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Abstract. We demonstrate that a reproducing kernel Hilbert or Banach
space of functions on a separable absolute Borel space or an analytic sub-
set of a Polish space is separable if it possesses a Borel measurable feature
map.

1. Introduction

Reproducing kernel Hilbert spaces (RKHS) (see e.g. Berlinet and Thomas-Agnan
[2] and Steinwart and Christmann [33, Sec. 4]) are important in statistics and
learning theory. Moreover, when using these spaces in probability and statis-
tics, separability has powerful effects. For example, for any separable metriz-
able space X we have: B(X × X) = B(X) × B(X) for the Borel σ-algebras
[12, Prop. 4.1.7], the Ky-Fan metric can be defined so as to metrize convergence
in probability [12, Thm. 9.2.2], convergence in probability implies convergence
in law [12, Prop. 9.3.5], convergence in law is metrized by the Prokhorov met-
ric [12, Thm. 11.3.3], the space of probability measures with the weak topology
is separable and metrizable [1, Thm. 15.12], and the Kantorovich-Rubinstein and
Strassen theorems have sharp forms [12, Thms. 11.8.2 and 11.6.2]. Moreover, sepa-
rable Hilbert spaces are Polish so that we have all the machinery of descriptive set
theory available, regular conditional probabilities exist [12, Thm. 10.2.2], Bochner
integration is simple [1, Lems. 11.37 and 11.39], and all probability measures on
them are tight [11, Thm. 69, 77-III]. Most importantly, by a classical result (see
e.g. Halmos [19, Prob. 17]), all separable Hilbert spaces are isomorphic with �2(N).

According to Montgomery [27], “Separability is a property which greatly facili-
tates work in metric spaces, but it may be of some interest to point out that this
property has been unnecessarily assumed in the proofs of certain theorems concern-
ing such spaces and concerning functions defined on them.” Indeed, many works
do assume separability of the RKHS. For example, Steinwart and Christmann’s
[33, Thm. 7.22] oracle inequality for SVMs, Christmann and Steinwart [8, Thms. 7
and 12], [7], [6], Steinwart and Christmann [34], [35], De Vito, Rosasco and Toigo
[9], Hable and Christmann [18, Thm. 3.2], Lukić and Beder [25], Steinwart [32] and
Vovk [38, Thm. 3]. De Vito, Umanità and Villa [10] assume it in their generalization
of Mercer’s theorem to matrix valued kernels, and Christmann, Van Messem and
Steinwart [8] assert that Support Vector Machines (SVMs) are known to be con-
sistent and robust for classification and regression if they are based on a Lipschitz
continuous loss function and on a bounded kernel with a separable reproducing
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kernel Hilbert space which is dense in L1(μ), where μ is the marginal distribution
of the data-generating distribution. Cambanis [3] proves that a stochastic process
with index set a Borel subset of a Polish space has a measurable modification if
and only if the reproducing kernel corresponding to the autocorrelation function
is measurable and its corresponding RKHS is separable, and that a second order
process with index set the real line is oscillatory if and only if its RKHS is separable.
Nashed and Walter [28] require a separable RKHS in their development of sampling
theorems for functions in reproducing kernel Hilbert spaces, and Zhang and Zhang
[41] in reproducing kernel Banach spaces. Hein and Bousquet [22] require it and
give some sufficient conditions for it. For an example of a non-separable RKHS, see
Canu, Mary, and Rakotomamonjy [4, Ex. 8.1.6].

Let us now briefly discuss the topological spaces under consideration. A Polish
space is a separable completely metrizable space and a Suslin space a Hausdorff
continuous image of a Polish space. Following Frolik [16], a metrizable space X is
said to be absolute Borel if X ⊂ Z is a Borel subset for all metrizable Z for which
it is a subspace. Moreover, Frolik [15] introduces bianalytic spaces as Suslin spaces
such that their complement in their Čech compactification is also Suslin and, in
[15, Thm. 12], shows that a metrizable space is separable absolute Borel if and only
if it is bianalytic. On the other hand, a subset of a Polish space is called analytic
if it is Suslin. Indeed, the two types of spaces considered here, separable absolute
Borel spaces and analytic subsets of Polish spaces, are very general. For example,
for a Borel subset of a Polish space, Frolik [16, Thm. 1] asserts that it is separable
absolute Borel, and the famous Suslin theorem (see e.g. Kechris [23, Thm. 13.7])
asserts that it is analytic. That is, they both include any Borel subset of a Polish
space, in particular any Borel subset of a separable Banach space, so any Borel,
open, or closed subset of R

n. Since R
n is Polish, it follows that this class also

includes any analytic subset of Rn. Counterexamples to these spaces include non-
separable spaces, non-metrizable spaces and non-Suslin spaces. Moreover, Lusin’s
theorem (see e.g. Kechris [23, Thm. 21.10]) asserts that all analytic subsets of a
Polish space are universally measurable; that is, for every σ-finite measure it is
trapped between two Borel subsets of the same measure. Consequently, any subset
of a Polish space which is not universally measurable is a counterexample.

Reproducing kernel Hilbert spaces are Hilbert spaces of real-valued functions
such that pointwise evaluation is continuous. In their generalization to reproducing
kernel Banach spaces (RKBS), Zhang, Xu, and Zhang [40] stipulate that a RKBS on
a set X is a reflexive Banach space of real-valued functions on X whose dual space
is isometric with a Banach space of functions on X such that pointwise evaluation is
continuous for both the Banach space and its dual. They then proceed to develop
the theory much along the lines of RKHSs. In particular, in [40, Thm. 2] they
show that RKBSs possess reproducing kernels. Moreover, in [40, Thm. 3] they
demonstrate that if Φ : X → W is a map to a reflexive Banach space W and
Φ∗ : X → W∗ is a map to its dual such that the linear span of the image of
each map is dense, then a RKBS is determined with reproducing kernel K(x, x′) =
[Φ∗(x),Φ(x′)], where [ , ] is the dual pairing between W∗ and W . Moreover, in
[40, Thm. 4] they assert that all RKBSs possess such maps. Consequently, we refer
to such maps Φ : X → W and Φ∗ : X → W∗ as primary and secondary feature
maps for the RKBS.
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This generalization to RKBSs has generated much interest lately; for example see
recent results of Fukumizu, Lanckriet and Sriperumbudur [17], Zhang and Zhang
[42], Fasshauer, Hickernell and Ye [13] in machine learning, in particular of Song,
Zhang and Hickernell [30] on sparse learning, and the recent results of Zhang and
Zhang [41], Han, Nashed, and Sun [20] and Christensen [5] concerning sampling
expansions, frames and Riesz bases in Banach spaces.

It is the purpose of this paper to establish separability for both RKHSs and
RKBSs when the domain is a separable absolute Borel space or an analytic subset
of a Polish space, in particular when it is a Borel subset of a Polish space, under the
simple assumption that the reproducing kernel space possesses a Borel measurable
feature map.

2. Main results

Before our main results, we review some existing results regarding the separabil-
ity of RKHSs. We will consider both when X is not a topological space and when
it is. When X is not topological, Berlinet and Thomas-Agnan [2, Thm. 15, pg. 33]
shows that a RKHS H is separable if there is a countable subset X0 ⊂ X such
that f ∈ H and f(x) = 0, x ∈ X0 implies that f = 0. Moreover, a result of Fortet
[14, Thm. 1.2] asserts that a RKHS with kernel k is separable if and only if for all
ε > 0 there exists a countable partition Bj , j ∈ N, of X such that for all j ∈ N and
all x1, x2 ∈ Bj we have

k(x1, x1) + k(x2, x2)− k(x1, x2)− k(x2, x1) < ε .

Regarding the separability of RKBSs, an “if and only if” characterization is
obtained through a generalization of Fortet’s theorem from RKHSs to RKBSs. We
suspect the proof of our version, Theorem 2.2, is similar to Fortet’s [14, Thm. 2.1]
for RKHSs, but it is not written down there. Indeed, Fortet’s result is a regularity
condition on the pullback (pseudo) metric

dΦ(x1, x2) := ‖Φ(x1)− Φ(x2)‖H1
=

√
k(x1, x1) + k(x2, x2)− k(x1, x2)− k(x2, x1)

to X determined by a feature map Φ : X → H1. In particular, Fortet’s condition
then becomes: for all ε > 0 there exists a countable partition Bj , j ∈ N, of X such
that

(2.1) dΦ(x1, x2) <
√
ε, x1, x2 ∈ Bj , j ∈ N .

We begin with a preparatory lemma asserting that the separability of the image of
the feature map implies the separability of the corresponding RKHS or RKBS. This
lemma is used in both the proof of our generalization of Fortet’s result, Theorem
2.2, which is valid when X is not a topological space, and our main result, Theorem
2.4, valid when X is a separable absolute Borel space or an analytic subset of a
Polish space.

Lemma 2.1. Consider a (RKBS) RKHS K of functions on a set X with feature
(Banach) Hilbert space W and (primary) feature map Φ : X → W . If Φ(X) ⊂ W
is a separable subspace, then K is separable.

We can now present our generalization of Fortet’s result to RKBSs expressed in
terms of the pseudometric space (X, dΦ).

1

1We would like to thank one of the referees for pointing out the possible connection between
Fortet’s condition (2.1) and a Lindelöf type condition on the pseudometric space (X, dΦ).
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Theorem 2.2. A RKBS K of functions on a set X is separable if and only if
there exists a feature Banach space W and feature map Φ : X → W such that the
topological space (X, dΦ) determined by the pullback pseudometric

dΦ(x1, x2) := ‖Φ(x1)− Φ(x2)‖W , x1, x2 ∈ X,

is separable.

Now let us consider the case when X is a topological space. Since separability is
preserved under continuous maps (see e.g. [39, Thm. 16.4]), Lemma 2.1 implies the
RKBS version of Steinwart and Christmann [33, Lem. 4.33] when combined with
[33, Lem. 4.29]: A RKBS of functions on a separable space X is separable if it has
a continuous feature map. Steinwart and Christmann [33, Lem. 4.33] assert that
if X is separable and the kernel k corresponding to the RKHS H is continuous,
then H is separable. More generally, Steinwart and Scovel [36, Cor. 3.6] show
that if there exists a finite and strictly positive Borel measure on X, then every
bounded and separately continuous kernel k has a separable RKHS. However, to
obtain our main result, our primary tool to derive separability comes from theorems
of Stone [37, Thm. 16, pg. 32] when X is separable absolute Borel, and Srivastava’s
[31, Thm. 4.3.8] version of Simpson [29] when X is an analytic subset of a Polish
space. It is interesting to note that Srivastava’s proof is different from Simpson’s
in that it does not use Stone’s theorem [37, Thm. 16, pg. 32].

Lemma 2.3. Let X be separable absolute Borel or an analytic subset of a Polish
space and let Y be a metric space, and suppose that f : X → Y is Borel measurable.
Then f(X) ⊂ Y is separable.

Steinwart and Christmann [33, Lem. 4.25] show that separate measurability of
the kernel combined with separability of the corresponding RKHS implies that the
canonical feature map is measurable. Our main result is a kind of converse when
X is separable absolute Borel or an analytic subset of a Polish space.

Theorem 2.4. Let X be separable absolute Borel or an analytic subset of a Polish
space and let K be a RKHS with measurable feature map or a RKBS with measur-
able primary feature map of real-valued functions on X. Then K is separable.

3. Proofs

3.1. Proof of Lemma 2.1. For RKHSs this assertion is contained in the proof of
Steinwart and Christmann [33, Lem. 4.33]. Roughly, the argument is that rational
linear combinations are dense in the linear span of Φ(X) and the linear span is dense
in the closed linear span in the metric defined in the proof of [33, Thm. 4.21]. For the

RKBS case, since Φ : X → W is a primary feature map it satisfies span(Φ(X)) =
W . Moreover, since Φ(X) ⊂ W is separable, the same argument as used in the

RKHS case shows that the closed linear span span(Φ(X)) = W is separable, so we
conclude that W is separable. Since W is reflexive it follows from [26, Cor. 1.12.12]
that W∗ is separable. Moreover, Zhang, Xu and Zhang [40, Thm. 3] imply that the
dual Banach space is

K∗ := {[Φ(·), u∗] : u∗ ∈ W∗}
with norm

‖[Φ(·), u∗]‖K∗ := ‖u∗‖W∗ ,
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so that the mapping from W∗ to K∗ defined by u∗ �→ [Φ(·), u∗] is an isometry.
Consequently, the separability of W∗ implies the separability of K∗. Since K and
therefore K∗ are reflexive it follows from [26, Cor. 1.12.12] that K is separable.

3.2. Proof of Theorem 2.2. Let us first demonstrate the equivalence between the
separability of the RKBS and Fortet’s condition (2.1). Then we will demonstrate
the equivalence between Fortet’s condition and the separability of the pseudometric
space (X, dΦ). Let us begin with “if”. To that end, let us show that condition (2.1)
implies that Φ(X) is separable. Indeed, fix ε > 0 and for each ε

2k
, k ∈ N, let

Bk
j , j ∈ N, denote the corresponding partition and let xk

j ∈ Bk
j denote a selection.

Then the set Φ(xk
j ), k ∈ N , j ∈ N , is countable, and it is easy to show that it is

dense in Φ(X). That is, Φ(X) is separable, and the separability of K follows from
Lemma 2.1. Now for the “only if”, suppose that K is separable. Then the canonical
feature space W := K is separable, and since K is metric, by e.g. [39, Thm. 16.8], it
is second countable. Therefore, since second countability is inherited by subspaces
(see e.g. [39, Thm. 16.2]), it follows for the corresponding canonical feature map Φ :
X → K that Φ(X) ⊂ K is second countable, and therefore, by e.g. [39, Thm. 16.9],
it is separable. Therefore there exists a countable dense set Φ(xj) ∈ Φ(X), j ∈
N. Therefore, if for each ε > 0 and for each j ∈ N we define Bj = {x ∈ X :
‖Φ(xj) − Φ(x)‖K < ε

2}, it follows that
⋃

j∈N
Bj = X and ‖Φ(x1) − Φ(x2)‖K < ε

for all x1, x2 ∈ Bj . Therefore, we have established the equivalence between the
separability of the RKBS and Fortet’s condition (2.1).

Now let us demonstrate the equivalence between Fortet’s condition and the sep-
arability of the pseudometric space (X, dΦ). To that end, suppose that the pseu-
dometric space (X, dΦ) is separable. Then Willard [39, Thm. 16.11] asserts that
in a pseudometric space, the conditions of being Lindelöf, second countable, and
separable are equivalent. Therefore (X, dΦ) is Lindelöf in that every open cover
has a countable subcover. For x ∈ X, let BΦ(x, ε) := {x′ ∈ X : dΦ(x, x

′) < ε} de-
note the open ball about x, and for each ε > 0 consider the open cover {BΦ(x,

ε
2 ),

x ∈ X}. Then since (X, dΦ) is Lindelöf it follows that there exists a countable
subcover {BΦ(x,

ε
2 ), x ∈ X0} where X0 is countable. This cover satisfies Fortet’s

condition (2.1) for the value ε, and since ε was arbitrary it follows that the map
Φ : X → W satisfies Fortet’s condition (2.1). In the other direction, suppose that
the map Φ : X → W satisfies Fortet’s condition (2.1). Fix ε > 0 and for each
ε
2k
, k ∈ N, let Bk

j , j ∈ N, denote the corresponding partition and let xk
j ∈ Bk

j

denote a selection. Then the set Φ(xk
j ), k ∈ N , j ∈ N , is countable, and it is

easy to show that it is dense in Φ(X). That is, for x ∈ X, the countable set
{Φ(xk

j ), k ∈ N , j ∈ N} comes arbitrarily close to Φ(x). It follows that the count-

able set {xk
j , k ∈ N , j ∈ N} comes arbitrarily close to x in the pseudometric dΦ.

Consequently (X, dΦ) is separable.

3.3. Proof of Lemma 2.3. The case whenX is an analytic subset of a Polish space
follows directly from Srivastava [31, Thm. 4.3.8]. When X is separable absolute
Borel, it follows from Stone’s theorem [37, Thm. 16, pg. 32] that when Y is a
metric space and Φ : X → Y is a measurable bijection, the image Y is separable.
However, when Φ is not surjective, since Φ(X) ⊂ Y is a metric space, the assertion
that the metric subspace Φ(X) ⊂ Y is separable follows, assuming that Φ is a
measurable injection. Moreover, injectivity is also unnecessary. To see this, extend
to the injective map Φ̂ : X → X × Y defined by Φ̂(x) :=

(
x,Φ(x)

)
. Then it follows
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from Hansell’s [21, Thm. 1] generalization of Kuratowski [24, Thm. 1, Sec. 31,

VI] to the non-separable case that Φ̂ is measurable. To see how this is obtained,
since X is assumed to be separable and metrizable, it is second countable (see
e.g. [39, Thm. 16.11]), so that it has a countable base {Gn, n ∈ N} of open sets
generating its topology. Let W ⊂ X × Y be open and define

Vn =
⋃

{V : V open, Gn × V ⊂ W} .

Then

W =
⋃

n∈N

Gn × Vn,

and therefore

Φ̂−1(W ) =
⋃

n∈N

Gn ∩ Φ−1(Vn) .

Since Gn and Vn are open and therefore measurable and Φ is measurable it follows
that Φ̂−1(W ) is measurable. Consequently, since the open sets generate the Borel

σ-algebra, it follows that Φ̂ is Borel measurable. Moreover, since Φ̂ is injective the
above discussion shows that Φ̂(X) ⊂ X × Y is separable. Since Φ(X) = PY Φ̂(X)
where PY is the projection onto the second component and PY is continuous, and
separability is preserved under continuous maps (see e.g. [39, Thm. 16.4]), it follows
that Φ(X) ⊂ Y is separable.

3.4. Proof of Theorem 2.4. Since the feature space is metric, Lemma 2.3 implies
that the image Φ(X) is separable for any measurable feature map Φ. The assertion
then follows from Lemma 2.1.
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