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Fig. 1. Wavelet-based coarse graining of inhomogeneous linear materials. We introduce a new approach for numerically capturing the behavior of
highly inhomogeneous linear elastic objects on coarse grids. Through a hierarchical construction of material-adapted sparse basis functions and associated
wavelets (left, 2D example), we provide an efficient model reduction approach which reproduces the physical behavior of any complex material composition
even at coarse scales (right). The resulting simulation involves only well conditioned sparse matrices, leading to several orders of magnitude acceleration
compared to a solve based on the fine ill-conditioned linear system derived from typical piecewise polynomial basis functions.

In this paper, we introduce a hierarchical construction of material-adapted

refinable basis functions and associated wavelets to offer efficient coarse-

graining of linear elastic objects. While spectral methods rely on global basis

functions to restrict the number of degrees of freedom, our basis functions

are locally supported; yet, unlike typical polynomial basis functions, they

are adapted to the material inhomogeneity of the elastic object to better

capture its physical properties and behavior. In particular, they share spectral

approximation properties with eigenfunctions, offering a good compromise

between computational complexity and accuracy. Their construction in-

volves only linear algebra and follows a fine-to-coarse approach, leading to a

block-diagonalization of the stiffness matrix where each block corresponds

to an intermediate scale space of the elastic object. Once this hierarchy has

been precomputed, we can simulate an object at runtime on very coarse

resolution grids and still capture the correct physical behavior, with orders

of magnitude speedup compared to a fine simulation. We show on a vari-

ety of heterogeneous materials that our approach outperforms all previous

coarse-graining methods for elasticity.
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1 INTRODUCTION
Inhomogeneous elastic bodies exhibit a wide range of space and

time scales, with rapid vibrations in stiff parts and slower, larger

deformation in softer regions. Efficiently capturing this wide range

of local behaviors numerically is challenging: using an overly fine

spatial discretization to represent the inhomogeneous structure of

the medium faithfully is prohibitively costly, while simply using a

coarse mesh with low-order polynomial finite elements to simulate

such complex materials can perform arbitrarily badly [Babuška and

Osborn 2000]. As the demand for ever more complex simulation

increases (with applications ranging from realtime surgical train-

ing to rapid prototyping of metamaterials), the need for scalable

coarse-graining methods whose computational costs grow reason-

ably slowly with the structural complexity of the simulated object

has become paramount.

Coarsening (or homogenization), i.e., finding an efficient method

that best approximates on a coarse computational grid the behavior

of the original higher complexity material, is in fact a key issue in
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Fig. 2. Homogenization effects per level. For a fine 16×16 bi-material
elastic composite (the light material being softer) hung from its fixed top,
an extremely coarse 2 × 2 simulation using a Dirac refinement captures
the proper behavior, but part of the deformation is only captured by the
wavelets at the same level—the other levels carrying no discernible additional
frequencies. The bilinear refinement provides better coarse-graining, since
the coarsest 2 × 2 level already captures the complete deformation.

computational science for increased efficiency and scalability. In-

deed, dynamical models with highly heterogeneous materials typi-

cally lead to ill-conditioned systems of equations, and evenmultigrid

methods (which have been used successfully for shells [Jeon et al.

2013; Tamstorf et al. 2015] and volumes [Zhu et al. 2010; McAdams

et al. 2011; Dick et al. 2011]) can only handle mostly homogeneous

problems: their convergence rate can be severely affected by the

lack of regularity in the material coefficients [Alcouffe et al. 1981;

Yavneh 2006; Brandt et al. 2011]. This paper discusses a new homog-

enization method for vector-valued partial differential equations

(PDEs) applicable to highly heterogeneous elastic bodies, based on

the design of hierarchical material-adapted basis functions (and

their associated wavelets) to allow for fast, yet accurate simulation.

1.1 Previous work
A large variety of approaches have been proposed to address ef-

ficiency and scalability in the simulation of deformable bodies.

Adaptive simulation through spatial adaptation [Narain et al. 2012],

wavelets [Grinspun et al. 2002] or even space and time and adaptive

sampling [Debunne et al. 2001] can counteract the increased visual

rigidity and artifacts that coarse elements with low-order basis func-

tions produce, using refinements (in the number of elements and/or

their polynomial orders) based on the local amount of deforma-

tion to distribute degrees of freedom where they are most needed.

However, inhomogeneous materials often require a high resolution

over most of the domain, rendering adaptivity unable to improve

efficiency. Another strategy is to intentionally limit the space of

possible deformations, through some form of modal analysis [Pent-

land and Williams 1989; Krysl et al. 2001; Hauser et al. 2003; Barbič

and James 2005; Treuille et al. 2006; Liu et al. 2015] or even keyfram-

ing and interpolation [Martin et al. 2011]. However, the resulting

algorithms do not scale well as they are typically high in runtime

complexity, preventing the capture of fine details at low compu-

tational cost. Moreover, their degrees of freedom are associated

with global deformations, not with spatial locations, fundamentally

complicating the treatment of contacts and collisions— but this idea

has been particularly fruitful in realtime motion editing [Barbič and

Popović 2008; Huang et al. 2011; Hildebrandt et al. 2012; Li et al.

2014]. Another family of approaches, called numerical coarsening (or
homogenization), propose to find constitutive parameters for each

coarse element that best approximate the behavior of the original

heterogeneous medium [Kharevych et al. 2009; Panetta et al. 2015;

Chen et al. 2015, 2017], or to construct local basis functions that are

better able to capture the physical behavior of the model [Nesme

et al. 2009; Torres et al. 2014; Chen et al. 2018]. These methods are

particularly convenient in practice as they can directly be integrated

within a conventional Galerkin simulation code.

Homogenization has, thus far, demonstrated the best compromise

between efficiency and accuracy in the treatment of inhomoge-

nous materials; yet, current methods have a number of limitations.

Element-wise coarsening of basis functions [Nesme et al. 2009; Tor-

res et al. 2014] is often limited in its ability to approximate the

proper dynamics for highly inhomogeneous materials as the junc-

tions between element are considered constrained, adding undue

rigidity. Chen et al. [2018] thus proposed to use matrix-based and

non-conforming basis functions that capture some key global defor-

mations exactly. However, this most recent approach is not without

significant shortcomings as well. First, boundary conditions are

entirely ignored in the coarsening process and only enforced numer-

ically at runtime, potentially creating significant visual artifacts (see

Fig. 11); the amount of coarsening is also effectively limited as the

construction of their bases require solving a large amount of local

optimizations, which can only be amortized through parallelization;

moreover, the actual dynamics (potentially involving damping) is

not accounted for in the coarsening; finally, the authors only con-

sidered a two-scale homogenization, preventing the computational

flexibility afforded by adaptive methods.

1.2 Outline
In this paper, we introduce a novel approach to the design of nested

functional spaces that are adapted to the material properties of

a given inhomogeneous elastic object. We will argue that these

basis functions should be localized in both space and eigenspace,

and should also respect fundamental invariances (translation and

rotation) to be most relevant for simulation, and will introduce a

hierarchical construction of such material-adapted basis functions,

along with their associated scale-orthogonal wavelets. With the

resulting elasticity-induced multiresolution decomposition of a fine

functional space, we will show that single-scale or adaptive coarse-

graining, augmentedwith a rotation correction [Huang et al. 2011] to

account for geometric non-linearity, can be achievedmore efficiently

and with better coarse-grained results than previous methods.

2 MOTIVATIONS AND FOUNDATIONS
We now present the core concepts behind our contribution. For

the sake of generality, we assume in this section that one seeks

to compute a Galerkin discretization of a given linear, symmetric

and positive definite operator L, either in the context of solving a

static problem (finding a finite-dimensional scalar field u such that

Lu=д for given forcing terms д), or for dynamic simulation (e.g.,

performing an integration time step of the form ut+dt =Lut ). The
operator is further assumed to derive from a highly heterogeneous
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and strongly anisotropic medium, rendering its solution space mul-
tiscale—i.e., involving a wide range of spatial scales and time scales.

In this case, coarse piecewise-polynomial basis functions lead to

severe inaccuracies [Babuška and Osborn 2000]. We discuss various

possibilities in the choice of basis functions to allow for a reliable

numerical method, even on coarse grids.

2.1 Local vs. global basis functions
Pros and cons of global support. The visual importance of the fun-

damental frequencies of an elastic object was noted early on in

computer animation [Pentland and Williams 1989]. In essence, the

eigenfunctions of the linear operator one wishes to simulate are

indeed seemingly the best basis functions to rely on if one wishes

to rewrite the dynamics as a function of fewer variables: keeping

only a low number of degrees of freedom will still capture the most

important frequencies. Since these basis functions diagonalize the

operator, they can be handled individually as they are truly repre-

senting different scales with respect to this operator. In practice,

however, the global nature of these eigenbases is also their main

shortcoming. Having no associated spatial degree of freedom to ma-

nipulate spells trouble: spatial collision handling cannot be resolved

directly in eigenspace, and any change of boundary conditions re-

quires a new eigendecomposition. These issues are also present in

methods using other non-local basis functions [Treuille et al. 2006;

Martin et al. 2011; De Witt et al. 2012; Liu et al. 2015]. Moreover,

computing a sufficient number of eigenmodes for very inhomoge-

neous materials is numerically difficult as eigenvalues often become

closely clustered, bringing ill-conditioning.

Pros and cons of local support. For the simulation of homogeneous

deformable bodies, the use of low-order polynomial basis functions

defined over simple spatial grids is ubiquitous in animation. Alas,

keeping the same local basis functions for coarse simulations of

inhomogenous materials fails spectacularly. Recent works have fo-

cused on tailoring local coarse basis functions such that their use in

a typical Galerkin method directly on the coarse computational grid

exhibits the dynamical characteristics of the original complex mate-

rial. A first approach to designing material-adapted basis functions

was offered in [Nesme et al. 2009] through per-element constrained

static equilibrium solves, The locality of this homogenization proce-

dure and lack of enforcement of boundary conditions was shown

to be limiting in its ability to handle complex material composi-

tion [Torres et al. 2014]. Local, non-conforming and matrix-valued

basis functions that are able to exactly capture key global modes

of the deformable objects [Kharevych et al. 2009] were introduced

recently [Chen et al. 2018], leading to much improved results on

large deformation of inhomogeneous materials. However, it remains

difficult to quantify how well a local basis is adapted to a given ma-

terial composition: besides their important geometric properties

(such as partition of unity), the bases of [Chen et al. 2018] may not,

for instance, be able to enforce boundary conditions well, and they

are only guaranteed to exactly capture a small number of global de-

formations around equilibrium. Thus, while local methods are easy

to incorporate into a typical finite element simulation pipeline, they

do not necessarily capture even the most fundamental frequencies

of the material [Chen et al. 2019].

2.2 Multiresolution analysis
Multiscale basis functions. As spectral and local basis functions

present two very different options with their own set of benefits

and shortcomings, MultiResolution Analysis (MRA [Mallat 2008])

bridges these two extremes by defining a hierarchy of local and re-
finable basis functions spanning functional spacesVk

(from k=1 for
the coarsest space tok=q for the finest space) satisfyingVk ⊂Vk+1

:

for a given hierarchy of gridsMk
, nodal basis functions {φki }i are

defined as local, linear combination of finer basis functions {φk+1i }i .

Consequently, the spatial support size of basis functions at level k
decreases with k . Each grid level k is now able to capture a given

frequency band of an arbitrary function through a series of spatial

degrees of freedom. In that sense, MRA offers space- and frequency-

localized basis functions. Moreover, one can additionally define

wavelets {ψk
i }i corresponding to a basis of the complement func-

tional space between two consecutive scales; i.e., wavelets capture

the details that aremissed when a function inVk+1
is approximated

by a function in Vk
. Such hierarchical basis functions and their

wavelets have found countless applications as they can be used in a

Galerkin framework for adaptive simulation [Stollnitz et al. 1996;

Grinspun et al. 2002], offering a flexible alternative to solely-global

or only-local bases discussed above.

Computational limitations. Despite their early use in numerical

coarsening [Brewster and Beylkin 1995; Dorobantu and Engquist

1998] due to their attractive seamless adaptivity, wavelet-based

Galerkin approaches to simulation cannot handle highly inhomoge-

neous materials well either : a wavelet-Galerkin discretization can

in fact worsen the condition number of the resulting system of

equations. Indeed, the stiffness matrix expressed in this MRA basis

becomes dense as the wavelets are not adapted to the operator at

play. In other words, while MRA forms a decomposition where basis

functions and wavelets are L2-orthogonal, i.e.,

∀i, j,k,

∫
Ω
ψk
i φ

k
j dx = 0;

their use in the context of an operator L would require, instead:

∀i, j,k,

∫
Ω
ψk
i L φ

k
j dx = 0. (1)

Only then the decomposition can become optimal for computa-

tions involving L: now the wavelets are truly orthogonal with re-
spect to the operator to the basis functions of their own resolution

and to all other wavelets, thus offering a functional representation

which block-diagonalizes the operator L. Failure to enforce this

L-orthogonality has obvious consequences: since the basis func-

tions and wavelets are not aware of the fundamental frequencies of

L, high frequencies of the system can be present at coarse scales,

and vice-versa. This notion of a L-adapted MRA, different from

the traditional “signal processing” standpoint and its associated use

of L2, was first spelled out in [Sudarshan 2005], but no practical

construction of L-adapted basis functions and wavelets was offered.

2.3 Space- and eigenspace-localized basis functions
Variational adaptation of bases. In a recentwork, Owhadi [Owhadi

2017] introduced a variational definition of optimal operator-adapted

basis functions inspired by a long history of optimal functional ap-

proximation, starting with the concept of Wannier functions [Wan-

nier 1937], as well as the more recent notions of optimal recovery
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splines [Micchelli and Rivlin 1977], polyharmonic splines [Harder

and Desmarais 1972] and energy-minimizing splines [Vassilevski

2010]. Given an existing set of conventional locally-supported basis

functions {φi }i on a grid, a set of operator-adapted basis functions

{φi }i is defined such that each one of them satisfies:

φi = argmin

ϕ

∫
Ω
ϕLϕ s.t.

∫
Ω
ϕφ j = δi j ∀j . (2)

In other words, the adapted basis functions are as close as possible

to the fundamental frequency (as they minimize the quadratic form

associated withL) while being forced to weakly reproduce the origi-

nal basis functions. Owhadi showed that the adapted basis functions

thus defined turn out to be exponentially-decaying in space, which

means that a simple thresholding make them tightly localized in

space around the original basis location. Yet, they are also localized

in eigenspace, i.e., they stand in the span of only a few eigenvectors

associated to the lowest eigenvalues. This dual localization thus

strikes a balance between spectral and local bases. Note also that

this constrained quadratic minimization is significantly simpler than

an ℓ1-based minimization to induce localization [Brandt and Hilde-

brandt 2017], and that the local support of the resulting functions

is induced by the operator, not forced to be precisely the size of a

coarse element like previous approaches [Nesme et al. 2009].

Operator-adapted wavelets. Furthermore, Owhadi showed that

one can construct a nested set of operator-adapted basis functions

and their associated wavelets (dubbed “gamblets” due to their game-

theoretic interpretation), providing a full L-adapted MRA. Based

on an existing L2-based hierarchy of refinable basis functions and

associated wavelets defined over a hierarchy of meshes {Mk }k , he

described in [Owhadi 2017] how to start at the finest level with the

original finest basis functions spanning a functional spaceVq
and,

in a bottom-up fashion, decompose this finest space into a hierarchy

ofL-adapted basis functions andwavelets with simple linear algebra

and without having to repeatedly solve the optimization problem in

Eq. (2) for each of them. The result is a new set of material-adapted

basis functions (that capture the most relevant L-eigenspaces) and

their associated wavelets, with the following properties:

• for each level k , the material-adapted basis functions φki on the

nodes of meshMk
are local, and span a functional spaceVk

;

• For all levels but the finest, each function φki is refinable, i.e., it

is a linear combination of finer adapted basis functions φk+1i ;

• the wavelets of level k (i.e., the details inVk+1
not inVk

) span

the L-orthogonal complementWk
ofVk

inVk+1
:

Vk+1 =Vk ⊕LW
k , (3)

hence Eq. (1) is satisfied at each adapted level ,q;
• the constructed hierachy of basis functions and wavelets spans

the original finest functional space:

Vq =V1 ⊕LW
1 ⊕L . . .W

q−2 ⊕LW
q−1

; (4)

• the condition numbers of the Galerkin stiffness matrices for L

using the adapted basis functions in any level k are uniformly
bounded; similarly for the wavelet-based stiffness matrices.

Since the resulting hierarchy of adapted basis functions andwavelets

block-diagonalizes the operator L per level, it offers a very con-

venient adaptive framework for efficient model reduction of the

operator [Owhadi and Zhang 2017]. Alas, this construction is fun-

damentally designed for scalar-valued operators, and thus inap-

propriate for elasticity: a per-coordinate treatment of the elastic

displacements would entirely fail to capture the inhomogenous and

anisotropic structure of the material, an issue already pointed out

in [Chen et al. 2018]. Even the recent work of [Budninskiy et al.

2019], extending gamblets to finite-element differential forms, does

not allow for homogenization of elastic models.

2.4 Contributions
While the approach in [Owhadi 2017] only applies to scalar-valued

PDEs, we propose in this paper to extend it to vector-valued equa-

tions and apply it to the fast simulation of deformable bodies with

highly heterogeneous materials. In the process, we introduce the

following contributions to the field of elasticity coarsening:

• we introduce the use of basis functions that are localized in space

and eigenspace, yet respect infinitesimal translation- and rotation-

invariance for the efficient simulation of complex materials, of-

fering far improved coarsening compared to per-coarse-element

analysis of the material used in previous methods;

• following the recent construction of [Chen et al. 2018], our basis

functions are matrix-valued to make sure the 3D coordinates are

spatially correlated based on the local material composition, and

are stored using the finest level of resolution;

• a whole hierarchy of such basis functions is constructed to offer

a multiresolution numerical treatment of deformation, naturally

accounting for Dirichlet conditions;

• the use of Rotation-Strain coordinates, previously used in the

context of modal analysis, is leveraged in our context to robustly

address geometric non-linearity (i.e., to remove the visual arti-

facts brought on by the linearization of the Green strain tensor

that linear elasticity is based on);

• finally, our construction can handle coarsening of both elastostat-

ics and dynamics, i.e., the homogenization of just the elasticity

operator or of a time integration step for elasticity.

Next we explain our coarsening process to construct the hierarchy of

adapted basis functions for a given inhomogeneous elastic material.

3 CONSTRUCTING MATERIAL-ADAPTED HIERARCHY
We now go over our approach to create a material-adapted hierarchy

of refinable basis functions and their wavelets. This construction,

which turns a conventional multiresolution sequence of functional

spaces into a set of basis functions adapted to a given deformable

body, is achieved in a fine-to-coarse manner through linear algebra.

For clarity, all material-adapted entities will be denoted with the

outline font, so that related canonical and material-adapted quan-

tities can be denoted similarly, but distinctly; for instance, while

the basis function for node i at level k is denoted φki , the associated
material-adapted basis function will be, instead, denoted φki .

3.1 Setup
Let B be the deformable body we seek to simulate.

Mesh hierarchy. While our construction applies to arbitrary mesh

hierarchies (as we will discuss and demonstrate in Sec. 5.1), we
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level 1 level 2 level 3

Fig. 3. Mesh hierarchy. Our method accommodates various mesh hierar-
chies: homogenization can be achieved over nested or non-nested refinement
levels of simplicial (top) or polyhedral (bottom) mesh elements.

M1

M2

.

.

.

Mq

assume for simplicity of exposition

that we are given a hierarchy of

nested regular grids {Mk }k=1..q in

3D (with level k+1 being twice as

fine as level k , see Fig.3 and 2D inset)

such that the finest grid Mq
finely

discretizes the volume of B in its rest

shape. We denote by xki the position of node i of grid Mk
. Each

element of this fine discretization is given its own elastic parameters

(Young’s modulus, Poisson’s ratio, and density) corresponding to

the heterogeneous medium in B. A subset of boundary faces of this

fine grid are also tagged, representing the parts of the boundary ∂B
with (fixed) Dirichlet boundary conditions. Finally, we denote by

nk the number of nodes on gridMk , and we define ηk ≡nk+1−nk
to be the loss of degrees of freedom between level k and level k+1.

Initial fine discretization of L. On the finest grid Mq
, we denote

by {φi }i=1..nq the standard nodal-based trilinear basis functions.
From these basis functions, the stiffness matrix Aq

for linear elas-

ticity given the fine material properties is assembled as in typical

finite-element Galerkin simulations—see, e.g., [Irving et al. 2006].

Solution sought. Solving elastostatics or dynamics for the body

B consists in computing the displacement u
q
i ∈�3 of each node x

q
i ,

i=1..nq , in the fine grid Mq
. As nq is potentially very large and

the stiffness matrix Aq
very ill-conditioned due to the inhomoge-

neous medium, we wish to find a hierarchical approach to solving

for the displacements which offers both better conditioning and

homogenization properties, in the sense that coarse levels capture

coarse approximations; consequently, this construction can be used

for model reduction later on.

3.2 Matrix-valued canonical multiresolution analysis
While scalar basis functions are the default choice in typical finite

element elasticity computations, we use 3×3 matrix-valued basis

functions instead: since displacements are 3D vectors, coarse basis

functions need to provide pointwise linear transformations so that

the x , y, and z coordinates are not treated independently [Chen et al.

2018]. Anisotropy induced by the heterogeneity of the deformable

body can then be properly captured even at coarse scales.

Finest functional space. We first derive nodal, matrix-valued basis

functions {φqi }i on the fine grid from the trilinear scalar functions:

φ
q
i = �3×3 φi (5)

where �p×q denotes the p × q diagonal matrix with unit diagonal

values. These basis functions define a finite-dimensional functional

space Vq =span{φqi }i , used to reconstruct the continuous defor-

mation in our framework from the node displacements u
q
i . Note

that for this finest resolution, the associated stiffness matrix is the

traditional trilinear stiffness matrix Aq
mentioned above.

Hierarchy of functional spaces. Our use of trilinear basis functions
in Eq. (5) allows us to define a whole hierarchy of refinable (matrix-

valued) basis functions on the sequence of meshes Mk
. Indeed,

trilinear basis functions are known to be refinable on the mesh

hierarchy we defined in Sec. 3.1: trilinear basis functions on levelq−1
are, in fact, a linear combination of the finer trilinear basis functions

φi—and similarly for the levels above. Therefore, we can build upon

our matrix-valued basis functions φ
q
i to induce a hierarchy of basis

functions φki for k=1..q−1 through the refinability relation:

∀k ∈ {1, ..,q−1}, φki =

nk+1∑
j=1

Cki j φ
k+1
j , (6)

where Ck is a 3nk ×3nk+1 matrix for which

Cki j =ci j �3×3, and the scalar coefficients ci j
indicate the refinement relationship for the

original trilinear basis functions (in 1D, these

coefficients are
1

2
, 1, 1

2
, see inset). Sparsity of

Ck follows from the actual locality of the refinement stencil of

trilinear functions. Note that this definition is a seemingly compli-

cated way to explain that the resulting basis functions at coarser

levels look exactly like the the basis functions at the finest level, just

on coarser grids; but we will leverage the refinement matrices Ck

(and even propose simpler ones) to compute our material-adapted

multiresolution analysis, hence the necessary introduction of this

overly-pedantic notation. The resulting basis functions form awhole

hierarchy of functional spaces Vk
, 1≤k <q. As discussed in Sec. 2,

these canonical basis functions lack eigen-awareness at coarse scales:

applying them as is for Galerkin projection can be arbitrarily bad.

Kernel matrix. For each refinement matrix Ck, k=1..q−1, we also
define an associated sparse 3ηk×3nk+1 kernel matrixWk

satisfying

Ck Wk ,T =03nk×3ηk .

By its very definition, the rows ofWk
parametrize the kernel of Ck ;

therefore, each kernel matrix at level k provides a basis for elements

of Vk+1
that cannot be captured at all in (i.e., that will be invisible

to) Vk
. As such, these matrices will be crucial to the creation of

material-adapted wavelets.

3.3 Towards material-adapted basis functions
We must now adapt the basis functions of the canonical hierarchy
of functional spaces to form, based on the actual material of the

deformable body B, a material-adapted multiresolution analysis.

Refinability. One of the key arguments we made in Sec. 2 is that

having refinability allows for adaptive computations. As a conse-

quence, we propose to construct material-adapted refinement op-

erators Ck for each level k between 1 and q−1, from which the
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Fig. 4. Material-adapted basis functions.We visualize our matrix-valued basis functions φk (using isolevels of their Frobenium norms) for two different
heterogeneous 2D materials (top/bottom) (no boundary conditions are set). The basis functions of three different node locations (center (blue), and two corners
(red and green)) are shown on four different levels. At the finest level k =q=4, basis functions are bilinear. Coarser levels depend on whether Dirac (left) or
bilinear (right) refinement is used, but the anisotropy of the material is clearly reflected in all the resulting basis functions.

material-adapted basis functions are simply defined through:

φki =

nk+1∑
j=1
Cki jφ

k+1
j , (7)

with φ
q
i ≡φ

q
i for i = 1..nq to bootstrap the construction. In other

words, we keep the finest functions unchanged, but the coarser

functions are assembled from linear combinations of these fine basis

functions. Compared to the original basis functions, they will remain

sparse (with a local support decreasing in size with k), but will now

span material-adapted functional spacesVk
such that fundamental

frequencies of scale k are well captured.

Wavelets. As a byproduct of the construction, we will also derive

wavelets
1
(denoted as {ψkj }j at level k , with 1 ≤ k < q) that are

L-orthogonal to the material-adapted basis functions, i.e.,∫
Ω
φki Lψ

k ,T
j = 0 ∀i, j, (8)

as in the scalar-valued case of Eq. (1).

3.4 Variational definition of material-adapted subsampling
We leverage the variational formulation of [Owhadi 2017] given in

Eq. (2) by adapting it to our matrix-based functional spaces. Denot-

ing Ak+1 the yet-unknown stiffness matrix computed with material-

adapted basis functions of level k assembled from 3×3 blocks

Ak+1i j =

∫
Ω
φk+1i Lφk+1,Tj ,

the material-adapted Ck can be defined variationally through

Ck = argmin

M
Tr

[
MAk+1MT ]

s. t. M Ck ,T =�3nk×3nk . (9)

Mirroring the scalar case given in its continuous form in Eq. (2), this

definition looks for a new refinement operator at levelk such that the
material-adapted basis functions it induces minimize the quadratic

form corresponding to the operator L (given by its stiffness matrix

Ak+1 computed at level k+1), under the constraint that they are

weakly collocated with the canonical basis functions φki of the same

level (i.e. they should be similarly positioned in physical space).

1
They are technically prewavelets since we will not orthonormalize them; but we will

refer to them as wavelets for simplicity.

This constrained quadratic optimization problem turns out to have

a closed form solution, reading:

Ck = Ck ,†
[
�3nk+1×3nk+1 −Ak+1 Wk ,T

(
Bk

)−1
Wk

]
, (10)

where Ck ,† = (CkCk ,T )−1Ck (i.e., the Moore-Penrose (left) pseu-

doinverse of Ck ) and Bk =WkAk+1Wk ,T
.

Proof. Given the constraint Ck Ck ,T = �3nk×3nk and the fact

that the columns of the kernel matrix Wk
span the kernel of Ck ,

the solution refinement matrix Ck must be of the form

Ck = Ck ,† + ZWk
(11)

where Z is an arbitrary 3nk ×3ηk matrix; that is, it must be equal to

the pseudoinverse of Ck plus a component lying in the kernel of Ck .
Moreover, to minimize the quadratic form Ak+1 while satisfying the
constraint, their respective derivatives must be proportional, i.e.,

CkAk+1 = λCk where λ is a Lagrange multiplier. In other words,

CkAk+1 must be orthogonal to the kernel operatorWk
:

CkAk+1Wk ,T = 0. (12)

Therefore, (Ck ,† + ZWk )Ak+1Wk ,T =0, which implies:

Z = −Ck ,†Ak+1Wk ,T (
WkAk+1Wk ,T )−1.

Substituting Bk for the matrix product in parenthesis and plugging

Z back into the expression of Ck leads to Eq. (10). �

This explicit expression for Ck has important consequences: it

implies a simple and efficient fine-to-coarse construction of material-

adapted basis functions and stiffness matrices entirely through

sparse linear algebra as we will soon present.

Operator-adapted wavelets. Operator-adapted wavelets {ψki }i ,k
associated with the operator-adapted basis functions can also be

directly derived through the kernel matrices via:

ψki =

nk+1∑
j=1

Wk
i j φ

k+1
j .

Indeed, these wavelets are L-orthogonal to all basis functions on

the same level k since, by definition, they satisfy:∫
Ω
φki Lψ

k ,T
j =

(
CkAk+1Wk ,T

)
i j
,

which we proved to be a null matrix in Eq. (12) for any i=1..nk and

j=1..ηk+1. We will denote the space of material-adapted wavelets
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at level k by Wk = span{ψki } for i=1..ηk+1 in the remainder of

this paper. Note also that the matrix Bk used in Eq. (10) can now be

understood as the Galerkin stiffness matrix of L when written in

the basis of wavelets, i.e., Bki j =
∫
Ω
ψki Lψ

k ,T
j .

Material-adapted multiresolution analysis. We now have a hierar-

chy of basis functions and wavelets from level 1 to level q−1, with a

cardinality equal to the number of basis functions at the finest level

q, offering a material-adapted multiscale framework for numerical

simulation. In particular, while the discrete operator representing

the elasticity operator L using the fine functional space Vq
was

the stiffness matrix Aq
, using our material-adapted basis instead

(Eq. (4)) leads to a block-diagonal stiffness matrix L:

L =

����
�

A1 0 . . . 0
0 B1 . . . 0
...
...
. . .

...
0 0 . . . Bq−1

����
�
,

due to the orthogonality of the basis functions and wavelets. In

addition, the properties of the variational definition of operator-

adapted wavelets from [Owhadi 2017] imply that the diagonal blocks

of thismatrix are guaranteed to bewell-conditioned, offering a better

(still sparse) substitute to the fine-resolution matrix Aq
. We refer

the reader to the recent work of [Budninskiy et al. 2019] for a short

summary of the proof of this statement for the scalar-valued case,

which still holds in our vector-valued case.

3.5 Algorithm
We now explain how having a closed form solution to our varia-

tional definition of material-adapted basis functions allows us to

construct the entire hierarchy of basis functions, wavelets, and stiff-

ness matrices in a fine to coarse fashion.

Storage of adapted basis functions and wavelets. It is clear from
Eqs. (7) and (8) that all adapted functions are linear combinations of
the finest basis functions φ

q
i . Therefore, for notational convenience,

we can describe them asmatrix coefficients of the fine basis functions

they are made of: we use a (sparse) matrix Φk of operator-adapted

basis functions (with 3nk rows and 3nq columns) and a (sparse)

matrix Ψk of wavelets (with 3ηk rows and 3nq columns) with

Φk =



φk
1

φk
2...

φknk



, Ψk =



ψk
1

ψk
2...

ψkηk


where each entry φki orψkj is discretized as 3×3 matrix coefficients

to apply to the nq basis functions of the fine mesh.

Fine-to-coarse computations at a glance. From the finest basis

functions spanningVq
as well as the refinement matricesCk (along

with their precomputed pseudoinverse) and the kernel matrices, we

can now assemble all relevant matrices of level q−1 in the order

indicated in Alg. 1; the same order can then be used to deal with

level q−2, etc, all the way down to the coarsest level 1. However,

this approach is not efficient as is: as we mentioned earlier, the

variational definition of the adapted basis functions {φki }i make

them decay exponentially fast, but it does not mean that they are

actually sparse. We, in fact, need to sparsify both Ck and Ak ; we
use simple truncation, setting to zero values below 10

−9
.

Fast computation of Ck . One key part in the algorithm is the

evaluation of the intermediate matrix Z (see Eq. (10) used in proof

above) in line 3. Indeed, we compute a material-adapted refinement

matrix in two stages: first, we perform a linear solve to obtain Z, and

then invoke Eq. (11) to find Ck . Because Ck ,† can be precomputed

offline, computational complexity is dominated by the first step,

and the sparsity of Z is crucial to the efficiency of the rest of the

computations. Extending the approach of [Owhadi 2017] for the

scalar-valued case, we find Z verifying

BkZT =−WkAk+1Ck ,†T

by reducing (i.e., localizing) this linear system as follows. Since

every column Zi of Z corresponds to the i-th node of the coarser

mesh Mk−1
, consider a small region R for which all nodes are less

than ρ nodes away from this i-th node on the computational grid

Mk−1
. Let S be the set of indices such that � ∈ S if and only if

the �-th row of Wk
has at least one non-zero entry on nodes of

the finer mesh Mk
enclosed in R. Consider a submatrix b of the

stiffness Bk that includes only the rows and columns whose indices

are in S ; this is the “reduced” stiffness matrix of the wavelets around

node i whose local support intersects R. Consider also a vector zi
that subsamples the i-th column ofWkAk+1Ck ,†T to include only

the indices from S . The entries of column Zi with indices from S ,
assembled in a vector zi , are computed by solving a small linear

system b zi =−zi , while remaining entries of Zi are set to zero. In

practice this approach to computing Z is considerably faster than

the full linear solve for large matrices, and is particularly easy to

parallelize. By construction it also promotes sparsity for Z, and in

turn, for the adapted refinement matrix Ck and basis functions. In

practice, we pick ρ=3, which corresponds to performing local solves

only in 3-ring neighborhoods around each element; we will discuss

other possible tradeoff in Sec. 3.7.

stretch

rotate

(a) groundtruth (b) with corrections (c) without corrections

Fig. 5. Importance ofGeometric Invariance. Even for amoderately large
sparsification radius ρ =5, the induced loss of infinitesimal translation and
rotation invariance can have drastic homogenization consequences (right),
unless our simple local correction is applied (middle).
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Corrections to enforce invariance. Using localized solves to com-

pute Z promotes sparsity in Ck . However, this forced sparsity also

breaks the infinitesimal invariance to translation and rotation of

the adapted basis functions (see Fig. 5, where sparsification during

the solve of a simple shear or a simple twist grossly deforms the

result, unless correction is applied)—an issue that failed to be iden-

tified in [Owhadi 2017; Owhadi and Zhang 2017] where a similar

treatment loses partition of unity in the scalar case. In order to

ensure that constant displacements and infinitesimal rotations are

preserved after sparsification, one should impose:

∀j,
∑
i
Cki j = �3×3, ∀j,

∑
i
Cki j [x

k−1
i ]× = [xkj ]×,

where [·]× denotes the 3×3 skew-symmetric matrix encoding cross

product, and xki denotes the position of node i at level k of the object

B at rest; one recognizes the “geometric” conditions of adapted basis

functions used in [Chen et al. 2018], written this time using our no-

tation. Without these conditions, spurious aphysical modes pollute

the solution space. We enforce these constraints in a post-processing

stage right after C
k
has been evaluated at level k by finding, for

each node j at level k , the smallest (in Frobenius norm) changes to

the submatrix of C
k
associated with that node which enforce these

two conditions and keep the sparsity pattern intact. That is, for each

node j at level k and calling I the set of indices i of mesh nodes at

level k−1 with non-zero submatrix Cki j , we compute 3×3 adjustment

matrices {δi }i ∈I as the minimizers of

∑
i ∈I |δi |

2

F subject to the two

constraints

∑
i ∈I δi =ϵ1 and

∑
i ∈I δi [xk−1i ]×=ϵ2, where ϵ1 and ϵ2

are the 3×3 matrix residuals of the two geometric conditions above

for node j . (We use the Schur complement to efficiently compute the

solutions of this small constrained minimization.) If none of the in-

dices in I correspond to a node with Dirichlet boundary conditions,

we then set Cki j←C
k
i j + δi for all i ∈ I since these invariances have

to hold only away from fixed regions.

Input: Basis matrix Φq and stiffness matrix Aq ≡Aq on finest level,

refinement/kernel matrices {Ck ,Wk }
q−1
k=1 .

1 for k ← q − 1 to 1 do
2 Compute wavelet stiffness: Bk ←WkAk+1Wk ,T

;

3 Compute matrix Zwith fast localized solves via

BkZT = −WkAk+1Ck ,†T ;
4 Compute adapted basis refinement matrix: Ck ← Ck ,† + ZWk

;

5 Compute adapted wavelets on level (k − 1): Ψk ←WkΦk+1;

6 Compute adapted basis on level k : Φk ← CkΦk+1;
7 Assemble stiffness matrix for lower resolution level:

Ak ← CkAk+1Ck ,T (sparsified through truncation);

8 end
Output: Material-adapted bases {Φk }k , wavelets {Ψ

k }k , stiffness

{Ak }k , {B
k }k and refinements {Ck }k .

Algorithm 1: Adapted Basis and Wavelet Construction

3.6 Solution from adapted hierarchy
With the hierarchical procedure described above, we now have

material-adapted stiffness matrices Ak and Bk for 1≤k <q. Instead
of solving for the fine displacements of the single-resolution elas-

tostatics problem through Aquq =дq (where дq encodes forcing),

our multiscale approach allows us to use material-adapted variables

instead as the fine functional space has been decomposed into a

whole hierarchy (see Eq. (4)): one must solve the following q smaller

sparse linear systems:

Bkwk =Wk
g
k+1

for q−1≥k ≥ 1 and A1v1 = g1,

where дq is coarse-grained through g
k =Ckgk+1 with gq ≡дq , the

vectors w
k
store the wavelet coefficients between levels. The fine

solution uq is then recovered through:

uq =Φ1,T v1 +

q−1∑
k=1

Ψk ,Twk ,

reflecting the fact that our basis functions and wavelets block-

diagonalize the elasticity operator. One can incorporate only a subset

of the wavelets too if details are not needed.

3.7 Discussion
The constructionwe just presented is quite general for vector-valued

PDEs, and has a few parts that one can choose differently based on

the type of application sought after.

Choice of canonical refinement. While we used the natural re-

finement Ck of trilinear basis functions, one can in fact use any

refinement relation for known refinable functions, even if we keep

trilinear basis functions at the finest level: consistency between the

two is not formally needed. In the context of computer graphics

where efficiency is paramount, one may in fact prefer the sparsest
possible refinement, where a coarse basis function φki corresponds

to a single basis functions at level k+1 at the same location (a con-

cept sometimes referred to as lazy wavelet). This “Dirac” refinement,

recently proposed in [Budninskiy et al. 2019], further simplifies the

construction since the refinement matrix becomes sparsest, and its

kernel is particularly trivial too; however, it comes at a price: the ap-

proximation properties are weakened (Fig. 9), even if the condition

numbers of the resulting stiffness matrices are actually improved.

That is, coarse-graining with the Dirac refinement is less accurate

for the same number of levels. However, we found that the Dirac

refinement is often sufficient for animation purposes given the ap-

preciable amount of computational time it saves. It has the added

benefit that coarse displacements are precisely subsampling fine

displacements, an advantageous property in various applications.

Choice of sparsification. Our approach to the sparsification of Z

employed a support restricted to a radius of ρ elements around each

coarse node. The choice of an integer ρ is, of course, non-unique

(it may even be changed on a per-level basis), but its role is clear:

taking too large a ρ will lead to less sparse stiffness matrices Ak and

Bk , while forcing ρ to be too small may lose significant accuracy.

This is the traditional trade-off between spatial vs. eigenspatial

localization, akin to the Heisenberg uncertainty principle. In our

experience, picking ρ=3 is enough for visual purposes, but setting ρ
to 4 or 5 for heterogeneous materials with strong contrast between

their constitutive materials clearly improves accuracy. If accuracy

is paramount, then sparification through thresholding by picking a

cut-off value based on a chosen percentile is, of course, preferable.

Fig. 6 shows how the homogenization error depends smoothly on

both the sparsification radius and the cut-off value.
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4 MODEL-REDUCED LINEAR ELASTICITY
We now discuss how to apply the material-adapted approach for

the efficient simulation of linear elastic inhomogeneous materials.

4.1 Elastostatics
Once an object B has been discretized on a fine gridMq

, we can di-

rectly compute its stiffness matrix Aq
using trilinear basis functions

accounting for the inhomogeneous material. The coarse-graining

procedure described above can then be used to compute the material-

adapted stiffness matrices Ak and Bk for 1 ≤ k < q, providing an

alternative to solving the usual fine-resolution elastostatics problem

written in Vk
via Aquq =дq as described in Sec. 3.1.

More interestingly, we can now approximate the solution based on

any coarse level k of our hierarchy: if we wish to limit computations

to a given level k , we can simply solve a single sparse linear system

Akuk = gk ,

(where g
k
is directly computed from дq as described in Sec. 3.6) or, if

we prefactorized Ak , through fast forward- and back-substitutions.

Because the stiffness matrix at a given level is designed to prop-

erly capture the fundamental frequencies at this scale, the coarse

displacements u
k
on Mk

will be predictive of the general solution.

We can display a fine solution from these coarse displacements:

uq =Φk ,T uk will be a good approximation of the full solution due

to the coarse-graining nature of our construction. Note that one can

also decide to use the firstm levels instead, to improve accuracy

without raising the complexity significantly.

4.2 Dynamics
Until now, we have mostly discussed the case where the operator L
is involving purely spatial derivatives. Yet, material-adapted basis

functions can also deal seamlessly with dynamics by not only coarse-

graining a spatial operator, but its integration in time as well. Indeed,

a number of integrators for linear elasticity can be written as either

�ut+dt =L �ut (thus performing explicit integration) or L �ut+dt = �ut
(implicit integration). Now the linear operator L can be seen as a

discrete flow of the mechanical system. Modulo the fact that the

operator is no longer just the elasticity operator but its dynamic

flow in time, the exact same treatment of the full solution of the time

update via our material-adapted wavelets or through a single coarse

scale applies. We will show that the typical phase shift observed in

previousworks is greatly reduced, without having resort to solutions

involving, e.g., the tuning of the actual material stiffness [Chen et al.

2017] that do not apply to inhomogeneous materials.

4.3 Non-linear geometric warping
Linear elasticity exhibits significant visual artifacts when large ro-

tations are involved, reflecting the fact that this linearized variant

of elasticity is based on a strain tensor that is not invariant under
rotations. In finite-element based approaches to linear elasticity,

the use of corotational (CR) methods has been proven an efficient

way to virtually remove this issue at runtime by deriving a local

rotation and expressing the local strain in the corotated configura-

tion [Müller et al. 2002; Hauth and Strasser 2004; Kugelstadt et al.

2018]. For modal analysis, the linear map from modes to Euclidean
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Fig. 6. Error & density w.r.t. sparsification radius and cut-off. For the
example in Fig. 5, we plot the homogenization error log
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)
and density (i.e., percentage of non-zero entries in C) as a function of both
sparsification radius ρ and (log of the) cut-off threshold.
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Fig. 7. Eigenvalue ranges of stiffness matrices. For the inhomogeneous
material from Fig. 2, the range of generalized eigenvalues for the wavelet
matrices and the coarsest stiffness matrix of our material-adapted hierarchy
covers overlapping frequency bands of the original fine stiffness matrix.

coordinates is also notoriously inadequate for large deformation, so

modal warping [Choi and Ko 2005] and rotation-strain (RS) coor-

dinates [Huang et al. 2011] were proposed to reconstruct plausible

shapes from modes.

Non-linear post-warping. Since we are able to simulate linear elas-

ticity for complex materials on coarse grids, it is tempting to use

a corotational simulation at runtime to palliate the visual effects

of linear elasticity. However, it is no longer trivial to derive a good

corotated frame field. Typical approaches rely either on the piece-

wise constant nature of the gradient of displacement to perform

polar decomposition [Hauth and Strasser 2004] or a per-element

minimization of the displacement magnitudes [Georgii and West-

ermann 2008]; neither options are particularly simple to extend

reliably to our inhomogeneous case with adapted basis functions.

Instead, we found RS coordinates, typically used in modal analysis,

provide us with a simpler alternative which already provide bet-

ter results than existing coarse-graining approach. RS coordinates

transform a local gradient of displacement G by exponentiating the

antisymmetric part of the gradient (to extrapolate a large rotation)

while the strain is restricted to the symmetric part ofG plus identity.

For computational efficiency, we instead use:

RS(G) = Cay

[
(G −GT )/2

]
(�3×3 +(G +GT )/2) − �3×3,
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Fig. 8. Conditioning. For the same example as in Fig. 2, we display the
condition numbers of the stiffness matrices computed with the material-
dapted basis functions and wavelets in the hierarchy. The matrices Ak get
better conditioned as one approaches the coarsest level 1, while the matrices
Bk remain well conditioned throughout.

where the Cayley map Cay(·) applied to a skew-symmetric matrix

A is defined as the rotation Cay(A)= (�3×3 −A/2)
−1(�3×3 +A/2), a

much more efficient alternative to the exponential map [Kobilarov

et al. 2009]. To inject the desired non-linearity in the result of our

simulations, we first express our coarse-grained solution u
k
at a

chosen level k as fine displacements u
q
i through uq =Φk ,T uk ; we

then find the “corotated” displacement ûq by solving

ûq = argmin

u

∫
Ω
∥∇u − RS(∇uq )∥2F s. t. Sûq = 0, (13)

where S is the selection matrix that spatially fixes the fine nodes that

are subject to Dirichlet boundary conditions during the animation.

The use of RS-based tranforms and Poisson reconstruction [Huang

et al. 2011] creates a non-linear mapping which drastically removes

the linearization artifacts of our model. As an added bonus, we no-

ticed that the usual “over-estimation” of the rotation part present in

RS coordinates is significantly reduced by replacing the exponen-

tial by the Cayley map, a simpler approach than the use of Padé

approximants recommended in [Pan et al. 2015]. Finally, if only

a coarse representation is desired, we can proceed even more effi-

ciently: since the use of a Dirac refinement precisely subsamples the

fine displacements, we can perform the Poisson reconstruction and

RS tranforms at any level k directly. This was done at the coarsest

level in Fig. 12 for instance, demonstrating that the non-linearity

injection procedure behaves properly at various scales.

Fast implementation. In our implementation, 8 Gaussian cubature

points are used in each hexahedral element (and one cubature per

tetrahedral element if a simplicial mesh is used), on which the

deformation gradient and its RS transform are evaluated in parallel.

The final sparse linear system solving Eq. (13) is pre-factorized for

efficiency. If collisions happen during the simulation, the Poisson

matrix can be updated to constrain new nodes via low-rank updates.

5 RESULTS AND COMPARISONS
We now present various results to demonstrate the value of our

approach on heterogeneous materials.

5.1 Mesh hierarchy
While we used nested regular grids to explain our approach, its

construction is very general and does not make any special assump-

tion on how these meshes are related (for instance, refinements

can be nested or not). Due to the large body of known subdivision

schemes for both simplicial and polyhedral meshes of arbitrary do-

mains, any hierarchy of meshes for which a node-based subdivision
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Fig. 9. Homogenization error plots. For a composite object made out
of juxtaposed layers of soft (Young’s modulus E = 100) and stiff (E = 5×
10

6) materials (using the two patterns (left/right) of Fig. 4), we plot the
homogenization error ∥uk −u ∥L/∥д ∥L2 for the five intermediary levels k
(finest: 32 × 32; coarsest: one element) of our coarsening algorithm. Bilinear
refinement is more accurate, but both slopes are similar.

scheme exists could be used in our construction. However, regular

(Cartesian) grids are undeniably simpler due to their tensor product

nature, and often more amenable to efficient implementation. We

show examples on tetrahedral meshes in Figs. 1, 5, 13 and 18, while

all other examples are performed on regular grids.

5.2 Visualizing material-adapted basis functions
Fig. 4 shows the effects of material inhomogeneity on the basis func-

tions. While Dirac and trilinear refinements induce very isotropic

elasticity-adapted basis functions (with, as expected, smaller support

for the Dirac refinement case), a metamaterial made out of vertical

strips of alternatingly stiff and soft materials has basis functions

clearly exploiting the natural anisotropy created by this material

sandwiching. The support remains local at all scales as expected.

Fig 1(left) shows another 2D example of basis functions and wavelets

visualization; notice that the Dirichlet boundary conditions imposed

of the left side of the domain affects the shapes of the coarse basis

functions as well (hence the non-symmetry of the coarsest basis

function), as expected to offer coarse-graining.

5.3 Numerical conditioning and accuracy
To demonstrate the fact that each level of our hierarchy captures

its own frequency “band” even for an inhomogeneous material, we

display in Fig. 7 the ranges of non-zero eigenvalues for each stiffness

matrix of a simple heterogeneous material. While the original matrix

Aq
on the fine scale covers a large spectrum due to the multiscale

nature of its physical properties induced by material inhomogeneity,

wavelet stiffness matrices Bk correspond to small ranges adapted

to their level, while A1 covers only the lowest range of the initial

spectrum; these matrices are thus better conditioned.

In Fig. 8, we show the condition number of each stiffness matrix

instead. Here again, we see a gain of several orders of magnitude

for the hierarchical stiffness matrices (in particular, for the wavelet

stiffness matrices) compared to the original fine one. As we go up

in the hierarchy (from fine to coarse), the condition number of the

stiffnessmatrices associatedwith coarser and coarser basis functions

goes down as expected at each level.

Finally, we also demonstrate in Fig. 9 that the numerical error

created by our coarse graining grows moderately as we go to coarser

levels: the slopes we found for both trilinear and Dirac refinements

follow the expected (optimal) error decay rate in “energy norm”
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(b) our method(a) CR groundtruth (c) [Nesme et al. 2009]

(b) our method(a) CR groundtruth (c) [Kharevych et al. 2009]

Fig. 10. Comparisons. Even for a single-level coarsening (from a 163 grid to
a 83 grid), previous approaches can either fail to predict the correct stiffness
(top) of a composite material, or only capture its rough behavior (bottom).

(a) CR groundtruth (b) our method (c) [Chen et al. 2018]

Fig. 11. Boundary conditions. When a composite material is hung from
one of its faces, our coarse-graining naturally accounts for Dirichlet bound-
ary conditions by leveraging the fine stiffness matrix. Instead, previous
methods can exhibit large artifacts on (and away from) constrained parts.

(where the error is measured as

∫
Ω
(u−û)TL(u−û) and normalized

by the L2 norm of the forcing term [Owhadi 2017]). Moreover, we

also see that the sparser Dirac refinement does indeed induce more

errors, without changing the error slope. Note that none of the other

homogenization methods [Nesme et al. 2009; Kharevych et al. 2009]

fit on this graph, producing significantly larger errors as we will

visually demonstrate next.

5.4 Coarse-graining compared to previous methods
Besides numerical evidence of the intrinsic value of our construction,

we also present visual comparisons to previous work to show the

comparative efficacy of our coarse graining procedure.

Comparisons to [Kharevych et al. 2009] and [Nesme et al. 2009]. The
work of Kharevych et al. [2009] also offers coarse-graining of elastic-

ity by homogenizing the material properties of each coarse element

instead of designing special basis functions. While their approach

is typically able to capture the coarse shape of a deformed body

(for instance, for the hanging two-material example in Fig. 10(bot-

tom)), it typically loses many of the detailed behavior compared

to our approach. More similar to our method, Nesme et al. [2009]

gravity coarse coarse

fine fine
(a) CR groundtruth (b) our method (c) [Chen et al. 2018]

Fig. 12. Spurious stiffness. A pinned beam released under gravity, with
two-level coarsening (64 times less elements). The approach in [Chen et al.
2018] ignores boundary conditions, leading to spurious structural rigidity
(right) for such an aggressive coarsening. Our coarse simulation with Dirac
coarse-graining (middle) captures nearly perfectly the fine simulation (top),
and using our basis functions to reconstruct the fine deformed grid (bottom)
shows the expected fine details of the original result (left).

proposed the design of basis functions to homogenize elastic prop-

erties. However, their construction makes various approximations

such as junctions between elements being considered frozen; and

indeed, we found that their results are systematically too stiff, see

Fig. 10(top) for a clear example. Note that our coarse basis functions

have a larger support, rendering our coarse stiffness matrix at the

coarsest level less sparse than previous methods. However, since we

prefactorize this matrix, the computational complexity at run time

is not noticeably affected: we still gain two orders of magnitude

speedup over computing directly the fine solution.

Comparisons to [Chen et al. 2018]. Our method is, in many ways,

an extension of the work of Chen et al. [2018]: they also proposed a

construction of matrix-based basis functions defined on the coarse

grid (and stored on the fine grid) so that their span captures the

behavior of an inhomogeneous material. We offer, however, several

improvements over this work:

• first, our approach naturally captures boundary conditions at

every level, whereas Chen et al. disregard boundary conditions

to construct basis functions. This is achieved in our approach

directly during the assembly of the fine stiffness matrix Aq
, so

the hierarchical construction carries this information throughout

the levels. As Fig. 1 demonstrates, Dirichlet boundary conditions

affect the actual shape of basis functions: the coarsest basis func-

tions, for instance, clearly exhibit an asymmetry due to the left

side being physically clamped. Failure to account for Dirichlet

conditions does create strong artifacts, see Fig. 11 for an example.

Moreover, as we further coarsen, ignoring boundary conditions

creates spurious structural rigidity as demonstrated in Fig. 12.

• second, our principled construction extends their approach sig-

nificantly. The quadratic form being minimized in our variational

definition is directly related to the elasticity operator, and the

imposed constraint enforces spatial collocation. Because we do

not force the support to be only one coarse element wide, we

also significantly improve the coarse graining accuracy. More-

over, we do away with the non-conforming nature of the basis

functions, offering less artifacts in practice. Finally, because of

the refinability we impose, our hierarchical construction involves
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model #nodes sparsity linear CR

(mesh type) fine coarse

#lvls build

B1 C1 A1
storage

pref.Aq solv.дq pref.A1
solv.g

1
resid. fine coarse speedup

letter H (tet) 15606 2656 2 11.5s 99.92% 98.8% 88.3% 300.3M 3.54s 0.08s 1.2s 0.011s 0.8 − − −
shark (hex) 18234 3317 2 15.1s 99.86% 97.79% 86.2% 390.5M 3.93s 0.10s 1.4s 0.012s 0.60 18.7s 0.036s 519.4

botijo (tet) 8026 1458 2 3.9s 99.85% 98.2% 86.7% 123M 0.95s 0.034s 0.2s 0.005s 0.11 10.7s 0.022s 486.36

hand (tet) 5672 929 2 2.4s 99.78% 97.1% 84.7% 83.5M 0.41s 0.023s 0.12s 0.002s 0.45 7.1s 0.011s 645.45

bird (tet) 5120 904 2 2.3s 99.76% 96.75% 79.8% 80.4M 0.62s 0.022s 0.14s 0.002s 0.55 6.3s 0.01s 630.0

square (quad) 4096 4 7 11.1s 0.0% 0.0% 0.0% 437.8M 0.079s 0.005s 6e-5s 4e-6s 0.09 − − −
beam (hex) 2673 81 3 15.3s 10.7% 24.4% 2.2% 320.8M 0.87s 0.008s 3e-3s 2.3e-4s 0.24 6.4s 0.003s 2133.3

dragon_1 (tet) 23811 3916 2 23.7s 99.95% 99.1% 92.98% 456.9M 8.0s 0.13s 1.7s 0.018s 1.1 − − −
dragon_2 (tet) 163152 3916 2 914s 99.992% 99.06% 93.28% 2.4G 336.6s 0.978s 2.04s 0.016s 2.4 − − −

Table 1. Quantitative evaluation. In this table, we provide quantitative evaluation of our method for different models undergoing static deformation. We
include the size of the models, the time it took to construct the hierarchy (build), the sparsity of the resulting matrices (B1, C1 and A1), and memory usage (to
store matrices Ak , Bk , Ck ,Wk , C†,k , Φk and Ψk ). Timings for the linear case are given for both the prefactorization part (pref.) and the back-substitution
part (solv.), and the residual of the coarsest solve is also provided (resid.), evaluated as ‖u1−u ‖L/‖д ‖L2 . Timings for all our examples are indicated in seconds
per frame. The sparsification radius here is set to be 5 and the cut-off threshold is 10−7; CHOLMOD [Davis 2009] was used to solve linear systems.

50K 100K 150K
nq

time (s)

rest

(#T=826K,#V=163K )

fine

coarse

Fig. 13. Constructing the material-adapted hierarchy. For the dragon
model, we plot the time it takes to construct one level of the material-
adapted hierarchy (basis functions and wavelets) for various mesh sizes,
from 2K to 160K vertices. The observed complexity matches the expected
O(nq log

7 nq ) of the scalar homogenization case from [Owhadi 2017].

sparse linear algebra computations for which a wide variety of

numerical tools can be used; in their approach, a large number of

local optimizations with a dedicated solver were required instead;

note that these local optimizations grow quickly in size with the

required amount of spatial coarsening. We can thus coarsen a

given fine grid much more aggressively than they can for a given

amount of computing power.

• third, we demonstrate preliminary results for the coarsening

of dynamics; Fig. 18 shows that applying our coarse-graining

procedure on an implicit Euler integration of linear elasticity

shows a small phase shift (due to the forced sparsification of our

procedure) compared to a fine simulation, reducing the temporal

mismatch significantly compared to their quasi-static approach.

Consequently, our approach is both more flexible and more efficient,

and leads to visually more faithful coarse simulations.

5.5 Timing
Since we can coarsen a given fine mesh all the way down to a single

element in our approach (see Fig. 16 and sixth row in Table 1; the

0% sparsity is due to the fact that it is coarsened to one element,

hence resulting in a very small, but dense system), the computa-

tional gains at runtime compared to a fine simulation can be made

localized solve ZT assemble Ak compute Ck miscellaneous

ρ = 3 ρ = 4 ρ = 5 ρ = 6

T=6.8s T=9.7s T=11.5s T=17.5s

Fig. 14. Effects of sparsification radius. The material-adapted basis and
wavelet construction (on letter H example) can get gradually slower if we de-
crease sparsity (i.e., if the sparsification radius grows), since the localization
of computations worsens.

arbitrarily large. This may come, obviously, at the cost of accuracy;

in particular, the use of Dirac refinement can exhibit artifacts if too

coarse resolutions (and none of the wavelets) are used: see Fig. 2

where a 2×2 grid is used. The use of higher-order refinements would

be even better at homogenizing the fine details, but at the price of a

slower hierarchical construction due to the less sparse refinement

relation across levels. For both Dirac and trilinear refinements our

tests find, in agreement with [Chen et al. 2018], that three or more

orders of magnitude speedups can be achieved with only limited

visual artifacts—often with significant improvement compared to

previous methods, see Figs. 10, 11 & 12 and Table 1 summarizing

the various timings of our approach. Note that with our current

unoptimized implementation, the entire five-level construction over

a small 16×16 grid takes less than a second, while the large shark

example (18K vertices, 10K elements) in Fig. 15 took less than 1

mins to precompute for a two-level coarsening on a plain Intel
™

Xeon desktop. We notice that if we increase the sparsification radius

ρ, precomputation time will rapidly increase (see Fig. 14), espe-

cially for hexahedral meshes — although the effect on the quality

of coarse-graining for this example is barely noticeable. While we

believe that the material contrasts we used are already exceeding the

typical needs in computer animation, computational applications

with stronger contrasts and where accuracy is key (thus needing a

radius ρ >3) would require optimizing the code for better memory

management and for a more efficient use of parallelization. Finally,

we point out that our CR runtime computations could be made more

efficient by following the recent work of [Kugelstadt et al. 2018].

Observe also that like most coarsening (reduction) methods try-

ing to build spectral approximations [Chen et al. 2018; Liu et al.
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fine coarserest

Fig. 15. Jumping shark. On this shark model, a coarse simulation of its
body bending closely matches the fine version despite being eight times
coarser, with an effective computational speedup factor of 519.

2019], our construction of material-adapted basis functions is com-

putationally intensive: as Table 1 indicates, building the hierarchy

takes from a few seconds to a few minutes. However, this offline

process results in a well-behaved reduced system which, compared

to solving a fine, badly-conditioned linear equation repeatedly, can

accelerate simulation by potentially orders of magnitude, see Table 1.

Our construction does not only allow for a faster solve, but it also

provides material-adapted basis functions such that any external

force field can be properly distributed to the coarse nodes for proper

homogenization. Both features may thus be useful for a number

of applications in animation, to efficiently compute reduced pro-

jective dynamics [Brandt et al. 2018] over a long sequence, or, as a

multigrid preconditioner, to boost the efficiency of geometrically

nonlinear elasticity simulation. Our method may also help to extract

representative features of the operator to ease the training of large

scale machine learning tasks, e.g., mechanical classification of tiling

structures by neural network [Liu et al. 2019].

5.6 Mechanical analysis and structure analysis
In various applications such as inverse design [Schumacher et al.

2015] and mechanical characterization [Schumacher et al. 2018],

computing the stress induced by given loads provides crucial in-

formation on the mechanical properties of the object’s geomet-

ric/material structure. Accuracy of the stress field has thus a sig-

nificant impact on the evaluation and validation of feasibility for

structural design, and fast evaluation is highly desirable. Fig. 16

demonstrates that our approach captures stress in complex compos-

ite materials with high accuracy even after very aggressive coars-

ening. Similarly, Fig. 17 illustrates the anisotropy of the resulting

stiffness introduced by different tilings in a unit square domain:

inspired by tests presented in [Schumacher et al. 2018] (note that

they used periodic tilings, while we use a single square domain to

account for boundary effects), we plot the directional Young’s modu-

lus for four different composite materials. As expected, the physical

behavior of the square changes based on the material distribution,

inducing various stiffness changes along the diagonals and sides of

the square exemplar.

5.7 Limitations
Coarse graining is still a recent topic, and the current interest in

our animation field is bound to bring further improvements. We

point out here what we see as the most obvious current limitations.

0
1.
4e
3

−1
.5
e3

composite material fine (64 × 64) coarse (1 × 1)

Fig. 16. Stress visualization. For two different bimaterial composite ob-
jects in 2D (with a contrast of 106 between soft (white) and stiff (black)
material, left), a deformation is generated by fixing the top boundary of the
domain and setting a downward surface traction on the bottom. Computing
the resulting Piola-Kirchoff stress tensor on all the cubature points for a fine
simulation (on a 64×64 grid, middle) is nearly identical to the homogenized
solution using one single element (right). Even for this aggressive coarsening,
the stress distribution is homogenized very accurately.

Fig. 17. Directional Young’s modulus. The directional Young’s modulus
is calculated as E(d ) = 1/div(ddT ) : (�1)† : div(ddT ), where �1 is the
coarsest stiffness matrix and d is the direction (unit vector).

First, our postwarping approach is an efficient choice to deal with

geometric non-linearity, but is not ideal if accurate large deformation

linear deformation

fine CR deformation

RS-corrected deformation

rest

are desirable: we may not match the lo-

cal rotations of a fine corotational method.

The inset shows a composite hand under

gravity; while coarse and fine simulation

of linear elasticity without corotational

treatment match perfectly (yellow color,

with the typical overstretching), our RS-

corrected eight-times coarsened version

fails to match the fine CR simulation — but

still outperforms previous work. Second, our approach to sparsi-

fication is also perfectible: enforcing sparsity first, followed by a

correction for geometric invariance, may not be optimal for effi-

ciency. Finally, one may be able to find an approximation of our

construction lending itself well to more efficient implementations:

the hierarchical construction could then be performed at each (or

every few) time step(s) to homogenize even non-linear models via

linearization around the current shape.
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Fig. 18. Coarse-graining of time integration.We can apply our coarse-
graining procedure to an integrator scheme (here, implicit Euler) to homog-
enize the actual dynamics of a linear elastic composite bird with initial
forcing on the wings, with (bottom) and without (top) corotational treat-
ment. Tracking the vertical component of the linear deformation of a wing
tip (indicated as a green dot on the first column) for both a fine (blue curve)
and a coarsened (red curve) simulation shows a small time shift growing
linearly over time, moderately increased if sparsification is introduced and
only slightly affected by our RS correction in the corotational case.

6 CONCLUSIONS
Our hierarchical construction of material-adapted, matrix-based

basis functions offers a new approach for coarse-graining of complex

inhomogeneous materials. While we showed that a linear elastic

model can be coarse-grained and post-warped through two back-

substitutions per frame, refinable basis functions that are localized

in space and eigenspace offer a rich framework that may be further

exploited in the context of large-scale simulation. For instance, they

offer an intriguing extension to the CHARMS framework [Grinspun

et al. 2002], for which the decay of wavelet magnitudes should be

near optimal. Its use to potentially improve geometric multigrid

methods for rough coefficients as discussed early on is also worth

exploring thoroughly.

Future work on deformable models. Extending our work to non-

linear elastic models is high on our priority list. An obvious ap-

proach would be to reconstruct the material-adapted hierarchy at

each time step based on the linearization of the model around the

current shape. Such an approach would, however, require carefully

factorizing the hierarchical construction to speed it up, possibly

through approximations of the current variational definition. While

matching the theoretical complexity in O(nq log2d+1 nq ) of the con-
struction in the scalar case (see Fig. 13), our current implementation

of the vector-valued case is not fast enough to offer much compu-

tational gain over fine simulation if the construction needs to be

reevaluated every few time steps. It could be interesting as well

to explore the idea of using wavelets only near material changes,

an idea known as wavelet refinement in the literature, to further

improve the computational gain of our approach. It may also be

interesting to see if the use of non-linear potentials for which the

stiffness matrix is nearly constant and for which one can simply add

non-linear forces [Huang et al. 2006] could be a good application of

our approach, as they would require a single hierarchy construction

as preprocessing; similarly, the current trend of using projective

dynamics [Bouaziz et al. 2014] could benefit from our framework.

The fact that we can now homogenize an integrator step is also

something that we believe deserves closer attention, to understand

how the temporal and spatial homogenizations interact depending

on the integrator we chose or the size of the time step—we have not

looked at this at all in this work, and the topic of dynamic homoge-

nization is certainly far from mature. Finally, our construction of

elasticity-aware wavelets may also allow the injection of secondary

effects in the coarse motion to add visually-enriching detail without

having to simulate these high frequencies—tantamount to the way

wavelets are used in fluid simulation to add visual complexity to

low-resolution simulation [Kim et al. 2008].
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