Bayesian Numerical Homogenization

Houman Owhadi

• H. Owhadi, Bayesian Numerical Homogenization (2014). arXiv:1406.6668

Berkeley Sep 10, 2014

Link between Bayesian Inference and Numerical Analysis

P. Diaconis (1988). Bayesian numerical analysis.J. E. H. Shaw (1988). A quasirandom approach to integration in Bayesian statistics.

Henri Poincaré (1896). Calcul des probabilités.

$$f(x) = \exp\left(\cosh\left(\frac{x^2 + \sin(x)}{3 + \cos(x^3)}\right)\right)$$

Compute $\int_{0}^{1} f(x) dx$

Numerical Analysis Approach

Find a good quadrature rule for the numerical integration of f

$$f(x) = \exp\left(\cosh\left(\frac{x^2 + \sin(x)}{3 + \cos(x^3)}\right)\right)$$

Compute

$$\int_0^1 f(x) \, dx$$

Bayesian Approach

- ⇒ Put a prior in C([0,1])
- \Rightarrow Calculate f at x_1, \ldots, x_n

$$\mathbb{E}\left[\int_0^1 f(x) \, dx \middle| f(x_1), \dots, f(x_n)\right]$$

E.g.
Assume
$$f(t) = \xi + \int_0^t B_s \, ds$$

 $\int_0^t \int_0^t B_s \, ds$
 $\int_0^t \int_0^t B_s \, ds$
 $\mathbb{E}\left[f(x) \middle| f(x_1), \dots, f(x_n)\right] \Rightarrow$ Cubic spline
interpolant
E.g.
Integrate B.M. \Rightarrow Splines of
 $k \text{ times}$ order $2k + 1$
Hagan (1991). Bayes-Hermite quadrature

Similar link between numerical homogenization and Bayesian Inference?

Bayesian Numerical Homogenization

(1)
$$\begin{cases} -\operatorname{div}(a\nabla u) = g, & x \in \Omega, \\ u = 0, & x \in \partial\Omega, \end{cases}$$
$$\Omega \subset \mathbb{R}^d \quad \partial\Omega \text{ is piec. Lip.} \\a \text{ unif. ell. } a_{i,j} \in L^{\infty}(\Omega) \\ d \leq 3 \end{cases}$$
We want to homogenize (1)

$$\begin{array}{ll} \mbox{We need} & g \in L^2(\Omega) \\ & \left\{ \begin{aligned} -\operatorname{div}(a\nabla u) &= g, & x \in \Omega, \\ & u = 0, & x \in \partial\Omega, \end{aligned} \right. \\ & \left. \begin{array}{c} g \longrightarrow u \\ \mathcal{H}^{-1}(\Omega) \longrightarrow \mathcal{H}^1_0(\Omega) \\ & L^2(\Omega) \longrightarrow V \end{array} \\ & V \subset \subset \mathcal{H}^1_0(\Omega) & V \sim \mathcal{H}^2(\Omega) \end{aligned} \right. \end{array}$$

Q: How to approximate V with a finite dimensional space?

Numerical Homogenization Approach

Work hard to find good basis functions

Harmonic Coordinates Babuska, Caloz, Osborn, 1994 Kozlov, 1979 Allaire Brizzi 2005; Owhadi, Zhang 2005
MsFEM [Hou, Wu: 1997]; [Efendiev, Hou, Wu: 1999]
[Fish - Wagiman, 1993] [Gloria 2010] Arbogast, 2011: Mixed MsFEM
Projection based method Nolen, Papanicolaou, Pironneau, 2008

HMM

Engquist, E, Abdulle, Runborg, Schwab, et Al. 2003-...

Flux norm Berlyand, Owhadi 2010; Symes 2012

Localization

[Chu-Graham-Hou-2010] (limited inclusions)
[Efendiev-Galvis-Wu-2010] (limited inclusions or mask)
[Babuska-Lipton 2010] (local boundary eigenvectors)
[Owhadi-Zhang 2011] (localized transfer property)
[Malqvist-Peterseim 2012] Volume averaged interpolation

Bayesian ApproachWhere do we put the prior?
$$-\operatorname{div}(a\nabla u) = g$$

On $u \Rightarrow$ The noise doesn't see the microstructure On $a \Rightarrow$ PCA community, things get more complex

Proposition

⇒ Put a prior on g⇒ Compute $\mathbb{E}[u(x)|$ finite no of observations]

$$-\operatorname{div}(a\nabla u) = \xi, \qquad \Omega,$$

 $u = 0, \qquad \partial\Omega,$

 ξ : White noise

 $a = I_d \longleftrightarrow \phi_i$:

 $\Rightarrow \phi_i: \text{Polyharmonic splines}$ [Harder-Desmarais, 1972] [Duchon 1976, 1977, 1978]

 $a_{i,j} \in L^{\infty}(\Omega) \longleftrightarrow \phi_i$: Rough Polyharmonic splines [Owhadi-Zhang-Berlyand 2013]

Link between Bayesian Inference & Numerical Homogenization

➡ Generic

- Guiding principle for coarse graining of multi-scale systems
 - 1. Put a prior on deg. of freed. (source/force terms)
 - 2. Select a finite no of coarse variables
 - 3. Compute posterior value of state system conditionned on coarse variables
- Use it to indentify bases for arbitrary linear integro-differ. equations

$$\begin{array}{l} \text{General setup} \\ \textbf{(2)} & \left\{ \begin{array}{l} \mathcal{L}u = g, & x \in \Omega, \\ \mathcal{B}u = 0, & x \in \partial\Omega, \end{array} \right. \\ \mathcal{L}, \mathcal{B} : \text{Linear integro-differential operators on } \Omega \And \partial\Omega \\ \mathcal{H}(\Omega) \longrightarrow \mathcal{H}_{\mathcal{L}}(\Omega) \times \mathcal{H}_{\mathcal{B}}(\Omega) \\ \cup \\ U \\ \mathcal{L}^{2}(\Omega) \\ \mathcal{L}u = -\operatorname{div}(a\nabla u) \quad \mathcal{B}(u) = u \\ \textbf{(2)} \Leftrightarrow & \left\{ \begin{array}{l} -\operatorname{div}(a\nabla u) = g, & \Omega, \\ u = 0, & \partial\Omega, \end{array} \right. \\ \mathcal{H}(\Omega) = \mathcal{H}^{1}(\Omega) \\ u = 0, & \partial\Omega, \end{array} \right.$$

Bayesian Numerical Homogenization

- Replace g by a stochastic field ξ
 - $g \in L^2(\Omega) \iff \xi$: white noise $g \in H^{\pm s}(\Omega) \iff \xi = \Delta^{\mp s/2}$ white noise

Consider

$$\left\{egin{array}{ll} \mathcal{L}u = \xi, & x \in \Omega, \ \mathcal{B}u = 0, & x \in \partial\Omega, \end{array}
ight.$$

(3)

$g \in L^2(\Omega) \iff \xi$: white noise

The solution of (3) is a Gaussian **Theorem** field with covariance function

$$\begin{split} \Gamma(x,y) &:= \mathbb{E} \big[u(x) u(y) \big] \\ &= \int_{\Omega^2} G(x,z) G(y,z) \, dz \end{split}$$

where $\begin{cases} \mathcal{L}G(x,z) = \delta(x-z), & x \in \Omega, \\ \mathcal{B}G(x,z) = 0, & x \in \partial\Omega, \end{cases}$

Rk $\mathcal{L}^*\mathcal{L}\Gamma(x,y) = \delta(x-y)$

$g \in L^2(\Omega) \iff \xi$: white noise

The solution of (3) is a Gaussian **Theorem** field with covariance function

$$\begin{split} \Gamma(x,y) &:= \mathbb{E} \big[u(x) u(y) \big] \\ &= \int_{\Omega^2} G(x,z) G(y,z) \, dz \end{split}$$

where $\begin{cases} \mathcal{L}G(x,z) = \delta(x-z), & x \in \Omega, \\ \mathcal{B}G(x,z) = 0, & x \in \partial\Omega, \end{cases}$

Rk $\mathcal{L}^*\mathcal{L}\Gamma(x,y) = \delta(x-y)$

We observe

$$\int_{\Omega} u(x) \Psi_i(x) \, dx \qquad i = 1, \dots, N$$

 Ψ_1, \ldots, Ψ_N : N linearly independent generalized functions on Ω .

Theorem
$$\mathbb{E}\left[u(x)|Z\right] = \sum_{i=1}^{N} Z_i \Phi_i(x)$$

with

$$Z_i = \int_{\Omega} u(y) \Psi_i(y) \, dy$$

and

$$\Phi_i(x) = \sum_{j=1}^N \Theta_{i,j}^{-1} \int_{\Omega} \Gamma(x,y) \Psi_j(y) \, dy$$

Furthermore

$$u(x)$$
 cond. on Z is $\mathcal{N}(\mathbb{E}[u(x)|Z], \sigma^2(x))$

 $\sigma^2(x) = \Gamma(x, x) - \sum_{i,j=1}^N \Theta_{i,j}^{-1} \int_{\Omega} \Gamma(x, y) \Psi_i(y) \, dy \int_{\Omega} \Gamma(x, y) \Psi_j(y) \, dy$

$$u \text{ sol. of (2)} \begin{cases} \mathcal{L}u = g, & x \in \Omega, \\ \mathcal{B}u = 0, & x \in \partial\Omega, \end{cases}$$

Theorem Assume $\Gamma(x, x) < \infty$

$$|u(x) - \sum_{i=1}^{N} \Phi_i(x) \int_{\Omega} u(y) \Psi_i(y) \, dy| \le \sigma(x) ||g||_{L^2(\Omega)}$$

E.g. Assume
$$\Psi_i(x) = \delta(x - x_i)$$

 $\Phi_i(x) = \sum_{j=1}^N \Theta_{i,j}^{-1} \int_{\Omega} \Gamma(x, x_j)$
 $\Theta_{i,j} := \Gamma(x_i, x_j)$
 $||u(x) - \sum_{i=1}^N u(x_i) \Phi_i(x)| \le \sigma(x) ||g||_{L^2(\Omega)}$

Reproducing Kernel Hilbert Space
Define

$$V := \{ \Phi \in \mathcal{H}(\Omega) | \mathcal{L}\Phi \in L^{2}(\Omega) \text{ and } \mathcal{B}\Phi = 0 \text{ on } \partial\Omega \}$$

$$u, v \in V$$

$$\langle u, v \rangle := \int_{\Omega} (\mathcal{L}u(x)) (\mathcal{L}v(x)) dx$$

$$||v||_{V} := \langle v, v \rangle^{\frac{1}{2}}$$
Theorem (V, Γ) forms a R.K.H.S.

$$\langle v, \Gamma(\cdot, x) \rangle = v(x)$$

$$|v(x)| \leq (\Gamma(x, x))^{\frac{1}{2}} ||v||_{V}$$

Optimal recovery properties of basis elements

Theorem Φ_i is the unique minimizer of the quadratic optimization problem

 $\begin{cases} \text{Minimize } \|\Phi\|_V\\ \text{Subject to } \Phi \in V \text{ and } \int_{\Omega} \Phi(x) \Psi_j(x) \, dx = \delta_{i,j} \end{cases}$

Optimal recovery properties of basis elements

Theorem $\sum_{i=1}^{N} w_i \Phi_i$ is the unique minimizer of the quadratic optimization problem

 $\begin{cases} \text{Minimize } \|\Phi\|_V \\ \text{Subject to } \Phi \in V \text{ and } \int_{\Omega} \Phi(x) \Psi_j(x) \, dx = w_j \end{cases}$

E.g.
$$\mathcal{L}u = -\operatorname{div}(a\nabla u) \quad \Psi_i(x) = \delta(x - x_i)$$

 $w(x_i) = w_i$

 $\sum_{i=1}^{N} w_i \phi_i$ is the unique minimizer of $\int_{\Omega} \left(\operatorname{div}(a \nabla \phi) \right)^2$

over all $\phi \in V$ such that $\phi(x_i) = w_i$

Optimal recovery properties of basis elements $V_0 := \left\{ \Phi \in V \middle| \int_{\Omega} \Phi(x) \Psi_i(x) \, dx = 0, \quad \forall i \right\}$ **Theorem** It holds true that $\Rightarrow \Phi_i \perp V_0$ $\forall i, \forall v \in V_0, \langle \Phi_i, v \rangle = 0$ $\Rightarrow \forall i, j, \langle \Phi_i, \Phi_j \rangle = \Theta_{i,j}$ $\rightarrow \forall i, \forall v \in V$ $\langle \Phi_i, v \rangle = \sum_{i=1}^N \Theta_{i,i}^{-1} \int_{\Omega} v(x) \Psi_j(x) dx$

$$\mathcal{H}(\Omega)\text{-norm accuracy estimates}$$
$$V_0 := \left\{ \Phi \in V \middle| \int_{\Omega} \Phi(x) \Psi_i(x) \, dx = 0, \quad \forall i \right\}$$
$$\rho(V_0) := \sup_{v \in V_0} \frac{\|v\|_{\mathcal{H}(\Omega)}}{\|v\|_V}$$

Т

$$u$$
 sol. of (2) $\begin{cases} \mathcal{L}u = g, & x \in \Omega, \\ \mathcal{B}u = 0, & x \in \partial\Omega, \end{cases}$

Theorem

$$\left\| u(x) - \sum_{i=1}^{N} \Phi_i(x) \int_{\Omega} u(y) \Psi_i(y) \, dy \right\|_{\mathcal{H}(\Omega)} \le \rho(V_0) \|g\|_{L^2(\Omega)}$$

 $\rho(V_0)$ is the smallest constant such that the inequality holds

E.g.
$$\mathcal{L}u = -\operatorname{div}(a\nabla u)$$
 $\mathcal{B}(u) = u$
 $\begin{cases} -\operatorname{div}(a\nabla u) = g, \quad \Omega, \\ u = 0, \quad \partial\Omega, \end{cases}$ $\mathcal{H}(\Omega) = \mathcal{H}^{1}(\Omega)$

Theorem

$$\|u(x) - \sum_{i=1}^{N} \Phi_i(x) \int_{\Omega} u(y) \Psi_i(y) \, dy \|_{\mathcal{H}^1(\Omega)} \le C H \|g\|_{L^2(\Omega)}$$

The accuracy depends only on

$$H := \sup_{x \in \Omega} \min_i \|x - x_i\|$$

Accuracy of RPS as an interpolation basis

The accuracy is independent from aspect ratios

Proof

Lemma $d \leq 3$. $B_1 := B(0, 1)$.

If $v \in H^1(B_1)$ such that $\operatorname{div}(a\nabla v) \in L^2(B_1)$ then

$$\|v - v(0)\|_{L^{2}(B_{1})}^{2} \leq C\left(\|\nabla v\|_{L^{2}(B_{1})}^{2} + \left\|\operatorname{div}(a\nabla v)\right\|_{L^{2}(B_{1})}^{2}\right)$$

C depends on $\lambda_{\min}(a)$ and $\lambda_{\max}(a)$.

Proof of the lemma per absurdum

There exists
$$w_n$$
, $w_n(0) = 0$, $||w_n||_{L^2(B_1)} = 1$ and
 $||\nabla w_n||_{L^2(B_1)}^2 + ||\operatorname{div}(a\nabla w_n)||_{L^2(B_1)}^2 < \frac{1}{n}$

Thus $\exists w_{n_j}$ and $w \in H^1(B_1)$ such that $w_{n_j} \rightharpoonup w$ weakly in $H^1(B_1)$ and $\nabla w_{n_j} \rightharpoonup \nabla w$ weakly in $L^2(B_1)$.

 $\|\nabla w_n\|_{L^2(B_1)} \leq 1/n \Rightarrow \nabla w = 0 \Rightarrow w \text{ is a constant in } B_1.$

Rellich-Kondrachov theorem $\Rightarrow H^1(B_1) \subset L^2(B_1)$ $\Rightarrow w_{n_j} \to w$ strongly in $L^2(B_1) \Rightarrow ||w||_{L^2(B_1)} = 1.$

 w_n uniformly Hölder cont. on $B(0, \frac{1}{2})$ $\Rightarrow w$ cont. in $B(0, \frac{1}{2})$ and w(0) = 0.

Contradicts w is a constant in B_1 with $||w||_{L^2(B_1)} = 1$.

What do rough polyharmonic splines look like?

Slice of ϕ_i along the x-axis

 $\{\zeta_{1k}\}, \{\zeta_{2k}\}$: i.i.d. uniformly distributed in $[-\frac{1}{2}, \frac{1}{2}]$ $\langle |\hat{a}(k)|^2 \rangle \simeq |k|^{-\alpha}$

> Example taken out of [Hou-Wu 1997] and [Ming-Yue 2006]
local basis at node 40

Localization of the interpolation basis

 $\phi_i^{\text{loc}} \text{ Minimizer of } \int_{\Omega_i} \left| \operatorname{div}(a \nabla \phi) \right|^2$ Subject to $\phi \in \mathcal{H}_0^1(\Omega_i)$ and $\phi(x_j) = \delta_{i,j}$

(1)
$$\begin{cases} -\operatorname{div}(a \nabla u) = g, & x \in \Omega, \\ u = 0, & x \in \partial \Omega, \end{cases}$$

u: Solution of (1) $u^{H,\text{loc}}$: F.E. solution of (1) over span(ϕ_i^{loc}) **Theorem**

$$\begin{aligned} \|u - u^{H, \operatorname{loc}}\|_{\mathcal{H}^{1}_{0}(\Omega)} \leq C \|g\|_{L^{2}(\Omega)} \\ \left(H + N \max_{i \in \mathcal{N}} \|\phi_{i} - \phi_{i}^{\operatorname{loc}}\|_{\mathcal{H}^{1}_{0}(\Omega)}\right) \end{aligned}$$

Theorem

$$\|\phi_{i} - \phi_{i}^{\text{loc}}\|_{\mathcal{H}_{0}^{1}(\Omega)} \leq CH^{-7-2d} \left(\left\| \operatorname{div}(a\nabla\phi_{i}^{\text{loc}}) \right\|_{L^{2}(\Omega_{i}^{H})} + \left\|\phi_{i}^{\text{loc}}\right\|_{L^{2}(\Omega_{i}^{H})} \right)$$

$$\Omega_i^{\delta} := \left\{ x \in \Omega_i \mid \operatorname{dist}(x, \partial \Omega_i \cap \Omega) < \delta \right\}$$

(1)
$$\begin{cases} -\operatorname{div}(a\nabla u) = g, & x \in \Omega, \\ u = 0, & x \in \partial\Omega, \end{cases}$$

u: Solution of (1) $u^{H,\text{loc}}$: F.E. solution of (1) over span(ϕ_i^{loc}) **Theorem** A posteriori error estimates $\|u - u^{H,\text{loc}}\|_{\mathcal{H}^1_0(\Omega)} \leq C \|g\|_{L^2(\Omega)} (H + E)$

$$E = H^{-7-3d} \max_{i \in \mathcal{N}} \left(\| \operatorname{div}(a\nabla \phi_i^{\operatorname{loc}}) \|_{L^2(\Omega_i^H)} + \| \phi_i^{\operatorname{loc}} \|_{L^2(\Omega_i^H)} \right)$$

$$\Omega_i^{\delta} := \left\{ x \in \Omega_i \mid \operatorname{dist}(x, \partial \Omega_i \cap \Omega) < \delta \right\}$$

 $\{x \in \Omega_i \mid \operatorname{dist}(x, \partial \Omega_i \cap \Omega) < \delta\}$

 $\{x \in \Omega_i \mid \operatorname{dist}(x, \partial \Omega_i \cap \Omega) < \delta\}$

Sparse super-localization

$$u : ext{ Solution of (1) } \left\{ egin{array}{cc} -\operatorname{div}(a
abla u) = g, & x \in \Omega, \ u = 0, & x \in \partial \Omega, \end{array}
ight.$$

 $u^{H,\text{loc}}$: F.E. solution of (1) over span(ϕ_i^{loc}) **Theorem**

If
$$\left(B(x_i, C^*H \ln \frac{1}{H}) \cap \Omega\right) \subset \Omega_i$$
, then

$$\|u - u^{H, \operatorname{loc}}\|_{\mathcal{H}^1_0(\Omega)} \le C H \|g\|_{L^2(\Omega)}$$

 $\|u - u^{H, \text{loc}}\|_{\mathcal{H}^1(\Omega)}$ vs number of layers lin log scale

 $\{\zeta_{1k}\}, \{\zeta_{2k}\}$: i.i.d. uniformly distributed in $[-\frac{1}{2}, \frac{1}{2}]$ $\langle |\hat{a}(k)|^2 \rangle \simeq |k|^{-\alpha}$

> Example taken out of [Hou-Wu 1997] and [Ming-Yue 2006]

H: Size of the coarse mesh.h: Size of the fine mesh.

Computational cost

Localization

RPS:

Owhadi-Zhang-Berlyand-12

Online

 H^{-d}

Offline

The basis remains accurate for hyperbolic PDEs

$$\begin{cases} \rho(x)\partial_t^2 u(x,t) - \operatorname{div} \left(a(x)\nabla u(x,t) \right) = g(x,t) & x \in \Omega_T, \\ u = 0 & x \in \partial\Omega_T, \\ \partial_t u = 0 & x \in \Omega \times \{t = 0\} \end{cases}$$

(1)
$$\Omega_T = \Omega \times (0, T)$$

 $\rho \in L^{\infty}(\Omega) \quad \rho(x) \ge \rho_{\min} > 0$
 $\partial_t g \in L^2(\Omega_T)$
 $u^{H, \text{loc}}$: F.E. solution of (1) over $\text{span}(\phi_i^{\text{loc}})$

$$u^{H,\text{loc}}(x,t) = \sum_{i} c_i(t)\phi_i^{\text{loc}}(x)$$

The basis remains accurate for hyperbolic PDEs

$$\int \rho \phi_j^{\rm loc} \partial_t^2 u^{H, \rm loc} = \int_{\Omega} \nabla \phi_j^{\rm loc} a \nabla u^{H, \rm loc} + \int \phi_j^{\rm loc} g$$

Theorem

$$\begin{aligned} \|\partial_t (u - u^{H, \text{loc}})(., T)\|_{L^2(\Omega)} + \|u - u^{H, \text{loc}}\|_{L^2(0, T, \mathcal{H}^1_0(\Omega))} \\ &\leq C \big(\|\partial_t g\|_{L^2(\Omega_T)} + \|g(x, 0)\|_{L^2(\Omega)}\big) H \end{aligned}$$

Further (implicit) discretization of [0, T] with time steps Δt

$$\text{Error} \sim (\Delta t + H)$$

 $u^{H,\text{loc}}(x,T)$ for T=1

$\Phi(\mu^{\dagger}) = \mu^{\dagger} [X \ge a]$ **Quantity of Interest**

Unknown or partially known measure of probability on \mathbb{R}

You know
$$\mu^{\dagger} \in \mathcal{A}$$

.

 $d = (d_1, \ldots, d_n) \in \mathbb{R}^n$ *n* i.i.d samples from μ^{\dagger} **Problem:** Compute the best estimate of $\Phi(\mu^{\dagger})$

$$= \theta - \theta - \theta(d)$$

Mean squared error

$$\mathcal{E}(\mu^{\dagger},\theta) = \mathbb{E}_{d \sim (\mu^{\dagger})^{n}} \left[\left[\theta(d) - \Phi(\mu^{\dagger}) \right]^{2} \right]$$

Confidence error

$$\mathcal{E}(\mu^{\dagger},\theta) = \mathbb{P}_{d \sim (\mu^{\dagger})^{n}} \left[\left| \theta(d) - \Phi(\mu^{\dagger}) \right| \ge r \right]$$

Game theory and statistical decision theory

Abraham Wald

John Von Neumann

John Nash

The best strategy is to play at random Obtained by finding the worst prior in the Bayesian class of estimators

Player APlayer BChoosesChooses
$$\mu^{\dagger} \in \mathcal{A}$$
Chooses θ $\mathcal{E}(\mu^{\dagger}, \theta)$ Est strategy for ABest strategy for A $\mu^{\dagger} \sim \pi_A \in \mathcal{M}(\mathcal{A})$ The best strategy for B $\theta_{\pi_B}(d) = \mathbb{E}_{\mu \sim \pi_B, d' \sim \mu^n} \left[\Phi(\mu) \middle| d' = d \right]$ The best strategy for A and B = worst prior for B

$$\max_{\pi \in \mathcal{M}(\mathcal{A})} \mathbb{E}_{\mu \sim \pi} \left[\mathcal{E}(\mu, \theta_{\pi}) \right]$$
Can this form of calculus in infinite dimensional spaces and framework facilitate the process of scientific discovery?

Identification of accurate bases for numerical homogenization with optimal recovery properties

Bayesian Numerical Homogenization

(1)
$$\begin{cases} -\operatorname{div}(a\nabla u) = g, & x \in \Omega, \\ u = 0, & x \in \partial\Omega, \end{cases}$$
$$\Omega \subset \mathbb{R}^d \quad \partial\Omega \text{ is piec. Lip.} \\a \text{ unif. ell. } a_{i,j} \in L^{\infty}(\Omega) \\ d \leq 3 \end{cases}$$
We want to homogenize (1)

Alternative Approach

Chooses

$$g \in L^{2}(\Omega)$$
 Sees
 $u(x_{1}), \dots, u(x_{N})$
Chooses θ
 $\mathcal{E}(g, \theta) = \left| u(x) - \theta \left(u(x_{1}), \dots, u(x_{N}) \right) \right|^{2}$

Game theory and statistical decision theory

John Nash

John Von Neumann

Abraham Wald

The best strategy is to play at random

Obtained by finding the worst prior in the Bayesian class of estimators

Replace g by a stochastic field ξ

(2)
$$\begin{cases} -\operatorname{div}(a\nabla u) = \xi, & x \in \Omega, \\ u = 0, & x \in \partial\Omega, \end{cases}$$

$$g \in L^2(\Omega) \iff \xi$$
: white noise $g \in H^{\pm s}(\Omega) \iff \xi = \Delta^{\mp s/2}$ white noise

Best strategy

$$\theta = \mathbb{E}\left[u(x) | u(x_1), \dots, u(x_N)\right]$$