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Abstract

We consider linear divergence-form scalar elliptic equations and vectorial equa-
tions for elasticity with rough (L*°(€2), 2 C R?) coefficients a(x) that, in particular,
model media with non-separated scales and high contrast in material properties.
While the homogenization of PDEs with periodic or ergodic coefficients and well
separated scales is now well understood, we consider here the most general case
of arbitrary bounded coefficients. For such problems, we introduce explicit and
optimal finite dimensional approximations of solutions that can be viewed as a
theoretical Galerkin method with controlled error estimates, analogous to classical
homogenization approximations. In particular, this approach allows one to ana-
lyze a given medium directly without introducing the mathematical concept of
an € family of media as in classical homogenization. We define the flux norm as
the L? norm of the potential part of the fluxes of solutions, which is equivalent
to the usual H'-norm. We show that in the flux norm, the error associated with
approximating, in a properly defined finite-dimensional space, the set of solutions
of the aforementioned PDEs with rough coefficients is equal to the error associated
with approximating the set of solutions of the same type of PDEs with smooth
coefficients in a standard space (for example, piecewise polynomial). We refer to
this property as the transfer property. A simple application of this property is the
construction of finite dimensional approximation spaces with errors independent
of the regularity and contrast of the coefficients and with optimal and explicit con-
vergence rates. This transfer property also provides an alternative to the global
harmonic change of coordinates for the homogenization of elliptic operators that
can be extended to elasticity equations. The proofs of these homogenization results
are based on a new class of elliptic inequalities. These inequalities play the same
role in our approach as the div-curl lemma in classical homogenization.
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1. Introduction

In this paper, we are interested in finite dimensional approximations of solu-
tions of scalar and vectorial divergence form equations with rough coefficients
inQ c RY, d = 2. More precisely, in the scalar case, we consider the partial
differential equation

—div(a(x)Vu(x))=f(x) xe; fELz(SZ), a(x)={a;j e L>°(Q)}

1.1
u=0 on 0%, (.D

where € is a bounded subset of R¢ with a smooth boundary (for example, C?) and
a is symmetric and uniformly elliptic on 2. It follows that the eigenvalues of a
are uniformly bounded from below and above by two strictly positive constants,
denoted by Amin(a) and Amax(a). Precisely, for all £ € RY and x € Q,

Amin(@)E* € ETa(x)E < Amax(@)[E]. (1.2)

In the vectorial case, we consider the equilibrium deformation of an inhomo-
geneous elastic body under a given load b € (L%(2))?, described by

[—div(C(x) ce() =b(x) xeQ 03

u=20 on 092,
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where © C R is a bounded domain, C(x) = {Cjjxi(x)} is a fourth order tensor of
elastic modulus (with the associated symmetries), u(x) € R is the displacement
field, and for ¢ € (HO1 (Q))d, &() is the symmetric part of Vi, namely,

1 (oy; 0y,
W) = 5 (i + ﬂ) . (1.4)

ax]' ax,'

We assume that C is uniformly elliptic and C;jx; € L°(S2). It follows that the
eigenvalues of C are uniformly bounded from below and above by two strictly
positive constants, denoted by Amin (C) and Amax (C).

The analysis of finite dimensional approximations of scalar divergence form
elliptic, parabolic and hyberbolic equations with rough coefficients, which in addi-
tion satisfy a Cordes-type condition in arbitrary dimensions, has been performed in
[53-55]. In these works, global harmonic coordinates are used as a coordinate trans-
formation. We also refer to the work of BABUSKA et al. [8, 10] in which a harmonic
change of coordinates is introduced in one-dimensional and quasi-one-dimensional
divergence form elliptic problems.

In essence, this harmonic change of coordinates allows for the mapping of the
operator L, := div(aV) onto the operator L o := div(QV), where Q is symmetric
positive and divergence-free. This latter property of Q implies that L o can be writ-
ten in both a divergence form and a non-divergence form operator. Using the W22
regularity of solutions of Lgov = f (for f € L?), one is able to obtain homogeni-
zation results for the operator L, in the sense of finite dimensional approximations
of its solution space (this relation with homogenization theory will be discussed in
detail in Section 6).

This harmonic change of coordinates provides the desired approximation in
two-dimensional scalar problems, but there is no analog of such a change of coor-
dinates for vectorial elasticity equations. One goal of this paper is to obtain an anal-
ogous homogenization approximation without relying on any coordinate change
and therefore allowing for treatment of both scalar and vectorial problems in a
unified framework.

In Section 2, we introduce a new norm, called the flux norm, defined as the
L2-norm of the potential component of the fluxes of solutions of (1.1) and (1.3).
We show that this norm is equivalent to the usual H L_norm. Furthermore, this new
norm allows for the transfer of error estimates associated with a given elliptic oper-
ator div(aV) and a given approximation space V onto error estimates for another
given elliptic operator div(a’V) with another approximation space V', provided
that the potential part of the fluxes of elements of V and V' span the same linear
space. In this work, this transfer/mapping property will replace the transfer/mapping
property associated with a global harmonic change of coordinates.

In Section 3, we show that a simple and straightforward application of the flux-
norm transfer property is to obtain finite dimensional approximation spaces for
solutions of (1.1) and (1.3) with “optimal” approximation errors independent of the
regularity and contrast of the coefficients and the regularity of 9<2.

Another application of the transfer property of the flux norm is given in Section
5 for controlling the approximation error associated with theoretical discontinu-
ous Galerkin solutions of (1.1) and (1.3). In this context, for elasticity equations,
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harmonic coordinates are replaced by harmonic displacements. The estimates intro-
duced in Section 5 are based on mapping onto divergence-free coefficients via the
flux-norm and a new class of inequalities introduced in Section 4. We believe that
these inequalities are of independent interest for PDE theory and could be helpful
in other problems.

Connections between this work, homogenization theory and other related works
will be discussed in Section 6.

2. The flux norm and its properties

In this section, we will introduce the flux-norm and describe its properties when
used as a norm for solutions of (1.1) [and (1.3)]. This flux-norm is equivalent to the
usual HO1 (2)-norm (or (Hol (2))4-norm for solutions to the vectorial problem), but
leads to error estimates that are independent of the material contrast. Furthermore,
it allows for the transfer of error estimates associated with a given elliptic operator
div(aV) and a given approximation space V onto error estimates for another given
elliptic operator div(a’V) with another approximation space V’, provided that the
potential part of the fluxes of elements of V and V' span the same linear space. In
[53], approximation errors have been obtained for theoretical finite element solu-
tions of (1.1) with arbitrarily rough coefficients a. These approximation errors are
based on the mapping of the operator—div(a V) onto an non-divergence form oper-
ator—Q; ;d;d; using global harmonic coordinates as a change of coordinates. It is
not clear how to extend this change of coordinates to elasticity equations, whereas
the flux-norm approach has a natural extension to systems of equations and can be
used to link error estimates on two separate operators.

2.1. Scalar case

Definition 2.1. For k € (LZ(Q))d, denote by kpot and kcyrl the potential and diver-
gence-free portions of the Weyl-Helmholtz decomposition of k. Recall that kpo and
keur are orthogonal with respect to the L2-inner product. kpot 1s the orthogonal pro-
jection of k onto L%ot(Q) defined as the closure of the space {Vf : f € CSO(Q)}

in (L%(2))“. keun is the orthogonal projection of k onto L2 . (€2) defined as the

curl

closure of the space {¢§ : & € (C®(Q)¢ div(¢) = 0} in (L2(Q))?
For ¢ € H} (), define

1 la-frux == 1@V )potll 2.2y - 2.1

Motivations for the flux norm

o The (-)pot in the a-flux-norm is explained by the fact that, in practice, we are
interested in fluxes (of heat, stress, oil, pollutant) entering or exiting a given
domain. Furthermore, for a vector field &, [, & - nds = [, div(§)dx =
fQ div(&por)dx, which means the flux entering or exiting is determined by the
potential part of the vector field. Thus, as with the energy norm, ||u||§ =
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fQ(Vu)TaVu, the flux norm has a natural physical interpretation. An error
bound given in the flux-norm shows how well fluxes (of heat or stresses) are
approximated.

While the energy norm is natural in many problems, we argue that this is no
longer the case in the presence of high contrast. Observe that in [22], contrast
independent error estimates are obtained by renormalizing the energy norm by
Amin(@). In [14], the error constants associated with the energy norm are made
independent of the contrast by using terms that are appropriately and explicitly
weighted by a. These modifications on the energy norm or on the error bounds
(expressed in the energy norm) have to be introduced because, in the presence
of high contrast in material properties, the energy norm blows up. Even in the
simple case where a is a constant (a = «l; with @ > 0), the solution of (1.1)
satisfies

2

/(Vu)TaVu _1! HVA—lf H 2.2)
Q o

L@yt
Hence the energy norm squared of the solution of (1.1) blows up like 1/« as
a | 0, whereas its flux-norm is independent of & (because (aVu)pot = VA~

llla-nox = | VA7 £] 23)

@@
Equation (2.3) remains valid even when a is not a constant (this is a consequence
of the transfer property, see Corollary 2.1). In reservoir modeling, fluxes of oil
and water are the main quantities of interest to be approximated correctly. The
energy norm is less relevant due to high contrast and has been modified (in [22]
for instance) in order to avoid possible blow up.

Similar considerations of convergence in terms of energies and fluxes are pres-
ent in classical homogenization theory. Indeed, the convergence of solutions of
—div(a®Vu®) = f can be expressed in terms of convergence of energies in
the context of I'-convergence [17,32] (and its variational formulation) or in the
terms of (weak) convergence of fluxes in G or H-convergence [31,47,48,58,59]
(a*Vu¢ — a®Vu"). Here, weak L2 convergence of fluxes is used and no flux
norm is necessary, unlike in our study, where it arises naturally.

Proposition 2.1. ||.||;-fux is @ norm on HO1 (2). Furthermore, for all W € HO1 ()

Anin @IV Nl 22@pa S 1Y la-ux S Amax @IV 1l 220y (2.4)

Proof. The proof of the left-hand side of inequality (2.4) follows by observing that

/Q V) lavy = /Q (V)T @V por (2.5)

from which we deduce by Cauchy—Schwarz inequality that

/Q(VKD)Tan S IV Iz 1Y la-flux- (2.6)
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The proof of the main theorem of this section will require

Lemma 2.1. Let V be a finite dimensional linear subspace of HO1 (). For [ €
L2(Q), let u be the solution of (1.1). Then,

. lu— vlla-flux . Vw — avv)pot||(L2(Q))d
sup inf ————— = sup in

rerz@ Ve’ 1l weH2(@NH (@) V<Y AWl

Q2.7)

Proof. Since f € LZ(Q), it is known that there exists w € Hz(Q) N HO1 (2) such
that

2 e
We conclude by observing that forv € V,
I(Vw — avv)pot”(Lz(Q))d = [[(aVu — avv)p0t||(L2(Q))d- (2.9)
O
For V, a finite dimensional linear subspace of HOl (2), we define
(divaVV) := span{div(aVv) : v e V}. (2.10)

Note that (divaVV) is a finite dimensional subspace of H ().
The following theorem establishes the transfer property of the flux norm which
is pivotal for our analysis.

Theorem 2.1. (Transfer property of the flux norm) Let V' and V be finite-dimen-
sional subspaces of HO1 (). For [ € L%(Q) let u be the solution of (1.1) with
conductivity a and u’ be the solution of (1.1) with conductivity a’. If (divaVV) =
(diva’'VV'), then

— [ /
sup inf 1 Vlatox e 14 Ve @.11)

fer2(@) VeV ||f||L2(gz) feL2(@) VeV’ ||f||L2(gz)

Remark 2.1. The usefulness of (2.11) can be illustrated by considering a’ = I so
that diva’V = A. Then u’ € H? and therefore V' can be chosen as, for example,
the standard piecewise linear FEM space with nodal basis {¢; }. The space V is then
defined by its basis {;} determined by

div(aVy;) = Ag; (2.12)
with Dirichlet boundary conditions (see details in Section 3.1.1). Furthermore,

equation (2.11) shows that the error estimate for a problem with arbitrarily rough
coefficients is equal to the well-known error estimate for the Laplace equation.
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Remark 2.2. Equation (2.11) remains valid without the supremum in f. More pre-
cisely, writing u and u’, the solutions of (1.1), with conductivities @ and a’ and the
same right-hand side f € L?(<2), one has

inf [lu — vllgfux = inf [u" = vlla fox- (2.13)
veV veV’
Equation (2.13) is obtained by observing that

= Vllpofiue = HVA’] (f + diV(aVv))‘ (2.14)

LX)

Corollary 2.1. Let X and V be finite-dimensional subspaces of H(} (RQ). For f €
L2(2) let u be the solution of (1.1) with conductivity a. If (divaVV) = (div VX)
then

— _ Vw — Vv a
sup ing M Ve e ] le2@nt 5 s

rerr@veV Il wenl@nuzeveX 1AWl

Equation (2.15) can be obtained by setting @’ = I in Theorem 2.1 and applying
Lemma 2.1.

Theorem 2.1 is obtained from the following proposition by noting that the right-
hand side of equation (2.16) is the same for pairs (a, V) and (a’, V') whenever
div(aVV) = div(@’'VV’).

Proposition 2.2. For f € L*(Q) let u be the solution of (1.1). Then,

lu —vllg-fux lzllL2(q)

sup inf , (2.16)
rerz@ eV Il cedivavvyt 1Vz2ll 2@y
where
(divaVV)* :={z € H}(Q) : Vv € V, (Vz,aVv) = 0}. (2.17)
Proof. For w € H%(S2), define
J(w) = inf (Vo —aVolporll 1200 (2.18)
Observe that
J(w) = inf IVw — aVv — &l 2 (ay)- (2.19)

veV,ee(L2(RI)) : div(£)=0

Additionally, observing that the space spanned by Vz for z € (divaV V)" is the
orthogonal complement (in (L?(2))?) of the space spanned by a Vv + £, we obtain
that

Vw, V
Jw) = sy WV (2.20)
ceivavvyt 1Vallzz @)
Integrating by parts and applying the Cauchy—Schwarz inequality yields
Izl 2@
Jw) S Awl2g  sup - (221)

ze(divaVV)t I1Vzll 220y
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which proves

— B Z
sup inf —||u Vlla-fux < sup —” ”LZ(Q) , (2.22)

rerz@ eV Ifllze  — ce@ivavvyr IVl @)

Dividing by [[Aw||2(q), integrating by parts, and taking the supremum over w €
H*(Q) N H}(Q), we get

J(w)
sup —_— = sup sup

werz@nml @ 1AWI2@)  zedivavn)t werz@nul @
_ (Aw, ) (2.23)
IVzll L2 1AWl 2 ()

we conclude the theorem by choosing —Aw =z. O

The transfer property (2.11) for solutions can be complemented by an anal-
ogous property for fluxes. To this end, for a finite dimensional linear subspace
V C (L*(2))¢ define

(divaV) := {div(a¢) : ¢ € V}. (2.24)

Observe that (diva)) is a finite dimensional subspace of H~!'(Q). The proof of
the following theorem is similar to the proof of theorem 2.1.

Theorem 2.2. (Transfer property for fluxes) Let V' and V be finite-dimensional
subspaces of (L*(2))2. For f € L*(R) let u be the solution of (1.1) with conduc-
tivity a and u’ be the solution of (1.1) with conductivity a’. If (div aV) = (diva’V’)
then

a(Vu— 2omd a' (Vu' — 2 romd
sup inf [l (a( éF))POt”(L (R)) _ inf ll(a’( §))pot||(L (Q))
fer2@teV [NRVEs) Fer2(@)teV I £1l2
(2.25)

Theorem 2.2 will be used in Section 5 for obtaining error estimates on theoretical
non-conforming Galerkin solutions of (1.1).

Corollary 2.2. Let V be a finite-dimensional subspace of (L*(2))¢ and X a finite-
dimensional subspace ofH(} (Q). For f € L*() let u be the solution of (1.1) with
conductivity a. If (diva)) = (div VX) then

a(Vu— 200y Vw—Vul 2.0y
sup inf Il (a( Epotllr2(2)) _ sup i l 222y

ferr@¢<v 1222 wenl@nu2@ 'Y 1AWl
(2.26)

Remark 2.3. The analysis performed in this section and in the following one can
be naturally extended to other types of boundary conditions (nonzero Neumann
or Dirichlet). To support our claim, we will provide this extension in the scalar
case with non-zero Neumann boundary conditions. We refer to Section 8.1 for that
extension.
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2.2. Vectorial case

For k € (LZ(Q))d xd  denote by kpot the potential portion of the Weyl-Helm-
holtz decomposition of k (the orthogonal projection of k onto the closure of the
space {Vf : f € (C3°(Q2))?} in (L*(Q))?*9). Define

[V llc-fux == I1(C = €(¥))potll (12(e)ydxa- (2.27)

Remark 2.4. Because of the symmetries of the elasticity tensor C, one has Vf €
(C5e@)?

(Vf’ (C : 8(1ﬂ))pm) (L2(Q))d><d = (8(f)’ (C : 8(w))p0t) (LZ(Q))dxd (228)

from which it follows that Definition 2.27 would be the same if the projection were
made on the space of symmetrized gradients.

Proposition 2.3. ||.||c.aux is a norm on (HO1 (2))?. Furthermore, for all ¥ €
(Hy ()

Amin (O) e (Wl (12 (@yyixd = ¥ llc-ux = Amax (O)le W) Nl 12 (qyyaxa. (2.29)

Proof. The proof of the left-hand side of inequality (2.29) follows by observing
that

/Q W) C e < el z2ayyixa 1V Il c-fux- (2.30)

The fact that || || c-flux is @a norm follows from the left-hand side of inequality (2.29)
and Korn’s inequality [39]: that is, for all ¢ € (HO1 (Q))4,

IVY Il 2 gyixa < V20le@) 12 yixd- (2.31)
O

For V, a finite dimensional linear subspace of (Hol ()4, we define
(divC : &(V)) := span{div(C : e(v)) : v € V}. (2.32)

Observe that (div C : £(V)) is a finite dimensional subspace of (H~'(£2))?. Simi-
larly for X, a finite dimensional linear subspace of (HO1 (Q))d, we define

AX :=span{Av : v € X}. (2.33)

Theorem 2.3. Let V' and V be finite-dimensional subspaces of (H(} (Q)4. For
b € (L*(2))? let u be the solution of (1.3) with elasticity C and u’ be the solution
of (1.3) with elasticity C'. If (div C : ¢(V)) = (divC’ : (V")) then

— r_ ’
sup inf lu —vic-ux _ sup  inf l[u” = vllc-fux (2.34)

ve2@)d VeV bl pezipdveV’ 1112 @)
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Corollary 2.3. Let X and V be finite-dimensional subspaces of (HO1 (2))¢. For
b e (L*(Q))? let u be the solution of (1.3) with elasticity tensor C. If (divC :
e(V)) = AX then

.ol = vlle-pux . IVw = Vol 2q)ixa
sup inf ————— = sup
pea2@yd vV 1l wewi@nazape X 1AW 2@

(2.35)

The proof of theorem 2.3 is analogous to the proof of theorem 2.1.
For V a finite dimensional linear subspace of (L%(£2))?*¢ we define

(divC : V) :=span{div(C : ¢) : ¢ € V}. (2.36)

Observe that (div C : V) is a finite dimensional subspace of (H ! (2))4. The proof
of the following theorem is analogous to the proof of theorem 2.1.

Theorem 2.4. Let V' and V be finite-dimensional subspaces of (L>(2))4*?. For
b e (L2(Q)? let u be the solution of (1.3) with conductivity C and u’ be the
solution of (1.3) with conductivity C'. If (div C : V) = (divC’ : V') then

o IC = (@) = ))potll (£2(q)ydxa

sup inf
be(L2(Q))d $€V 121122
(C": (e(w) —¢)) 2(Q))dxd
~ sp  inf I potll(z2 () 2.37)
be(L2(@)d §€V' 11l (12(g))

Corollary 2.4. Let V be a finite-dimensional subspace of (L*($2))?*? and X a
finite-dimensional subspace of(H(} ()2, For b € (L*(2))? let u be the solution
of (1.3) with elasticity C. If (div C : V) = (AX) then

[1(C = (e) = Opotll(L2(@))ixa

sup inf
beL2(@) ¢V 151l (22 gy
I Vw = V| p2¢qydxd
= sup (L&) (2.38)
werl@nmz@ <X 1AWl @)

3. Application to theoretical finite element methods with accuracy
independent of material contrast

In this section, we will show how, as a very simple and straightforward appli-
cation, the flux norm can be used to construct finite dimensional approximation
spaces for solutions of (1.1) and (1.3) with errors independent of the regularity
and contrast of the coefficients and the regularity of 02 (for the basis defined
in Section 3.1.2). A similar approximation problem can be found in the work of
Melenk [46], where subsets of L? such as piecewise discontinuous polynomials
have been used as an approximation basis [for the right-hand side of (1.1)]. The
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main difference between [46] and this section lies in the introduction of the flux-
norm (||.]|z-flux), Which plays a key role in our analysis, since the approximation
error (in ||. || 4-flux-norm) of the space V), on solutions of the operator div(a V) is equal
to the approximation error (in ||.||,/_fgux-norm) of the space V}; on solutions of the
operator div(a’V), provided that div(aVV}) = div(a’V V). Moreover, this allows
us to obtain an explicit and optimal constant in the rate of convergence (Theorems
3.3,3.4). To our knowledge, no explicit optimal error constant has been obtained for
finite-dimensional approximations of the solution space of (1.1). This question of
optimal approximation with respect to a linear finite dimensional space is related
to the Kolmogorov n-width [57], which measures how accurately a given set of
functions can be approximated by linear spaces of dimension » in a given norm.
A surprising result of the theory of n-widths is the non-uniqueness of the space real-
izing the optimal approximation [57]. A related work is also [9], in which errors
in approximations to solutions of div(aVu) = 0 from linear spaces generated by
a finite set of boundary conditions are analyzed as functions of the distance to the
boundary (the penetration function).

3.1. Scalar divergence form equation

3.1.1. Approximation with piecewise linear nodal basis functions of a regu-
lar tessellation of 2 Let €2;, be a regular tessellation of €2 of resolution & (we
refer to [19]). Let Eg be the set of piecewise linear functions on €2 with Dirichlet
boundary conditions. Denote by ¢, the piecewise linear nodal basis elements of £},
which are localized (the support of ¢y is the union of simplices contiguous to the
node k). Here, we will express the error estimate in terms of & to emphasize the
analogy with classical FEM (it could be expressed in terms of N (%), see below if
needed).

Let @ be the functions associated with the piecewise linear nodal basis ele-
ments ¢y through the equation

[ —div(@a(x)VOr(x)) = Agg inQ . 3.1
o, =0 on 92
Define
Vi, := span{®y}, 3.2)
Theorem 3.1. For any f € L%(Q), let u be the solution of (1.1). Then,
sup inf Nt = vla-tux ), (3.3)

rerz eV If 2@
where C depends only on Q2 and the aspect ratios of the simplices of Q.

Proof. Theorem 3.1 is a straightforward application of the equation (2.15) and the
fact that one can approximate H> functions by functions from Eg in the H' norm
with O(h) accuracy (since 9S2 is of class C? solutions of the Laplace—Dirichlet
operator with L? right-hand sides are in H2, we refer to [19]). O
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Corollary 3.1. For f € L%(Q), let u be the solution of (1.1)in HO1 (R2) and uy, the
finite element solution of (1.1) in V). Then,

||u—uh||H(;(Q) - C

sup (34

FeL2(Q) ||f||L2(Q) = Amin(a)
where C depends only on Q2 and the aspect ratios of the simplices of 2.

Proof. Corollary 3.1 is a straightforward application of Theorem 3.1 and inequality
24). O

Let Q be a symmetric, uniformly elliptic, divergence-free (as defined in
Section 4) matrix with entries in L°°(£2). We note that this matrix will be cho-
sen below so that the solutions of div QVu = f are in H>(Q) if f € L*(Q)
and therefore can be approximated by functions from Eg in H' norm with O(h)
accuracy. It follows from [11] that this is not possible for the solutions of (1.1). In
particular, in some cases Q can be chosen to be the identity.

Let ® kQ be the functions associated with the piecewise linear nodal basis ele-
ments ¢y through the equation

— div (a(x)VdeQ(x)) — div(QVgy) inQ 43)
2 =0 on 9 '

Define
VhQ ‘= span {CDkQ} , 3.6)
Theorem 3.2. For f € L*(Q), let u be the solution of (1.1) in Hy(Q) and uy,

the finite element solution of (1.1) in VhQ. If Q satisfies one of the inequalities of
Theorems 4.1 or 4.2 then

llu — uh”HO'(Q) C
sup

rerz Wl Amin(a)

A

h 3.7)

where C depends only on Q2 and the aspect ratios of the simplices of Q.

Proof. The proof follows from the fact that if Q satisfies one of the inequalities of
Theorems 4.1 or 4.2 then solutions of —div(QVu) = f with Dirichlet boundary
conditions are in H?2. The rest of the proof is similar to that of the previous corollary.

O

3.1.2. Approximation with eigenfunctions of the Laplace-Dirichlet operator

In this section, we assume the minimal regularity condition (C?) on the boundary

d£2 such that the Weyl formula holds (we refer to [49] and references therein).
Denote by W the eigenfunctions associated with the Laplace—Dirichlet opera-

tor in  and Ay the associated eigenvalues, that is, for k € N* = {1,2,...,}
—AY, =MV xeQ
U, =0 on 0%. 3.8)

We assume that the eigenvalues are ordered, that is, Ay < Agy.
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Let 6 be the functions associated with the Laplace—Dirichlet eigenfunctions
Wy (3.8) through the equation

[ —div (a(x) VO (x)) = AWy in Q

=0 on dQ’ (3.9)

Here, Ay is introduced on the right-hand side of (3.9) in order to normalize 6
(Or = Wy, if a(x) = I) and can be otherwise ignored since only the span of {6}
matters. Define

Op = span{fi, ..., N}, (3.10)

where N (h) is the integer part of |2/ h“. The motivation behind our definition of
®y, is that its dimension corresponds to the number of degrees of freedom of piece-
wise linear functions on a regular triangulation (tessellation) of €2 of resolution 4.

Theorem 3.3. For f € L%(), let u be the solution of (1.1). Then,

[ ]
1

It = vlla-pax _ 1 R}
lim sup inf = . 3.11)
h—0 feL2() ISC h”f”L2(Q) 2\/_ ra+
Furthermore, the space ®y, leads (asymptotically as h — 0) to the smallest pos-

sible constant in the right-hand side of (3.11) among all subspaces of H(} ()
with N (h), the integer part of ||/ h?, elements.

°
1

. . lu — vlla-flux 1 €2
inf sup inf = (I+€(N))
Vdim(V)=N rc2gyveV 1 fll2 2ym\T1+9$HN

(3.12)

where the infimum is taken with respect to all subspaces of HO1 (2) with N ele-
ments and € (N) converges to zero as N — 00.

Remark 3.1. The constants in the right-hand side of (3.11) and (3.12) are the
classical Kolmogorov n-width d,, (A, X), understood in the “asymptotic” sense [as
h — Ofor (3.11) and N — oo for (3.12)] because the Weyl formula is asymptotic.
Recall that the n-width measures how accurately a given set of functions A C X
can be approximated by linear spaces E, of dimension n. Writing d,, (A, X) the
n-width measure, it is defined by
dy(A, X) :=inf sup inf ||w — gllx
E, weA g€k,

for anormed linear space X. Inourcase X = HO1 (£2), A being the set of all solutions
of (1.1) as f spans L>(S2) for a given a(x) and Q. It should be observed there is a
slight difference with classical Kolmogorov n-width, indeed the flux norm ||. || 4-flux
used in (3.11) depends on a [as opposed to the HO1 (2)-norm]. A surprising result
of the theory of n-widths [57] is that the space realizing the optimal approximation
is not unique, therefore there may be subspaces, other than ®j,, providing the same
asymptotic constant.
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Remark 3.2. Whereas the constant in (3.11) depends only on the dimension d, the
estimate for finite 4 given by (3.3) depends explicitly on the aspect ratios of the
simplices of €2, (the uniform bound on the ratio between the outer and inner radii
of those simplices).

Proof. Let V}, be a subspace of H(} (2) with [|2|/ h9] elements. Let (v) be a basis
of Vj.
Let v, be the functions associated with the basis elements vy through the equa-
tion
Av, = —div (a(x)Vug(x)) in Q
[v,’( =0 on Q2" (.13)

It follows from equation (2.15) of theorem 2.1 that the following transfer equation
holds

lu —vllgfux [Vw — V'l 1204

sup inf sup inf
fELz(Q) vev ”f”LZ(Q) weHzﬁH (Q) v EVh ”AU)”LZ(Q)

(3.14)
where for f € L%(Q), u is the solution of (1.1). Using the eigenfunctions Wy of
the Laplace—Dirichlet operator, we arrive at

IVw — Vol 2021 5 (Aw — AV, W2
lAwllp2(q)2 >ore (Aw, Wy)?

(3.15)

When the supremum is taken with respect to w € H> N H (£2), the right-hand side
of (3.15) can be minimized by taking V/ to be the linear span of the first [|2|/ h4]
eigenfunctions of the Laplace—Dmchlet operator on €2, because with such a basis
the first N (h) coefficients of Aw are cancelled, that is,

1 2
IV = Vo'lIE 2 g0 2Ryt 7 (Bw, We)

in = (3.16)
U’EVh, ||AU)||L2(Q)2 Zl?il (Aw, ‘I"k)2
with N (h) = [||/h?]. Then
Vw — Vv'||? d 1
inf sup  inf 2@y _ . (3.17)
Vi dimV)=N®) yep2anl @) VeV 1AW q, AN+

This follows by noting that the right-hand side of equation (3.16) is less than or
equal to 5 (1> and that equality is obtained for w = Wy )41.

The optimality of the constant in V;, translates into the optimality of the constant
associated with V, using the transfer equation (3.14), that is,

le — vlla-flux 1

inf sup inf — = (3.18)
Vi, dlm(V/,) N pep2(q)ven ||f||Lz(Q) VANGB)+1
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We obtain the constant in (3.11) by using Weyl’s asymptotic formula for the
eigenvalues of the Laplace—Dirichlet operator on 2 [62].

2
dy .\ 1
A ~ dot (M) , (3.19)

I£2]

In equation (3.19), |2| is the volume of €2, d is the dimension of the physical space
and I is the Gamma function defined by I'(z) := fooo 12~ Lle= ds. Tt follows from
equation (3.13) that by defining V), = ©, one obtains the smallest asymptotic
constant in the right-hand side of (3.11). This being said, it should be recalled that
the space ®, is not the unique space achieving this optimal constant [57].

For the sake of clarity, an alternate (but similar) proof is provided below. By
Proposition 2.2

lu —vllg-fux 1zl 2

sup inf , (3.20)
rerz@ vV Il zedivavyv)t 1Vl 2 ()
Taking inf of both sides, we have
U — V|a-
. inf S inf ” ”a flux
Vdim(V)=Nh) sV I1f 2@

Izl z2

— L7 (3.21)

~inf sup —_,
Vi, dim(Vy,)=N (h) ze(divaVV)i ||VZ||(L2(Q))d

Notice that the right-hand side is the inverse of the Rayleigh quotient, and
(divaV V)1 is a co-dimension N () space; then by the Courant—Fischer min—max
principle for the eigenvalues, we have

. l — vlla-flux 1

inf sup in = (3.22)
Vdim(V)=N®) reraopveV 12 VANB)+

Taking V to be ®j, then the optimal constant can be achieved asymptotically
ash — 0. O

Remark 3.3. Theorem 3.3 is related to Melenk’s n-widths analysis for elliptic prob-
lems [46] where subsets of L2, such as piecewise discontinuous polynomials, have
been used as an approximation basis. The main difference between [46] and this
section lies in the introduction of and the emphasis on the flux-norm (||.||4-flux),
with respect to which errors become independent of the contrast of the coefficients
and the regularity of a. Moreover, this allows us to obtain an explicit and optimal
constant in the rate of convergence.

Remark 3.4. Write

o0

1
el =2 P W) (3.23)
k=1
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Then the space ©, also satisfies, for v € [0, 1),

1y 1=v
e = lla-frux I I ‘
lim sup inf = . (3.24)
h—)OgEH V() SO hl_V”g”H—u(Q) Zf r'a+
3.2. Vectorial elasticity equations
Let (ey, ..., eq) be an orthonormal basis of R?. For j € {I,...,d}and k €
N* = {1,2,..., }, let t/ be the solution of
—.div (C 1€ (r,g)) = e AW, in 2, (3.25)
Tk] =0, on €2,

where W are the eigenfunctions (3.8) of the scalar Laplace—Dirichlet operator in
Q. Let M := [|Q|/h“] be the integer part of |Q|/h¢ and T}, be the linear space

spanned by 7/ fork € {1,..., M} and j € {1,...,d}.

Remark 3.5. Eigenmodes from a vector Laplace operator work as well. We use
the eigenfunctions for a scalar Laplace operator because they are, in principle,
simpler to compute and because our proof uses Weyl’s asymptotic formula for the
eigenvalues of the scalar Laplace—Dirichlet operator in order to obtain the optimal
constant in the right-hand side of (3.26) and (3.27). Also, the eigenfunctions for the
scalar Laplace operator encode information about the geometry of the domain 2.

Theorem 3.4. For b € (L2(Q))4 let u be the solution of (1.3). Then,

e = vl 1 Y
lim sup inf = = v . (3.26)
h_)ObG(Lz(Q))d veTy h”b”(LZ(Q))d Zﬁ ra+ E)

Furthermore, the space Ty, leads (asymptotically) to the smallest possible constant
in the right-hand side of (3.26) among all subspaces of H(} (Q) with 0(|2/ h?))
elements.

[ )

_ 1 Q d
lIlf sup inf lle — vllc-fux _ | |d (1+€(N))
V,dlm(V):N bE(Lz(Q))d veV ||b||(L2(Q))d Zﬁ F(l —|— 7)N

(3.27)

where the infimum is taken with respect to all subspaces of (HO1 ()4 with N
elements and € (N) is converging towards zero as N — 0.

Proof. Theorem 3.4 is a straightforward application of equation (2.35) of theorem
2.3 and Weyl’s estimate (3.19) (the proof is similar to the scalar case). O
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Defining ¢ as in Section 3.1.1, for j € {1, ..., d} let <I>£ be the solution of
—in (C(x) ZS(CD]{)) =ejAg, inQ, (3.28)
o/ =0, on 9€2,
Define
W), := span {cb,{} , (3.29)
Theorem 3.5. For b € (L*(Q))? let u be the solution of (1.3). Then,
sup g W Vlleox (3.30)

per2@yd V€W 1012
where K depends only on Q and the aspect ratios of the simplices of Q2.

Proof. Theorem 3.5 is a straightforward application of equation (2.35) and the fact
that one can approximate H? functions in the H'! norm by functions from ﬁg with
O(h) accuracy. O

Corollary 3.2. For b € (L*(Q))? let u be the solution of (1.3) and uy, the finite
element solution of (1.3) in Wj,. Then,

llu — “h”(H&(Q))d < K

(3.31)

sup inf S h.
be(L2(Q))4 veW, ||b||(L2(Q))d Amin (C)

where K depends only on 2 and the aspect ratios of the simplices of 2.

Proof. Corollary 3.2 is a straightforward application of Theorem 3.5, inequality
(2.29) and Korn’s inequality (2.31). O

4. A new class of inequalities

The flux-norm (and harmonic coordinates in the scalar case [53]) can be used to
map a given operator div(aV) (div(C : e(u) for elasticity)) onto another operator
div(a’V) (div(C’ : e(u))). Among all elliptic operators, those with divergence-free
coefficients (as defined below) play a very special role in the sense that they can be
written in both a divergence-form and a non-divergence form. We introduce a new
class of inequalities for these operators. We show that these inequalities hold under
Cordes type conditions on the coefficients, and conjecture that they hold without
these conditions.

These inequalities will be required to hold only for divergence-free conduc-
tivities because, by using the flux-norm through the transfer property defined in
Section 2 or harmonic coordinates as in [53] (for the scalar case), we can map
non-divergence free conductivities onto divergence-free conductivities and hence
deduce homogenization results on the former from inequalities on the latter.



694 LEONID BERLYAND & HOUMAN OWHADI

4.1. Scalar case

Let a be the conductivity matrix associated with equation (1.1). In this section,
we will assume that a is uniformly elliptic, with bounded entries and divergence
free, that is, for all I € R4, div(a.l) = O (that is each column of « is div free);
alternatively, for all ¢ € C3°(2)

/ Ve.al=0. “4.1)
Q
Assume that €2 is a bounded domain in R?. For a d x d matrix M, define
d
Hess : M := Z ;0 M; ;. (4.2)
i,j=1

We will also denote by A~ M the d x d matrix defined by
(A7'M); ;=AM 4.3)

Theorem 4.1. Let a be a divergence free conductivity matrix. Then, the following
statements are equivalent for the same constant C:

o There exists C > 0 such that for all u € H(} (),

1 4
lull 2 < C HA dlv(aVu)‘ ey (4.4)
o There exists C > 0 such that for all u € Hé (2),
H div(aV)) "' Au poiey = €l (4.5)
o Writing 0; the solutions of (3.9). For all (U1, U, ...) € RN,
o0 2 o0
> Uit <y Uk (4.6)
i=1 L2() i=1

e The inverse of the operator — div(aV) (with Dirichlet boundary conditions) is a
continuous and bounded operator from H=2 onto L?. Moreover, foru € H™2(),

H (divaV)flu‘

Ly = ClA ull ). @7

o There exists C > 0 such that for all u € H(} (),

o 2
. 2
||u||§2(m < czz <d1v (aV)L—_l) , u> ) (4.8)
i=1

i H-'H}
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e There exists C > 0 such that

1 (VZ, GVM)LZ(Q)

— < inf sup

C ™ ueH} @ cemrna) @ lull 2l Azl 22 0)

o There exists C > 0 such that for all u € H& (),

lull 2 = C HA*I Hess : (au)

2@

o There exists C > 0 such that for all u € H& (),

lull 2 < € HHess - (A (au))

2@

695

4.9)

(4.10)

“.11)

Remark 4.1. Theorem 4.1 can be related to the work of Conca and Vanninathan
[24], on uniform H2-estimates in periodic homogenization, which established a

similar result in the periodic homogenization setting.
Proof. Let U; € R. Observe that
o0 o
—div aVZe/Uj :z\yj)\’jUj’
j=1 j=1
hence
oo o0
—A"Ndiv{aV Y oU; | =D w,U;.
j=1 j=1
Identifying u with 3772, 6;U;, it follows that

A div(aVu)HLz(Q) 1

inf > —
uel?(Q) llullr2q) C
is equivalent to
2
o
> 6,0, <c¥'u.
= L@

Observe that equation (4.4) is also equivalent to

| ivav)~tu < CIA " ull 20,

LX) —

4.12)

(4.13)

(4.14)

(4.15)

(4.16)

which is equivalent to the fact that the inverse of the operator — div(aV) (with
Dirichlet boundary conditions) is a continuous and bounded operator from H 2
onto L2. Finally, the equivalence with (4.8) is a consequence of equation (4.6).
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Let us now prove the equivalence with equations (4.10) and (4.11). Observe that if
a is a divergence free d x d symmetric matrix and u € H*(Q) N HJ (Q), then

div(aVu) = Hess : (au), 4.17)
since
d d d d d
Hess : (au) = Z ai)jaiaju + Zzaiai,jaju + Zzajal;ja,-u, (4.18)
ij=1 j=1i=1 i=1 j=1

> diaij=0and 39_, 9ja; ; = 0. It follows that
A~V div(aVu) = A~ Hess : (au) = Hess : A" (au), (4.19)
which concludes the proof of the equivalence between the statements. O

Theorem 4.2. If a is divergence-free, then the statements of theorem (4.1) are
implied by the following equivalent statements with the same constant C.

e Forallu € H} () N H*(Q),
|Aull2q) = Clla : Hess(u) |l 12(q)- (4.20)
o There exists C > 0 such that for u € C;°(2),
I F@ll 2 < ClIKT . Faw) k] 2, 4.21)
where F(u) is the Fourier transform of u.

Remark 4.2. Concerning equation (4.21), since u is compactly supported in €2, u
can be extended by zero outside of 2 without creating a Dirac part on its Hessian
and F(u) is the Fourier transform of this extension.

Proof. Equation (4.10) is equivalent to

((p, A1 Hess : (au))Lz(Q)

1
— < inf sup (4.22)
ueHy (Q) peL2(Q) ||”||L2(Q) ||§0||L2(Q)

Denoting by ¥ the solution of Ay = ¢ in H} () N H*(Q), we obtain that (4.22)

is equivalent to

1 , Hess : (au
< inf sup W (@)@ (4.23)

C  ueH} @ yend@nur@ 1r@lAvizg

Integrating by parts, we obtain that (4.23) is equivalent to

1 a : Hess Ju
inf sp W) Wi (4.24)

C MEH(;(Q) WEH&(Q)OHZ(Q) ”u”LZ(Q)”Aw|lL2(Q)

[IA
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Since a is divergence free, a : Hess = div(aV.) and so there exists i such that
a : Hess(y) = u with Dirichlet boundary conditions. For such a 1/, we have

(a : Hess(¥), u)2(q) B lla : Hess(¥) 12 ()

— (4.25)
lull 2 1AV 1120 1AV 2
It follows that inequality (4.24) is implied by the inequality
1 a : Hess
1 o I (W2 . 4.26)
C ™~ yeH (@NnHX(Q) 1AV 2

The equivalence with (4.21) follows from a : Hess(u) = Hess : (au) and the
conservation of the L?-norm by the Fourier transform. O

Theorem 4.3. Let a be a divergence free conductivity matrix.

o [fd = 1, then the statements of Theorem (4.2) are true.
o [fd =2 and Q2 is convex then the statements of Theorem 4.2 are true.
o Ifd 2 3, Q is convex and the following Cordes condition is satisfied

2
€sSSUpP, co (d (Tracela () ) <1 (4.27)

 Trace[a? (x)a(x)]

then the statements of Theorem (4.2) are true.
o Ifd 2 2, Q is non-convex then there exists Cq > 0 such that if the following
Cordes condition is satisfied

2
esSSUpP, <o (d (Tracela(x)]) ) < Cq (4.28)

" Trace[a” (x)a(x)]
then the statements of theorem (4.2) are true.

Proof. In dimension one, if a is divergence free, then it is a constant and the
statements of theorem (4.2) are trivially true. Define

(Trace[a(x)])? )

 Trace[a” (x)a(x)]

Ba :=esssup,cq (d (4.29)

Theorem 1.2.1 of [45] implies that if Q2 is convex and B, < 1, then inequality
(4.20) is true. In dimension 2, if a is uniformly elliptic and bounded, then 8, < 1.
It follows that if d = 2 and €2 is convex or if d = 3, Q is convex, and B, < 1,
then the statements of theorem 4.2 are true. The last statement of Theorem 4.3 is a
direct consequence of corollary 4.1 of [44].

For the sake of completeness we will include the proof of three bullet points here
(L2 convex). Write L, the differential operator from H 2(Q), onto L%(Q) defined
by:

Lu =) ai;d;dju (4.30)
ij
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Let us consider the equation

[[,u:f in Q 431)

u=0 on 02

The following lemma corresponds to theorem 1.2.1 of [45] (and a does not need to
be divergence free for the validity of the following theorem). For the convenience
of the reader, we will recall its proof in Section 8.2 of the appendix.

Lemma 4.1. Assume Q to be convex with C*-boundary. If B, < 1 then (4.31) has
a unique solution and

esssupgor(x)

Nl pr2n ) () = W”f”ﬁ(&?) (4.32)
a

where a(x) := (El.dzla,-,-(x))/ Zi’{j:l(aij (x))?

Ba is a measure of the anisotropy of a. In particular, for the identity matrix, one
has B;, = 0. Furthermore, in dimension 2

2Amin (@ (x))Amax (a(x))
()\min(a(x)))2 + ()\max(a(x)))2

and one always has B, < 1, provided that a is uniformly elliptic and bounded. The
first three bullet points of theorem 4.3 follow by observing that if §, < 1 then

Ba = 1 — essinfycq (4.33)

el g2 ) < € || D aijd:;u (4.34)
h 12(2)

which implies inequality (4.20). O

4.1.1. A brief reminder on the mapping using harmonic coordinates Consider
the divergence-form elliptic scalar problem (1.1). Let F denote the harmonic coordi-
nates associated with (1.1), that is, F(x) = (F1(x), ..., Fg(x)) is a d-dimensional
vector field whose entries satisfy

(4.35)
Fi(x) = x; ondf2.

[divaVF,- =0 inQ
It is easy to show that F is a mapping from 2 onto €2. In dimension one, F is
trivially a homeomorphism. In dimension two, this property still holds for convex
domains [1,5]. In dimensions three and higher, F' may be non-injective (even if a
is smooth, we refer to [5], [20]).
Define Q to be the positive symmetric d x d matrix defined by

_ (VF)TaVF e

Q= detVF (4.36)
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It is shown in [53] that Q is divergence free. Moreover, writing u, the solution
of (1.1), and |jull, := fQ Vu - aVu one has for v € Hol(Q)

lu—vlla =l — o, (4.37)
where 0 :=vo F~land i := u o F~! solves

—ZQ,,aau SR (VF) o F~! (4.38)

Note that (4.37) allows one to transfer the error for a general conductivity matrix a
to a special divergence-free conductivity matrix Q. Observe that the energy norm
was used in [53] [and (4.37), instead of the flux norm] under bounded contrast
assumptions on a.

The approximation results obtained in [53] are based on (4.37) and can also be
derived by using the new class of inequalities described above for Q.

4.2. Tensorial case

Let C be the elastic stiffness matrix associated with equation (1.3). In this
section, we will assume that C is uniformly elliptic, has bounded entries and is
divergence free, that is, C is such that for all / € Rdxd div(C : 1) = 0; alterna-
tively, for all ¢ € (C5° ()4,

/(w)T :C:1=0. (4.39)
Q

The inequalities given below will allow us to deduce homogenization results
for arbitrary elasticity tensors (not necessarily divergence-free) by using harmonic
displacements and the flux-norm to map non-divergence free tensors onto diver-
gence-free tensors.

Forad x d x d tensor M, denote by Hess : M the vector

(Hess : Mg := > ;0 M; j 1. (4.40)
i,j=1

Let A~!'M denote the d x d x d tensor defined by
(A"M)i =AM (4.41)

The proof of the following theorem is almost identical to the proof of theorem
4.1.

Theorem 4.4. Let C be a divergence free elasticity tensor. The following statements
are equivalent for the same constant y:

o There exists y > 0 such that for all u € (HO1 ()4,

1 .
lull 2y < v A7 divC : 8(“))H<Lz(m)d' (4.42)
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o There exists y > 0 such that for all u € (H(} Q)4

|@iveceonauf o Syl

((2((9))

e Forall (Uy, Us,...) € RHN",

2

oo d o 00
22U SN
k=1

k=1 j=1 2@

where {tkj} is the basis defined in (3.25).

(4.43)

(4.44)

o The inverse of the operator — div(C : €(.)) (with Dirichlet boundary conditions)
is a continuous and bounded operator from (H=2)¢ onto (L*)?. Moreover, for

ue (H2(Q))",

H (div C : ‘9('))_1“”@2(9))4 < yIA ull 2

o There exists y > 0 such that for all u € (HO1 Q)4

o0 2
. \A'H
lull?, 2 e < V2 <(dIV(C:(—®e~)),u)> .
(L“(2)) Z.‘:l )\i J (H*l,Hl)

o There exists y > 0 such that

< it (VT 1 Crew) 2

1
Y T ueH @ ear@nm @yt 11la2@y 1Azl 2@y
o There exists y > 0 such that for all u € (HO1 Q)

lull(r2@pe = ¥ HA‘I Hess : (u.C)‘

2@

o There exists y > 0 such that for all u € (Hé (Q))d,

. —1
lull 2y < v | Hess : (A <”C”H@amw'

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

Theorem 4.5. If C is divergence-free, the statements of theorem (4.4) are implied

by the following statement with the same constant y .

e Forallu € (H}(Q) N H*(Q))%,
”AM”(LZ(Q))d g ]/” Hess : (MC)”(LZ(Q))d

Proof. The proof is similar to that of Theorem 4.2. O

(4.50)
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4.2.1. A Cordes condition for tensorial non-divergence form elliptic equations
Let us now show that the inequality in Theorem 4.5, and hence the inequalities
of Theorem 4.4, are satisfied if C satisfies a Cordes type condition. The proof of
the following theorem is an adaptation of the proof of theorem 1.2.1 of [45] (note
that C does not need to be divergence free in order for the following theorem to be
valid).

Let £ denote the differential operator from (H 2(Q)4 onto (L2(£2))? defined by

(Lu)j := Zcijklaiakub 4.51)
ikl

Let us consider the equation

[L’u:f in Q

u=>~0 on 092. (4.52)

Let B be the d x d matrix defined by Bj,, = Zzzl Cimgj-Let Abethed x d
matrix defined by A/, = Z?,k,l:l CimkiCijrki- Define
Bc :=d*> — Trace[BA~'BT]. (4.53)

Theorem 4.6. Assume 2 is convex with a C*>-boundary. If B¢ < 1, then (4.52) has
a unique solution and

”u”(HZﬂHOI(Q))d < K”f”(Lz(Q))dv (4.54)
where K is a function of Bc and |BA~! II(LOO(Q))dxd.

Remark 4.3. ¢ is a measure of the anisotropy of C. In particular, for the identity
tensor, one has 8;, = 0.

Proof. Letu be the solution of Lu = f with Dirichlet boundary conditions (assum-
ing that it exists). Let « be a field of d x d invertible matrices. Observe that (4.52)
is equivalent to

Au=of + Au —alu. (4.55)

Consider the mapping 7 : (H? N H} ()Y — (H*> N Hy(Q))? defined by

v = Tw, where v be the unique solution of the Dirichlet problem for Poisson
equation

Av=of + Aw —aLlw. (4.56)

Let us now choose « so that 7' is a contraction.
Note that

“Twl - Tw2||(H2ﬂH01(Q))d = ”Ul - v2||(H2ﬂH01(Q))“" (457)
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Using the convexity of €2, one obtains the following classical inequality satisfied
by the Laplace operator (see lemma 1.2.2 of [45]):

lvr — U2||(H2r11-101(g))d = A - U2)||(L2(Q))d' (4.58)
Hence,
1w = Twallfy a1 gy S 1801 = w2) = aL(wi = w2)F g0
d d 2
= D ej|idui— Za],/c,,/k, 3 (wh — wh) . (4.59)
i,j.k, =1 =1 (L2(Q))?
Using the Cauchy—Schwarz inequality, we obtain that
d d 2
ITwi — Twy|I? (H2NHL (@) f/ > sidki = D i Cijm
2\ jki=1 J'=1
d
x Z @0k (wh —wh)? | . (4.60)
ik, l=1
Hence, writing
J 2
Buc = D |8jbi— Za,,/cl,fkl : (4.61)
i,jk =1

we obtain that
2
ITwi = T2l 1 @y S €855UPrePa.c (¥) wn — szI(HzmH L) -
(4.62)

Observe that
2

d d d
Ba.c =d> -2 Z ijj’ckj/kj+ Z Z(ij/cij/kl . (4.63)

k=1 ijki=1 \j'=1

Taking variations with respect to «, one must have, at the minimum, that for all
J,m,

d
Z Cimki Za,,/c,,fkl =D Cimij- (4.64)
k=1

i,k,l=1

Hence,

d
Zaj] Z Clmlet]’kl chmkj~ (465)
k=1

ik, =1
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Let B be the matrix defined by Bj,, = zzzl Cimkj. Let A be the matrix defined
by Aji, = Zfl,u:] CimkiCijrrr- Then (4.65) can be written as

aA =B, (4.66)
which leads to
o = BA™!. (4.67)
For such a choice, one has
d d 2 d
> 2 ot Cijm | = > o, Crmj- (4.68)
ijki=1 \j'=1 jum.k=1

Hence, at the minimum, S8, c = B¢ with
Bc :=d*> — Trace[BA~'BT]. (4.69)

For that specific choice of «, if B¢ < 1, then T is a contraction and we obtain the
existence and solution of (4.52) through the fixed point theorem. Moreover,

1
”AMH(LZ(Q))d = ||Ol*f||L2(Q) + ﬂé”Au”(LZ(Q))d’ (4.70)
which concludes the proof. O

As a direct consequence of theorems (4.5) and (4.6), we obtain the following
theorem.

Theorem 4.7. Let C be a divergence free, bounded, uniformly elliptic, fourth order
tensor. Assume S is convex with a C2-boundary. If Bc, defined by (4.53), is strictly
bounded from above by one, then the inequalities of Theorems (4.5) and (4.4) are
satisfied.

5. Application of the flux-norm to theoretical non-conforming Galerkin

The change of coordinates used in [53] (see also Section 4.1.1) to obtain error
estimates for finite element solutions of scalar equation (1.1) in two-dimensions
admits no straightforward generalization for vectorial elasticity equations. In this
section, we show how the flux-norm can be used to obtain error estimates for the-
oretical discontinuous Galerkin solutions of (1.1) and (1.3). These estimates are
based on the inequalities introduced in Section 4 and the control of the non-con-
forming error associated with the theoretical discontinuous Galerkin method. The
control of the non-conforming error could be implemented by methods such as the
penalization method. Its analysis is, however, difficult in general and will not be
done here. In the scalar case, we refer to [52] for the control of the non-conforming
error.
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5.1. Scalar equations

Letw € H*N H(} (€2) such that —Aw = f. Let u be the solution in HO1 (R2) of
/ Vo)l avVu = / (Vo) Vw ¢ € H} () (5.1)
Q Q

Let V be a finite dimensional linear subspace of (L2(Q))4.
We write ¢y, an approximation of the gradient of the solution of (1.1) in V,
obtained by solving (5.2), that is, ¢y is defined such that for all n € V,

/nra{\;:/ r)TVw. 5.2)
Q Q

For & € (L%(2))4, denote by & = &cunl + &por the Weyl-Helmholtz decompo-
sition of & (see Definition 2.1).

Definition 5.1. Write
Zcuntll 2222

Ky :=su

(5.3)
cev 1Slz2 e

Ky is related to the “non-conforming error” associated with V (see for instance
[19] chapter 10). If Iy, > 0, then the space } must contain functions that are not
exact gradients. Moreover, it determines the “distance” between ) and Lgot (see
Definition 2.1).

Definition 5.2. Write

(a'(Vu' — g/))pot 2 d
Dy = inf sup in H - ” (L7ED)
@'V div@V)=div@V) e g2 gynpl @) §'€V AW 12

(5.4)

The first minimum in (5.4) is taken with respect to all finite dimensional linear
subspaces V' of (L?(2))?, and all bounded uniformly elliptic matrices a’ (a; ;€
L*°(R2)) such that div(a’V") = div(aV). Furthermore, 1’ in (5.4) is defined as the
(weak) solution of div(a’Vu') = Aw’ with Dirichlet boundary conditions on 9€2.
Due to Theorem 2.1, the inf, . div(a'V)=div(a)y) can be dropped. However, we
keep it to emphasize the independence of the choice of V' and a’ as long as they
satisfy div(a’V’) = div(a))).

Theorem 5.1. There exists a constant C* > 0 depending only on Ayin(a) and
Amax (@) such that for Ky < C*,

IVu — ¢yllz2@pe = Cllf 2@ (Py + Ky) (5.5)

where u is the solution of (5.1), &y the solution of (5.2) and C is a constant
depending only on Amin(a) and Amax(a).
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Remark 5.1. Theorem 5.1 is in essence stating that the approximation error asso-
ciated with V and the operator div(a V) is proportional to Dy, and Ky,. Ky, is related
to the non-conforming error associated to V. Dy, is the minimum (over a’, V' such
that div(a’V") = div(a))) approximation error associated to }’ and the operator
div(a’V). Hence, Dy and the transfer property allow us to equate the accuracy of
a scheme associated with 1’ and a conductivity a’ to the accuracy of the scheme
associated with V and the conductivity a, provided that div(a’)’) = div(a))).

Remark 5.2. In fact, it is possible to deduce from Theorem 5.1 that the maximum
approximation error associated to } and the operator div(a V) can be bounded from
below by a multiple of (Dy, + Ky) (see also equation (10.1.6) of [19]).

Remark 5.3. If the elements of V are of the form n = >"_ e, L(xer)Vv where v
belongs to a linear space of functions with discontinuities at the boundaries of the
simplices of €2, then we can replace the right-hand side of (5.2) by — fQ vAw
(see Section 1.3 of [53]). This modification does not affect the validity of (5.5)
since the difference between the two terms remains controlled by D+y,. For clarity
of presentation, we have used the formulation (5.2).

In order to prove Theorem 5.1, we will need the following lemma

Lemma 5.1. There exists C depending only on Amin(a), Amax (@) such that for u €
Hi(Q) and ¢ € (L*(Q))!

IV = ¢l 2 = € (H @Vt = ot | 2y + ||ccur1||(Lz<Q))d) (5.6)

1
IVu =&l 2 & (|| @V = ot 12 qpye + ||;cur1||<Lz<m)d) (5.7)
Proof. For the proof of (5.7), observe that
Vu — C”([](Q))d =[Vu - fpot”(LZ(Q))d + ”{Curl”(LZ(Q))d'
Furthermore,
H (a(Vu — {))pot ”(Lz(Q))d < ” (@(Vu — {pot))pol H(U(Q))d + ” (@eurl)pot || (L2(Q))4
§ )\max(a) ” Vu — é‘pot H(LZ(Q))d
+Amax (@) ”Ccurl”(LZ(Q))d (5.8)
For (5.6), observe that

/Q (Vu—0)"a(Vu—¢) = /Q (Vi = 2po) " (@(Vie = £))poy

+ / ¢l a(Vu —¢) (5.9)
Q

It follows from Cauchy—Schwarz inequality that
Vi — Cpotll (22 (02))¢
Vu—¢ ||(L2(Q))d
~+Amax (a)||§curl||(L2(Q))d (5.10)

0O

hmin @IVt = ¢ Nl 2@yt = | @(Vu = pot ] (1220

We also need the following lemma, which corresponds to Lemma (10.1.1) of [19]
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Lemma 5.2. Let H be a Hilbert space, V and Vj, be subspaces of H (V, may not
be a subset of V). Assume that a(., .) is a continuous bilinear form on H which is
coercive on Vy, with respective continuity and coercivity constants C and y. Let
u €V solve

a(u,v) = F@w) YveV (5.11)

where F € H' (H' is the dual of H). Let uy, € Vj, solve

a(up,v) = F(v) Yv eV, (5.12)
Then
C\ . 1 alu —up, w
e — unllyy < (1 +—) inf u—wly+— sup LW g5
Y] wevi Y wevp\joy  llwlla

We now proceed by proving Theorem 5.1.

Proof. Using Lemma 5.1, we obtain that

IVu = ¢l 2 = C (” @(Vu = 2))pot 2@y T ||§||(L2(Q))dlcv) (5.14)

USing the triangle inequality ||{ || (LZ(Q))d g ”Vu — é‘ || (LZ(Q))({ + ||Vu || (Lz(Q))d’ we
obtain that

< C
IVu—=&ll2@)pye = T—CKy (” @(Vu = 2))pot (r2@yd T ||Vu||(L2(Q))dICV)
(5.15)
from which we deduce that
inf Vi — ¢l 20t < _C it (”(a(Vu = {)pot |
o L = TCKy, tov potll L2 (@)
+||vu||(Lz(Q))d/cv) (5.16)

(C* in the statement of the theorem is chosen so that Ky < C* implies CKy, < 0.5).

We obtain from Lemma 5.2 that (observe that the last term in equation (5.13) is the

. .. Nl Scunl
non-conforming error and that it is bounded by C || Vu||2(q))a Sup ceV W
(L2(@)

for an appropriate constant C).
Vi = &l 2y

I Scurt I 22 2y
< ¢ inf 1V = ¢l g2y + Vil g2 sup o HEZENT Y (5 47y
(;ev (L2 T S T

Combining (5.16) with (5.17), we conclude using Theorem 2.2 and the Poincaré
inequality. O
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Let us now show how Theorem 5.1 can be combined with the new class of
inequalities obtained in Section 4.1 to obtain homogenization results for arbitrarily
rough coefficients a. Let M be a uniformly elliptic d x d matrix (observe that
uniform ellipticity of M implies its invertibility) and )’ be a finite dimensional
linear subspace of (L%(2))?. Define

Vi={M: ¢ eV} (5.18)
Assume, furthermore, that for all w € H(} NnH 2(Q),

;ilel)f;/ Vw — C/”(LZ(Q)) = Ch||Aw||L2(sz) (5.19)
where £ is a small parameter (the resolution of the tessellation associated to V', for
instance). We remark here that 1’ can be viewed as the coarse scale & approxima-
tion space (see example below). The fine scale information from coefficients a(x) is
contained in the elements of the matrix M. This is illustrated in the example below
where M = VF for harmonic coordinates F. Therefore, the matrix M is deter-
mined by d harmonic coordinates that are analogues of d cell problems in periodic
homogenization, and we call space V the “minimal pre-computation space” since
it requires minimal (namely d) pre-computation of fine scales.

Then, we have the following theorem:

Theorem 5.2. Approximation by “minimal pre-computation space” [f

e a - M is divergence free (as defined in Section 4.1).

o The symmetric part of a- M satisfies the Cordes condition (4.27) or the symmetric
part of a - M satisfies one of the inequalities of Theorem 4.2.

o The non-conforming error satisfies Ky < Ch* for some constant C > 0 and
a € (0,1],

then
IVu — ¢yl 2@y = ClfIl2@)h® (5.20)
where u is the solution of (1.1) and &y the solution of (5.2),

Remark 5.4. The error estimate is given in the L? norm of Vu — ¢), because we
wish to give a strong error estimate and if ¢y is not a gradient then the L? norm of
(@a(Vu — &y))pot is not equivalent to the L? norm Vu — {y.

Remark 5.5. It is, in fact, sufficient that the symmetric part of a - M satisfies one
of the inequalities of Theorem 4.1 instead of 4.2 for the validity of Theorem 5.2.
For the sake of clarity, we have used inequalities of Theorem 4.2.

Proof. The proofis a direct consequence of Theorem 5.1; we simply need to bound
Dy. Since div(aV) = div(a - MV), it follows from equation 5.4 that

inf || (Cl . M(VM/ - é-/))pot H(LZ(Q))L]
m
ey’ ”Aw/”LZ(Q)

Dy = sup
w'eHA(QNHL (@) ¢

(5.21)
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where ' in (5.4) is defined as the (weak) solution of div(a - MVu') = Aw’ with
Dirichlet boundary conditions on 2. Now, if the symmetric part of a - M satisfies
the Cordes condition (4.27) or the symmetric part of a - M satisfies one of the
inequalities of theorem 4.2, then ||u’|| ;2 < C||Aw’| ;2 and we conclude using the
approximation property (5.19). O

An example of V can be found in the discontinuous Galerkin method introduced
in Section 1.3 of [53]. This method is also a generalization of method II of [8] to
non-laminar media. In that method, we pre-compute the harmonic coordinates asso-
ciated with (1.1), that is, the d-dimensional vector F(x) := (F(x), ..., Fz(x))
where F; is a solution of

[dlvaVF,- =0 inQ (5.22)

F,-(x):x,- on 082.

Introducing €2, a regular tessellation of €2 of resolution #, the elements of V' are
defined as VF (V. F )_1V<p, where ¢ is a piecewise linear function on 2, with
Dirichlet boundary conditions on €2 and V. F' is the gradient of the linear interpo-
lation of F over 2. In that example, a - VF is divergence-free and V F plays the
role of M. The non-conforming error is controlled by the aspect ratios of the images
of the triangles of €2, by F. In [53], the estimate (5.20) is obtained using F as a
global change of coordinates that has no clear equivalent for tensorial equations,
whereas the proof based on the flux-norm can be extended to tensorial equations.

5.2. Tensorial equations

The generalization of the results of this section to elasticity equations does not
pose any difficulty. This generalization is simply based on Theorem 2.4 and the
new class of inequalities introduced in Section 4.2. An example of the numerical
scheme can be found in [38] for (non-linear) elasto-dynamics with rough elastic-
ity coefficients. With elasticity equations, harmonic coordinates are replaced by
harmonic displacements, that is, solutions of

: kly —
[Jmcmr=o veo oo
PR = 2=l on 9L2.

and strains & («) are approximated by a finite dimension linear space } with elements
of the form &(F) : (e.F) ™' (e(¢)), where the ¢ are piecewise linear displacements
on Qj, . F is the strain of the linear interpolation of F over €2; and e(F’) denotes
the d x d x d x d tensor with entries

kl ki
3,'Fj + ajFl-

e(F)ijki = 5

(5.24)
Here, C : ¢(F) is divergence-free and plays the role of M; furthermore, the regu-
larization property observed in the scalar case [53] is also observed in the tensorial
case by taking the product (e(F) Le() (Fig. 1).
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(a) o (b) infgFagF]

0.t
[ 4]

0108

o7

L |
Fig. 1. Computation by Lei Zhang. The elasticity stiftness is obtained by choosing its coeffi-
cients to be random and oscillating over many overlapping scales. a, b show wild oscillations
of one of the components of the strain tensor Vu + VuT [u solves (1.3)] and one of the
components of (VF + VFT)_1 [F = {Fij} is defined by (5.23)]. ¢ Illustrates one of the
components of the product (VF + VFT)~1(Vu + vuT), which is smooth if compared to
a and b. There is no smoothing near the boundary due to sharp corners

6. Relations with homogenization theory and other works

We first show how our approach is related to homogenization theory. To this
end, we

e Describe the notion of a thin subspace, which is pivotal in our work, and show
that this notion was implicitly present in classical periodic homogenization.

e Show the analogy between the basis functions in Theorems 3.1 and 3.3, harmonic
coordinates (4.35), and solutions of the cell problems in periodic and random
homogenization.

e Explain relations between our work and general abstract operator homogeniza-
tion approaches.

The thin subspace notion. A key ingredient of the proofs of the main approxi-
mation Theorems 3.1 and 3.3 is the transfer property introduced in Theorems 2.2
and 2.3. Roughly speaking, it shows how a standard (“easy”) error estimate in the
case of smooth coefficients provides an error estimate in the case of arbitrarily
rough (“bad”) coefficients due to an appropriate choice of the finite-dimensional
approximation space.
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The transfer property, in turn, is based on the notion of a “thin” subspace whose
essence can be explained as follows. Let us consider the scalar divergence form
elliptic problem (1.1). First, observe that as f spans H “LQ), u spans H(% (),
that is, the operator L™ := (—divaV)~! defines a bijection from H~!(£2) onto
HO1 (£2). Next, observe that as f spans L2(), u spans a subspace V of H(; (),
that is, L~! := (—div aV)’1 defines a bijection from L%(2) onto V. How “thin”
is that space compared to Hj (2)?If a = I, then V = V' := H}(Q) N H*(Q),
that is, a much “thinner” space than HOl (), namely V is “as thin as H>”.

The proofs of Theorems 3.1 and 3.3 also use the transfer property for finite-
dimensional approximation spaces that depend on a small parameter .. Namely,
there exists a finite O(|Q2|/h?) dimensional subspace V; of HO1 (2) such that all
elements of V’ are in H'-norm distance at most A from V, [an example of spaces
V, and V' are the spaces Eg (used in Section 3.1.1) and H2(2) respectively].

Section 3 shows that when the entries of a are only assumed to be bounded, the
solution space V is isomorphic to V' = H(} (Q) N H*(R), that is, for arbitrarily
rough coefficients the approximation space V is still “as thin as” H? (isomorphic
to H?). Moreover, the transfer property introduced in Theorem 2.2 allows us to
explicitly construct a finite-dimensional space V},, isomorphic to V;, such that all
elements of V are in H! norm distance, at most 4 from V.

We next show that the thin subspace notion is implicitly present in classical
homogenization problem when a is periodic, with period €, that is, when equation
(1.1) is of the form

—div(a(x/e)Vuf (x)) = f(x), inQC R 6.1)

From the two-scale asymptotic expansion ansatz justified in periodic homoge-
nization (for example, [3,12,13,23,36]), we know that € can be approximated in
H' norm by the following (modulo boundary correctors which we do not discuss
here for the sake of simplicity of presentation)

€(x) =0 5 e (2) 2it) 6.2
A€ (x) = a(x) +€ > xe () G- (6.2)
k=1

where 1 is the solution of the homogenized problem
—div (aVi) = f(x) (6.3)

with constant homogenized (effective) coefficient a. Here, the exact solution u° has
both fine, O (¢), and coarse, O (1), variations (oscillations), while the homogenized
solution #(x) has only coarse scale variations. In (6.3), the periodic functions xj
are solutions of the cell-problems

div(a(y)(ex + Vxr(y))) =0 (6.4)

defined on the torus of dimension d. The second term in the right-hand side of
(6.3) is known as a corrector; it has both fine and coarse scales, but the fine scales
(e-oscillations) enter in a controlled way via d solutions of the cell problems that
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do not depend on f(x) and the domain €2 [so that x; are completely determined
by the microstructure a(x)].

Furthermore, the two-scale convergence approach [2,50] provides a simple and
elegant description of the approximation for the gradients Vu,. Namely, for every
sufficiently smooth ¢ (x, y) which is also periodic in €, u¢ — it weakly in H (o))
and

[o()vu [ ot vaomvism 63
Q € QxTd

where T? is the torus of dimension d. Thus Vi, can be approximated in the sense
of (6.5) by functions of the form (I; + Vx.(x/€))Vii(x).

The latter observation combined with (6.2) shows that classical homogeniza-
tion results can be viewed as follows. The solution space V for the problem (6.1)
can be approximated in H' norm by a (“thin”) subspace of H' () parameterized
by solutions of (6.3) which are in H N H(} (£2). Moreover, homogenization theory
shows us how to construct an approximation of the space V. Indeed, (6.2), (6.5)
show that this approximation space is determined by #(x) and solutions of the cell
problems (6.4) over one period.

Cell problems. This periodic homogenization scheme was generalized to station-
ary ergodic coefficients a(x/¢e, w), with @ in some probability space. Here, there
are also analogs of the cell problems that require the solution of d different bound-
ary value problems for the PDE div(a(x, w)Vu;) = 0,i = 1,...,d in a cube
of size R — oo for a typical realization @ [37,56]. The solutions #; must be
pre-computed in order to obtain a homogenized PDE and an approximate solution
just like in the periodic problem, which is why they still are called cell prob-
lems even though there is no actual periodicity cell in the microstructure. Here,
the coefficients in the cell problems have both fine and coarse scales, as in the
original PDE div(a(x/e, w)Vu®) = f. The advantage of solving cell problems
numerically (in both the periodic and random case) comes when, for example,
we need to solve for many different f or for a corresponding evolution problem
d;uf = div(a(x/e, w)Vu®) — f when updating in fine time scales.

Note that the major difficulty in advancing from periodic to random homoge-
nization was to understand what is the proper analog of the periodic cell problem.
In this work, we ask a similar question—what are the analogs of cell problems for
most general arbitrarily rough coefficients? For the problem (1.1), we provide two
answers.

First, in Theorem 3.3, we introduce functions 6y (x) that are analogs of the cell
problems, since they are determined by the coefficients a(x) but do not depend
on f(x). Note, that these “generalized cell problems” must depend on the domain
2 since the coefficients are no longer translationally invariant (as in periodic and
random stationary case). This dependence enters via W in (3.8) using the transfer
property. The approximation space in Theorem 3.3 is ®), defined in (3.9-3.10).
Similarly, in Theorem 3.1, we introduce functions ®;(x) that solve (3.1), with
localized right-hand side, that are also analogs of the cell problems.

Second, the harmonic coordinates (4.35) provide yet another analog of cell
problems in classical homogenization. Their advantage is obvious—there are only
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d of them, whereas in Theorems 3.3 and 3.1, the number of cell problems (number
of elements in the basis of V},) is N (k). In fact, since in the simplest case of periodic
homogenization d cell problems (6.4) must be used, one should expect that for the
more general coefficients a(x), d would be the minimal number of cell problems.
On the other hand, the finite dimensional approximation based on harmonic coor-
dinates, in general, is not direct (involves the non-conforming error) as can be seen
from Theorem 5.2 and the example right after this Theorem.

Harmonic coordinates play an important role in various homogenization appro-
aches, both theoretical and numerical, which is why we present here a short account
of their development. Recall that harmonic coordinates were introduced in [41] in
the context of random homogenization. Next, harmonic coordinates have been used
in one dimensional and quasi-one dimensional divergence form elliptic problems
[10,8], allowing for efficient finite dimensional approximations.

The idea of using particular solutions in numerical homogenization to approx-
imate the solution space of (1.1) was first proposed in reservoir modeling in the
1980s [18,63] (in which a global scale-up method was introduced based on generic
flow solutions, that is, flows calculated from generic boundary conditions). Its rig-
orous mathematical analysis was done only recently [53]. In [53], it was shown that
if a(x) is not periodic but satisfies the Cordes conditions (a restriction on anisot-
ropy for d = 3, no restriction for d = 2 and convex domains 2), then the (“thin”)
approximation space V can be constructed from any set of d “linearly independent”
solutions of (1.1) (harmonic coordinates F', for instance, by observing that u o F -1
spans H n HO1 (2) as f spans L2()). In the present work, (Section 5) for elasticity
problems, we show that d(d + 1)/2 “linearly independent” solutions are required
[equation (5.23)].

In [4], the solution space V is approximated by composing splines with local
harmonic coordinates (leading to higher accuracy), and a proof of convergence is
given for periodic media. Harmonic coordinates have been motivated and linked
to periodic homogenization in [4] by observing that equation (6.2) can in fact be
seen as a Taylor expansion of zZ(x + x.(x)) where x + x.(x) is harmonic, that is,
satisfies (6.4). It is also observed in [4] that replacing x + x_(x) by global harmonic
coordinates F(x) automatically enforces Dirichlet boundary conditions on €.

More recently, in [18,28,29], the idea of a global change of coordinates anal-
ogous to harmonic coordinates was implemented numerically in order to up-scale
porous media flows. We refer, in particular, to a recent review article [18] for an
overview of some main challenges in reservoir modeling and a description of global
scale-up strategies based on generic flows.

Abstract operator homogenization approaches and their relation to our work.

Recall that the theory of homogenization in its most general formulation is based
on abstract operator convergence, that is, G-convergence for symmetric operators,
H-convergence for non-symmetric operators and I'-convergence for variational
problems. We refer to the work of De Giorat et al. [17,31,32,47,48,58,59]. H, G
and I'-convergence allows one to obtain the convergence of a sequence of operators
parameterized by € under very weak assumptions on the coefficients. The concepts
of “thin” space and generalized cell problems are implicitly present in this most
general form of homogenization theory through the introduction of oscillating test
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functions in H-convergence [48] (see also related work on G-convergence [58,31]).
Furthermore, the so called multiscale finite element method [35,64] can be seen as
anumerical generalization of this idea of oscillating test functions with the purpose
of constructing a numerical (finite dimensional) approximation of the “thin” space
of solutions V. We refer to [33] for convergence results on the multiscale finite
element method in the framework of G and I"-convergence.

Observe that in most engineering problems, one has to deal with a given medium
and not with a family of media. In particular, in those problems, it is not possible
to find a small parameter € intrinsic to the medium with respect to which one could
perform an asymptotic analysis. Indeed, given a medium that is not periodic or sta-
tionary ergodic, it is not clear how to define a family of operators A.. Moreover, the
definition of oscillating test functions involves the limiting (homogenized) opera-
tor A. While this works well for the proof of the abstract convergence results, in
practice only the coefficients A are known (computing A may not be possible), and
our approach allows one to construct the approximate (upscaled) solution from the
given coefficients without constructing A. Hence, the main difference between H
or G convergence and the present work is that instead of characterizing the limit
of an e-family of boundary value problems, we are approximating the solution to a
given problem with a finite-dimensional operator with explicit error estimates (that
is, constructing an explicit finite dimensional approximation of the “thin” solution
space V).

We refer to [25] for an explicit construction of A with rough coefficients a in
two dimensions. In particular, it is shown in [25] that conductivity coefficients a are
in one-to-one correspondence with convex functions s(x) over the domain €2 and
that homogenization of a is equivalent to the linear interpolation over triangulations
of Q re-expressed using convex functions.

The thin subspace idea introduced in this section can be used to develop coarse
graining numerical schemes through an energy matching principle. We refer to
[38] for elasticity equations and to [65] for atomistic to continuum models (with
non-crystalline structures).

Other related works By now, the field of asymptotic and numerical homogeniza-
tion with non-periodic coefficients has become large enough that it is not possible
to cite all contributors. Therefore, we will restrict our attention to works directly
related to our work.

e In [26,30], the structure of the medium is numerically decomposed into a
micro-scale and a macro-scale (meso-scale) and solutions of cell problems are
computed on the micro-scale, providing local homogenized matrices that are
transferred (up-scaled) to the macro-scale grid. This procedure allows one to
obtain rigorous homogenization results with controlled error estimates for non
periodic media of the form a(x, ’6—‘) (where a(x, y) is assumed to be smooth in
x and periodic or ergodic with specific mixing properties in y). Moreover, it is
shown that the numerical algorithms associated with HMM and MsFEM can be
implemented for a class of coefficients that is much broader than a(x, f). We
refer to [33] for convergence results on the Heterogeneous Multiscale Method
in the framework of G and I'"-convergence.
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e More recent work includes an adaptive projection based method [51], which is
consistent with homogenization when there is scale separation, leading to adap-
tive algorithms for solving problems with no clear scale separation; fast and
sparse chaos approximations of elliptic problems with stochastic coefficients
[34,61]; finite difference approximations of fully nonlinear, uniformly elliptic
PDEs with Lipschitz continuous viscosity solutions [21] and operator splitting
methods [6,7].

o We refer the reader to [60] and the references therein for a series of computa-
tional papers on cost versus accuracy capabilities for the generalized FEM.

e Wereferto[15,16] (and references therein) for most recent results on homogeni-
zation of scalar divergence-form elliptic operators with stochastic coefficients.
Here, the stochastic coefficients a(x /¢, w) are obtained from stochastic defor-
mations (using random diffeomorphisms) of the periodic and stationary ergodic
setting.

e We refer the reader to [22], [27] and [14] for recent results on adaptive finite
element methods for high contrast media. Observe that in [22], contrast inde-
pendent error estimates are obtained for a domain with high contrast inclusions
by dividing the energy norm by the minimal value of a over the domain €2. The
strategy of [14] is to first prove a priori and a posteriori estimates that are con-
trast independent and then construct a finite element mesh adaptively such that
the error is the smallest possible for a fixed number of degrees of freedom. In
[14], the energy norm of the error is bounded by terms that are appropriately and
explicitly weighted by a to obtain error constants independent of the variability
of a.

7. Conclusions

In this paper, we have been primarily concerned with the following theoretical
results:

e the flux norm introduced in Section 2 and its transfer property (Theorems 2.2,
2.3)

o the resulting theoretical Galerkin method with contrast independent accuracy for
linear PDEs with arbitrarily rough coefficients (Theorems 3.1, 3.3, 3.4, 3.30)

e a new class of inequalities (Section 4) and the introduction of a Cordes-type
condition for non-divergence tensorial elliptic equations (Theorem 4.6).

The development of numerical techniques based on these results is in progress and
will be addressed elsewhere.

8. Appendix

8.1. Extension to non-zero boundary conditions

The analysis performed in Section 3 and the previous one can naturally be
extended to other types of boundary conditions (Neumann or Dirichlet). To support
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our claim, we provide here this extension in the scalar case with non-zero Neumann
boundary conditions. By linearity, solutions of (1.1) with nonzero boundary condi-
tions can be written as the sum of the solution with a zero-boundary condition and
—div (a(x)Vu(x)) = f(x) and the solution with a non-zero boundary condition
and — div (a(x)Vu(x)) = 0. Hence, we will restrict our analysis to solutions of

‘—div (@(x)Vu(x)) =0 x € Q; alx) ={a;j € L®(Q)} @.1)

n.(avVu)(x) = h(x) x €9; he L*39),

We assume d = 2. Write L2, () the closure of {Vv : v € H'(Q)} in (L*(2))“.
Note that the difference with Lgot(Q) lies in replacement of v € H(; () byv e
H' () in the definition of Lgom(sz). For & in (L?(2))¢, write & its orthogonal

projection on Lgom(fz). For v € H'(Q), write

10112 ux.n o= /Q @V)pom (8.2)

It follows from the following lemma that the [|v||;-fux,n-nOrm is equivalent to the
H'-norm.

Lemma 8.1. Forv € H'(Q)

)Lmin(a)”VU”(LZ(Q))d = 1Vl a-flux,» = )\max(a)”VU”(LZ(Q))d (8.3)
Proof. The proof of the right-hand side of (8.3) is straightforward. The proof of
the left-hand side follows from
/ V)T aVv < 190l 20010 lacfonn (8.4)
Q
0

Write A the Dirichlet to Neumann map mapping v|yq onto n- Vv on 92, where
v is the solution of Av = 0 in €2 (and #, the exterior normal to the boundary 9£2).
Write Wy the orthonormal eigenvectors of A and Ay the associated increasing and
positive eigenvalues. Let V,, be the finite dimensional subspace of H'(€2) formed
by the linear span of vy, ..., v,, where vy is the solution of (8.1) with 7 = Wy.

Theorem 8.1. For h € L%(Q), let u be the solution of (8.1). Then,

1
— Vg 1 GI9) A
sup inf lu — vla-fiux,n _ ( [0€2 ) (8.5)

ner2o) veVn  Ihll2pe) @m)s \T(+

Furthermore, the space V,, leads to the smallest possible constant in the right-hand
side of (8.5) among all subspaces of H' () with n elements.

Remark 8.1. We also refer to [9] for the related introduction of the penetration
function, which measures the effect of the boundary data on the energy of solutions
of (8.1) and is used to assess the accuracy of global-local approaches for recovering
local solution features from coarse grained solutions, such as those delivered by
homogenization theory.
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Proof. For h € L2(32), let w”" be the solution of

h _ .
{Aw (X)=0 x e 56

n-Vuw'(x)=h(x) xe€dQ; hel?*O9Q),

Let W, be a finite dimension subspace of H'(£2) of elements v satisfying div(aVv)
= 0 in Q. To prove Theorem 8.1, we will first prove Lemmas 8.2 and 8.3.

Lemma 8.2. For h € L2(3R), let u be the solution of (8.1) and w" be the solution
of (8.6). We have,

le — vla-fiux,n i ”(th - avv)potn”(Lz(Q))d

sup  inf = sup inf 8.7)
ner2@e) 'We  lIhll200) heL2(Q) VEWn 1212250
Proof. The proof follows by observing that for all ¢ € H'()
/ Vo(Vuw" — aVu) = / on-(Vw" —avu) =0 (8.8)
Q aQ
O
For v € H' (), write h, := n.aVv defined on 992
Lemma 8.3. For h € L>(3Q2) and v € H'(Q),
V0"~ Vool = [ =AM =) (89
aQ

Proof. The proof is obtained by observing that

Jo Vo(Vu' — aVv)
(V" — aVu)pomll(z2(@)yd = sup &
pert@) Vel

faQ o(h — hy)
et IVOllLz@)
fQ V(pr(h_h“)

= sup
perl@ Vel

h—hy
= ||Vw ”(LZ(Q))(I
1

= (/ (h —h)A Y (h — h”))2 (8.10)
Q2
O

Write Z,, the subspace of H -3 (0€2) induced by elements n-a Vv defined on 92
for v € W,,. Write hy, the coefficients of / in the basis W, that is, i 1= fasz hyy,
it follows from Lemmas 8.2 and 8.3 that

1
oo 1 2\ 2
. llu — v”a—ﬂux,n . Zk=1 H(hk - hllé) :
sup inf ———— = sup inf o 13 (8.11)
ner2(oe) v<Wa - Ihll20) heL2(@Q) V<V Dt g
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It follows that a space W,, with optimal approximation constant is obtained when

Z, is the linear span of (¥, ..., V,). In that case
— V|4 1
sup inf 14~ Vllauxn _ : (8.12)
ner2@e) 'We  lIhll20) (Ana1)?

We deduce equation (8.5) using the following Weyl’s asymptotic for A (as a
first order pseudo-differential operator, see for instance [40], [43] and [42])

2
a1\
)2 ~ 4t (W) , (8.13)

This concludes the proof of Theorem 8.1. O

8.2. Proof of lemma 4.1

Let u be the solution of Lu = f with Dirichlet boundary conditions (assume
that it exists). Since o > 0, the solvability of (4.31) is equivalent to finding u €
H? N Hy () such that

Au=of + Au—alu (8.14)

Consider the mapping 7 : H> N H(} (Q) — H>N HO1 (R2) defined by v = Tw
where v is the unique solution of the Dirichlet problem for Poisson equation

Av=of + Aw —aLlw (8.15)
Let us now show that for 8, < 1, T is a contraction.
1Tw; — Tw2||H2ﬂHO1(Q) = flv1 — U2”HZQHO1 Q) (8.16)

Using the convexity of €2, one obtains the following classical inequality satisfied
by the Laplace operator (see Lemma 1.2.2 of [45])

v = vz”H%HO‘(Q) S A — V)2 (8.17)
Hence,
ITws = Twal3 o) S 181 —w2) —aLlwr = wa)lljq
d 2
< | D (8 — caij) 80 (wi — w) (8.18)
e L@

Using the Cauchy—Schwarz inequality we obtain that

d
171 = Tunls oy < /Q > (6 —aai))?
i,j=1

d
<[ D0 @0 wh — wh)? (8.19)
ij=1
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Hence, observing that

d

esssupg Z((sij—aaijﬁ = Bq (8.20)
ij=I

we obtain that
”TU)] - Tw2||?{2ﬂH(} (Q) é esssupxeﬁﬂa(x) ”wl - w2||%_120H(} (Q) (821)

It follows that if B¢ < 1, then T is a contraction and we obtain the existence and
solution of (4.31) through the fixed point theorem. Moreover,

1
lAull 2 = llafll2@) + B lAull 2 g (8.22)

which concludes the proof.
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