkL2ðXT Þ

þ ko3
t uðx;0ÞkL2ðXÞ þ ko

2
t uðx; 0ÞkH1ðXÞÞ: ð3:34Þ

The constant C depends on CX, n, X, lr, amin, amax, Kmin,Kmax, and
kðTrace½r�Þ�1kL1ðXÞ.

We have the following estimate for kotqk using the so-called
Aubin–Nitsche trick [5].

Lemma 3.8

kotqkL2ðXT Þ 6 Ch2ðkotgkL1ð0;T;L2ðXÞÞ þ ko
2
t gkL2ðXT Þ

þ ko3
t uðx;0ÞkL2ðXÞ þ ko

2
t uðx; 0ÞkH1ðXÞÞ: ð3:35Þ

The constant C in Lemma depends on CX, n, X, lr, amin, amax, Kmin, Kmax,
and kðTrace½r�Þ�1kL1ðXÞ

Proof. We choose v 2 L2ð0; T;H1
0ðXÞÞ to be the solution of the fol-

lowing linear problem: for all w 2 L2ð0; T;H1
0ðXÞÞ

AT ½w; v� ¼ ðw; otqÞL2ðXT Þ: ð3:36Þ

Choosing w ¼ otq in Eq. (3.36) we deduce that

kotqk2
L2ðXT ÞÞ ¼AT ½otq; v�Rhv�: ð3:37Þ

Using Cauchy–Schwartz inequality we deduce that

kotqk2
L2ðXT Þ 6 ðAT ½otq�Þ

1
2ðAT ½v�Rhv�Þ

1
2: ð3:38Þ

Since otqð�; tÞ 2 L2ðXÞ, applying Theorem 3.1 for t 2 ½0; T� then inte-
grate over t, we obtain that

kv̂kL2ð0;T;H2ðXÞÞ 6 CkoqkL2ðXT Þ: ð3:39Þ

Using Lemma 3.5 we obtain that

ðAT ½v�Rhv�Þ
1
2 6 ChkotqkL2ðXT Þ: ð3:40Þ

It follows that

kotqkL2ðXT Þ 6 ChðAT ½otq�Þ
1
2: ð3:41Þ

We deduce the lemma by applying Lemma 3.8 to bound AT ½otq�. h
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We have the following estimates for initial data.

Lemma 3.9.

kRh;0otuðx;0Þ � otuðx;0ÞkL2ðXÞ 6 Ch2ðkotgðx;0ÞkL2ðXÞ þ ko
2
t uðx;0ÞkH1ðXÞ

þ ko3
t uðx;0ÞkL2ðXÞÞ

kRh;0uðx;0Þ � uðx; 0ÞkH1
0ðXÞ
6 Chðkotgðx;0ÞkL2ðXÞ þ ko

2
t uðx; 0ÞkH1ðXÞ

þ ko3
t uðx;0ÞkL2ðXÞÞ

ð3:42Þ

Proof. We can estimate kotqkL2ðXÞ using the duality argument sim-
ilar to Lemma 3.8 and derive the second inequality by Lemma
3.5. h

Lemma 3.10. we have

kotðu� uhÞk2
L2ðXÞðTÞ þ a½u� uh�ðTÞ

6 CðKmin;Kmax; TÞðkotðu� uhÞk2
L2ðXÞð0Þ þ a½u� uh�ð0Þ

þ kotqkL2ðXT Þko
2
t ðu� uhÞkL2ðXT Þ þAT ½otq�Þ: ð3:43Þ

Proof. For w 2 L2ð0; T;H1
0ðXÞÞ, we have

ðK�1w; o2
t ðu� uhÞÞ þ a½w;u� uh� ¼ 0: ð3:44Þ

Let w ¼ oth ¼ otðu� uhÞ � otq, it follows

1
2

d
dt

K�
1
2otðu� uhÞ

��� ���2

L2ðXÞ
þ 1

2
d
dt

a½u� uh�

¼ ðK�1
otq; o2

t ðu� uhÞÞ þ a½otq; u� uh�: ð3:45Þ

Integrate with respect to t, using Cauchy–Schwartz inequality, we
have

1
2

K�
1
2otðu� uhÞ

��� ���2

L2ðXÞ
ðTÞ � 1

2
K�

1
2otðu� uhÞ

��� ���2

L2ðXÞ
ð0Þ þ 1

2
a½u� uh�ðTÞ

� 1
2

a½u� uh�ð0Þ 6
Z T

0
K�1

minkotqkL2ðXÞko
2
t ðu� uhÞkL2ðXÞdt

þ ðAT ½otq�AT ½u� uh�Þ
1
2: ð3:46Þ

The remaining part of the proof is similar to Lemma 3.1. h

Theorem 2.2 is a straightforward combination of Lemmas 3.1,
3.3, 3.7–3.10.

3.3. Numerical homogenization in space and time: proof of Theorems
2.3 and 2.4

3.3.1. Stability
Choose w 2 Uh

T in Eq. (2.18) such that wðx; tÞ ¼ otvhðx; tÞ for
t 2 ðtn; tnþ1�. We obtain that

K�
1
2otvh

��� ���2

L2ðXÞ
ðtnþ1Þ � ðK�1

otvhðtnþ1Þ; otvhðtnÞÞL2ðXÞ

¼ �
Z tnþ1

tn

a½otvh; vh�dt þ
Z tnþ1

tn

ðotvh; gÞL2ðXÞdt: ð3:47Þ

Observing thatZ tnþ1

tn

a½otvh; vh�dt ¼ 1
2

a½vh�ðtnþ1Þ �
1
2

a½vh�ðtnÞ: ð3:48Þ

using Cauchy–Schwartz inequality it follows:

kK�1
2otvhk2ðtnþ1Þ þ a½vh�ðtnþ1Þ 6 kK�

1
2otvhk2ðtnÞ þ a½vh�ðtnÞ

þ 2
Z tnþ1

tn

ðotvh; gÞL2ðXÞðtÞdt: ð3:49Þ
Summing over n from 0 to M � 1, we have

kK�1
2otvhk2ðTÞ þ a½vh�ðTÞ 6 kK�

1
2otvhk2ð0Þ þ a½vh�ð0Þ þ 2

�
Z T

0
ðotvh; gÞL2ðXÞdt: ð3:50Þ

We conclude the proof of Theorem 2.3 using the inequality (3.7) in
the proof of Lemma 3.1.

3.3.2. H1 error estimate
We derive from Eqs. (2.18) and (2.14) that

ðK�1w; otuh � otvhÞðtnþ1Þ � ðK�1w; otuh � otvhÞðtnÞ

�
Z tnþ1

tn

ðK�1
otw; otuh � otvhÞdt þ

Z tnþ1

tn

a½w;uh � vh�dt ¼ 0:

ð3:51Þ

Let w ¼ ot ûh � otvh where ûh is the linear interpolation of uh over Zh
T .

Write yh ¼ uh � vh and wh ¼ ûh � uh, it follows that

ðK�1
otyh; otyhÞðtnþ1Þ þ ðK�1

otwh; otyhÞðtnþ1Þ � ðK�1
otyh; otyhÞðtnÞ

� ðK�1
otwh; otyhÞðtnÞ þ

Z tnþ1

tn

a½otyh; yh�dt þ
Z tnþ1

tn

a½otwh; yh�dt ¼ 0:

ð3:52Þ

Observing
R tnþ1

tn
otwhðx; tÞ dt ¼ 0 we need the following lemma,

which is a slight variation of the Hilbert–Bramble lemma, [11]

Lemma 3.11. If
R tnþ1

tn
uðsÞds ¼ 0, then

u2
6

1
4

Dt
Z tnþ1

tn

u0ðsÞ2 ds: ð3:53Þ

Since o2
t whðx; tÞ ¼ �o2

t uhðx; tÞ in ðtn; tnþ1�, by Lemma 3.11 we
haveZ

X
jotwhðx; tÞj2dxdt 6

1
4

Dt
Z tnþ1

tn

Z
X
jo2

t uhðx; tÞj2 dxdt; ð3:54Þ

andZ tnþ1

tn

Z
X
jotwhðx; tÞj2 dxdt 6

1
4

Dt2
Z tnþ1

tn

Z
X
jo2

t uhðx; tÞj2 dxdt:

ð3:55Þ

Using the inverse Sobolev inequality (2.9) we obtain from Eq. (3.55)
thatZ tnþ1

tn

Z
X

a½otwh�dxdt 6 C
Dt2

h2

Z tnþ1

tn

Z
X
jo2

t uhðx; tÞj2 dxdt: ð3:56Þ

Summing (3.52) over n, notice yhð0Þ ¼ 0, otyhð0Þ ¼ 0 we obtain that

ðK�1
otyh; otyhÞL2ðXÞðTÞ þ

1
2

a½yhð�; TÞ�

¼ �
Z T

0
a½otwh; yh�dt � ðK�1

otwh; otyhÞL2ðXÞðTÞ: ð3:57Þ

Theorem 2.4 is a straightforward consequence of (3.57), the esti-
mates (3.54), (3.56), Lemmas 3.3 and 3.9.
4. Numerical experiments

In this section, we will present the numerical algorithm and
examples.

We use web extended B-spline based finite element [19] to span
the space Xh introduced in Section 2.2. For all the numerical exam-
ples, we compute the solutions up to time T ¼ 1. The initial condi-
tion is uðx;0Þ ¼ 0 and utðx;0Þ ¼ 0. The boundary condition is
uðx; tÞ ¼ 0, x 2 oX. For simplicity, the computational domain is
the square ½�1;1� � ½�1;1� in dimension two.



Table 1
Example 4.1, numerical errors of different methods, coarse dof 49, fine dof 261,121,
g ¼ 1

Method L1 L1 L2 H1

LFEM 0.0440 0.0982 0.0534 0.2054
FEM wlin 0.0315 0.0518 0.0362 0.1601
FEM wsp 0.0021 0.0035 0.0022 0.0189

Table 2
Example 4.1, numerical errors of FEM_wsp, with g ¼ 1, doff is fine mesh dof, dofc is
coarse mesh dof

doff dofc L1 L1 L2 H1

65,025 9 0.0075 0.0118 0.0074 0.0394
49 0.0023 0.0037 0.0023 0.0194
225 0.0009 0.0023 0.0010 0.0117

261,121 9 0.0070 0.0106 0.0069 0.0373
49 0.0021 0.0035 0.0022 0.0188
225 0.0009 0.0025 0.0010 0.0117

Table 3
Example 4.1, numerical errors of FEM_wsp, with g ¼ sinð2:4x� 1:8yþ 2ptÞ

doff dofc L1 L1 L2 H1

65,025 9 0.0400 0.0390 0.0360 0.0869
49 0.0107 0.0105 0.0096 0.0393
225 0.0035 0.0047 0.0033 0.0233

261,121 9 0.0399 0.0373 0.0359 0.0866
49 0.0104 0.0109 0.0095 0.0391
225 0.0034 0.0047 0.0033 0.0231

Table 4
Example 4.1, numerical errors of FEM_wsp, with the Gaussian source g in (4.3)

doff dofc L1 L1 L2 H1

65,025 9 0.0581 0.2270 0.0704 0.3484
49 0.0272 0.1023 0.0333 0.2305
225 0.0096 0.0179 0.0095 0.0957

261,121 9 0.0574 0.2199 0.0688 0.3436
49 0.0274 0.976 0.0332 0.2254
225 0.0097 0.0212 0.0101 0.1005

H. Owhadi, L. Zhang / Comput. Methods Appl. Mech. Engrg. 198 (2008) 397–406 403
We have a fine mesh and a coarse mesh characterized by differ-
ent degrees of freedom (dof). In general, the fine mesh is generated
by hierarchical refinement of the coarse mesh: for each triangle of
the coarse mesh, choose middle points of its 3 edges as new verti-
ces, and divide the triangle into 4 new triangles. a is defined as a
piecewise constant function over each fine mesh triangle, and is
evaluated at the center of mass of the triangle.

Algorithm 4.1. Algorithm for numerical homogenization

1. Compute F on fine mesh, the fine mesh solver for F is Matlab
routine assempde.

2. Construct multi-scale finite element basis w ¼ u � F, compute
stiffness matrix K and mass matrix M.

3. March (2.18) and (2.19) in time with respect to the coarse dof.
4. Repeat 3 if we have multiple right hand sides.

In the implementation, F is approximated by a piecewise linear
finite element solution. We mesh the square such that no triangle
has an obtuse angle, therefore F is an invertible piecewise linear
mapping [17]. When we construct w, we simply take its piecewise
linear interpolation on the fine mesh.

All the computations were done at a single Opteron Dual-Core
2600 cpu of a Sun Fire X4600 server, and programmed in Matlab
7.3.

Example 4.1. Multi-scale trigonometric coefficients

The following example is extracted from [26] as a problem
without scale separation:

aðxÞ ¼ 1
6

1:1þ sinð2px=�1Þ
1:1þ sinð2py=�1Þ

þ 1:1þ sinð2py=�2Þ
1:1þ cosð2px=�2Þ

�

þ1:1þ cosð2px=�3Þ
1:1þ sinð2py=�3Þ

þ 1:1þ sinð2py=�4Þ
1:1þ cosð2px=�4Þ

þ1:1þ cosð2px=�5Þ
1:1þ sinð2py=�5Þ

þ sinð4x2y2Þ þ 1
�
; ð4:1Þ

where �1 ¼ 1
5, �2 ¼ 1

13, �3 ¼ 1
17, �4 ¼ 1

31, �5 ¼ 1
65. The conductivity a is

smooth, therefore it satisfies Cordes Condition 2.1.
First, we want to compare the performance of different numer-

ical homogenization methods

� LFEM: A multi-scale finite element where F is computed locally
(instead of globally) on each triangle K of the coarse mesh as the
solution of a cell problem with boundary condition FðxÞ ¼ x on
oK . This method has been implemented in order to understand
the effect of the removal of global information in the structure
of the metric induced by F.

� FEM_wlin: The Galerkin scheme using the finite elements
wi ¼ ui � F, where ui are the piecewise linear nodal basis
elements.

� FEM_wsp: The Galerkin scheme using the finite element
wi ¼ ui � F, where ui are weighted cubic B-spline elements.

Suppose uf is the finite element solution of (1.1) computed on
the fine mesh at time T ¼ 1, the fine mesh solver is Matlab routine
hyperbolic, which uses linear finite element basis in space and
adaptive ODE integrator in time. vh is the solution of (2.18).
Numerical errors in the norm k � k are computed by

error ¼ kvh � ufk
kufk

: ð4:2Þ

Numerical errors in L1, L2, L1 and H1 norm are computed.
In Table 1 performances of different methods with coarse mesh

dof 49 are compared. We observe that the methods using global F
have better performance, and FEM_wsp is much better than other
methods. Note that the improvement of FEM_wlin over LFEM is
not as significant as the elliptic case [29].

From now on, all the results are computed by the method
FEM_wsp.

Next, the impact of right hand side on accuracy will be investi-
gated. We solve Eq. (1.1) with a time independent source term
g ¼ 1, a slowly varying term g ¼ sinð2:4x� 1:8yþ 2ptÞ, and a
Gaussian source term given by

gðx; yÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2
p exp � x2 þ ðy� 0:15Þ2

2r2

 !
; ð4:3Þ

with r ¼ 0:05. Notice that as r! 0, the source function will be-
come singular in space.

Table 2 presents the errors for time independent term g ¼ 1.
Table 3 presents the errors for slowly varying source term g ¼
sinð2:4x� 1:8yþ 2ptÞ. Table 4 presents the errors for relatively
singular Gaussian forcing term. It is clear that if the source term
is time independent and smooth in space, the method is more
accurate, which corresponds to the smoothness requirement of g
in Theorem 2.4. In all the examples, we have tried two fine meshes
which have dof 65,025 and 261,121, respectively, roughly



Table 5
Example 4.2, numerical errors with respect to different aspect ratios, coarse dof 49,
fine dof 261121

A L1 L1 L2 H1

10 0.0021 0.0056 0.0025 0.0240
100 0.0118 0.0497 0.0180 0.0964
1000 0.0181 0.0931 0.0316 0.1308
10,000 0.0243 0.1174 0.0419 0.1550

Table 6
Example 4.2, numerical errors for g ¼ sinð2:4x� 1:8yþ 2ptÞ

doff dofc L1 L1 L2 H1

65,025 9 0.0750 0.0777 0.0729 0.1528
49 0.0301 0.0351 0.00298 0.0779
225 0.0096 0.0118 0.0092 0.0324

261,121 9 0.0752 0.0779 0.0731 0.1533
49 0.0302 0.0345 0.0299 0.0782
225 0.0094 0.0116 0.0091 0.0321
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250� 250 and 500� 500. It can be seen that for fixed coarse dof,
the errors with respect to different fine dof are pretty close, which
means fine dof 65,025 is enough for this problem.

The Fig. 1 shows the L1 error evolution with respect to time,
which is typical for all norms. The overshoot at the beginning is
proportional to the time discretization step. After several steps,
the errors tend to be stable.

Example 4.2. Time independent high conductivity channel

High conductivity channel is an interesting test problem in
many petroleum applications because of its strong non-local ef-
fects. In this example, a is characterized by a narrow and long
range high conductivity channel. We choose aðxÞ ¼ A	 1, if x is
in the channel, and aðxÞ ¼ 1, if x is not in the channel. The media
is illustrated in Fig. 2. However, in this case, whether or not Cordes
Condition 2.1 is not clear. We will go ahead testing the numerical
performance of our method.

Table 5 shows numerical errors for g ¼ 1 with fixed coarse dof
49 and A ¼ 101;102;103;104, respectively. From the table we can
see that the errors grow with the aspect ratio increasing, but the
growth is moderate and the numerical behavior of the method is
stable. The errors for time dependent right hand side
g ¼ sinð2:4x� 1:8yþ 2ptÞ with A ¼ 102 are also given in Table 6.
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Fig. 1. Example 4.1, L1 error with respect to time, for g ¼ 1, coarse dof 9, fine dof
65025.

Fig. 2. Example 4.2, high conductivity channel medium.
Example 4.3. Time independent site percolation

In this example, we consider the site percolating medium asso-
ciated to Fig. 3. In this case, we subdivide the square into a 64� 64
checkerboard, the conductivity of each site is equal to c or 1=c with
probability 1/2. We have chosen c ¼ 10 in this example. In fact, this
medium may not satisfy the Cordes Condition 2.1 (also refer to Re-
mark 2.1). However, we will show that the method still works fine
for this example.

Fig. 4 shows u computed with 261121 dof and vh computed with
9 dof in the case g ¼ 1 at time 1 using method FEM wsp. They are
visually almost the same even for small scale features. Table 7
gives the numerical errors for g ¼ 1 with respect to different coarse
and fine dof.

Finally, we consider the site percolating medium, with Neu-
mann boundary condition and a more realistic forcing term. The
source term is given by gðx; tÞ ¼ TðtÞXðx; yÞ, Xðx; yÞ is the Gaussian
source function described by

Xðx; yÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2
p exp � x2 þ y2

2r2

� �
; ð4:4Þ
Fig. 3. Example 4.3, site percolation medium.



Fig. 4. u computed with dof 261121 and vh computed with dof 9 at time 1, they are interpolated on a coarser mesh in order to have a clear picture.

Table 7
Example 4.3, numerical errors for g ¼ 1

doff dofc L1 L1 L2 H1

65,025 9 0.0750 0.0777 0.0729 0.1528
49 0.0301 0.0351 0.00298 0.0779
225 0.0135 0.0147 0.0133 0.0333

261,121 9 0.0752 0.0779 0.0731 0.1533
49 0.0302 0.0345 0.0299 0.0782
225 0.0131 0.0145 0.0130 0.0329

Table 8
Example 4.3, numerical errors for modified source

doff dofc L1 L1 L2 H1

65,025 9 0.0429 0.1580 0.0505 0.4065
49 0.0261 0.0965 0.0324 0.3030
225 0.0185 0.0879 0.0226 0.2718

261,121 9 0.0491 0.1189 0.0578 0.4259
49 0.0263 0.0969 0.0324 0.2780
225 0.0178 0.1139 0.0221 0.2474
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with r ¼ 0:05, TðtÞ ¼ T1ðtÞT2ðtÞ

T1ðtÞ ¼
X10

1

2
1� ð�1Þk

kp sinð2kptÞ; ð4:5Þ

and T2ðtÞ ¼ erfcð8ðt � 0:5ÞÞ, erfc is the complementary error func-
tion. We use this source term to emulate a source acting around
the origin before t ¼ 0:5, then suddenly decays. See Fig. 5 for TðtÞ
in ð0;1Þ.

In fact, our future goal is to simulate the response of an explo-
sion, usually this is done with a so-called Ricker function [6], i.e.,
gðx; y; tÞ ¼ d0ðx� xs; y� ysÞRðtÞ with

RðtÞ ¼ ð1� 2p2ðf0t � 1Þ2Þ expð�p2ðf0t � 1Þ2�; ð4:6Þ

where d0 is the Dirac function and f0 is called the central frequency
of the source wavelet. It is clear that Ricker function does not belong
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Fig. 5. t ! gð0; tÞ.
to L2ðXTÞ, our analysis does not apply and numerical experiment
failed in this case. Therefore, we would like to test the above mod-
ified source term first.

Numerical errors for this modified source are given in Table 8.
The errors are acceptable but not so good as g ¼ 1. Possible solu-
tions include the adaptive integration in time and adaptation in
space around the source.

5. Conclusion and further remarks

From above analysis and numerical examples, we observe that
good numerical approximations can be obtained with much fewer
degrees of freedom for acoustic wave equation with heterogeneous
coefficients, even for the cases which do not satisfy the Cordes con-
dition. Compared with the multi-scale finite element method
which compute the basis locally, our method has much better
accuracy, especially for problems with strong non-local effects.

As it has been done in [29], once one understand that the key
idea for the homogenization of (1.1) lies in its higher regularity
properties with respect to harmonic coordinates one can homoge-
nize (1.1) through a different numerical method (such as a finite
volume method).

Moreover, it could be observed that one could use any set of n
linearly independent solutions of (1.1) instead of the harmonic
coordinates. The key property allowing the homogenization of
(1.1) lies in the fact that if the data (right hand side and initial val-
ues) has enough integrability then the space of solutions is at small
scales close in H1 norm to a space of dimension n. Thus, once one
has observed at least n linearly independent solutions of (1.1), one
has seen all of them at small scales.

Write L :¼ �rar. L�1 maps H�1ðXÞ into H1
0ðXÞ, it also maps

L2ðXÞ into V a subspace of H1
0ðXÞ. V is close in H1 norm to a space

of dimension n (the dimension of the physical space X) in the fol-
lowing sense.

Let Th be a triangulation of X 
 Rn of resolution h (where
0 < h < diamðXÞ). Let K set of mappings from Th into the unit
sphere of Rnþ1 (if k 2 K then k is constant on each triangle
K 2Th and kkðKÞk ¼ 1), then
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sup
v1 ;v2 ;...;vnþ12V

inf
k2K

Pnþ1
i¼1 kivi

��� ���
H1

0ðXÞPnþ1
i¼1 krarvikL2ðXÞ

6 Ch: ð5:1Þ

Eq. (5.1) is saying that any nþ 1 elements of V are (at an h approx-
imation in H1 norm) linearly dependent. Recall that nþ 1 vectors
are linearly dependent in a linear combination (with non null coef-
ficients) of these vectors in the null vector. In (5.1) the linear com-
bination of the nþ 1 vectors is at relative distance of order h
(resolution of the triangulation) from 0.

We notice that some recent results using global information
[1,23,22] are formulated in a partition of unity framework [8]. In
this case, f1; F1; . . . ; Fng can be used to construct the local approx-
imation space.
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