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- e(u) = pl[X > q]

Unknown or partially known
measure of probability on R
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Game theory and statistical decision theory
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The best strategy Is to play at random

Obtained by finding the worst prior in
the Bayesian class of estimators
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Best strategy for A /LT ~ T A - M(A)

The best strategy for B

Orp(d) = Bparp, dropr [(I)(M) d" = d}

The best strategy for A and B = worst prior for B
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Reduction calculus with measures over measures
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A simple example

10,000 children are given one pound of play-doh.
On average, how much mass can they put above a
While, on average, keeping the seesaw balanced
around m?
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Paul is given one pound of play-doh.

What can you say about how much mass he Is
putting above a if all you have is the belief that
he is keeping the seesaw balanced around m?



What is the least upper bound on

o |1 X > a

If all you know is Eu~r [Eu[X]] =m

e A=

M([0,1

Answer
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Can this form of calculus in infinite dimensional
spaces and framework facilitate the process of
scientific discovery?

Identification of accurate bases
for numerical homogenization with
optimal recovery properties

Identification of New Reproducing
Kernel Hilbert Spaces
and Selberg Integral formulas



Bayesian Numerical Homogenization

(1)

—div(aVu) = g, T € (),
u=0, x € o),

Q0 c RY 9N is piec. Lip.

a unif. ell. a;; € L>(N)
<3

We want to homogenize (1)



We need g € L?(Q)

—div(aVu) = g, T € (),
u=0, x¢€ o,

g — u
HL(Q) — HL(Q)
L*(Q) — V

V CcC H(Q) V ~ H*(Q)

Q: How to approximate V with a finite dimensional space?



Numerical Homogenization Approach

Work hard to find good basis functions

Harmonic Coordinates Babuska, Caloz, Osborn, 1994
Kozlov, 1979 Allaire Brizzi 2005; Owhadi, Zhang 2005

MsFEM [Hou, Wu: 1997]; [Efendiev, Hou, Wu: 1999
Fish - Wagiman, 1993] [Gloria 2010] Arbogast, 2011: Mixed MsFEM
Projection based method Nolen, Papanicolaou, Pironneau, 2008

HMM

Engquist, E, Abdulle, Runborg, Schwab, et Al. 2003-...
Flux norm Berlyand, Owhadi 2010; Symes 2012

Localization

'Chu-Graham-Hou-2010] (limited inclusions)

Efendiev-Galvis-Wu-2010] (limited inclusions or mask)
Babuska-Lipton 2010] (local boundary eigenvectors)

‘Owhadi-Zhang 2011] (localized transfer property)
' Malqvist-Peterseim 2012] Volume averaged interpolation



Alternative Approach

Select {x1,..

.,ZEN}CQ
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Chooses Sees
g € L*(Q) w(x1), .-, u(xN)
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Game theory and statistical decision theory

John Von Neumann Abraham Wald

The best strategy is to play at random

Obtained by finding the worst prior in
the Bayesian class of estimators



Replace g by a stochastic field &

’ { —div(aVu) =&,  z€Q,

u=0, x¢€ 0,

g € L?(Q) e &: white noise

g € H*5(Q) ¢ ¢ — AT5/2white noise

Best strategy

0 = E[u(z)|u(z1),...,u(zy)]




Replace g by a stochastic field &

’ { —div(aVu) =&,  z€Q,

u=0, x¢€ 0,

g € L?(Q) e &: white noise

g € H*5(Q) ¢ ¢ — AT5/2white noise

Best strategy

0 = E[u(z)|u(z1),...,u(zy)]




Theorem y;: 50l of (2)

Elu(z)|u(z1),...,ulzy)] = S, ulz;)éi(z)

a = 1; e=== ¢, Polyharmonic splines

'Harder-Desmarais, 1972]
'Duchon 1976, 1977,1978]

a; ; € L () =) ¢;: Rough Polyharmonic splines
|Owhadi-Zhang-Berlyand 2013]

Theorem y: sol of (1), o(x): SD of u(x)|u(x;)

u(z) — 3o u(@)i()| < o ()9l r2(o




Theorem y;: 50l of (2)

Elu(z)|u(z1),...,ulzy)] = S, ulz;)éi(z)

a = 1; e=== ¢, Polyharmonic splines

'Harder-Desmarais, 1972]
'Duchon 1976, 1977,1978]

a; ; € L () =) ¢;: Rough Polyharmonic splines
|Owhadi-Zhang-Berlyand 2013]
Theorem y;: sol of (1)
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Accuracy of RPS as an interpolation basis

The accuracy depends only on

H :=sup, g min; ||z — x|



Theorem

E|u(z UQ Y)dy, .. Joul (y) dy] = > 1¢z z) Jo u( dy

_ diV( CLV) () Abritrary linear
integro-differential operator L

Observations () Abritrary linear
w(@1);- .., u(zN) observations [, u(y)x:(y) dy

g€ L2(Q) e g€ HE5(Q)
£: white noise () f = A$S/ “white noise



Can this form of calculus in infinite dimensional
spaces facilitate the process of scientific discovery?

New Reproducing Kernel Hilbert Spaces and Selberg Integral formulas

The importance of the Selberg integral

“Used to prove outstanding conjectures in
Random matrix theory and cases of the
Macdonald conjectures”

“Central role in random matrix theory, Calogero-
Sutherland quantum many-body systems, Knizhnik-
Zamolodchikov equations, and multivariable orthogonal
polynomial theory”



The truncated moment problem
M[0,1] W Rk

2! (EXNM[XLEXNM[XQ]?“"EXN“[Xk])

Study of the geometry of My := \If(/\/l([(), 1]))

P. L. Chebyshev A. A. Markov M. G. Krein
1821-1894 1856-1922 1907-1989



M[0,1] V¥ RF
0 (Bx (X, Exm[X7], . B[ X))

Origin of these new Selberg
integral formulas and new RKHS

Compute Vol(M}) using different
(finite-dimensional) representations in ./\/l 0,1] )

Inflnlte dlm

F|n|te dim.



M[0,1] V¥ RF
0 (Bx (X, Exm[X7], . B[ X))
My, := ¥ (M([0,1]))

Origin of these new Selberg integral formulas and new RKHS

Compute Vol(M}) using different

(finite-dimensional) representations in M ([0, 1])
0<t1 <ta<--- <ty <1
Al,..., AN > 0, Zj'vzl)\j =1

M:z;\le)\'(st- \Ij (Q17'°'7Qk)
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H = Zj\le AjOt;
MREEX i (/): Number of support points of

Counting interior points with weight 1 and boundary points with weight %

1t 1s called e principal if i(u) = k+1
k+2

e canonical if i(p) = =3
e upper if support points include 1
Theorem e Jower if support points do not include 1

Every point ¢ € Int(M}y) has a unique
upper and lower principal representation.

Upper -l-l—l_-l 1

t1 1o

Lower () Hl



Vol(Ms,,,—1) using Upper Rep. = Vol(Ms,,_1) using Lower Rep.

e Sm-1(3,3,2) = 775m (1, 1,2)

Vol(Ms,,,) using Upper Rep. = Vol(Ms,,,) using Lower Rep.
Sm(1,3,2) = 5,,(3,1,2)

Selberg ldentities

_ 111! D(at+iy)T(B+57)T(1+(j+1
Snla, 8,7) = Hj:O (I‘(ajavﬁ)i((nI;z)l)(v)F((a+7))v)

S, 8,7) = figyp [ljy 85711 = )P HA(E)[*dt

A(t) := Hj<k (tk — ¢5)




H = Zj\le AjOt;
MREEX i (/): Number of support points of

Counting interior points with weight 1 and boundary points with weight %

1L 1S called e principal if () = %

e canonical if i(p) = £22
e upper if support points include 1

Theorem ° lower if support points do not include 1

For t, € (0,1), every point g € Int(M},) has a unique
canonical representation whose support contains t..
When t, = 0 or 1, there exists a unique principal
representation whose support contains t..

0@%1



New Reproducing Kernel Hilbert Spaces and Selberg Integral formulas
related to the Markov-Krein representations of moment spaces.

M0, 1 W 0, 1]*
17

(EXNM[Xj,EXNM[Xﬂ, ..E X,\,M[Xk])

f]m Et_l | HJ 1 t?(l — 1 )2A4 ( )dt — Sm(57172);Sm(3,3,2)

Jrm St T 82 - A, (D) dt = 2.S,—1(5, 3, 2)

11;=1"%y

Ap(t) = Hj<k (tk —t5) T:= 0, 1]

(Zg)(t) =227, 6(t;), telm

n— 1 ['(a+j)I(B+i)I A+ +1)v)
Snle, B,7) = H ['(atB+(n+j—1)7)I'(1+7)



i1 < <1

0. n-th degree polynomials which vanish on the boundary of [0, 1]

M, C R™ set of ¢ = (q1,-..,9,) € R™ such that there exists a probability
measure p on [0,1] with E,[X"] = ¢; with ¢ € {1,...,n}.

Theorem Bi-orthogonal systems of Selberg Integral formulas

Consider the basis of Hgm_l consisting of the associated Legendre polyno-
mials @;,7 = 2,..,2m — 1 of order 2 translated to the unit interval I. For
k=2,..,2m — 1 define

(J+k+EHT(G+2)T() .
= E<1<92m — 1
U Rt LG —k+1) oIS

2m—1

hi(t) == Y (=17 ajpeam—_1-;(t,1).

j=k

Then for j = kmod 2, j,k = 2,..,2m — 1, we have

m—1

/ ) hi (1)2Q;(1) H t5 - A% 1 (t)dt = Vol(Mam—1)(2m—1)!(m—1)!

j'=1

(k+2!
(8k+ 4)(k —2)! 7%
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