
The Johnson-Lindenstrauss Transform
Low-Rank Approximation

Randomized Sparsification
Approximating Subspace Approach

Random Methods for Linear Algebra

Alex Gittens
gittens@acm.caltech.edu

Applied and Computational Mathematics
California Institue of Technology

October 2, 2009

Alex Random Methods for Linear Algebra



The Johnson-Lindenstrauss Transform
Low-Rank Approximation

Randomized Sparsification
Approximating Subspace Approach

Outline

1 The Johnson-Lindenstrauss Transform

2 Low-Rank Approximation

3 Randomized Sparsification

4 Approximating Subspace Approach

Alex Random Methods for Linear Algebra



The Johnson-Lindenstrauss Transform
Low-Rank Approximation

Randomized Sparsification
Approximating Subspace Approach

The Johnson-Lindenstrauss lemma says that a collection of n
points in any Euclidean space can be mapped into a Euclidean
space of dimension k = O(log n) with little distortion:

Theorem

Let ε ∈ (0, 1
2), and let P = {p1, . . . , pn} be a set of n points in

R
n. Let k be an integer with k ≥ Cε−2 log n, where C is a

sufficiently large absolute constant. Then there exists a
mapping f : Rn → Rk such that

(1− ε)‖pi − pj‖ ≤ ‖f (pi)− f (pj)‖ ≤ (1 + ε)‖pi − pj‖

for all i , j = 1, 2, . . . , n.

Alex Random Methods for Linear Algebra



The Johnson-Lindenstrauss Transform
Low-Rank Approximation

Randomized Sparsification
Approximating Subspace Approach

The JL-lemma allows us to compress (an approximation
of) the representation of a set of points from O(n2) space
to O(n log n)

Better, the JL transforms can be done by using
multiplication with a random matrix. Projection of all the
points takes O(n2 log n) time.
Even better, you can use particularly nice random
matrices, and obtain a Fast JL Transform. Projection of all
the points takes O(n log n + polylog(1/ε, log n)).
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Ailon and Chazelle introduced the FJLT
earlier work showed you need k = O(log n), so to decrease
computation, considered using sparse projection matrices
problem is that sparse projection matrices distort sparse
vectors
key idea: use FFT to increase the support of sparse
vectors. use randomized FFT to avoid sparsification of
dense vectors
form of the random projection doesn’t depend on the data
with probability 2/3, one application of the FJLT succeeds
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Structure of the FJLT

Φ = PHD

P is a k × n matrix such that Pij ∼ N(0, q−1) w.p. q and
Pij = 0 w.p. 1− q, where q depends on n, ε.
H is an n × n normalized Hadamard matrix (real analog of
the Fourier matrix)
D is a n × n diagonal matrix with independent diagonal
entries uniformly drawn from 1,−1.
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The magic lies in HD. Fix p ∈ R
n with unit length, then examine

(HDp)1 =
n∑

j=1

H1jdjjpj

Apply Hoeffding’s inequality and the fact |Hij | = n−1/2 (gives an
upper bound on the probability for a sum of bounded random
variables to deviate from its mean):

P(|(HDp)1| ≥
√

nnt) ≤ 2 exp
(
−n(

√
nt)2

2

)
so with very high probability |(HDp)1| = O(n−1/2).
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H and D are isometries, and the (HDp)i are i.i.d, so it follows
that they are all on the order of n−1/2.

we have densification of sparse vectors without
sparsification of dense vectors.
P is tailored appropriately to get a JLT.
Randomized FFTs have become very popular (SRFTs)
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The Low Rank Approximation Problem

Given large A ∈ R
m×n, efficiently approximate the solution to

min
rank(B)≤k

‖A− B‖ξ, ξ ∈ {F , 2}.

Cost of dense SVD (entire SVD): O(min{mn2, m2n})
Cost of sparse SVD (top k singular vectors):
O(kmn + k2m)
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Ways to use randomization:
Reduce the size of the matrix, e.g. by biased sampling of
its rows or columns, take the SVD of this matrix, show this
is close to the SVD of the original. The ’Monte-Carlo’
approach.
Approximate the matrix with a random sparse matrix, show
that the SVD of this is close to the SVD of the original.
Find a rank-k basis Q which minimizes ‖A−QQ?A‖ and
take B = QQ?A.
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Frieze, Kannan, Vempala’s work on Monte Carlo method is
seminal

key observation is that a good low rank approximation to A
(in Frobenius norm) lies in the span of a small subset of its
rows.
algorithm samples rows of A to form X , biased according
to their share of ‖A‖F . After scaling, SVD of X T X
approximates that of AT A.

Rudelson and Vershynin showed that if numerical rank of A is r ,
then by sampling O(r log r) rows of A, can construct a matrix Pk
so

‖A− APk‖2 ≤ σk+1(A) + ε‖A‖2.
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Randomized Sparsification Schemes

Achlioptas and McSherry considered replacing A with a
sparse X using the scheme

Xjk =

{
ajk/pjk , w. p. pjk

0, otherwise

where pjk = p(aij/b)2 (more or less). b is the largest
absolute value in A.
Key idea: sparsification similar to adding gaussian noise,
which has weak spectral features.
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Our idea: develop bounds for the error of sparsification
schemes which satisfy EX = A and the entries of X are
independent. Want a bound on the expected spectral norm of
Z = A− X

E‖Z‖2 ≤ C

max
j

(∑
k

EZ 2
jk

)1/2

+ max
k

∑
j

EZ 2
jk

1/2

+

∑
jk

E(Xjk − ajk )4

1/4


This bound is optimal.
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Found similar bounds for other useful norms

E‖Z‖∞→1 ≤ 2E
(
‖Z‖col + ‖Z T‖col

)
E‖Z‖∞→2 ≤ 2E‖Z‖F + 2 min

D
E‖ZD−1‖2→∞

These bounds are also asymptotically optimal.
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Deviations from the Expected Error

Let g be a measurable function of n random variables and
F = g(X1, . . . , Xn). Let Fi denote the random variable obtained
by replacing the i th argument of g with an independent copy:
Fi = g(X1, . . . , X ′

i , . . . , Xn).

Theorem
Assume that there exists a positive constant C such that, a.s.∑n

i=1(F − Fi)
2
1F>F ′i

≤ C. Then for all t > 0,

P(F > EF + t) ≤ exp
(
− t2

4C

)
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Let F = ‖Z‖ξ and Fi be obtained by replacing Zij = aij −Xij with
Z ′ij = aij − X ′

ij . It follows that if the entries of X are bounded by
D/2, then

P(‖A− X‖2 > (1 + δ)E‖A− X‖2) ≤ e

„
− δ2

E‖A−X‖2
2

4D2

«

P(‖A−X‖∞→1 > (1+ δ)E‖A−X‖∞→1) ≤ e

„
− δ2

E‖A−X‖2
∞→1

4D2nm

«

A similar bound holds for the (∞, 2) error.
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The combination of our bounds for the expected error and the
error tail bounds work as well as Achlioptas and McSherry’s
scheme. Additionally

Analyzing other schemes is straightforward.
Our tail bounds are sharper, and apply over a wider range
of matrix sizes.
comparison to another sparsification scheme (Arora,
Hazan, and Kale) is equally favorable.
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Find rank-k matrix Q minimizing ‖A−QQ?A‖.
Idea:

if A were exactly rank-k , take Y = AΩ where random
matrix Ω has k columns. Then Y = QR gives Q with high
probability.
since A not exactly rank-k , do an oversampling: let Ω have
` columns
need a bound on ‖A−QQ?A‖ so we know how to choose `
to minimize this quantity
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A nice bound by Tropp, et.al. Let

A = U
(

Σ1
Σ2

)(
V ?

1
V ?

2

)
where Σ1 contains the top k singular values and Σ2 contains
the bottom n − k .
Further, let Ω1 = V ?

1 Ω and Ω2 = V ?
2 Ω so

Y = AΩ = U
(

Σ1Ω1
Σ2Ω2

)
.
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Theorem
Assuming that Ω1 has full row rank, the approximation error
satisfies

‖(I − PY )A‖2
ξ ≤ ‖Σ2‖ξ + ‖Σ2Ω2Ω

†
1‖

2
ξ ,

where ξ ∈ {F, 2}.
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Known results

If Ω is a n × (k + p) Gaussian,

E‖(I − PY )A‖F ≤
(

1 +
k

p − 1

)2
∑

j>k

σ2
j

1/2

.

If Ω =
√

n/l RHD is a SRFT — H and D are as before, and R is
a random `× n matrix that restricts to l uniformly randomly
chosen coordinates:

‖(I − PY )A‖ ≤
√

1 + 18n/lσk+1

except with probability O(k−1/26).
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Another useful form for Ω

Experimentally, taking Ω to be a submatrix of a product of
random Givens rotations seems to give good results:

G1G2 . . . GsP = :
(
Ωsamp Ωerr

)
where P is a random permutation matrix and Gi is a Givens
rotation about a uniformly randomly chosen angle in a uniformly
randomly chosen plane.
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I was able to show

‖Ω†‖2 =
1

1− ‖V ?
1 ΩerrΩ?

errV1‖2

so the problem reduces to showing that ‖V ?
1 ΩerrΩ

?
errV1‖2 is

bounded away from 1 with reasonable probability.
HARD: connection to convergence of Kac Walk on sphere.
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