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MOTIVATION

Our basic task
A ∈ Rm×n is a huge matrix. Given k� min{m,n}, we would
like a low-rank approximation to A with rank about k

1. This abstract problem is ubiquitous in data processing
tasks: machine learning, image processing, statistical
analysis, optimization, ...

2. Traditional deterministic approaches (via truncated SVD,
rank-revealing QR, Krylov space methods) cost at least
O(mnk log min{m,n}) operations, and can have high
communications costs.



The question arises: can we use randomness to assist in the
design of algorithms for finding low-rank approximations of
large matrices? We consider two schemes for low-rank
approximation:

I Projection-based approximation schemes using fast
randomized projections (joint work with C. Boutsidis)

I “Sketching” schemes for positive semidefinite matrices
(joint work with M. Mahoney)

Our objective

Determine how the errors of these randomized approximations
in the spectral, Frobenius, and trace norms compare with the
errors of Ak, the best rank-k approximation to A.



THE TARGET AUDIENCE

Who is interested in these approximations and our guarantees?
I The numerical linear algebra community wants high

quality approximations with very low failure rates and
low communication cost.

I The machine learning community wants approximations
whose errors are on par with modeling inaccuracies and
the imprecision of the data

I The optimization community is interested in varying
levels of quality.

I The theoretical computer science community is interested
in understanding the behavior of these algorithms, e.g.
what is the optimal tradeoff between the error, failure rate,
and the amount of arithmetic operations involved? How
can communication cost be minimized?



THE RANDOM PROJECTION METHODOLOGY

Capture the range of the “important” part of A using a
sampling matrix S, then project A onto this space to reduce
rank.

A S Y = QR

Q

QT

A PASA



The quality of the approximation depends on how well the
range of the dominant k-dimensional left singular space of A is
approximated by the range of Y.

We can use the “power” method to increase the accuracy of the
approximation: approximate A with P(AAT)pASA :

1. Form Y = (AAT)pAS.
2. Take the QR decomposition Y = QR.
3. Form the low rank approximation Q(QTA).

Requires only 2(p + 1) passes over A.

This methodology was popularized by (Papadimitriou et al.
2000), (Sarlós 2006), and (Martinsson et al. 2006).

Our design parameters:
I `, the number of samples (k ≤ `� min{m,n})
I S ∈ Rn×`, the random sampling matrix.
I p, the number of iterations.



Three factors determine probability of getting a good
approximation:

I Spectral decay of A, e.g. the multiplicative gap
σk+1(A)/σk(A), or (σk+1(A)/σk(A))p.

I Type of randomness used to generate S.

I Amount of oversampling (as `→ n,PASA→ A).



CHOICE OF SAMPLING MATRIX

Dominant arithmetic cost of forming these low-rank
approximations is the matrix multiply AS.

A natural choice for S is a matrix of i.i.d. N (0, 1) Gaussians,
proposed in (Martinsson et al. 2006).

I Computation of AS takes O(mn`) time for general A.
I The columns of A are well-mixed.

(Woolfe et al. 2008) proposed using structured random
projections.

I Computation of AS takes reduced time O(mn log(`)).

I Mixing not as uniform, so potential accuracy loss.



Assume n is a power of 2. We consider the case where S is a
subsampled randomized Hadamard transform (SRHT):

S =

√
n
`

DHR ∈ Rn×`.

Here:
I D is a diagonal matrix of random signs,
I R selects ` columns at random, and
I H = n−1/2Hn ∈ Rn×n is the normalized Walsh–Hadamard

matrix. The matrices Hn are defined recursively by

Hn =

[
Hn/2 Hn/2
Hn/2 −Hn/2

]
, with H2 =

[
+1 +1
+1 −1

]
.

The matrix–matrix product AS can be computed in time
O(mn log `).



EMPIRICAL PERFORMANCE

Let n = 1024; consider the following test matrix in R(n+1)×n:

A = [100e1 + e2, 100e1 + e3, . . . , 100e1 + en+1],

where ei ∈ Rn+1 are the standard basis vectors.

A is approximately rank-one, and all its columns are biased
toward the dominant left singular-vector e1.
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Each point is the average of the errors observed over 30 trials,
where each approximation was constructed using
` = d2k log ne.



0 10 20 30 40 50 60 70 80
0.99

0.992

0.994

0.996

0.998

1

1.002

1.004

1.006

1.008

1.01

k (target rank)

re
la

tiv
e 

er
ro

r

Relative residual spectral errors for A

 

 
‖A − P(AAT )3ASA‖2/‖A −Ak‖2, Gaussian
‖A − P(AAT )3ASA‖2/‖A −Ak‖2, SRHT

0 10 20 30 40 50 60 70 80
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k (target rank)
re

la
tiv

e 
er

ro
r

Relative residual Frobenius errors for A

 

 

‖A − P(AAT )3ASA‖F/‖A −Ak‖F , Gaussian
‖A − P(AAT )3ASA‖F/‖A −Ak‖F , SRHT

We apply the power method with p = 3, while keeping
` = d2k log ne.



Let n = 1024; consider the diagonal matrix B ∈ Rn×n with
entries (B)ii = 100(1− (i− 1)/n).

B =


100 0 0 . . .
0 99.902 0 . . .

0 0
. . . . . .

0 . . . 0 0.098


B is full-rank, has slowly decaying spectrum, and only k
columns of B provide any information on the dominant
k-dimensional left singular space of B.
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Each point is the average of the errors observed over 30 trials,
where each approximation was constructed using
` = d2k log ne.



Consider C = UBVT, where U and V are obtained by taking the
SVD of an n× n matrix of i.i.d. N (0, 1) random variables,
G = UΣVT.

C = U


100 0 0 . . .

0 99.902 0 . . .

0 0
. . . . . .

0 . . . 0 0.098

VT

C is also full-rank and has slowly decaying spectrum, but every
column of C contains information on every singular space of C.
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Each point is the average of the errors observed over 30 trials,
where each approximation was constructed using
` = d2k log ne.



Observations:
1. When A is approximately low-rank, the SRHT and

Gaussian low-rank approximations exhibit about the same
accuracy.

2. When A is full rank the structures of the singular spaces
are important.

I If the singular vectors are “flat”, then SRHT and Gaussian
approximations have comparable accuracy.

I If the singular vectors are axis-aligned, then Gaussian
approximations outperform SRHT approximations.

3. Empirically, ` = Ω(k log n) seems to ensure SRHT
approximations achieve relative-error bounds.



PRIOR WORK

Similar randomized structured projection schemes:
I (Woolfe et al. 2008): if ` = O(k2), then

‖A− Ã‖2 ≤
√

max{m,n}‖A−Ak‖2

I (Nguyen et al. 2009): if ` = O(ε−1k log k), then

‖A− Ã‖2 ≤ (2 +
√

n/`)‖A−Ak‖2

‖A− Ã‖F ≤ (1 + ε)‖A−Ak‖F

Exactly the same SRHT scheme:
I (Halko et al. 2011): if ` = O(k log k), then for ξ ∈ {2,F},

‖A− PAS‖ξ ≤ (1 +
√

n/`)‖A−Ak‖ξ.



FOR COMPARISON

It follows from (Halko et al. 2011) that when S is Gaussian and
` = Ω(ε−2k log n),

‖A− PASA‖2 ≤

(
1 +

ε√
log n

)
‖A−Ak‖2 +

ε√
k log n

‖A−Ak‖F

‖A− PASA‖F ≤

(
1 +

ε√
log n

)
‖A−Ak‖F

simultaneously with probability at least 1− 2
n .

Gaussians and SRHTs behave quite similar empirically, yet
prior analyses for SRHTs are qualitatively poorer than this
analysis.



IMPROVED ERROR BOUNDS

(Boutsidis and G. 2012)

If k = Ω(log n) and ` = Ω(ε−2k log n), then

‖A− PASA‖2 ≤ (4 + ε) · ‖A−Ak‖2 +
ε√
k
‖A−Ak‖F

‖A− PASA‖F ≤ (1 + 11ε2)‖A−Ak‖F

simultaneously with probability at least 1− δ.

This result essentially holds when S is any subsampled
orthogonal transformation,

S =

√
n
`

DTR,

where T is an orthogonal transformation matrix with entries on
the order of n−1/2.



NOTATION

I Partition the SVD of A :

A = UΣVT =
[ k n−k

U1 U2
] [ k n−k

Σ1
Σ2

] [
VT

1
VT

2

]
.

Note that Ak = U1Σ1VT
1 .

I Define
Ω1 = VT

1 S and Ω2 = VT
2 S,

to capture the interaction of S with the dominant and
residual right singular spaces of A.



PROOF SKETCH

(Boutsidis et al. 2011), (Halko et al. 2011)

If Ω1 = VT
1 S has full row rank, then

‖A− PASA‖2
ξ ≤ ‖A−Ak‖2

ξ +
∥∥Σ2Ω2Ω

†
1

∥∥2
ξ

for ξ ∈ {2,F}.

Geometrical interpretation:
I VT

1 S has full row-rank ⇔ tan(V1,S) 6=∞.
I
∥∥Ω2Ω

†
1

∥∥
2 = tan(V1,S).

We bound the additional errors
∥∥Σ2Ω2Ω

†
1

∥∥2
2 and

∥∥Σ2Ω2Ω
†
1

∥∥2
F

when S is an SRHT.



KEY TOOLS

I Matrix Chernoff inequalities that show that if the energy of
M (i.e. its Frobenius norm) is evenly distributed
throughout its columns, then matrices consisting of
randomly sampled columns of M have similar extreme
singular values to M.

I An extension of a result in (Tropp 2011) to show right
multiplication by DH distributes the energy of any matrix
M evenly over its columns.



SKETCH OF SPECTRAL NORM PROOF

1. By the structural result,

‖A−PASA‖2
2 ≤ ‖A−Ak‖2

2 +‖Σ2VT
2 DHR‖2

2 ·
∥∥(VT

1 DHR)†
∥∥2

2.

2. DH spreads the energy of VT
1 throughout its columns

sufficiently that when enough columns are selected by R,
the spectrum of the resulting matrix is close to that of VT

1 .
Consequently,

‖A− PASA‖2
2 ≤ ‖A−Ak‖2

2 + (1−
√
ε)−1‖Σ2VT

2 DHR‖2
2.



3. DH spreads the energy of Σ2VT
2 throughout its columns

sufficiently that when enough columns are selected by R,
the norm of the resulting matrix is not much larger than
that of Σ2 :

P
{
‖Σ2VT

2 DHR‖2
2 ≤

(
5 +

log(n/δ)
`

)
‖Σ2‖2

2+

O

(
log(n/δ)3/2

`

)
‖Σ2‖2

F

}
≥ 1− δ.

4. Combine these pieces and use our lower bounds on k and `
to simplify:

‖A− PASA‖2 ≤ (4 + ε)‖A−Ak‖2 +
ε√
k
‖A−Ak‖F.



SPSD SKETCHES
If A is a positive semidefinite matrix, one may want to preserve
positivity. SPSD sketches do so:

A ≈ CW†CT

where C = ApS and W = STA2p−1S.
Consider, e.g., if C corresponds to randomly selected columns
of A.

It takes O(`3 + n`2) operations to form this approximation.



The class of SPSD sketches is wide. We consider the following
specific sketches:

I When S selects columns uniformly at random without
replacement from A, we call M a Nyström extension.

I When S consists of i.i.d. N (0, 1) Gaussians, M is a
Gaussian sketch.

I When S is a subsampled randomized Fourier transform
(SRFT), M is an SRFT sketch.

I When S selects columns from A randomly with
replacement with probability proportional to their leverage
scores, M is a leverage sketch.



GAUSSIAN AND SRFT SKETCHES

Gaussian and SRFT sketches:
I SRFT sketching suggested in (Chiu and Demanet 2012)
I S mixes the columns of A together before sampling.
I Mixing process ensures that no columns are ignored.
I Gaussian sketches cost O(`3 + n2`) operations to form.
I SRFT sketches cost O(`3 + n2 log `) operations to form.



LEVERAGE SCORES

The statistical leverage scores of the columns of A (with respect
to rank k), are the scaled column norms of UT

1 :{
`j :=

n
k
∥∥(UT

1 )j
∥∥2

2, j = 1, . . . ,n
}
.

UT
1

{`j}



LEVERAGE SKETCHES

Leverage sketches:
I The idea of leverage score sampling for forming

column-sampling based low-rank approximations due to
(Drineas et al. 2008).

I Columns are sampled random from A with probability
proportional to their leverage scores.

I Intuitively, leverage score sampling ensures that no
important columns are ignored.

I Assuming the leverage scores as given, costs O(`3 + n2`)
operations to form.

I The leverage scores can be approximated.



EMPIRICAL PERFORMANCE
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Dexter, a 2000× 2000 Gram matrix from the UCI Machine
Learning Repository. Target rank k = 8.
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Abalone, a 4898× 4898 Radial Basis Kernel matrix from the
UCI Machine Learning Repository. Target rank k = 20.
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Enron, a 10K × 10K Graph Laplacian matrix from the Stanford
SNAP collection. Target rank k = 60.



Observations:
I The leverage sketches are often the most accurate on

average, especially when ` is small. However, variance
depends on leverage score distribution and can be high.

I The relative trace-norm errors are all smaller than the
relative Frobenius-norm errors, which are in turn smaller
than the relative spectral-norm errors.

I The sketches are more distinguished by their behavior in
the spectral norm than the Frobenius or trace norms.



PRIOR WORK (p = 1)
Source, sketch ` ‖A− CW†CT‖2
(Drineas and Mahoney 2005), column-sampling Ω(ε−4k) ‖A− Ak‖2 + ε

∑n
i=1 A2

ii
(Talwalkar and Rostamizadeh 2010), Nyström Ω(µk log k) 0, if rank(A) = k
(Kumar et al. 2012), Nyström Ω(1) ‖A− Ak‖2 + (n/

√
`) maxii Aii

(Chiu and Demanet 2012), Nyström Ω(µk log n) (1 + n/`)‖A− Ak‖2
(Chiu and Demanet 2012), SRFT sketch Ω(k log2 n) (1 + n/`)‖A− Ak‖2

I Here µ ∈ [1, n
k ] is the “coherence” of the matrix.

I The estimated additional error in (Drineas and Mahoney
2005) can be on the order of ε tr(A).

I The (Talwalkar and Rostamizadeh 2010) exact recovery
result requires A to be exactly low-rank.

I The (Chiu and Demanet 2012) results require Ω(k log n)
samples as opposed to Ω(k log k). The factor n/` is optimal
in the Nyström bound, but unnecessary in the SRFT
bound.

(G. and Mahoney 2013) provides a framework for deriving
significantly improved asymptotic error bounds.



STRUCTURAL ERROR BOUNDS FOR SPSD SKETCHES

Recall the partitioned eigendecomposition of A :

A = UΣUT = [U1 U2]

[
Σ1

Σ2

]
[U1 U2]T

and that
Ω1 = UT

1 S and Ω2 = UT
2 S

capture the interactions of the sketching matrices with the
dominant and residual eigenspaces of A.

If S has orthonormal columns, then∥∥Ω2Ω
†
1

∥∥
2 = tan(S,U1).



Our error bounds for SPSD sketches follow from the key
observation that

SPSD sketches approximate A1/2, (G. 2011)

CW†CT = (A1/2PAp−1/2S)(PAp−1/2SA1/2).

Thus the errors of SPSD sketches satisfy

‖A− CW†CT‖ξ = ‖A−A1/2PAp−1/2SA1/2‖ξ

for ξ ∈ {2,F, tr}.

We extend the framework provided in (Halko et al. 2011) for
projection-based low-rank approximations to find deterministic
error bounds for SPSD sketches.



Simplified versions of these bounds (for p = 1):

(G. and Mahoney, 2013)

If Ω1 = UT
1 S has full row rank, then

‖A− CW†CT‖2 ≤
(

1 +
∥∥Ω2Ω

†
1

∥∥2
2

)
‖A−Ak‖2,

‖A− CW†CT‖F ≤ ‖A−Ak‖F + 2
√

2
∥∥Ω2Ω

†
1

∥∥2
2 · tr(A−Ak), and

tr(A− CW†CT) ≤
(

1 +
∥∥Ω2Ω

†
1

∥∥2
2

)
· tr(A−Ak)

I The randomness of S enters only through the sketching
interaction matrix Ω2Ω

†
1.

I The spectral-norm and trace-norm additional errors of
sketches are proportional to the optimal errors.

I The Frobenius-norm additional errors of sketches are
proportional to the optimal trace-norm errors.



SPECTRAL ERROR BOUNDS

Leverage sketches

If ` = Ω(ε−1k log(k/δ)), then

‖A− CWCT‖2 ≤ ‖A−Ak‖2 + ε tr(A−Ak)

with probability at least 1− δ − 0.4.

SRFT sketches
If k = Ω(log n) and ` = Ω(ε−2k log(n/δ)), then

‖A− CWCT‖2 ≤
(

5 +
ε√
k

)
‖A−Ak‖2 +

ε2

k
tr(A−Ak)

with probability at least 1− δ.



Gaussian sketches
If ` = Ω((1 + ε−1)k), then

‖A− CWCT‖2 ≤ (1 + ε)‖A−Ak‖2 +
ε

k
tr(A−Ak)

with probability at least 1− k−1 − e−kε−1
.



NYSTRÖM EXTENSIONS

Nyström extensions perform well when the information in its
top k-dimensional eigenspace is spread throughout A :

A = 20


1
0
0
0

 [1 0 0 0
]

=


20 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


versus

A = 20


1/2
−1/2
−1/2
1/2

 [1/2 −1/2 −1/2 1/2
]

=


5 −5 −5 −5
−5 5 5 −5
−5 5 5 −5
5 −5 −5 5


key point: we need the support of the top k eigenvectors to be
spread out.



A measure of the “spreadness” of the eigenvectors in U1 is
given by the coherence of U1 :

µ :=
n
k

maxj ‖(U1)j‖2
2.

I coherence is the largest of the leverage score of the
columns of A.

I µ is between 1 (best case) and n/k (worst case)



EMPIRICAL IMPACT OF COHERENCE
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A ∈ R500×500 is full-rank, but numerically rank 20. The target
rank k = 10. Each point is the average of 60 trials.



The best previous error bound on the error of Nyström
extensions in terms of the coherence is

(Talwalkar and Rostamizadeh 2010)

Let A be exactly rank-k. If ` = Ω(µk log(k/δ)), then

‖A− CW†CT‖ = 0

with probability at least 1− δ.

What about A that are not exactly low-rank?



ERROR BOUNDS FOR NYSTROM EXTENSIONS

The approximation errors can be bounded when ` is
proportional to the coherence.

Spectral-norm error bound (G. 2011)

If ` ≥ 8µk log(k/δ), then

‖A− CW†CT‖2 ≤ ‖A−Ak‖2

(
1 +

2n
`

)
with probability at least 1− δ.

This bound is tight: there are matrices for which the relative
spectral-norm error is on the order of n/`.



RANDOM PROJECTIONS VS SPSD SKETCHES

Could approximate SPSD matrices with PASAPAS.

I PASAPAS is (PASA1/2)(A1/2PAS).

I The two-pass sketch (A2S)(STA3S)†(STA2) is
(A1/2PA3/2S)(PA3/2SA1/2).
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Wine, a 4898× 4898 sparse Radial Basis Kernel matrix from the
UCI Machine Learning Respository. Target rank k = 20. Each
point is the average relative error over 30 trials.



CONCLUSION

Considered two classes of low-rank approximation:
1. A fast projection-based scheme for arbitrary matrices.

I Established a relative-error Frobenius-norm error bound
and an improved additive-error spectral-norm bound.

I Provided empirical evidence that Ω(k log n) samples suffice
to obtain small spectral- and Frobenius-norm errors in
practice.

2. A new class of SPSD sketches.
I Introduced leverage score sketches and provided empirical

evidence they outperform alternative sketches.
I Provided theoretical error guarantees for several types of

SPSD sketches.
I Established an optimal relative-error spectral-norm bound

for Nyström extensions.
I Provided empirical evidence that SPSD sketches perform

well on a wide range of matrices that arise in machine
learning.
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